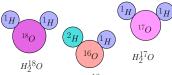
Les isotopes stables de l'eau:
applications à l'étude du cycle de l'eau
et des variations du climat
thèse dirigée par Sandrine Bony et Jean Jouzel

Camille Risi

Laboratoire de Météorologie Dynamique Institut Pierre-Simon Laplace, Paris (France)

7 décembre 2009

Les isotopes stables de l'eau


- ▶ eau = $H_2^{16}O$ + $H_2^{18}O$ (0.2%), HDO(0.015%), $H_2^{17}O$ (0.004%)
- ► fractionnement isotopique
- ▶ Définitions:
 - $\delta^{18}O = \text{richesse en } H_2^{18}O$ par rapport à un standard (%)

$$\delta^{18} O = \left(\frac{\left(\frac{H_2^{18} O}{H_2^{16} O}\right)_{\acute{e}chantillon}}{\left(\frac{H_2^{18} O}{H_2^{16} O}\right)_{\acute{e}chantillon}} - 1\right) \cdot 1000$$

- ▶ δD =richesse en HDO (‰)
- d-excess = $\delta D 8 \cdot \delta^{18} O$

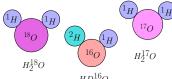
 $H_{2}^{16}O$

 $HD^{16}O$

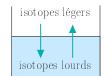
2/58

Introduction

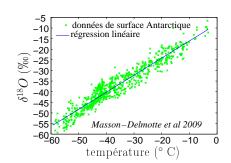
Les isotopes stables de l'eau

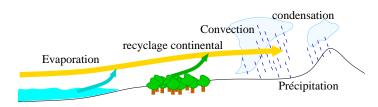

- eau = $H_2^{16} O$ $+ H_2^{18}O (0.2\%), HDO$ $(0.015\%), H_2^{17}O(0.004\%)$
- fractionnement isotopique
- Définitions:
 - $\delta^{18}O$ =richesse en $H_2^{18}O$ par rapport à un standard (%)

$$\delta^{18} O = \left(\frac{\left(\frac{H_2^{18} O}{H_2^{16} O}\right)_{\acute{e}chantillon}}{\left(\frac{H_2^{18} O}{H_2^{16} O}\right)_{SMOW}} - 1 \right) \cdot 1000$$


- ▶ δD =richesse en HDO (‰)
- d-excess = $\delta D 8 \cdot \delta^{18} O$

 $H_{2}^{16}O$

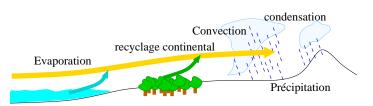

 $HD^{16}O$



Introduction 2/58

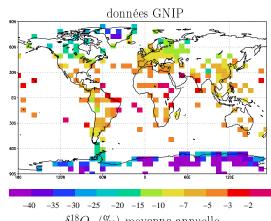
Applications des isotopes stables de l'eau

- sensible aux changements de phase
- applications paléo-climatiques aux pôles
- applications paléo-climatiques dans les tropiques?



Introduction 3/58

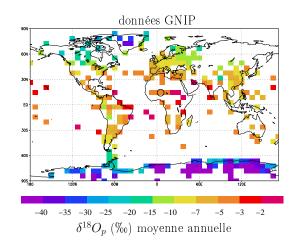
Buts de la thèse


- Qu'est-ce qui contrôle de la composition isotopique dans les tropiques?
 - rôle de la convection atmosphérique?
 - intéractions avec la surface continentale?
- ► En retour: quelles informations sur:
 - ► le cycle de l'eau?
 - processus convectifs
 - hydrologie continentale
 - la représentation de ces processus dans les modèles?
 - les variations du climat?

