My Project
 All Classes Files Functions Variables Macros
ener_conserv.F90
Go to the documentation of this file.
1 subroutine ener_conserv(klon,klev,pdtphys, &
2  & puo,pvo,pto,pqo,pun,pvn,ptn,pqn,dtke,masse,exner,d_t_ec)
3 
4 !=============================================================
5 ! Energy conservation
6 ! Based on the TKE equation
7 ! The M2 and N2 terms at the origin of TKE production are
8 ! concerted into heating in the d_t_ec term
9 ! Option 1 is the standard
10 ! 101 is for M2 term only
11 ! 101 for N2 term only
12 ! -1 is a previours treatment for kinetic energy only
13 ! FH (hourdin@lmd.jussieu.fr), 2013/04/25
14 !=============================================================
15 
16 !=============================================================
17 ! Declarations
18 !=============================================================
19 
20 ! From module
21 USE phys_local_var_mod, ONLY : d_u_vdf,d_v_vdf,d_t_vdf,d_u_ajs,d_v_ajs,d_t_ajs,d_u_con,d_v_con,d_t_con,d_t_diss
22 USE phys_output_var_mod, ONLY : bils_ec,bils_tke,bils_kinetic,bils_enthalp,bils_latent,bils_diss
23 
24 IMPLICIT none
25 #include "YOMCST.h"
26 #include "YOETHF.h"
27 #include "clesphys.h"
28 #include "compbl.h"
29 
30 ! Arguments
31 INTEGER, INTENT(IN) :: klon,klev
32 REAL, INTENT(IN) :: pdtphys
33 REAL, DIMENSION(klon,klev),INTENT(IN) :: puo,pvo,pto,pqo
34 REAL, DIMENSION(klon,klev),INTENT(IN) :: pun,pvn,ptn,pqn
35 REAL, DIMENSION(klon,klev),INTENT(IN) :: masse,exner
36 REAL, DIMENSION(klon,klev+1),INTENT(IN) :: dtke
37 REAL, DIMENSION(klon,klev),INTENT(OUT) :: d_t_ec
38  integer k,i
39 
40 ! Local
41 REAL, DIMENSION(klon,klev+1) :: fluxu,fluxv,fluxt
42 REAL, DIMENSION(klon,klev+1) :: dddu,dddv,dddt
43 REAL, DIMENSION(klon,klev) :: d_u,d_v,d_t,zv,zu
44 REAL zrcpd
45 
46 character*80 abort_message
47 character*20 :: modname
48 
49 
50 modname='ener_conser'
51 d_t_ec(:,:)=0.
52 
53 IF (iflag_ener_conserv==-1) THEN
54 !+jld ec_conser
55  DO k = 1, klev
56  DO i = 1, klon
57  zrcpd = rcpd*(1.0+rvtmp2*pqn(i,k))
58  d_t_ec(i,k)=0.5/zrcpd &
59  & *(puo(i,k)**2+pvo(i,k)**2-pun(i,k)**2-pvn(i,k)**2)
60  ENDDO
61  ENDDO
62 !-jld ec_conser
63 
64 
65 
66 ELSEIF (iflag_ener_conserv>=1) THEN
67 
68  IF (iflag_ener_conserv<=2) THEN
69 ! print*,'ener_conserv pbl=',iflag_pbl
70  IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN !d_t_diss accounts for conserv
71  d_t(:,:)=d_t_ajs(:,:) ! d_t_ajs = adjust + thermals
72  d_u(:,:)=d_u_ajs(:,:)+d_u_con(:,:)
73  d_v(:,:)=d_v_ajs(:,:)+d_v_con(:,:)
74  ELSE
75  d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:) ! d_t_ajs = adjust + thermals
76  d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)
77  d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)
78  ENDIF
79  ELSEIF (iflag_ener_conserv==101) THEN
80  d_t(:,:)=0.
81  d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)
82  d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)
83  ELSEIF (iflag_ener_conserv==110) THEN
84  d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:)
85  d_u(:,:)=0.
86  d_v(:,:)=0.
