My Project
 All Classes Files Functions Variables Macros
grid_noro.F
Go to the documentation of this file.
1 !
2 ! $Id$
3 !
4 c
5 c
6  SUBROUTINE grid_noro(imdep, jmdep, xdata, ydata, zdata,
7  . imar, jmar, x, y,
8  . zphi,zmea,zstd,zsig,zgam,zthe,
9  . zpic,zval,mask)
10 c=======================================================================
11 c (F. Lott) (voir aussi z.x. Li, A. Harzallah et L. Fairhead)
12 c
13 c Compute the Parameters of the SSO scheme as described in
14 c LOTT & MILLER (1997) and LOTT(1999).
15 c Target points are on a rectangular grid:
16 c iim+1 latitudes including North and South Poles;
17 c jjm+1 longitudes, with periodicity jjm+1=1.
18 c aux poles. At the poles the fields value is repeated
19 c jjm+1 time.
20 c The parameters a,b,c,d represent the limite of the target
21 c gridpoint region. The means over this region are calculated
22 c from USN data, ponderated by a weight proportional to the
23 c surface occupated by the data inside the model gridpoint area.
24 c In most circumstances, this weight is the ratio between the
25 c surface of the USN gridpoint area and the surface of the
26 c model gridpoint area.
27 c
28 c (c)
29 c ----d-----
30 c | . . . .|
31 c | |
32 c (b)a . * . .b(a)
33 c | |
34 c | . . . .|
35 c ----c-----
36 c (d)
37 C=======================================================================
38 c INPUT:
39 c imdep, jmdep: dimensions X and Y input field
40 c xdata, ydata: coordinates X and Y input field
41 c zdata: Input field
42 c In this version it is assumed that the entry data come from
43 c the USNavy dataset: imdep=iusn=2160, jmdep=jusn=1080.
44 c OUTPUT:
45 c imar, jmar: dimensions X and Y Output field
46 c x, y: ccordinates X and Y Output field.
47 c zmea: Mean orographie
48 c zstd: Standard deviation
49 c zsig: Slope
50 c zgam: Anisotropy
51 c zthe: Orientation of the small axis
52 c zpic: Maximum altitude
53 c zval: Minimum altitude
54 C=======================================================================
55 
56  IMPLICIT integer(i,j)
57  IMPLICIT REAL(X,Z)
58 
59  parameter(iusn=2160,jusn=1080,iext=216, epsfra = 1.e-5)
60 #include "dimensions.h"
61  REAL xusn(iusn+2*iext),yusn(jusn+2)
62  REAL zusn(iusn+2*iext,jusn+2)
63 
64  INTEGER imdep, jmdep
65  REAL xdata(imdep),ydata(jmdep)
66  REAL zdata(imdep,jmdep)
67 c
68  INTEGER imar, jmar
69 
70 C INTERMEDIATE FIELDS (CORRELATIONS OF OROGRAPHY GRADIENT)
71 
72  REAL ztz(iim+1,jjm+1),zxtzx(iim+1,jjm+1)
73  REAL zytzy(iim+1,jjm+1),zxtzy(iim+1,jjm+1)
74  REAL weight(iim+1,jjm+1)
75 
76 C CORRELATIONS OF USN OROGRAPHY GRADIENTS
77 
78  REAL zxtzxusn(iusn+2*iext,jusn+2),zytzyusn(iusn+2*iext,jusn+2)
79  REAL zxtzyusn(iusn+2*iext,jusn+2)
80  REAL x(imar+1),y(jmar),zphi(imar+1,jmar)
81  REAL zmea(imar+1,jmar),zstd(imar+1,jmar)
82  REAL zmea0(imar+1,jmar) ! GK211005 (CG)
83  REAL zsig(imar+1,jmar),zgam(imar+1,jmar),zthe(imar+1,jmar)
84  REAL zpic(imar+1,jmar),zval(imar+1,jmar)
85 cxxx PB integer mask(imar+1,jmar)
86  real mask(imar+1,jmar), mask_tmp(imar+1,jmar)
87  real num_tot(2200,1100),num_lan(2200,1100)
88 c
89  REAL a(2200),b(2200),c(1100),d(1100)
90  logical masque_lu
91 c
92  print *,' parametres de l orographie a l echelle sous maille'
93  xpi=acos(-1.)