Introduction 4/58

Outils: observations

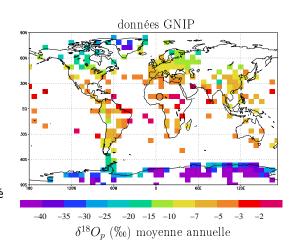
- ► réseaux internationaux pré-existants de l'AIEA
 - GNIP: précipitation
 - ► GNIR: rivières
 - MIBA: sol, tiges, feuilles, vapeur



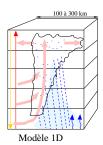
 $\delta^{18}O_p$ (‰) moyenne annuelle

Introduction 5/58

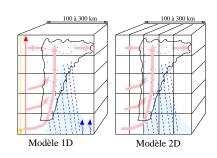
Outils: observations


- réseaux internationaux pré-existants de l'AIEA
 - GNIP: précipitation
 - ► GNIR: rivières
 - MIBA: sol, tiges, feuilles, vapeur
- pluie collectée à Niamey pendant l'été 2006 pendant la campagne AMMA

Introduction 6/58

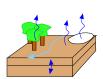

Outils: observations

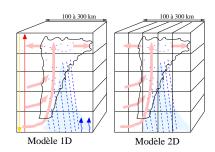
- réseaux internationaux pré-existants de l'AIEA
 - GNIP: précipitation
 - GNIR: rivières
 - MIBA: sol, tiges, feuilles, vapeur
- pluie collectée à Niamey pendant l'été 2006 pendant la campagne AMMA
- données satellite SCIAMACHY: δD intégré verticallement sur 2003-2005, précision maximale sur le Sahel (Frankenberg et al 2009)


Introduction 7/58

- ► Modèle 1D d'atmosphère tropicale

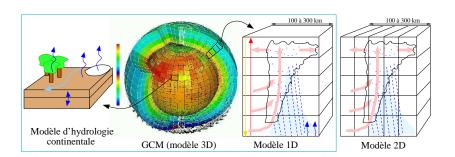
Introduction 8/58


- ► Modèle 1D d'atmosphère tropicale
- ► Modèle 2D de lignes de grains


Introduction 9/58

- ► Modèle 1D d'atmosphère tropicale
- ► Modèle 2D de lignes de grains
- ► Modèle d'hydrologie continentale: SECHIBA/ORCHIDEE

•



Modèle d'hydrologie

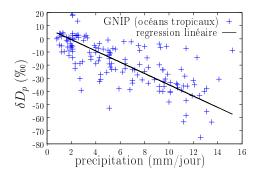
Introduction 10/58

- ► Modèle 1D d'atmosphère tropicale
- ► Modèle 2D de lignes de grains
- ► Modèle d'hydrologie continentale: SECHIBA/ORCHIDEE
- ► Modèle de circulation générale (GCM): LMDZ

Introduction 11/58

Plan

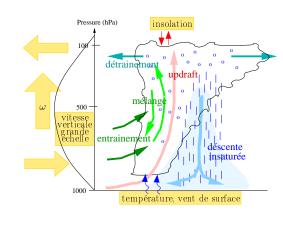
1. Isotopes de l'eau et convection atmosphérique


2. Isotopes de l'eau et hydrologie continentale

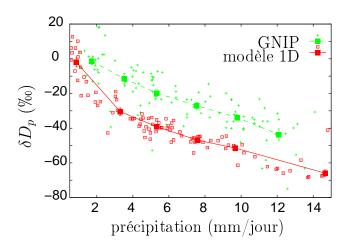
3. Isotopes de l'eau et variations du climat

Introduction 12/58

1. Isotopes et convection atmosphérique

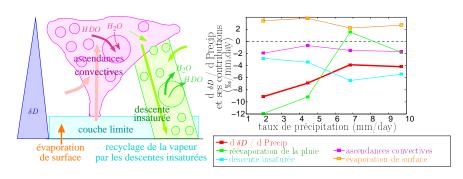

- Observations existantes
 - données à l'échelle mensuelle: amount effect (Dansgaard 1964)

▶ Questions: Quels processus expliquent l'amount effect? Impact des processus convectifs? Qu'en déduire en retour sur la convection?


Modèle 1D

- modèle 1D sur océan
- conditions aux limites
- équilibre radiatif-convectif
- ▶ paramétrisation de la convection d'Emanuel ⇒ représentation de la réévaporation de la pluie et d'une descente insaturée
- contenu physique testé sur la campagne TOGA-COARE (Pacifique Ouest)

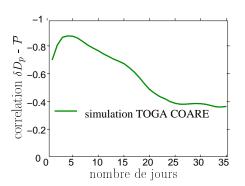
Bony, Risi et Vimeux 2008, JGR


Evaluation du modèle 1D

▶ bonne simulation de l'amount effect= $\frac{d\delta D_p}{dP}$

Quels processus expliquent l'amount effect?

