| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Header$ |
| 3 |
|
|
! |
| 4 |
|
✗ |
SUBROUTINE ADVXP(LIMIT,DTX,PBARU,SM,S0,SSX,SY,SZ |
| 5 |
|
|
. ,SSXX,SSXY,SSXZ,SYY,SYZ,SZZ,ntra) |
| 6 |
|
|
IMPLICIT NONE |
| 7 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| 8 |
|
|
C C |
| 9 |
|
|
C second-order moments (SOM) advection of tracer in X direction C |
| 10 |
|
|
C C |
| 11 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| 12 |
|
|
C |
| 13 |
|
|
C parametres principaux du modele |
| 14 |
|
|
C |
| 15 |
|
|
include "dimensions.h" |
| 16 |
|
|
include "paramet.h" |
| 17 |
|
|
|
| 18 |
|
|
INTEGER ntra |
| 19 |
|
|
c PARAMETER (ntra = 1) |
| 20 |
|
|
C |
| 21 |
|
|
C definition de la grille du modele |
| 22 |
|
|
C |
| 23 |
|
|
REAL dtx |
| 24 |
|
|
REAL pbaru ( iip1,jjp1,llm ) |
| 25 |
|
|
C |
| 26 |
|
|
C moments: SM total mass in each grid box |
| 27 |
|
|
C S0 mass of tracer in each grid box |
| 28 |
|
|
C Si 1rst order moment in i direction |
| 29 |
|
|
C Sij 2nd order moment in i and j directions |
| 30 |
|
|
C |
| 31 |
|
|
REAL SM(iip1,jjp1,llm) |
| 32 |
|
|
+ ,S0(iip1,jjp1,llm,ntra) |
| 33 |
|
|
REAL SSX(iip1,jjp1,llm,ntra) |
| 34 |
|
|
+ ,SY(iip1,jjp1,llm,ntra) |
| 35 |
|
|
+ ,SZ(iip1,jjp1,llm,ntra) |
| 36 |
|
|
REAL SSXX(iip1,jjp1,llm,ntra) |
| 37 |
|
|
+ ,SSXY(iip1,jjp1,llm,ntra) |
| 38 |
|
|
+ ,SSXZ(iip1,jjp1,llm,ntra) |
| 39 |
|
|
+ ,SYY(iip1,jjp1,llm,ntra) |
| 40 |
|
|
+ ,SYZ(iip1,jjp1,llm,ntra) |
| 41 |
|
|
+ ,SZZ(iip1,jjp1,llm,ntra) |
| 42 |
|
|
|
| 43 |
|
|
C Local : |
| 44 |
|
|
C ------- |
| 45 |
|
|
|
| 46 |
|
|
C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
| 47 |
|
|
C mass fluxes in kg |
| 48 |
|
|
C declaration : |
| 49 |
|
|
|
| 50 |
|
|
REAL UGRI(iip1,jjp1,llm) |
| 51 |
|
|
|
| 52 |
|
|
C Rem : VGRI et WGRI ne sont pas utilises dans |
| 53 |
|
|
C cette subroutine ( advection en x uniquement ) |
| 54 |
|
|
C |
| 55 |
|
|
C |
| 56 |
|
|
C Tij are the moments for the current latitude and level |
| 57 |
|
|
C |
| 58 |
|
|
REAL TM (iim) |
| 59 |
|
✗ |
REAL T0 (iim,NTRA),TX (iim,NTRA) |
| 60 |
|
✗ |
REAL TY (iim,NTRA),TZ (iim,NTRA) |
| 61 |
|
✗ |
REAL TXX(iim,NTRA),TXY(iim,NTRA) |
| 62 |
|
✗ |
REAL TXZ(iim,NTRA),TYY(iim,NTRA) |
| 63 |
|
✗ |
REAL TYZ(iim,NTRA),TZZ(iim,NTRA) |
| 64 |
|
|
C |
| 65 |
|
|
C the moments F are similarly defined and used as temporary |
| 66 |
|
|
C storage for portions of the grid boxes in transit |
| 67 |
|
|
C |
| 68 |
|
|
REAL FM (iim) |
| 69 |
|
✗ |
REAL F0 (iim,NTRA),FX (iim,NTRA) |
| 70 |
|
✗ |
REAL FY (iim,NTRA),FZ (iim,NTRA) |
| 71 |
|
✗ |
REAL FXX(iim,NTRA),FXY(iim,NTRA) |
| 72 |
|
✗ |
REAL FXZ(iim,NTRA),FYY(iim,NTRA) |
| 73 |
|
✗ |
REAL FYZ(iim,NTRA),FZZ(iim,NTRA) |
| 74 |
|
|
C |
| 75 |
|
|
C work arrays |
| 76 |
|
|
C |
| 77 |
|
|
REAL ALF (iim),ALF1(iim),ALFQ(iim),ALF1Q(iim) |
| 78 |
|
|
REAL ALF2(iim),ALF3(iim),ALF4(iim) |
| 79 |
|
|
C |
| 80 |
|
|
REAL SMNEW(iim),UEXT(iim) |
| 81 |
|
|
REAL sqi,sqf |
| 82 |
|
|