87  ELSE
88  abort_message = 'iflag_ener_conserv non prevu'
89  CALL abort_gcm(modname,abort_message,1)
90  ENDIF
91 
92 !----------------------------------------------------------------------------
93 ! Two options wether we consider time integration in the energy conservation
94 !----------------------------------------------------------------------------
95 
96  if (iflag_ener_conserv==2) then
97  zu(:,:)=puo(:,:)
98  zv(:,:)=pvo(:,:)
99  else
100  IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN
101  zu(:,:)=puo(:,:)+d_u_vdf(:,:)+0.5*d_u(:,:)
102  zv(:,:)=pvo(:,:)+d_v_vdf(:,:)+0.5*d_v(:,:)
103  ELSE
104  zu(:,:)=puo(:,:)+0.5*d_u(:,:)
105  zv(:,:)=pvo(:,:)+0.5*d_v(:,:)
106  ENDIF
107  endif
108 
109  fluxu(:,klev+1)=0.
110  fluxv(:,klev+1)=0.
111  fluxt(:,klev+1)=0.
112 
113  do k=klev,1,-1
114  fluxu(:,k)=fluxu(:,k+1)+masse(:,k)*d_u(:,k)
115  fluxv(:,k)=fluxv(:,k+1)+masse(:,k)*d_v(:,k)
116  fluxt(:,k)=fluxt(:,k+1)+masse(:,k)*d_t(:,k)/exner(:,k)
117  enddo
118 
119  dddu(:,1)=2*zu(:,1)*fluxu(:,1)
120  dddv(:,1)=2*zv(:,1)*fluxv(:,1)
121  dddt(:,1)=(exner(:,1)-1.)*fluxt(:,1)
122 
123  do k=2,klev
124  dddu(:,k)=(zu(:,k)-zu(:,k-1))*fluxu(:,k)
125  dddv(:,k)=(zv(:,k)-zv(:,k-1))*fluxv(:,k)
126  dddt(:,k)=(exner(:,k)-exner(:,k-1))*fluxt(:,k)
127  enddo
128  dddu(:,klev+1)=0.
129  dddv(:,klev+1)=0.
130  dddt(:,klev+1)=0.
131 
132  do k=1,klev
133  d_t_ec(:,k)=-(dddu(:,k)+dddu(:,k+1)+dddv(:,k)+dddv(:,k+1) &
134  & +rcpd*(dddt(:,k)+dddt(:,k+1)))/(2.*rcpd*masse(:,k))
135  enddo
136 ! d_t_ec=0.
137 
138 ENDIF
139 
140 !================================================================
141 ! Computation of integrated enthalpie and kinetic energy variation
142 ! FH (hourdin@lmd.jussieu.fr), 2013/04/25
143 !================================================================
144 
145  bils_ec(:)=0.
146  bils_tke(:)=0.
147  bils_diss(:)=0.
148  bils_kinetic(:)=0.
149  bils_enthalp(:)=0.
150  bils_latent(:)=0.
151  DO k=1,klev
152  bils_ec(:)=bils_ec(:)-d_t_ec(:,k)*masse(:,k)
153  bils_tke(:)=bils_tke(:)+0.5*(dtke(:,k)+dtke(:,k+1))*masse(:,k)
154  bils_diss(:)=bils_diss(:)-d_t_diss(:,k)*masse(:,k)
155  bils_kinetic(:)=bils_kinetic(:)+masse(:,k)* &
156  & (pun(:,k)*pun(:,k)+pvn(:,k)*pvn(:,k) &
157  & -puo(:,k)*puo(:,k)-pvo(:,k)*pvo(:,k))
158  bils_enthalp(:)= &
159  & bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k))
160  bils_latent(:)=bils_latent(:)+masse(:,k)* &
161  & (pqn(:,k)-pqo(:,k))
162  ENDDO
163  bils_ec(:)=rcpd*bils_ec(:)/pdtphys
164  bils_tke(:)=bils_tke(:)/pdtphys
165  bils_diss(:)=rcpd*bils_diss(:)/pdtphys
166  bils_kinetic(:)= 0.5*bils_kinetic(:)/pdtphys
167  bils_enthalp(:)=rcpd*bils_enthalp(:)/pdtphys
168  bils_latent(:)=rlvtt*bils_latent(:)/pdtphys
169 RETURN
170 
171 END