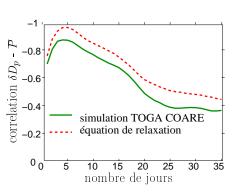
Amount effect =
$$\frac{d\delta Dp}{dP} \simeq \frac{d\delta Devap}{dP} + c_{cond} + c_{revap} + c_{descente}$$

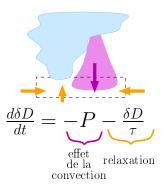


 principaux processus: réévaporation de la pluie et descentes insaturées

Risi, Bony et Vimeux 2008, JGR

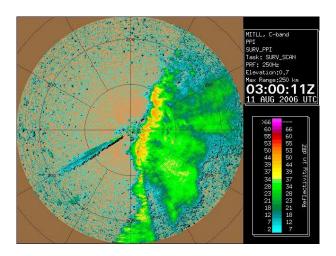
Quelles sont les constantes de temps de l'amount effect?

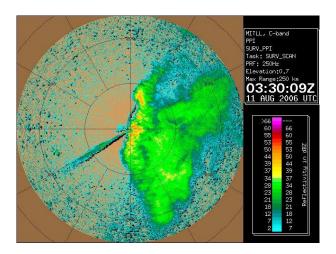

Simulation TOGA COARE (Pacifique Ouest)

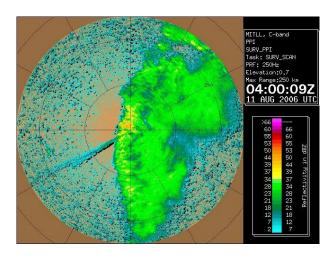

La composition isotopique intègre la convection sur les jours précédents

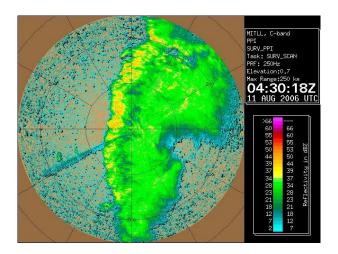
Quelles sont les constantes de temps de l'amount effect?

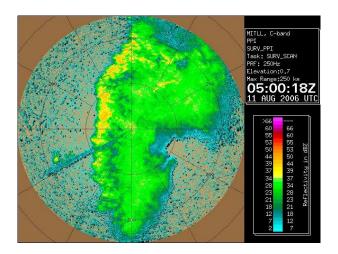
Simulation TOGA COARE (Pacifique Ouest)

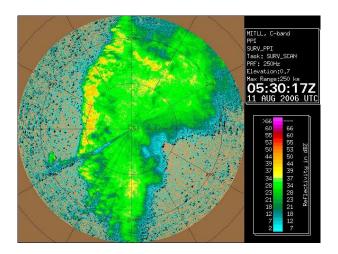

équation simple de relaxation:

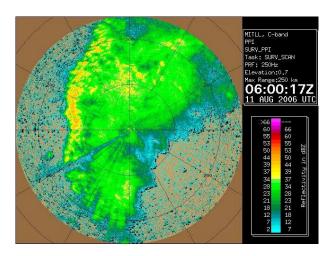


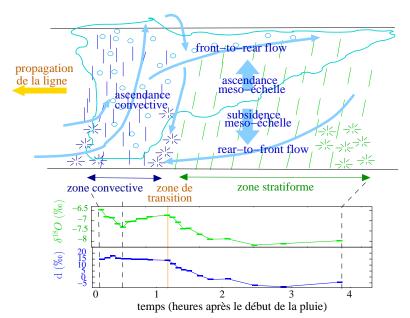

La composition isotopique intègre la convection sur les jours précédents

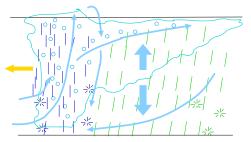

Prélèvements pendant la campagne AMMA



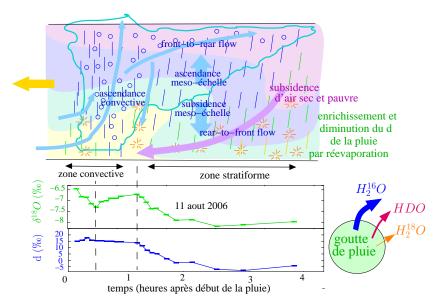








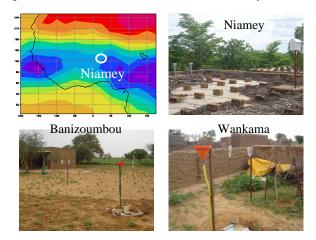
Le long de la ligne de grain du 11 aout 2006