94  rad = 6 371 229.
95  zdeltay=2.*xpi/REAL(jusn)*rad
96 c
97 c utilise-t'on un masque lu?
98 c
99  masque_lu = .true.
100  if (maxval(mask) == -99999 .and. minval(mask) == -99999) then
101  masque_lu= .false.
102  masque = 0.0
103  endif
104  write(*,*)'Masque lu', masque_lu
105 c
106 c quelques tests de dimensions:
107 c
108 c
109  if(iim.ne.imar) stop 'Problem dim. x'
110  if(jjm.ne.jmar-1) stop 'Problem dim. y'
111  IF (imar.GT.2200 .OR. jmar.GT.1100) THEN
112  print*, 'imar or jmar too big', imar, jmar
113  CALL abort
114  ENDIF
115 
116  IF(imdep.ne.iusn.or.jmdep.ne.jusn)then
117  print *,' imdep or jmdep bad dimensions:',imdep,jmdep
118  call abort
119  ENDIF
120 
121  IF(imar+1.ne.iim+1.or.jmar.ne.jjm+1)THEN
122  print *,' imar or jmar bad dimensions:',imar,jmar
123  call abort
124  ENDIF
125 
126 
127 c print *,'xdata:',xdata
128 c print *,'ydata:',ydata
129 c print *,'x:',x
130 c print *,'y:',y
131 c
132 C EXTENSION OF THE USN DATABASE TO POCEED COMPUTATIONS AT
133 C BOUNDARIES:
134 c
135  DO j=1,jusn
136  yusn(j+1)=ydata(j)
137  DO i=1,iusn
138  zusn(i+iext,j+1)=zdata(i,j)
139  xusn(i+iext)=xdata(i)
140  ENDDO
141  DO i=1,iext
142  zusn(i,j+1)=zdata(iusn-iext+i,j)
143  xusn(i)=xdata(iusn-iext+i)-2.*xpi
144  zusn(iusn+iext+i,j+1)=zdata(i,j)
145  xusn(iusn+iext+i)=xdata(i)+2.*xpi
146  ENDDO
147  ENDDO
148 
149  yusn(1)=ydata(1)+(ydata(1)-ydata(2))
150  yusn(jusn+2)=ydata(jusn)+(ydata(jusn)-ydata(jusn-1))
151  DO i=1,iusn/2+iext
152  zusn(i,1)=zusn(i+iusn/2,2)
153  zusn(i+iusn/2+iext,1)=zusn(i,2)
154  zusn(i,jusn+2)=zusn(i+iusn/2,jusn+1)
155  zusn(i+iusn/2+iext,jusn+2)=zusn(i,jusn+1)
156  ENDDO
157 c
158 c COMPUTE LIMITS OF MODEL GRIDPOINT AREA
159 C ( REGULAR GRID)
160 c
161  a(1) = x(1) - (x(2)-x(1))/2.0
162  b(1) = (x(1)+x(2))/2.0
163  DO i = 2, imar
164  a(i) = b(i-1)
165  b(i) = (x(i)+x(i+1))/2.0
166  ENDDO
167  a(imar+1) = b(imar)
168  b(imar+1) = x(imar+1) + (x(imar+1)-x(imar))/2.0
169 
170  c(1) = y(1) - (y(2)-y(1))/2.0
171  d(1) = (y(1)+y(2))/2.0
172  DO j = 2, jmar-1
173  c(j) = d(j-1)
174  d(j) = (y(j)+y(j+1))/2.0
175  ENDDO
176  c(jmar) = d(jmar-1)
177  d(jmar) = y(jmar) + (y(jmar)-y(jmar-1))/2.0
178 c
179 c initialisations:
180 c
181  DO i = 1, imar+1
182  DO j = 1, jmar
183  weight(i,j) = 0.0
184  zxtzx(i,j) = 0.0
