The water stable isotopic composition of tropical water and its potential to study the water cycle

Camille Risi

LMD/IPSL, Paris (France)

supervised by Sandrine Bony and Françoise Vimeux

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Water stable isotopes

- ▶ water=light molecules (H¹⁶₂O) + heavy (H¹⁸₂O, HDO)
- isotopic fractionation
- use as paleothermometer in high latitudes

Goals

- What controls the isotopic composition of precipitation in the Tropics? Role of atmospheric convection?
- What information on the water cycle, including cloud processes, surface-atmosphere interactions?
- > Potential to better constrain parametrizations in models?

ション ふゆ く 山 マ チャット しょうくしゃ

Potential to better constrain the variations in the water cycle? Past climates?

Tools

observations

- existing international networks (GNIP)
- rain collected during AMMA, along the monsoon season and along squall lines

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

isotope-enabled models

- Single Column Model (SCM) of radiative-convective equilibrium
- Squall line model
- General Circulation Model (LMDZ)
- Land Surface Model (ORCHIDEE)

Outline

- 1. Isotopes and atmospheric convection
- 2. Isotopes and land surface processes
- 3. Isotopes and tropical climate variations

definitions:

 $\delta^{18} O$ =enrichment in $H_2^{18} O$ relatively to a standard in $\%_0$ δD =enrichment in HDO relatively to a standard in $\%_0$ d-excess = $\delta D - 8 \cdot \delta^{18} O$

ション ふゆ く 山 マ チャット しょうくしゃ

1. Isotopes and atmospheric convection

Existing observations

- Amount effect
- Effect of convection at the synoptic scale

Lawrence et al 2004

Questions: How does convection impacts the isotopic composition? By which processes? At which time scale?

Single Column Model

Radiative convective equilibrium model over ocean

- Boundary conditions: sea surface temperature and wind, vertical profile of vertical velocity
- ► Emanuel convective parametrization ⇒ detailled representation of rain evaporation
- neglect horizontal gradients in moisture and isotopes

Convective system in the Emanuel parametrization

Evaluation of the Single Column Model

correct simulation of the amount effect

What explains the amount effect?

- rain reevaporation and convective downdrafts main processes
- consistent with strong sensitivity to reevaporation and downdraft parameters

What are the time scales of the amount effect?

TOGA COARE simulation

・ロト ・ 日本 ・ 日本 ・ 日本

э

 The isotopic composition integrates convection over the previous days

Collection of rain samples during the AMMA campaign

 collection at the end of each event, during the entire 2006 monsoon season, on 3 sites around Niamey

lsotopic evolution during the season

 record of the monsoon onset

lsotopic evolution before the onset

Isotopic evolution after the onset

(a)

э

- temporal integration of convection
- record of the intra-seasonal variability (Sultan et al 2003)

Remaining questions

- process of temporal integration? Atmospheric vapor? Soil moisture?
- d-excess data?
- processes of convection impact? Local or regional?

Intra-event sampling

11 August 2006 squall line

Intra-event sampling

11 August 2006 squall line

Intra-event sampling

11 August 2006 squall line

11 August 2006 squall line

DQC

Robust properties among squall lines

- strong variations between lines
- ► W shape
- d-excess decreases at the beginning of the startiform zone

Simple 2D model of transport and microphysics

Model results

- robust properties simulated
- strong sensitivity to the dynamics

What processes control $\delta^{18}O$?

strong impact of downdrafts and rain evaporation

What processes control d-excess?

・ロト ・個ト ・モト ・モト

э

 d-excess controlled mainly by relative humidity during reevaporation Conclusion on the effect of convective processes on precipitation isotopes

Both SCM and intra-event data show strong impact of

- Convective and meso-scale downdrafts
- Rain reevaporation
- Potential of water isotopes to better constrain water budgets in squall line and representation of convection in models?

ション ふゆ く 山 マ チャット しょうくしゃ

Link between event and intra-seasonal/seasonal scales?

Water isotopes and water transport through the tropopause

- Existing observations
 - Less depleted than expected
 - Large variablity associated with clouds

Modelling results

- GCM with same convective parametrization
 - impact of convective activity at the daily scale
 - enrichment depending on condensate detrainment

2. Water isotopes and the land surface

Motivations

- interpretation of AMMA data (soil memory, d-excess)
- what is the impact of land surface processes on the isotopic distribution?
- what information can be learned from isotopes in the land surface?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Tool: ORCHIDEE land surface model

- double bucket hydrology
- offline or coupled mode with LMDZ GCM

Offline evaluation over the Bray Site

MIBA data of precipitation, vapor, plants and soils

Evaluation perspectives: other MIBA sites (US), use of the GNIR data base (rivers)

Sensitivity tests

Compositions sensitive to:

- isotopic profiles in the soil, vertical diffusivity
- rain inflitration
- evaporation/transpiration partitioning
- runoff and runoff/drainage partitioning
- Potential of water isotopes to better constrain processes in the land surface and their representation in models?

3. Water isotopes and climate variability

- What do isotopic archives record in the Tropics?
 - Effect of temperature or precipitation variations?

ヘロト ヘアト ヘヨト ヘ

Tool: water enabled LMDZ GCM

Evaluation of LMDZ $\delta^{18}O$ in precipitation

 Simulation 1979-2007 forced by observed SST and nudged by reanalyses

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三里 - 釣�?

Evaluation of LMDZ d-excess in precipitation

effect of neglecting bare soil evaporation on d-excess over continents?

Evaluation of the amount effect

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

horizontal advections dampen the amount effect

Past climates: LGM

CLIMAP SSTs

JAC.

What controls isotopic variations in the Tropics?

- At first order, amount effect dominant
- ▶ At second order, colder average tropical temperatures shifts the $\delta^{18}O$ distribution to more depleted values by 0.1%/K

Are isotopic archives a good record of precipitation variations?

"perfect model" experiment

SQA

Perspectives on climate variability

Regional modelling over montain regions (zoom)

- South America
- Tibet

Inter-annual and decdal variability, trends

▶ simulation forced by observed SST and nudged by reanalysis
⇒ good inter-annual variability

General conclusion and perspectives

Conclusion

- ► different isotopic composition of fluxes in atmosphere and land surface ⇒ additional information from isotopes
- ▶ combination of processes, isotopic composition changes with climate ⇒ paleoclimatic implications

Perspectives

- Potential of isotopes to constrain continental recycling? How much and by which processes (evaporation/transpiration)
- controls of atmospheric humidity? impact of precipitation evaporation? Large-scale motion?

Tools

- LMDZ-ORCHIDEE coupled simulations
- ► water tagging ⇒ tagging of different evaporative source (ocean/continent/precipitation, vapor maximum altitude...)

 regional simulations: e.g. South America, West Africa (AMMA)