REAL TEMPTM |
| 83 |
|
|
REAL SLPMAX |
| 84 |
|
|
REAL S1MAX,S1NEW,S2NEW |
| 85 |
|
|
|
| 86 |
|
|
LOGICAL LIMIT |
| 87 |
|
|
INTEGER NUM(jjp1),LONK,NUMK |
| 88 |
|
|
INTEGER lon,lati,latf,niv |
| 89 |
|
|
INTEGER i,i2,i3,j,jv,l,k,iter |
| 90 |
|
|
|
| 91 |
|
|
lon = iim |
| 92 |
|
|
lati=2 |
| 93 |
|
|
latf = jjm |
| 94 |
|
|
niv = llm |
| 95 |
|
|
|
| 96 |
|
|
C *** Test de passage d'arguments ****** |
| 97 |
|
|
|
| 98 |
|
|
c DO 399 l = 1, llm |
| 99 |
|
|
c DO 399 j = 1, jjp1 |
| 100 |
|
|
c DO 399 i = 1, iip1 |
| 101 |
|
|
c IF (S0(i,j,l,ntra) .lt. 0. ) THEN |
| 102 |
|
|
c PRINT*,'S0(',i,j,l,')=',S0(i,j,l,ntra) |
| 103 |
|
|
c print*, 'SSX(',i,j,l,')=',SSX(i,j,l,ntra) |
| 104 |
|
|
c print*, 'SY(',i,j,l,')=',SY(i,j,l,ntra) |
| 105 |
|
|
c print*, 'SZ(',i,j,l,')=',SZ(i,j,l,ntra) |
| 106 |
|
|
c PRINT*, 'AIE !! debut ADVXP - pbl arg. passage dans ADVXP' |
| 107 |
|
|
cc STOP |
| 108 |
|
|
c ENDIF |
| 109 |
|
|
c 399 CONTINUE |
| 110 |
|
|
|
| 111 |
|
|
C *** Test : diagnostique de la qtite totale de traceur |
| 112 |
|
|
C dans l'atmosphere avant l'advection |
| 113 |
|
|
c |
| 114 |
|
✗ |
sqi =0. |
| 115 |
|
✗ |
sqf =0. |
| 116 |
|
|
c |
| 117 |
|
✗ |
DO l = 1, llm |
| 118 |
|
✗ |
DO j = 1, jjp1 |
| 119 |
|
✗ |
DO i = 1, iim |
| 120 |
|
✗ |
sqi = sqi + S0(i,j,l,ntra) |
| 121 |
|
|
END DO |
| 122 |
|
|
END DO |
| 123 |
|
|
END DO |
| 124 |
|
✗ |
PRINT*,'------ DIAG DANS ADVX2 - ENTREE -----' |
| 125 |
|
✗ |
PRINT*,'sqi=',sqi |
| 126 |
|
|
c test |
| 127 |
|
|
c ------------------------------------- |
| 128 |
|
✗ |
DO 300 j =1,jjp1 |
| 129 |
|
✗ |
NUM(j) =1 |
| 130 |
|
✗ |
300 CONTINUE |
| 131 |
|
|
c DO l=1,llm |
| 132 |
|
|
c NUM(2,l)=6 |
| 133 |
|
|
c NUM(3,l)=6 |
| 134 |
|
|
c NUM(jjm-1,l)=6 |
| 135 |
|
|
c NUM(jjm,l)=6 |
| 136 |
|
|
c ENDDO |
| 137 |
|
|
c DO j=2,6 |
| 138 |
|
|
c NUM(j)=12 |
| 139 |
|
|
c ENDDO |
| 140 |
|
|
c DO j=jjm-5,jjm-1 |
| 141 |
|
|
c NUM(j)=12 |
| 142 |
|
|
c ENDDO |
| 143 |
|
|
|
| 144 |
|
|
C Interface : adaptation nouveau modele |
| 145 |
|
|
C ------------------------------------- |
| 146 |
|
|
C |
| 147 |
|
|
C --------------------------------------------------------- |
| 148 |
|
|
C Conversion des flux de masses en kg/s |
| 149 |
|
|
C pbaru est en N/s d'ou : |
| 150 |
|
|
C ugri est en kg/s |
| 151 |
|
|
|
| 152 |
|
✗ |
DO 500 l = 1,llm |
| 153 |
|
✗ |
DO 500 j = 1,jjp1 |
| 154 |
|
✗ |
DO 500 i = 1,iip1 |
| 155 |
|
✗ |
ugri (i,j,llm+1-l) =pbaru (i,j,l) |
| 156 |
|
✗ |
500 CONTINUE |
| 157 |
|
|
|
| 158 |
|
|
C --------------------------------------------------------- |
| 159 |
|
|
C start here |
| 160 |
|
|
C |
| 161 |
|
|
C boucle principale sur les niveaux et les latitudes |
| 162 |
|
|
C |
| 163 |
|
✗ |
DO 1 L=1,NIV |
| 164 |
|
✗ |
DO 1 K=lati,latf |
| 165 |
|
|
|
| 166 |
|
|
C |
| 167 |
|
|
C initialisation |
| 168 |
|
|
C |
| 169 |
|
|
C program assumes periodic boundaries in X |
| 170 |
|
|
C |
| 171 |
|
✗ |
DO 10 I=2,LON |
| 172 |
|
✗ |
