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Water stable isotopes

I water=light molecules (H16
2 O) +

heavy (H18
2 O, HDO)

I isotopic fractionation
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Goals

I What controls the isotopic composition of precipitation in
the Tropics? Role of atmospheric convection?

I What information on the water cycle, including cloud
processes, surface-atmosphere interactions?

I Potential to better constrain parametrizations in models?

I Potential to better constrain the variations in the water
cycle? Past climates?



Tools

I observations

I existing international networks (GNIP)
I rain collected during AMMA, along the monsoon season and

along squall lines

I isotope-enabled models

I Single Column Model (SCM) of radiative-convective
equilibrium

I Squall line model
I General Circulation Model (LMDZ)
I Land Surface Model (ORCHIDEE)



Outline

1. Isotopes and atmospheric convection

2. Isotopes and land surface processes

3. Isotopes and tropical climate variations

de�nitions:
δ18O=enrichment in H18

2 O relatively to a standard in h
δD=enrichment in HDO relatively to a standard in h
d-excess = δD − 8 · δ18O



1. Isotopes and atmospheric convection

I Existing observations

I Amount e�ect
I E�ect of convection at the synoptic scale

δD

(h)

preipitation rate (mm/day)0 2 4 6 8 10 12 14 16-80-70-60-50-40-30-20-10010
20 tropial oeani stations (GNIP)linear regression

Lawrence et al 2004

I Questions: How does convection impacts the isotopic
composition? By which processes? At which time scale?



Single Column Model

I Radiative convective equilibrium model over ocean

I Boundary conditions: sea surface
temperature and wind, vertical
pro�le of vertical velocity

I Emanuel convective
parametrization ⇒ detailled
representation of rain
evaporation

I neglect horizontal gradients in
moisture and isotopes
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Evaluation of the Single Column Model
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I correct simulation of the amount e�ect



What explains the amount e�ect?

vapor recycling 
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I rain reevaporation and convective downdrafts main processes

I consistent with strong sensitivity to reevaporation and
downdraft parameters



What are the time scales of the amount

e�ect?

I TOGA COARE simulation
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I The isotopic composition integrates convection over the
previous days



Collection of rain samples during the AMMA

campaign

I collection at the end of each event, during the entire 2006
monsoon season, on 3 sites around Niamey
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Niamey



Isotopic evolution during the season

−10

−5

 0

 5

 10

 15

inter−site average
Niamey

Banizoumbou
Wankama

−6

−4

−2

 0

 2

 4

time (days)
 09/06  29/06  19/07  08/08  28/08  17/09

onsetmonsoon
δ1

8
O

(h)

15Julyd-exess
(h)

Niamey

I record of the
monsoon onset

rain
drop

H16
2 O

HDO

H18
2 O



Isotopic evolution before the onset
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Isotopic evolution after the onset

OLR 2x2° Niamey grid box

OLR filtered in 6−18 days
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I temporal integration of convection

I record of the intra-seasonal variability (Sultan et al 2003)



Remaining questions

I process of temporal integration? Atmospheric vapor? Soil
moisture?

I d-excess data?

I processes of convection impact? Local or regional?
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Intra-event sampling

11 August 2006 squall line



Intra-event sampling

11 August 2006 squall line



Intra-event sampling

11 August 2006 squall line



11 August 2006 squall line
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Robust properties among squall lines
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I strong variations between lines
I W shape
I d-excess decreases at the beginning of the startiform zone



Simple 2D model of transport and

microphysics

I Assumptions

I 2D
I stationarity
I no along line winds
I temperature and

pressure horizontally
constant

3D winds
(MIT radar)

2D winds

advection scheme

Kessler microphysics

2D model:

microphysic and isotopic
fields

limit conditions
temperature and humidity

profiles (ARM, NCEP)
and isotope profiles



Model results
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I robust properties simulated

I strong sensitivity to the dynamics



What processes control δ18O?
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I strong impact of downdrafts and rain evaporation



What processes control d-excess?
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Conclusion on the e�ect of convective

processes on precipitation isotopes

I Both SCM and intra-event data show strong impact of

I Convective and meso-scale downdrafts
I Rain reevaporation

I Potential of water isotopes to better constrain water budgets
in squall line and representation of convection in models?