185  zytzy(i,j) = 0.0
186  zxtzy(i,j) = 0.0
187  ztz(i,j) = 0.0
188  zmea(i,j) = 0.0
189  zpic(i,j) =-1.e+10
190  zval(i,j) = 1.e+10
191  ENDDO
192  ENDDO
193 c
194 c COMPUTE SLOPES CORRELATIONS ON USN GRID
195 c
196  DO j = 1,jusn+2
197  DO i = 1, iusn+2*iext
198  zytzyusn(i,j)=0.0
199  zxtzxusn(i,j)=0.0
200  zxtzyusn(i,j)=0.0
201  ENDDO
202  ENDDO
203 
204 
205  DO j = 2,jusn+1
206  zdeltax=zdeltay*cos(yusn(j))
207  DO i = 2, iusn+2*iext-1
208  zytzyusn(i,j)=(zusn(i,j+1)-zusn(i,j-1))**2/zdeltay**2
209  zxtzxusn(i,j)=(zusn(i+1,j)-zusn(i-1,j))**2/zdeltax**2
210  zxtzyusn(i,j)=(zusn(i,j+1)-zusn(i,j-1))/zdeltay
211  * *(zusn(i+1,j)-zusn(i-1,j))/zdeltax
212  ENDDO
213  ENDDO
214 c
215 c SUMMATION OVER GRIDPOINT AREA
216 c
217  zleny=xpi/REAL(jusn)*rad
218  xincr=xpi/2./REAL(jusn)
219  DO ii = 1, imar+1
220  DO jj = 1, jmar
221  num_tot(ii,jj)=0.
222  num_lan(ii,jj)=0.
223 c PRINT *,' iteration ii jj:',ii,jj
224  DO j = 2,jusn+1
225 c DO j = 3,jusn
226  zlenx=zleny*cos(yusn(j))
227  zdeltax=zdeltay*cos(yusn(j))
228  zbordnor=(c(jj)-yusn(j)+xincr)*rad
229  zbordsud=(yusn(j)-d(jj)+xincr)*rad
230  weighy=amax1(0.,
231  * amin1(zbordnor,zbordsud,zleny))
232  IF(weighy.ne.0)THEN
233  DO i = 2, iusn+2*iext-1
234  zbordest=(xusn(i)-a(ii)+xincr)*rad*cos(yusn(j))
235  zbordoue=(b(ii)+xincr-xusn(i))*rad*cos(yusn(j))
236  weighx=amax1(0.,
237  * amin1(zbordest,zbordoue,zlenx))
238  IF(weighx.ne.0)THEN
239  num_tot(ii,jj)=num_tot(ii,jj)+1.0
240  if(zusn(i,j).ge.1.)num_lan(ii,jj)=num_lan(ii,jj)+1.0
241  weight(ii,jj)=weight(ii,jj)+weighx*weighy
242  zxtzx(ii,jj)=zxtzx(ii,jj)+zxtzxusn(i,j)*weighx*weighy
243  zytzy(ii,jj)=zytzy(ii,jj)+zytzyusn(i,j)*weighx*weighy
244  zxtzy(ii,jj)=zxtzy(ii,jj)+zxtzyusn(i,j)*weighx*weighy
245  ztz(ii,jj) =ztz(ii,jj) +zusn(i,j)*zusn(i,j)*weighx*weighy
246 c mean
247  zmea(ii,jj) =zmea(ii,jj)+zusn(i,j)*weighx*weighy
248 c peacks
249  zpic(ii,jj)=amax1(zpic(ii,jj),zusn(i,j))
250 c valleys
251  zval(ii,jj)=amin1(zval(ii,jj),zusn(i,j))
252  ENDIF
253  ENDDO
254  ENDIF
255  ENDDO
256  ENDDO
257  ENDDO
258 c
259 c COMPUTE PARAMETERS NEEDED BY THE LOTT & MILLER (1997) AND
260 C LOTT (1999) SSO SCHEME.
261 c
262  zllmmea=0.
263  zllmstd=0.
264  zllmsig=0.
265  zllmgam=0.
266  zllmpic=0.
267  zllmval=0.
268  zllmthe=0.
269  zminthe=0.