SMNEW(I)=SM(I,K,L)+(UGRI(I-1,K,L)-UGRI(I,K,L))*DTX |
| 173 |
|
✗ |
10 CONTINUE |
| 174 |
|
✗ |
SMNEW(1)=SM(1,K,L)+(UGRI(LON,K,L)-UGRI(1,K,L))*DTX |
| 175 |
|
|
C |
| 176 |
|
|
C modifications for extended polar zones |
| 177 |
|
|
C |
| 178 |
|
✗ |
NUMK=NUM(K) |
| 179 |
|
✗ |
LONK=LON/NUMK |
| 180 |
|
|
C |
| 181 |
|
✗ |
IF(NUMK.GT.1) THEN |
| 182 |
|
|
C |
| 183 |
|
✗ |
DO 111 I=1,LON |
| 184 |
|
✗ |
TM(I)=0. |
| 185 |
|
✗ |
111 CONTINUE |
| 186 |
|
✗ |
DO 112 JV=1,NTRA |
| 187 |
|
✗ |
DO 1120 I=1,LON |
| 188 |
|
✗ |
T0 (I,JV)=0. |
| 189 |
|
✗ |
TX (I,JV)=0. |
| 190 |
|
✗ |
TY (I,JV)=0. |
| 191 |
|
✗ |
TZ (I,JV)=0. |
| 192 |
|
✗ |
TXX(I,JV)=0. |
| 193 |
|
✗ |
TXY(I,JV)=0. |
| 194 |
|
✗ |
TXZ(I,JV)=0. |
| 195 |
|
✗ |
TYY(I,JV)=0. |
| 196 |
|
✗ |
TYZ(I,JV)=0. |
| 197 |
|
✗ |
TZZ(I,JV)=0. |
| 198 |
|
✗ |
1120 CONTINUE |
| 199 |
|
✗ |
112 CONTINUE |
| 200 |
|
|
C |
| 201 |
|
✗ |
DO 11 I2=1,NUMK |
| 202 |
|
|
C |
| 203 |
|
✗ |
DO 113 I=1,LONK |
| 204 |
|
✗ |
I3=(I-1)*NUMK+I2 |
| 205 |
|
✗ |
TM(I)=TM(I)+SM(I3,K,L) |
| 206 |
|
✗ |
ALF(I)=SM(I3,K,L)/TM(I) |
| 207 |
|
✗ |
ALF1(I)=1.-ALF(I) |
| 208 |
|
✗ |
ALFQ(I)=ALF(I)*ALF(I) |
| 209 |
|
✗ |
ALF1Q(I)=ALF1(I)*ALF1(I) |
| 210 |
|
✗ |
ALF2(I)=ALF1(I)-ALF(I) |
| 211 |
|
✗ |
ALF3(I)=ALF(I)*ALF1(I) |
| 212 |
|
✗ |
113 CONTINUE |
| 213 |
|
|
C |
| 214 |
|
✗ |
DO 114 JV=1,NTRA |
| 215 |
|
✗ |
DO 1140 I=1,LONK |
| 216 |
|
✗ |
I3=(I-1)*NUMK+I2 |
| 217 |
|
✗ |
TEMPTM=-ALF(I)*T0(I,JV)+ALF1(I)*S0(I3,K,L,JV) |
| 218 |
|
✗ |
T0 (I,JV)=T0(I,JV)+S0(I3,K,L,JV) |
| 219 |
|
|
TXX(I,JV)=ALFQ(I)*SSXX(I3,K,L,JV)+ALF1Q(I)*TXX(I,JV) |
| 220 |
|
✗ |
+ +5.*( ALF3(I)*(SSX(I3,K,L,JV)-TX(I,JV))+ALF2(I)*TEMPTM ) |
| 221 |
|
✗ |
TX (I,JV)=ALF(I)*SSX(I3,K,L,JV)+ALF1(I)*TX(I,JV)+3.*TEMPTM |
| 222 |
|
|
TXY(I,JV)=ALF (I)*SSXY(I3,K,L,JV)+ALF1(I)*TXY(I,JV) |
| 223 |
|
✗ |
+ +3.*(ALF1(I)*SY (I3,K,L,JV)-ALF (I)*TY (I,JV)) |
| 224 |
|
|
TXZ(I,JV)=ALF (I)*SSXZ(I3,K,L,JV)+ALF1(I)*TXZ(I,JV) |
| 225 |
|
✗ |
+ +3.*(ALF1(I)*SZ (I3,K,L,JV)-ALF (I)*TZ (I,JV)) |
| 226 |
|
✗ |
TY (I,JV)=TY (I,JV)+SY (I3,K,L,JV) |
| 227 |
|
✗ |
TZ (I,JV)=TZ (I,JV)+SZ (I3,K,L,JV) |
| 228 |
|
✗ |
TYY(I,JV)=TYY(I,JV)+SYY(I3,K,L,JV) |
| 229 |
|
✗ |
TYZ(I,JV)=TYZ(I,JV)+SYZ(I3,K,L,JV) |
| 230 |
|
✗ |
TZZ(I,JV)=TZZ(I,JV)+SZZ(I3,K,L,JV) |
| 231 |
|
✗ |
1140 CONTINUE |
| 232 |
|
✗ |
114 CONTINUE |
| 233 |
|
|
C |
| 234 |
|
✗ |
11 CONTINUE |
| 235 |
|
|
C |
| 236 |
|
|
ELSE |
| 237 |
|
|
C |
| 238 |
|
✗ |
DO 115 I=1,LON |
| 239 |
|
✗ |
TM(I)=SM(I,K,L) |
| 240 |
|
✗ |
115 CONTINUE |
| 241 |
|
✗ |
DO 116 JV=1,NTRA |
| 242 |
|
✗ |
DO 1160 I=1,LON |
| 243 |
|
✗ |
T0 (I,JV)=S0 (I,K,L,JV) |
| 244 |
|
✗ |
TX (I,JV)=SSX (I,K,L,JV) |
| 245 |
|
✗ |
TY (I,JV)=SY (I,K,L,JV) |
| 246 |
|
✗ |
TZ (I,JV)=SZ (I,K,L,JV) |
| 247 |
|
✗ |
TXX(I,JV)=SSXX(I,K,L,JV) |
| 248 |
|
✗ |
TXY(I,JV)=SSXY(I,K,L,JV) |
| 249 |
|
✗ |
TXZ(I,JV)=SSXZ(I,K,L,JV) |
| 250 |
|
✗ |
TYY(I,JV)=SYY(I,K,L,JV) |
| 251 |
|
✗ |
TYZ(I,JV)=SYZ(I,K,L,JV) |
| 252 |
|
✗ |
TZZ(I,JV)=SZZ(I,K,L,JV) |