Modèle 2D de transport et microphysique dans les lignes de grains

- stationnaire
- ▶ circulation forcée par vents 3D obtenus par radar pour le 11 aout 2006 (Chong sous presse)
- simule les propriétés robustes observées

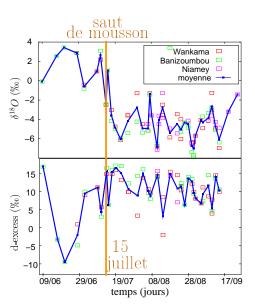
Risi, Bony, Vimeux, Chong et Descroix, sous presse, QJRMS

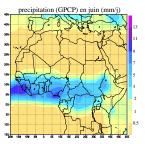
Processus au cours de lignes de grains



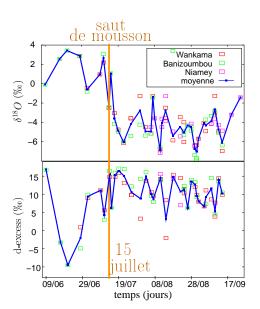
Bilan des processus convectifs affectant la precipitation

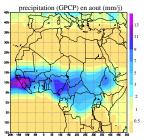
- Processus identifiés à la fois dans données intra-événement et modèle 1D
 - réévaporation des gouttes
 - subsidences convectives
- ▶ intégration de la convection sur les jours précédents


Données au cours de la mousson 2006

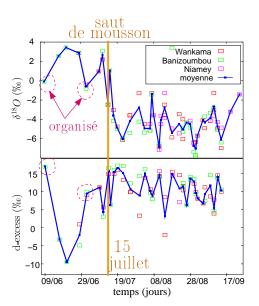

 collecte à la fin de chaque événement pluvieux, par des collègues locaux, sur 3 sites autour de Niamey

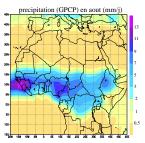
Risi, Bony, Vimeux, Descroix, Ibrahim, Lebreton, Mamadou, Sultan, 2009, GRL


Evolution au cours de la mousson

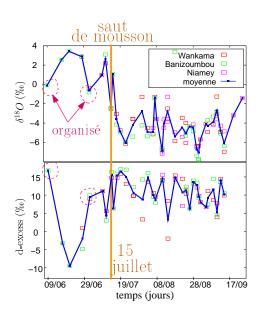


- les isotopes enregistrent l'activité convective
 - ► saut de mousson
 - •


Evolution au cours de la mousson

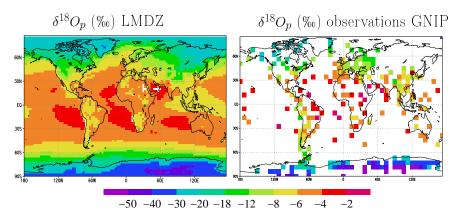


- les isotopes enregistrent l'activité convective
 - ► saut de mousson


Evolution au cours de la mousson

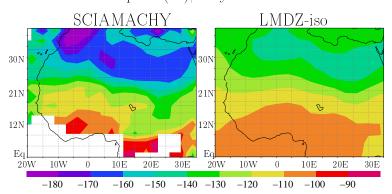
- les isotopes enregistrent l'activité convective
 - saut de mousson
 - avant la mousson: intensité et organisation des sytèmes

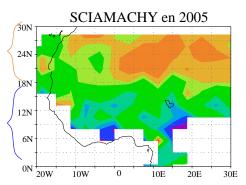
Evolution au cours de



- les isotopes enregistrent l'activité convective
 - saut de mousson
 - avant la mousson: intensité et organisation des sytèmes
 - lacktriangle apres la mousson: le $\delta^{18}O$ intègre temporellement la convection

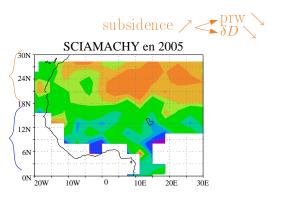
Utilisation de simulations avec LMDZ-iso