270 c print 100,' '
271 c100 format(1X,A1,'II JJ',4X,'H',8X,'SD',8X,'SI',3X,'GA',3X,'TH')
272  DO ii = 1, imar+1
273  DO jj = 1, jmar
274  IF (weight(ii,jj) .NE. 0.0) THEN
275 c Mask
276 cXXX if(num_lan(ii,jj)/num_tot(ii,jj).ge.0.5)then
277 cXXX mask(ii,jj)=1
278 cXXX else
279 cXXX mask(ii,jj)=0
280 cXXX ENDIF
281  if (.not. masque_lu) then
282  mask(ii,jj) = num_lan(ii,jj)/num_tot(ii,jj)
283  endif
284 c Mean Orography:
285  zmea(ii,jj)=zmea(ii,jj)/weight(ii,jj)
286  zxtzx(ii,jj)=zxtzx(ii,jj)/weight(ii,jj)
287  zytzy(ii,jj)=zytzy(ii,jj)/weight(ii,jj)
288  zxtzy(ii,jj)=zxtzy(ii,jj)/weight(ii,jj)
289  ztz(ii,jj) =ztz(ii,jj)/weight(ii,jj)
290 c Standard deviation:
291  zstd(ii,jj)=sqrt(amax1(0.,ztz(ii,jj)-zmea(ii,jj)**2))
292  ELSE
293  print*, 'probleme,ii,jj=', ii,jj
294  ENDIF
295  ENDDO
296  ENDDO
297 
298 C CORRECT VALUES OF HORIZONTAL SLOPE NEAR THE POLES:
299 
300  DO ii = 1, imar+1
301  zxtzx(ii,1)=zxtzx(ii,2)
302  zxtzx(ii,jmar)=zxtzx(ii,jmar-1)
303  zxtzy(ii,1)=zxtzy(ii,2)
304  zxtzy(ii,jmar)=zxtzy(ii,jmar-1)
305  zytzy(ii,1)=zytzy(ii,2)
306  zytzy(ii,jmar)=zytzy(ii,jmar-1)
307  ENDDO
308 
309 C FILTERS TO SMOOTH OUT FIELDS FOR INPUT INTO SSO SCHEME.
310 
311 C FIRST FILTER, MOVING AVERAGE OVER 9 POINTS.
312 
313  zmea0(:,:) = zmea(:,:) ! GK211005 (CG) on sauvegarde la topo non lissee
314  CALL mva9(zmea,iim+1,jjm+1)
315  CALL mva9(zstd,iim+1,jjm+1)
316  CALL mva9(zpic,iim+1,jjm+1)
317  CALL mva9(zval,iim+1,jjm+1)
318  CALL mva9(zxtzx,iim+1,jjm+1)
319  CALL mva9(zxtzy,iim+1,jjm+1)
320  CALL mva9(zytzy,iim+1,jjm+1)
321 CXXX Masque prenant en compte maximum de terre
322 CXXX On seuil a 10% de terre de terre car en dessous les parametres de surface n'on
323 CXXX pas de sens (PB)
324  mask_tmp= 0.0
325  WHERE(mask .GE. 0.1) mask_tmp = 1.
326 
327  DO ii = 1, imar
328  DO jj = 1, jmar
329  IF (weight(ii,jj) .NE. 0.0) THEN
330 c Coefficients K, L et M:
331  xk=(zxtzx(ii,jj)+zytzy(ii,jj))/2.
332  xl=(zxtzx(ii,jj)-zytzy(ii,jj))/2.
333  xm=zxtzy(ii,jj)
334  xp=xk-sqrt(xl**2+xm**2)
335  xq=xk+sqrt(xl**2+xm**2)
336  xw=1.e-8
337  if(xp.le.xw) xp=0.