| 253 |
|
✗ |
1160 CONTINUE |
| 254 |
|
✗ |
116 CONTINUE |
| 255 |
|
|
C |
| 256 |
|
|
ENDIF |
| 257 |
|
|
C |
| 258 |
|
✗ |
DO 117 I=1,LONK |
| 259 |
|
✗ |
UEXT(I)=UGRI(I*NUMK,K,L) |
| 260 |
|
✗ |
117 CONTINUE |
| 261 |
|
|
C |
| 262 |
|
|
C place limits on appropriate moments before transport |
| 263 |
|
|
C (if flux-limiting is to be applied) |
| 264 |
|
|
C |
| 265 |
|
✗ |
IF(.NOT.LIMIT) GO TO 13 |
| 266 |
|
|
C |
| 267 |
|
✗ |
DO 12 JV=1,NTRA |
| 268 |
|
✗ |
DO 120 I=1,LONK |
| 269 |
|
✗ |
IF(T0(I,JV).GT.0.) THEN |
| 270 |
|
|
SLPMAX=T0(I,JV) |
| 271 |
|
✗ |
S1MAX=1.5*SLPMAX |
| 272 |
|
✗ |
S1NEW=AMIN1(S1MAX,AMAX1(-S1MAX,TX(I,JV))) |
| 273 |
|
|
S2NEW=AMIN1( 2.*SLPMAX-ABS(S1NEW)/3. , |
| 274 |
|
✗ |
+ AMAX1(ABS(S1NEW)-SLPMAX,TXX(I,JV)) ) |
| 275 |
|
✗ |
TX (I,JV)=S1NEW |
| 276 |
|
✗ |
TXX(I,JV)=S2NEW |
| 277 |
|
✗ |
TXY(I,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,TXY(I,JV))) |
| 278 |
|
✗ |
TXZ(I,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,TXZ(I,JV))) |
| 279 |
|
|
ELSE |
| 280 |
|
✗ |
TX (I,JV)=0. |
| 281 |
|
✗ |
TXX(I,JV)=0. |
| 282 |
|
✗ |
TXY(I,JV)=0. |
| 283 |
|
✗ |
TXZ(I,JV)=0. |
| 284 |
|
|
ENDIF |
| 285 |
|
✗ |
120 CONTINUE |
| 286 |
|
✗ |
12 CONTINUE |
| 287 |
|
|
C |
| 288 |
|
|
13 CONTINUE |
| 289 |
|
|
C |
| 290 |
|
|
C calculate flux and moments between adjacent boxes |
| 291 |
|
|
C 1- create temporary moments/masses for partial boxes in transit |
| 292 |
|
|
C 2- reajusts moments remaining in the box |
| 293 |
|
|
C |
| 294 |
|
|
C flux from IP to I if U(I).lt.0 |
| 295 |
|
|
C |
| 296 |
|
✗ |
DO 140 I=1,LONK-1 |
| 297 |
|
✗ |
IF(UEXT(I).LT.0.) THEN |
| 298 |
|
✗ |
FM(I)=-UEXT(I)*DTX |
| 299 |
|
✗ |
ALF(I)=FM(I)/TM(I+1) |
| 300 |
|
✗ |
TM(I+1)=TM(I+1)-FM(I) |
| 301 |
|
|
ENDIF |
| 302 |
|
✗ |
140 CONTINUE |
| 303 |
|
|
C |
| 304 |
|
|
I=LONK |
| 305 |
|
✗ |
IF(UEXT(I).LT.0.) THEN |
| 306 |
|
✗ |
FM(I)=-UEXT(I)*DTX |
| 307 |
|
✗ |
ALF(I)=FM(I)/TM(1) |
| 308 |
|
✗ |
TM(1)=TM(1)-FM(I) |
| 309 |
|
|
ENDIF |
| 310 |
|
|
C |
| 311 |
|
|
C flux from I to IP if U(I).gt.0 |
| 312 |
|
|
C |
| 313 |
|
✗ |
DO 141 I=1,LONK |
| 314 |
|
✗ |
IF(UEXT(I).GE.0.) THEN |
| 315 |
|
✗ |
FM(I)=UEXT(I)*DTX |
| 316 |
|
✗ |
ALF(I)=FM(I)/TM(I) |
| 317 |
|
✗ |
TM(I)=TM(I)-FM(I) |
| 318 |
|
|
ENDIF |
| 319 |
|
✗ |
141 CONTINUE |
| 320 |
|
|
C |
| 321 |
|
✗ |
DO 142 I=1,LONK |
| 322 |
|
✗ |
ALFQ(I)=ALF(I)*ALF(I) |
| 323 |
|
✗ |
ALF1(I)=1.-ALF(I) |
| 324 |
|
✗ |
ALF1Q(I)=ALF1(I)*ALF1(I) |
| 325 |
|
✗ |
ALF2(I)=ALF1(I)-ALF(I) |
| 326 |
|
✗ |
ALF3(I)=ALF(I)*ALFQ(I) |
| 327 |
|
✗ |
ALF4(I)=ALF1(I)*ALF1Q(I) |
| 328 |
|
✗ |
142 CONTINUE |
| 329 |
|
|
C |
| 330 |
|
✗ |
DO 150 JV=1,NTRA |
| 331 |
|
✗ |
DO 1500 I=1,LONK-1 |
| 332 |
|
|
C |
| 333 |
|
✗ |
IF(UEXT(I).LT.0.) THEN |
| 334 |
|
|
C |
| 335 |
|
|
F0 (I,JV)=ALF (I)* ( T0(I+1,JV)-ALF1(I)* |
| 336 |
|
✗ |
+ ( TX(I+1,JV)-ALF2(I)*TXX(I+1,JV) ) ) |
| 337 |
|
✗ |
FX (I,JV)=ALFQ(I)*(TX(I+1,JV)-3.*ALF1(I)*TXX(I+1,JV)) |
| 338 |
|
✗ |