- version AR4 (LMDZ4)
- ▶ résolution horizontale: 2.5°x3.75°, 19 niveaux verticaux
- guidé par vents horizontaux des réanalyses NCEP
- fractionnements à la surface continentale négligés

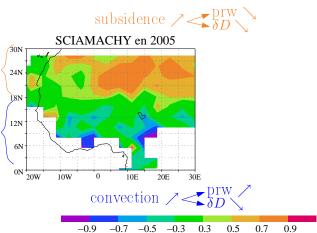

Evaluation sur le Sahel: données satellite SCIAMACHY

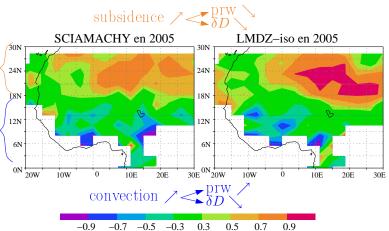
▶ δD vapeur intégrée verticallement, 2003-2005 (*Frankenberg et al 2009*)

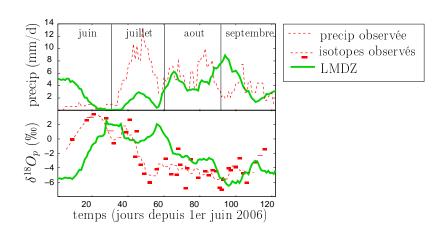
 δD vapeur (‰), moyenne annuelle

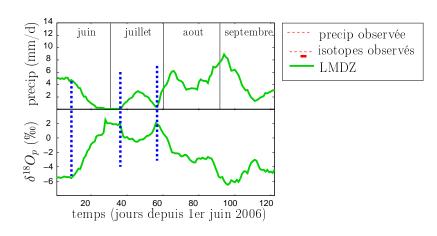


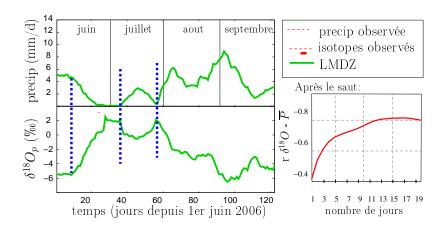
Variabilité intra-saisonnière dans les données SCIAMACHY

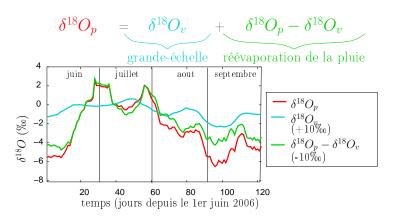



Variabilité intra-saisonnière dans les données SCIAMACHY


Variabilité intra-saisonnière dans les données SCIAMACHY

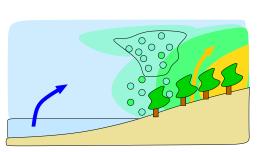

Variabilité intra-saisonnière dans les données SCIAMACHY

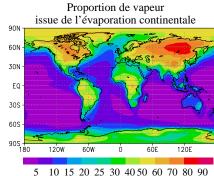

LMDZ-iso sur Niamey


LMDZ-iso sur Niamey

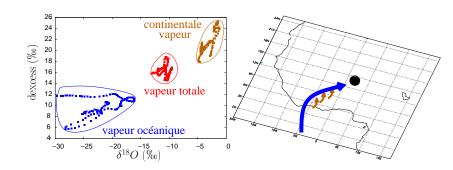
LMDZ-iso sur Niamey

Variabilité intra-saisonnière dans LMDZ

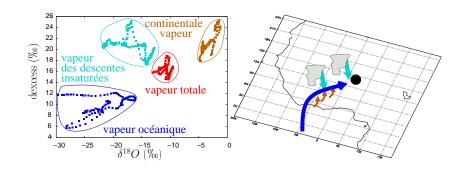



- ▶ avant le saut: réponse instantanée à la convection, par le biais de la réévaporation des gouttes
- ▶ après le saut: influence de la vapeur ⇒ processus grande échelle

Introduction du water tagging dans LMDZ


 Chaque molécule d'eau est coloriée d'une certaine couleur, selon une convention de coloriage

example: coloriage de l'évaporation continentale:



Isotopes à Niamey et origine de la vapeur

- ▶ signature particulière de la vapeur continentale ⇒ potentiel d'évaluation du recyclage continental?