338  if(xq.le.xw) xq=xw
339  if(abs(xm).le.xw) xm=xw*sign(1.,xm)
340 c slope:
341 cXXX zsig(ii,jj)=sqrt(xq)*mask(ii,jj)
342 cXXXc isotropy:
343 cXXX zgam(ii,jj)=xp/xq*mask(ii,jj)
344 cXXXc angle theta:
345 cXXX zthe(ii,jj)=57.29577951*atan2(xm,xl)/2.*mask(ii,jj)
346 cXXX zphi(ii,jj)=zmea(ii,jj)*mask(ii,jj)
347 cXXX zmea(ii,jj)=zmea(ii,jj)*mask(ii,jj)
348 cXXX zpic(ii,jj)=zpic(ii,jj)*mask(ii,jj)
349 cXXX zval(ii,jj)=zval(ii,jj)*mask(ii,jj)
350 cXXX zstd(ii,jj)=zstd(ii,jj)*mask(ii,jj)
351 CXX* PB modif pour maque de terre fractionnaire
352 c slope:
353  zsig(ii,jj)=sqrt(xq)*mask_tmp(ii,jj)
354 c isotropy:
355  zgam(ii,jj)=xp/xq*mask_tmp(ii,jj)
356 c angle theta:
357  zthe(ii,jj)=57.29577951*atan2(xm,xl)/2.*mask_tmp(ii,jj)
358  ! GK211005 (CG) ne pas forcement lisser la topo
359  ! zphi(ii,jj)=zmea(ii,jj)*mask_tmp(ii,jj)
360  zphi(ii,jj)=zmea0(ii,jj)*mask_tmp(ii,jj)
361  !
362  zmea(ii,jj)=zmea(ii,jj)*mask_tmp(ii,jj)
363  zpic(ii,jj)=zpic(ii,jj)*mask_tmp(ii,jj)
364  zval(ii,jj)=zval(ii,jj)*mask_tmp(ii,jj)
365  zstd(ii,jj)=zstd(ii,jj)*mask_tmp(ii,jj)
366 c print 101,ii,jj,
367 c * zmea(ii,jj),zstd(ii,jj),zsig(ii,jj),zgam(ii,jj),
368 c * zthe(ii,jj)
369 c101 format(1x,2(1x,i2),2(1x,f7.1),1x,f7.4,2x,f4.2,1x,f5.1)
370  ELSE
371 c PRINT*, 'probleme,ii,jj=', ii,jj
372  ENDIF
373  zllmmea=amax1(zmea(ii,jj),zllmmea)
374  zllmstd=amax1(zstd(ii,jj),zllmstd)
375  zllmsig=amax1(zsig(ii,jj),zllmsig)
376  zllmgam=amax1(zgam(ii,jj),zllmgam)
377  zllmthe=amax1(zthe(ii,jj),zllmthe)
378  zminthe=amin1(zthe(ii,jj),zminthe)
379  zllmpic=amax1(zpic(ii,jj),zllmpic)
380  zllmval=amax1(zval(ii,jj),zllmval)
381  ENDDO
382  ENDDO
383  print *,' MEAN ORO:',zllmmea
384  print *,' ST. DEV.:',zllmstd
385  print *,' PENTE:',zllmsig
386  print *,' ANISOTROP:',zllmgam
387  print *,' ANGLE:',zminthe,zllmthe
388  print *,' pic:',zllmpic
389  print *,' val:',zllmval
390 
391 C
392 c gamma and theta a 1. and 0. at poles
393 c
394  DO jj=1,jmar
395  zmea(imar+1,jj)=zmea(1,jj)
396  zphi(imar+1,jj)=zphi(1,jj)
397  zpic(imar+1,jj)=zpic(1,jj)
398  zval(imar+1,jj)=zval(1,jj)
399  zstd(imar+1,jj)=zstd(1,jj)
400  zsig(imar+1,jj)=zsig(1,jj)
401  zgam(imar+1,jj)=zgam(1,jj)
402  zthe(imar+1,jj)=zthe(1,jj)
403  ENDDO
404 
405 
406  zmeanor=0.0
407  zmeasud=0.0
408  zstdnor=0.0
409  zstdsud=0.0
410  zsignor=0.0
411  zsigsud=0.0
412  zweinor=0.0
413  zweisud=0.0
414  zpicnor=0.0
415  zpicsud=0.0