FXX(I,JV)=ALF3(I)*TXX(I+1,JV) |
| 339 |
|
✗ |
FY (I,JV)=ALF (I)*(TY(I+1,JV)-ALF1(I)*TXY(I+1,JV)) |
| 340 |
|
✗ |
FZ (I,JV)=ALF (I)*(TZ(I+1,JV)-ALF1(I)*TXZ(I+1,JV)) |
| 341 |
|
✗ |
FXY(I,JV)=ALFQ(I)*TXY(I+1,JV) |
| 342 |
|
✗ |
FXZ(I,JV)=ALFQ(I)*TXZ(I+1,JV) |
| 343 |
|
✗ |
FYY(I,JV)=ALF (I)*TYY(I+1,JV) |
| 344 |
|
✗ |
FYZ(I,JV)=ALF (I)*TYZ(I+1,JV) |
| 345 |
|
✗ |
FZZ(I,JV)=ALF (I)*TZZ(I+1,JV) |
| 346 |
|
|
C |
| 347 |
|
✗ |
T0 (I+1,JV)=T0(I+1,JV)-F0(I,JV) |
| 348 |
|
✗ |
TX (I+1,JV)=ALF1Q(I)*(TX(I+1,JV)+3.*ALF(I)*TXX(I+1,JV)) |
| 349 |
|
✗ |
TXX(I+1,JV)=ALF4(I)*TXX(I+1,JV) |
| 350 |
|
✗ |
TY (I+1,JV)=TY (I+1,JV)-FY (I,JV) |
| 351 |
|
✗ |
TZ (I+1,JV)=TZ (I+1,JV)-FZ (I,JV) |
| 352 |
|
✗ |
TYY(I+1,JV)=TYY(I+1,JV)-FYY(I,JV) |
| 353 |
|
✗ |
TYZ(I+1,JV)=TYZ(I+1,JV)-FYZ(I,JV) |
| 354 |
|
✗ |
TZZ(I+1,JV)=TZZ(I+1,JV)-FZZ(I,JV) |
| 355 |
|
✗ |
TXY(I+1,JV)=ALF1Q(I)*TXY(I+1,JV) |
| 356 |
|
✗ |
TXZ(I+1,JV)=ALF1Q(I)*TXZ(I+1,JV) |
| 357 |
|
|
C |
| 358 |
|
|
ENDIF |
| 359 |
|
|
C |
| 360 |
|
✗ |
1500 CONTINUE |
| 361 |
|
✗ |
150 CONTINUE |
| 362 |
|
|
C |
| 363 |
|
|
I=LONK |
| 364 |
|
✗ |
IF(UEXT(I).LT.0.) THEN |
| 365 |
|
|
C |
| 366 |
|
✗ |
DO 151 JV=1,NTRA |
| 367 |
|
|
C |
| 368 |
|
|
F0 (I,JV)=ALF (I)* ( T0(1,JV)-ALF1(I)* |
| 369 |
|
✗ |
+ ( TX(1,JV)-ALF2(I)*TXX(1,JV) ) ) |
| 370 |
|
✗ |
FX (I,JV)=ALFQ(I)*(TX(1,JV)-3.*ALF1(I)*TXX(1,JV)) |
| 371 |
|
✗ |
FXX(I,JV)=ALF3(I)*TXX(1,JV) |
| 372 |
|
✗ |
FY (I,JV)=ALF (I)*(TY(1,JV)-ALF1(I)*TXY(1,JV)) |
| 373 |
|
✗ |
FZ (I,JV)=ALF (I)*(TZ(1,JV)-ALF1(I)*TXZ(1,JV)) |
| 374 |
|
✗ |
FXY(I,JV)=ALFQ(I)*TXY(1,JV) |
| 375 |
|
✗ |
FXZ(I,JV)=ALFQ(I)*TXZ(1,JV) |
| 376 |
|
✗ |
FYY(I,JV)=ALF (I)*TYY(1,JV) |
| 377 |
|
✗ |
FYZ(I,JV)=ALF (I)*TYZ(1,JV) |
| 378 |
|
✗ |
FZZ(I,JV)=ALF (I)*TZZ(1,JV) |
| 379 |
|
|
C |
| 380 |
|
✗ |
T0 (1,JV)=T0(1,JV)-F0(I,JV) |
| 381 |
|
✗ |
TX (1,JV)=ALF1Q(I)*(TX(1,JV)+3.*ALF(I)*TXX(1,JV)) |
| 382 |
|
✗ |
TXX(1,JV)=ALF4(I)*TXX(1,JV) |
| 383 |
|
✗ |
TY (1,JV)=TY (1,JV)-FY (I,JV) |
| 384 |
|
✗ |
TZ (1,JV)=TZ (1,JV)-FZ (I,JV) |
| 385 |
|
✗ |
TYY(1,JV)=TYY(1,JV)-FYY(I,JV) |
| 386 |
|
✗ |
TYZ(1,JV)=TYZ(1,JV)-FYZ(I,JV) |
| 387 |
|
✗ |
TZZ(1,JV)=TZZ(1,JV)-FZZ(I,JV) |
| 388 |
|
✗ |
TXY(1,JV)=ALF1Q(I)*TXY(1,JV) |
| 389 |
|
✗ |
TXZ(1,JV)=ALF1Q(I)*TXZ(1,JV) |
| 390 |
|
|
C |
| 391 |
|
✗ |
151 CONTINUE |
| 392 |
|
|
C |
| 393 |
|
|
ENDIF |
| 394 |
|
|
C |
| 395 |
|
✗ |
DO 152 JV=1,NTRA |
| 396 |
|
✗ |
DO 1520 I=1,LONK |
| 397 |
|
|
C |
| 398 |
|
✗ |
IF(UEXT(I).GE.0.) THEN |
| 399 |
|
|
C |
| 400 |
|
|
F0 (I,JV)=ALF (I)* ( T0(I,JV)+ALF1(I)* |
| 401 |
|
✗ |
+ ( TX(I,JV)+ALF2(I)*TXX(I,JV) ) ) |
| 402 |
|
✗ |
FX (I,JV)=ALFQ(I)*(TX(I,JV)+3.*ALF1(I)*TXX(I,JV)) |
| 403 |
|
✗ |
FXX(I,JV)=ALF3(I)*TXX(I,JV) |
| 404 |
|
✗ |
FY (I,JV)=ALF (I)*(TY(I,JV)+ALF1(I)*TXY(I,JV)) |
| 405 |
|
✗ |
FZ (I,JV)=ALF (I)*(TZ(I,JV)+ALF1(I)*TXZ(I,JV)) |
| 406 |
|
✗ |
FXY(I,JV)=ALFQ(I)*TXY(I,JV) |
| 407 |
|
✗ |
FXZ(I,JV)=ALFQ(I)*TXZ(I,JV) |
| 408 |
|
✗ |
FYY(I,JV)=ALF (I)*TYY(I,JV) |
| 409 |
|
✗ |