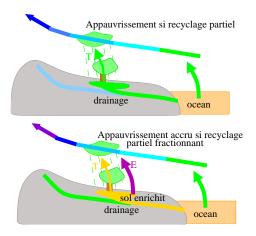
Isotopes à Niamey et descentes insaturées

- ▶ signature particulière de la vapeur continentale ⇒ potentiel d'évaluation du recyclage continental?
- ▶ appauvrissement de la vapeur par les descentes insaturées
- à l'échelle intra-saisonnière: la vapeur est appauvrie par les descentes insaturées le long des trajectoires de mousson

Bilan sur l'effet de la convection sur la composition de la précipitation

- ▶ Au sahel, $\delta^{18}O$ enregistre l'activité convective dans les données et LMDZ:
 - saut de mousson
 - avant le saut: réponse instantanée et locale par évaporation des gouttes
 - ▶ après le saut: le $\delta^{18}O$ intègre la convection par appauvrissement progressif par les descentes insaturées
- cohérents avec processus mis en évidence avec le modèle 1D et les données intra-évènement
- en retour, intérêt des isotopes de l'eau pour étudier le cycle de l'eau et la convection

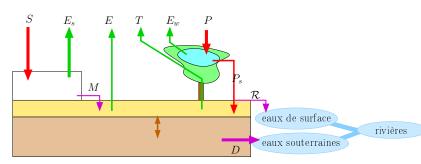
Bilan sur l'effet de la convection sur la composition de la précipitation


- Au sahel, δ¹⁸ O enregistre l'activité convective dans les données et LMDZ:
 - saut de mousson
 - avant le saut: réponse instantanée et locale par évaporation des gouttes
 - ▶ après le saut: le $\delta^{18}O$ intègre la convection par appauvrissement progressif par les descentes insaturées
- cohérents avec processus mis en évidence avec le modèle 1D et les données intra-évènement
- ▶ en retour, intérêt des isotopes de l'eau pour étudier le cycle de l'eau et la convection
- intérêt de données de vapeur:
 - évaluation du désequilibre gouttes/vapeur
 - ▶ lien plus direct avec les processus grande échelle
 - enregistrement continu

2. Isotopes et hydrologie continentale

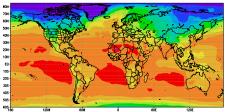
lacktriangle Le taux de recyclage affecte gradients continentaux de δ

2. Isotopes et hydrologie continentale

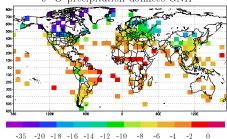


- \blacktriangleright Le taux de recyclage affecte gradients continentaux de δ
- Le type de recyclage affecte la différence δ sol/évapo-transpiration

Isotopes et recyclage continental

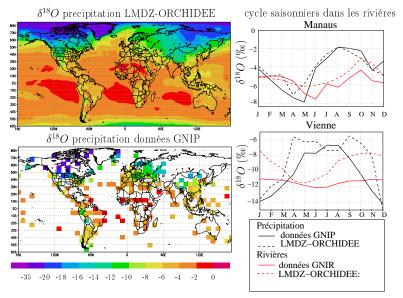

Questions

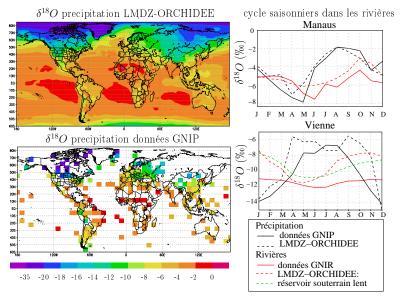
- Quel impact des processus hydrologiques de surface sur la composition isotopique de l'eau?
- Quelles informations sur l'hydrologie continentale?
- Outil: modèle d'hydrologie continentale SECHIBA/ORCHIDEE
 - version AR4 couplable à LMDZ