I Link between event and intra-seasonal/seasonal scales?



Water isotopes and water transport through

the tropopause

I Existing observations
I Less depleted than expected
I Large variablity associated with clouds

Webster et al 2003

Rayleigh distillation in situ data

enrichment associated
with convection



Modelling results

I GCM with same convective parametrization

I impact of convective activity at the daily scale
I enrichment depending on condensate detrainment
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2. Water isotopes and the land surface

I Motivations

I interpretation of AMMA data (soil
memory, d-excess)

I what is the impact of land surface
processes on the isotopic
distribution?

I what information can be learned
from isotopes in the land surface?
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I Tool: ORCHIDEE land surface model

I double bucket hydrology
I o�ine or coupled mode with LMDZ GCM



O�ine evaluation over the Bray Site

I MIBA data of precipitation, vapor, plants and soils

ORCHIDEE

data

ORCHIDEE

(surface layer)

(transpiration)
data

ORCHIDEE

data

Seasonal cycle simulated by ORCHIDEE offline
and observed (MIBA) in 2007 on the Bray site (Southern France)
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I Evaluation perspectives: other MIBA sites (US), use of the
GNIR data base (rivers)



Sensitivity tests
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I Compositions sensitive to:
I isotopic pro�les in the soil, vertical di�usivity
I rain in�itration
I evaporation/transpiration partitioning
I runo� and runo�/drainage partitioning

I Potential of water isotopes to better constrain processes in the
land surface and their representation in models?



3. Water isotopes and climate variability

I What do isotopic
archives record in
the Tropics?

I E�ect of
temperature or
precipitation
variations?

Climatic variability

America
South

Greenland

Tibet

Antarctica

Thompson et al 2000

I Tool: water enabled LMDZ GCM



Evaluation of LMDZ δ18O in precipitation

I Simulation 1979-2007 forced by observed SST and nudged by
reanalyses

−50 −40 −30 −20 −18 −12 −8 −6 −4 −2

δ18O (h) LMDZ δ18O (h) observations



Evaluation of LMDZ d-excess in precipitation
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I e�ect of neglecting bare soil evaporation on d-excess over
continents?



Evaluation of the amount e�ect
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I horizontal advections dampen the amount e�ect



Past climates: LGM
CLIMAP SSTs

−17 −13 −9 −5 −3

3

−8 −6 −4 −2 −1 −0.5 0.5 4 6

−30 −25 −20 −15 −11 −7 −3 −1 1 3 6 111−5 −3−7 −1−9−11−15−20−25

81 2−30 −25 −21 −1 1

δ18O (h) d-exess (h)

Temperature (K) Preipitation (K)LGM CLIMAP - present day



What controls isotopic variations in the

Tropics?
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I At �rst order, amount e�ect dominant

I At second order, colder average tropical temperatures shifts
the δ18O distribution to more depleted values by 0.1h/K



Are isotopic archives a good record of

precipitation variations?

I �perfect model� experiment
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Perspectives on climate variability

I Regional modelling over montain regions (zoom)

I South America
I Tibet
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I Inter-annual and decdal variability, trends

I simulation forced by observed SST and nudged by reanalysis

⇒ good inter-annual variability



General conclusion and perspectives

I Conclusion

I di�erent isotopic composition of �uxes in atmosphere and land
surface ⇒ additional information from isotopes

I combination of processes, isotopic composition changes with
climate ⇒ paleoclimatic implications

I Perspectives

I Potential of isotopes to constrain continental recycling? How
much and by which processes (evaporation/transpiration)

I controls of atmospheric humidity? impact of precipitation
evaporation? Large-scale motion?

I Tools

I LMDZ-ORCHIDEE coupled simulations
I water tagging ⇒ tagging of di�erent evaporative source

(ocean/continent/precipitation, vapor maximum altitude...)
I regional simulations: e.g. South America, West Africa

(AMMA)