FYZ(I,JV)=ALF (I)*TYZ(I,JV) |
| 410 |
|
✗ |
FZZ(I,JV)=ALF (I)*TZZ(I,JV) |
| 411 |
|
|
C |
| 412 |
|
✗ |
T0 (I,JV)=T0(I,JV)-F0(I,JV) |
| 413 |
|
✗ |
TX (I,JV)=ALF1Q(I)*(TX(I,JV)-3.*ALF(I)*TXX(I,JV)) |
| 414 |
|
✗ |
TXX(I,JV)=ALF4(I)*TXX(I,JV) |
| 415 |
|
✗ |
TY (I,JV)=TY (I,JV)-FY (I,JV) |
| 416 |
|
✗ |
TZ (I,JV)=TZ (I,JV)-FZ (I,JV) |
| 417 |
|
✗ |
TYY(I,JV)=TYY(I,JV)-FYY(I,JV) |
| 418 |
|
✗ |
TYZ(I,JV)=TYZ(I,JV)-FYZ(I,JV) |
| 419 |
|
✗ |
TZZ(I,JV)=TZZ(I,JV)-FZZ(I,JV) |
| 420 |
|
✗ |
TXY(I,JV)=ALF1Q(I)*TXY(I,JV) |
| 421 |
|
✗ |
TXZ(I,JV)=ALF1Q(I)*TXZ(I,JV) |
| 422 |
|
|
C |
| 423 |
|
|
ENDIF |
| 424 |
|
|
C |
| 425 |
|
✗ |
1520 CONTINUE |
| 426 |
|
✗ |
152 CONTINUE |
| 427 |
|
|
C |
| 428 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
| 429 |
|
|
C |
| 430 |
|
✗ |
DO 160 I=1,LONK |
| 431 |
|
✗ |
IF(UEXT(I).LT.0.) THEN |
| 432 |
|
✗ |
TM(I)=TM(I)+FM(I) |
| 433 |
|
✗ |
ALF(I)=FM(I)/TM(I) |
| 434 |
|
|
ENDIF |
| 435 |
|
✗ |
160 CONTINUE |
| 436 |
|
|
C |
| 437 |
|
✗ |
DO 161 I=1,LONK-1 |
| 438 |
|
✗ |
IF(UEXT(I).GE.0.) THEN |
| 439 |
|
✗ |
TM(I+1)=TM(I+1)+FM(I) |
| 440 |
|
✗ |
ALF(I)=FM(I)/TM(I+1) |
| 441 |
|
|
ENDIF |
| 442 |
|
✗ |
161 CONTINUE |
| 443 |
|
|
C |
| 444 |
|
|
I=LONK |
| 445 |
|
✗ |
IF(UEXT(I).GE.0.) THEN |
| 446 |
|
✗ |
TM(1)=TM(1)+FM(I) |
| 447 |
|
✗ |
ALF(I)=FM(I)/TM(1) |
| 448 |
|
|
ENDIF |
| 449 |
|
|
C |
| 450 |
|
✗ |
DO 162 I=1,LONK |
| 451 |
|
✗ |
ALF1(I)=1.-ALF(I) |
| 452 |
|
✗ |
ALFQ(I)=ALF(I)*ALF(I) |
| 453 |
|
✗ |
ALF1Q(I)=ALF1(I)*ALF1(I) |
| 454 |
|
✗ |
ALF2(I)=ALF1(I)-ALF(I) |
| 455 |
|
✗ |
ALF3(I)=ALF(I)*ALF1(I) |
| 456 |
|
✗ |
162 CONTINUE |
| 457 |
|
|
C |
| 458 |
|
✗ |
DO 170 JV=1,NTRA |
| 459 |
|
✗ |
DO 1700 I=1,LONK |
| 460 |
|
|
C |
| 461 |
|
✗ |
IF(UEXT(I).LT.0.) THEN |
| 462 |
|
|
C |
| 463 |
|
✗ |
TEMPTM=-ALF(I)*T0(I,JV)+ALF1(I)*F0(I,JV) |
| 464 |
|
✗ |
T0 (I,JV)=T0(I,JV)+F0(I,JV) |
| 465 |
|
|
TXX(I,JV)=ALFQ(I)*FXX(I,JV)+ALF1Q(I)*TXX(I,JV) |
| 466 |
|
✗ |
+ +5.*( ALF3(I)*(FX(I,JV)-TX(I,JV))+ALF2(I)*TEMPTM ) |
| 467 |
|
✗ |
TX (I,JV)=ALF (I)*FX (I,JV)+ALF1(I)*TX (I,JV)+3.*TEMPTM |
| 468 |
|
|
TXY(I,JV)=ALF (I)*FXY(I,JV)+ALF1(I)*TXY(I,JV) |
| 469 |
|
✗ |
+ +3.*(ALF1(I)*FY (I,JV)-ALF (I)*TY (I,JV)) |
| 470 |
|
|
TXZ(I,JV)=ALF (I)*FXZ(I,JV)+ALF1(I)*TXZ(I,JV) |
| 471 |
|
✗ |
+ +3.*(ALF1(I)*FZ (I,JV)-ALF (I)*TZ (I,JV)) |
| 472 |
|
✗ |
TY (I,JV)=TY (I,JV)+FY (I,JV) |
| 473 |
|
✗ |
TZ (I,JV)=TZ (I,JV)+FZ (I,JV) |
| 474 |
|
✗ |
TYY(I,JV)=TYY(I,JV)+FYY(I,JV) |
| 475 |
|
✗ |
TYZ(I,JV)=TYZ(I,JV)+FYZ(I,JV) |
| 476 |
|
✗ |
TZZ(I,JV)=TZZ(I,JV)+FZZ(I,JV) |
| 477 |
|
|
C |
| 478 |
|
|
ENDIF |
| 479 |
|
|
C |
| 480 |
|
✗ |
1700 CONTINUE |
| 481 |
|
✗ |
170 CONTINUE |
| 482 |
|
|
C |
| 483 |
|
✗ |
DO 171 JV=1,NTRA |
| 484 |
|
✗ |
DO 1710 I=1,LONK-1 |
| 485 |
|
|
C |
| 486 |
|
✗ |
IF(UEXT(I).GE.0.) THEN |
| 487 |
|
|
C |
| 488 |
|
✗ |
TEMPTM=ALF(I)*T0(I+1,JV)-ALF1(I)*F0(I,JV) |
| 489 |
|
✗ |
T0 (I+1,JV)=T0(I+1,JV)+F0(I,JV) |
| 490 |
|
|
TXX(I+1,JV)=ALFQ(I)*FXX(I,JV)+ALF1Q(I)*TXX(I+1,JV) |