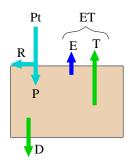
Evaluation d' LMDZ-ORCHIDEE-iso

 $\delta^{18}O$ precipitation LMDZ-ORCHIDEE

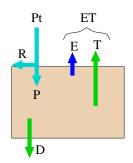



Risi, Bony, Ogée, Bariac et co-auteurs, en preparation

Evaluation d' LMDZ-ORCHIDEE-iso

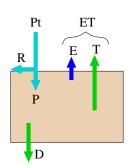

Risi, Bony, Ogée, Bariac et co-auteurs, en preparation

Evaluation d' LMDZ-ORCHIDEE-iso

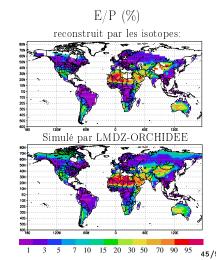


Risi, Bony, Ogée, Bariac et co-auteurs, en preparation

Reconstruction du bilan hydrologique de surface par les isotopes



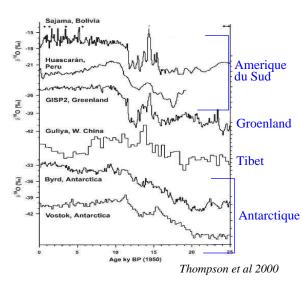
Reconstruction du bilan hydrologique de surface par les isotopes


▶ si hypothèses simples: $\{\delta^{18} O_{sol}, \delta^{18} O_{p}, T, rh\} \iff \frac{E}{D}$

Reconstruction du bilan hydrologique de surface par les isotopes

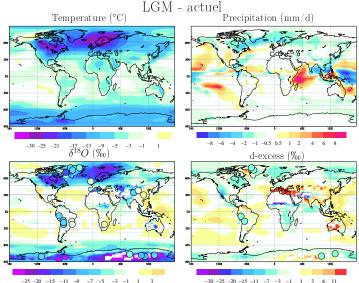
▶ si hypothèses simples: $\{\delta^{18} O_{sol}, \ \delta^{18} O_{p}, \ \mathsf{T}, \ \mathsf{rh}\} \Longleftrightarrow \frac{E}{P}$

expérience "modèle parfait"

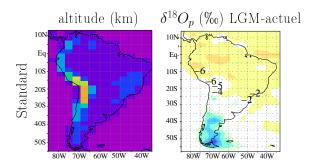


Apports des isotopes aux problèmes d'hydrologie de surface

- processus hydrologiques de surface:
 - second ordre pour les compositions atmosphériques
 - fort impact sur les réservoirs continentaux
- en retour:
 - estimation des bilans d'eaux continentaux par méthodes isotopiques
 - contrainte de paramétrisations
- perspectives: développement des réseaux internationaux:
 - MIBA (sol, tiges, feuilles, vapeur),
 - GNIR (rivières),
 - ► IGLASS/TWIN (eaux de surface et souterraines)
 - maximum d'information en comparant la composition dans différents réservoirs sur un site donné

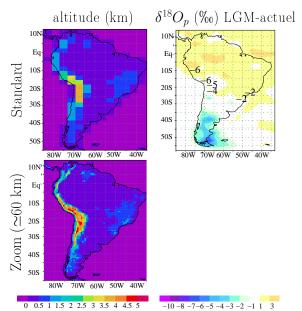

3. Isotopes et variations du climat

- Qu'enregistrent les isotopes dans les tropiques?
 - effet de la température/ précipitation?
- LMDZ-iso pour les climats passés

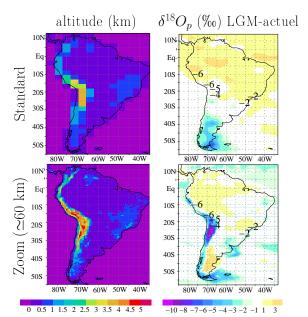


LMDZ-iso au LGM (21 000 ans)

températures de surface de l'océan CLIMAP

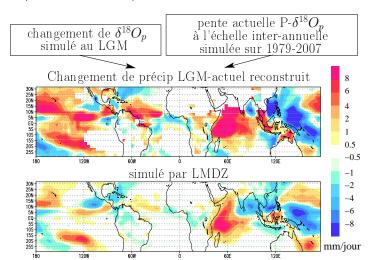


LMDZ-iso zoomée sur l'Amérique du Sud




LMDZ-iso zoomée sur l'Amérique du Sud

LMDZ-iso zoomée sur l'Amérique du Sud

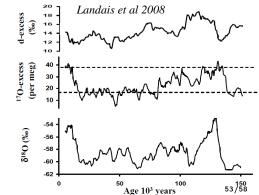

Qu'est-ce qui contrôle les variations isotopiques dans les tropiques?