416  zvalnor=0.0
417  zvalsud=0.0
418 
419  DO ii=1,imar
420  zweinor=zweinor+ weight(ii, 1)
421  zweisud=zweisud+ weight(ii,jmar)
422  zmeanor=zmeanor+zmea(ii, 1)*weight(ii, 1)
423  zmeasud=zmeasud+zmea(ii,jmar)*weight(ii,jmar)
424  zstdnor=zstdnor+zstd(ii, 1)*weight(ii, 1)
425  zstdsud=zstdsud+zstd(ii,jmar)*weight(ii,jmar)
426  zsignor=zsignor+zsig(ii, 1)*weight(ii, 1)
427  zsigsud=zsigsud+zsig(ii,jmar)*weight(ii,jmar)
428  zpicnor=zpicnor+zpic(ii, 1)*weight(ii, 1)
429  zpicsud=zpicsud+zpic(ii,jmar)*weight(ii,jmar)
430  zvalnor=zvalnor+zval(ii, 1)*weight(ii, 1)
431  zvalsud=zvalsud+zval(ii,jmar)*weight(ii,jmar)
432  ENDDO
433 
434  DO ii=1,imar+1
435  zmea(ii, 1)=zmeanor/zweinor
436  zmea(ii,jmar)=zmeasud/zweisud
437  zphi(ii, 1)=zmeanor/zweinor
438  zphi(ii,jmar)=zmeasud/zweisud
439  zpic(ii, 1)=zpicnor/zweinor
440  zpic(ii,jmar)=zpicsud/zweisud
441  zval(ii, 1)=zvalnor/zweinor
442  zval(ii,jmar)=zvalsud/zweisud
443  zstd(ii, 1)=zstdnor/zweinor
444  zstd(ii,jmar)=zstdsud/zweisud
445  zsig(ii, 1)=zsignor/zweinor
446  zsig(ii,jmar)=zsigsud/zweisud
447  zgam(ii, 1)=1.
448  zgam(ii,jmar)=1.
449  zthe(ii, 1)=0.
450  zthe(ii,jmar)=0.
451  ENDDO
452 
453  RETURN
454  END
455 
456  SUBROUTINE mva9(X,IMAR,JMAR)
457 
458 C MAKE A MOVING AVERAGE OVER 9 GRIDPOINTS OF THE X FIELDS
459 
460  REAL x(imar,jmar),xf(imar,jmar)
461  real weightpb(-1:1,-1:1)
462 
463 
464  sum=0.
465  DO is=-1,1
466  DO js=-1,1
467  weightpb(is,js)=1./REAL((1+is**2)*(1+js**2))
468  sum=sum+weightpb(is,js)
469  ENDDO
470  ENDDO
471 
472 c WRITE(*,*) 'MVA9 ', IMAR, JMAR
473 c WRITE(*,*) 'MVA9 ', WEIGHTpb
474 c WRITE(*,*) 'MVA9 SUM ', SUM
475  DO is=-1,1
476  DO js=-1,1
477  weightpb(is,js)=weightpb(is,js)/sum
478  ENDDO
479  ENDDO
480 
481  DO j=2,jmar-1
482  DO i=2,imar-1
483  xf(i,j)=0.
484  DO is=-1,1
485  DO js=-1,1
486  xf(i,j)=xf(i,j)+x(i+is,j+js)*weightpb(is,js)
487  ENDDO
488  ENDDO
489  ENDDO
490  ENDDO
491 
492  DO j=2,jmar-1
493  xf(1,j)=0.
494  is=imar-1
495  DO js=-1,1
496  xf(1,j)=xf(1,j)+x(is,j+js)*weightpb(-1,js)
497  ENDDO
498  DO is=0,1
499  DO js=-1,1
500  xf(1,j)=xf(1,j)+x(1+is,j+js)*weightpb(is,js)
501  ENDDO
502  ENDDO
503  xf(imar,j)=xf(1,j)
504  ENDDO
505 
506  DO i=1,imar
507  xf(i,1)=xf(i,2)
508  xf(i,jmar)=xf(i,jmar-1)
509  ENDDO
510 
511  DO i=1,imar
512  DO j=1,jmar
513  x(i,j)=xf(i,j)
514  ENDDO
515  ENDDO
516 
517  RETURN
518  END
519 
520 
521