| 491 |
|
✗ |
+ +5.*( ALF3(I)*(TX(I+1,JV)-FX(I,JV))-ALF2(I)*TEMPTM ) |
| 492 |
|
✗ |
TX (I+1,JV)=ALF(I)*FX (I ,JV)+ALF1(I)*TX (I+1,JV)+3.*TEMPTM |
| 493 |
|
|
TXY(I+1,JV)=ALF(I)*FXY(I ,JV)+ALF1(I)*TXY(I+1,JV) |
| 494 |
|
✗ |
+ +3.*(ALF(I)*TY (I+1,JV)-ALF1(I)*FY (I ,JV)) |
| 495 |
|
|
TXZ(I+1,JV)=ALF(I)*FXZ(I ,JV)+ALF1(I)*TXZ(I+1,JV) |
| 496 |
|
✗ |
+ +3.*(ALF(I)*TZ (I+1,JV)-ALF1(I)*FZ (I ,JV)) |
| 497 |
|
✗ |
TY (I+1,JV)=TY (I+1,JV)+FY (I,JV) |
| 498 |
|
✗ |
TZ (I+1,JV)=TZ (I+1,JV)+FZ (I,JV) |
| 499 |
|
✗ |
TYY(I+1,JV)=TYY(I+1,JV)+FYY(I,JV) |
| 500 |
|
✗ |
TYZ(I+1,JV)=TYZ(I+1,JV)+FYZ(I,JV) |
| 501 |
|
✗ |
TZZ(I+1,JV)=TZZ(I+1,JV)+FZZ(I,JV) |
| 502 |
|
|
C |
| 503 |
|
|
ENDIF |
| 504 |
|
|
C |
| 505 |
|
✗ |
1710 CONTINUE |
| 506 |
|
✗ |
171 CONTINUE |
| 507 |
|
|
C |
| 508 |
|
|
I=LONK |
| 509 |
|
✗ |
IF(UEXT(I).GE.0.) THEN |
| 510 |
|
✗ |
DO 172 JV=1,NTRA |
| 511 |
|
✗ |
TEMPTM=ALF(I)*T0(1,JV)-ALF1(I)*F0(I,JV) |
| 512 |
|
✗ |
T0 (1,JV)=T0(1,JV)+F0(I,JV) |
| 513 |
|
|
TXX(1,JV)=ALFQ(I)*FXX(I,JV)+ALF1Q(I)*TXX(1,JV) |
| 514 |
|
✗ |
+ +5.*( ALF3(I)*(TX(1,JV)-FX(I,JV))-ALF2(I)*TEMPTM ) |
| 515 |
|
✗ |
TX (1,JV)=ALF(I)*FX(I,JV)+ALF1(I)*TX(1,JV)+3.*TEMPTM |
| 516 |
|
|
TXY(1,JV)=ALF(I)*FXY(I,JV)+ALF1(I)*TXY(1,JV) |
| 517 |
|
✗ |
+ +3.*(ALF(I)*TY (1,JV)-ALF1(I)*FY (I,JV)) |
| 518 |
|
|
TXZ(1,JV)=ALF(I)*FXZ(I,JV)+ALF1(I)*TXZ(1,JV) |
| 519 |
|
✗ |
+ +3.*(ALF(I)*TZ (1,JV)-ALF1(I)*FZ (I,JV)) |
| 520 |
|
✗ |
TY (1,JV)=TY (1,JV)+FY (I,JV) |
| 521 |
|
✗ |
TZ (1,JV)=TZ (1,JV)+FZ (I,JV) |
| 522 |
|
✗ |
TYY(1,JV)=TYY(1,JV)+FYY(I,JV) |
| 523 |
|
✗ |
TYZ(1,JV)=TYZ(1,JV)+FYZ(I,JV) |
| 524 |
|
✗ |
TZZ(1,JV)=TZZ(1,JV)+FZZ(I,JV) |
| 525 |
|
✗ |
172 CONTINUE |
| 526 |
|
|
ENDIF |
| 527 |
|
|
C |
| 528 |
|
|
C retour aux mailles d'origine (passage des Tij aux Sij) |
| 529 |
|
|
C |
| 530 |
|
✗ |
IF(NUMK.GT.1) THEN |
| 531 |
|
|
C |
| 532 |
|
✗ |
DO 18 I2=1,NUMK |
| 533 |
|
|
C |
| 534 |
|
✗ |
DO 180 I=1,LONK |
| 535 |
|
|
C |
| 536 |
|
✗ |
I3=I2+(I-1)*NUMK |
| 537 |
|
✗ |
SM(I3,K,L)=SMNEW(I3) |
| 538 |
|
✗ |
ALF(I)=SMNEW(I3)/TM(I) |
| 539 |
|
✗ |
TM(I)=TM(I)-SMNEW(I3) |
| 540 |
|
|
C |
| 541 |
|
✗ |
ALFQ(I)=ALF(I)*ALF(I) |
| 542 |
|
✗ |
ALF1(I)=1.-ALF(I) |
| 543 |
|
✗ |
ALF1Q(I)=ALF1(I)*ALF1(I) |
| 544 |
|
✗ |
ALF2(I)=ALF1(I)-ALF(I) |
| 545 |
|
✗ |
ALF3(I)=ALF(I)*ALFQ(I) |
| 546 |
|
✗ |
ALF4(I)=ALF1(I)*ALF1Q(I) |
| 547 |
|
|
C |
| 548 |
|
✗ |
180 CONTINUE |
| 549 |
|
|
C |
| 550 |
|
✗ |
DO 181 JV=1,NTRA |
| 551 |
|
✗ |
DO 181 I=1,LONK |
| 552 |
|
|
C |
| 553 |
|
✗ |
I3=I2+(I-1)*NUMK |
| 554 |
|
|
S0 (I3,K,L,JV)=ALF (I)* ( T0(I,JV)-ALF1(I)* |
| 555 |
|
✗ |
+ ( TX(I,JV)-ALF2(I)*TXX(I,JV) ) ) |
| 556 |
|
✗ |
SSX (I3,K,L,JV)=ALFQ(I)*(TX(I,JV)-3.*ALF1(I)*TXX(I,JV)) |
| 557 |
|
✗ |
SSXX(I3,K,L,JV)=ALF3(I)*TXX(I,JV) |
| 558 |
|
✗ |
SY (I3,K,L,JV)=ALF (I)*(TY(I,JV)-ALF1(I)*TXY(I,JV)) |
| 559 |
|
✗ |
SZ (I3,K,L,JV)=ALF (I)*(TZ(I,JV)-ALF1(I)*TXZ(I,JV)) |
| 560 |
|
✗ |
SSXY(I3,K,L,JV)=ALFQ(I)*TXY(I,JV) |
| 561 |
|