- Amount effect dominant dans chaque climat
- ► Au 2nd ordre, effet de température: 0.1‰/K

Reconstitution des variations passées de l'activité convective

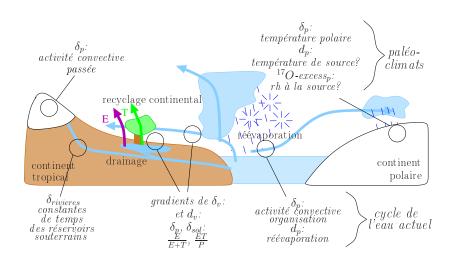
expérience "modèle parfait"

Bilan sur les isotopes au LGM

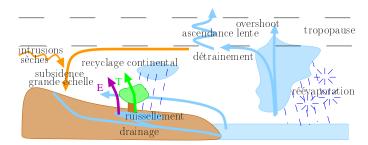

- $ightharpoonup \delta$ aux pôles: marqueur de la température polaire
- d-excess aux pôles:
 - marqueur de la température des zones sources?
 - mais GCMs simulent mal valeurs plus basses au LGM
- \triangleright δ dans les Tropiques:
 - $ightharpoonup \delta$ marqueur de l'activité convective
 - mais GCMs simulent mal valeurs plus basses au LGM
- ▶ informations données par un 3e traceur isotopique: l' H_2^{17} O?

$L'H_2^{17}O$: un nouveau traceur isotopique

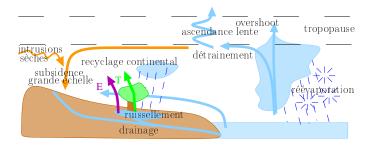
$$d\text{-excess} = \delta D - 8 \cdot \delta^{18} O$$


17
 O-excess = $10^6 \cdot \left(\ln \left(\frac{\delta^{17} \, O}{1000} + 1 \right) - 0.528 \cdot \ln \left(\frac{\delta^{18} \, O}{1000} + 1 \right) \right)$

- ightharpoonup mesures à Vostok ightharpoonup
- ► contrôles de l'¹⁷ O-excess? (Risi, Landais, Bony, Masson-Delmotte, Jouzel et Vimeux, accepté, JGR)
- perspectives: meilleure couverture spatiale des données, simulations LMDZ


3. Isotopes de l'eau et variations du climat

Conclusion


Perspectives (1/4): nouvelles données

- ightharpoonup données satellites de δD dans la vapeur:
 - ► SCIAMACHY (Frankenberg et al 2009): vapeur couche limite
 - ▶ TES (Worden et al 2007): vapeur 700hPa
 - ▶ IASI (Herbin et al 2009): moyenne troposphère
 - ► ODIN (*Urban et al 2007*), ACE (*Nassar et al 2008*), MIPAS (*Payne et al 2007*): haute troposphère-basse stratosphère
- ▶ données in-situ de δD et $\delta^{18}\,O$ dans la vapeur par spectroscopie laser

Perspectives (2/4): water tagging

- water tagging: outil diagnostique très prometteur, complémentaire des isotopes
 - dans LMDZ: contrôles de l'humidité atmosphérique: traçage processus source d'humidité
 - ▶ dans ORCHIDEE: composante continentale du cycle de l'eau: ex: variations des débits des fleuves, rôle de l'irrigation...

Perspectives (3/4): évaluation de la réponse des modèles aux variations du climat

- évaluation de cette réponse par comparaison aux enregistrements isotopiques: ex: archives de precipitation
- ▶ bientôt les isotopes dans le modèle couplé de l'IPSL
 ⇒ simulation de la composition isotopique dans différents types d'enregistrements:
 - cellulose des arbres avec LMD7-ORCHIDEE
 - sédiments marins quand couplage avec l'océan

Perspectives (4/4): évaluation de paramétrisations

- isotopes sensibles à processus peu contraints dans les paramétrisations:
 - réévaporation de la pluie
 - partition drainage/ ruissellement/ évaporation de sol nu/ transpiration
 - ⇒ méthodes observationnelles d'évaluation des paramétrisations physiques par les isotopes?
- projet d'intercomparaison de GCMs (SWING)
- isotopes dans exercices d'inter-comparaisons plus contraints (ex: modèles 1D forcés par observations sur sites instrumentés)?

Merci!