✗ |
SSXZ(I3,K,L,JV)=ALFQ(I)*TXZ(I,JV) |
| 562 |
|
✗ |
SYY(I3,K,L,JV)=ALF (I)*TYY(I,JV) |
| 563 |
|
✗ |
SYZ(I3,K,L,JV)=ALF (I)*TYZ(I,JV) |
| 564 |
|
✗ |
SZZ(I3,K,L,JV)=ALF (I)*TZZ(I,JV) |
| 565 |
|
|
C |
| 566 |
|
|
C reajusts moments remaining in the box |
| 567 |
|
|
C |
| 568 |
|
✗ |
T0 (I,JV)=T0(I,JV)-S0(I3,K,L,JV) |
| 569 |
|
✗ |
TX (I,JV)=ALF1Q(I)*(TX(I,JV)+3.*ALF(I)*TXX(I,JV)) |
| 570 |
|
✗ |
TXX(I,JV)=ALF4 (I)*TXX(I,JV) |
| 571 |
|
✗ |
TY (I,JV)=TY (I,JV)-SY (I3,K,L,JV) |
| 572 |
|
✗ |
TZ (I,JV)=TZ (I,JV)-SZ (I3,K,L,JV) |
| 573 |
|
✗ |
TYY(I,JV)=TYY(I,JV)-SYY(I3,K,L,JV) |
| 574 |
|
✗ |
TYZ(I,JV)=TYZ(I,JV)-SYZ(I3,K,L,JV) |
| 575 |
|
✗ |
TZZ(I,JV)=TZZ(I,JV)-SZZ(I3,K,L,JV) |
| 576 |
|
✗ |
TXY(I,JV)=ALF1Q(I)*TXY(I,JV) |
| 577 |
|
✗ |
TXZ(I,JV)=ALF1Q(I)*TXZ(I,JV) |
| 578 |
|
|
C |
| 579 |
|
✗ |
181 CONTINUE |
| 580 |
|
|
C |
| 581 |
|
✗ |
18 CONTINUE |
| 582 |
|
|
C |
| 583 |
|
|
ELSE |
| 584 |
|
|
C |
| 585 |
|
✗ |
DO 190 I=1,LON |
| 586 |
|
✗ |
SM(I,K,L)=TM(I) |
| 587 |
|
✗ |
190 CONTINUE |
| 588 |
|
✗ |
DO 191 JV=1,NTRA |
| 589 |
|
✗ |
DO 1910 I=1,LON |
| 590 |
|
✗ |
S0 (I,K,L,JV)=T0 (I,JV) |
| 591 |
|
✗ |
SSX (I,K,L,JV)=TX (I,JV) |
| 592 |
|
✗ |
SY (I,K,L,JV)=TY (I,JV) |
| 593 |
|
✗ |
SZ (I,K,L,JV)=TZ (I,JV) |
| 594 |
|
✗ |
SSXX(I,K,L,JV)=TXX(I,JV) |
| 595 |
|
✗ |
SSXY(I,K,L,JV)=TXY(I,JV) |
| 596 |
|
✗ |
SSXZ(I,K,L,JV)=TXZ(I,JV) |
| 597 |
|
✗ |
SYY(I,K,L,JV)=TYY(I,JV) |
| 598 |
|
✗ |
SYZ(I,K,L,JV)=TYZ(I,JV) |
| 599 |
|
✗ |
SZZ(I,K,L,JV)=TZZ(I,JV) |
| 600 |
|
✗ |
1910 CONTINUE |
| 601 |
|
✗ |
191 CONTINUE |
| 602 |
|
|
C |
| 603 |
|
|
ENDIF |
| 604 |
|
|
C |
| 605 |
|
✗ |
1 CONTINUE |
| 606 |
|
|
C |
| 607 |
|
|
C ----------- AA Test en fin de ADVX ------ Controle des S* |
| 608 |
|
|
|
| 609 |
|
|
c DO 9999 l = 1, llm |
| 610 |
|
|
c DO 9999 j = 1, jjp1 |
| 611 |
|
|
c DO 9999 i = 1, iip1 |
| 612 |
|
|
c IF (S0(i,j,l,ntra).lt.0..and.LIMIT) THEN |
| 613 |
|
|
c PRINT*, '-------------------' |
| 614 |
|
|
c PRINT*, 'En fin de ADVXP' |
| 615 |
|
|
c PRINT*,'S0(',i,j,l,')=',S0(i,j,l,ntra) |
| 616 |
|
|
c print*, 'SSX(',i,j,l,')=',SSX(i,j,l,ntra) |
| 617 |
|
|
c print*, 'SY(',i,j,l,')=',SY(i,j,l,ntra) |
| 618 |
|
|
c print*, 'SZ(',i,j,l,')=',SZ(i,j,l,ntra) |
| 619 |
|
|
c WRITE (*,*) 'On arrete !! - pbl en fin de ADVXP' |
| 620 |
|
|
c STOP |
| 621 |
|
|
c ENDIF |
| 622 |
|
|
c 9999 CONTINUE |
| 623 |
|
|
c ---------- bouclage cyclique |
| 624 |
|
|
|
| 625 |
|
✗ |
DO l = 1,llm |
| 626 |
|
✗ |
DO j = 1,jjp1 |
| 627 |
|
✗ |
SM(iip1,j,l) = SM(1,j,l) |
| 628 |
|
✗ |
S0(iip1,j,l,ntra) = S0(1,j,l,ntra) |
| 629 |
|
✗ |
SSX(iip1,j,l,ntra) = SSX(1,j,l,ntra) |
| 630 |
|
✗ |
SY(iip1,j,l,ntra) = SY(1,j,l,ntra) |
| 631 |
|
✗ |
SZ(iip1,j,l,ntra) = SZ(1,j,l,ntra) |
| 632 |
|
|
END DO |
| 633 |
|
|
END DO |
| 634 |
|
|
|
| 635 |
|
|
C ----------- qqtite totale de traceur dans tte l'atmosphere |
| 636 |
|
✗ |
DO l = 1, llm |
| 637 |
|
✗ |
DO j = 1, jjp1 |
| 638 |
|
✗ |
DO i = 1, iim |
| 639 |
|
✗ |
sqf = sqf + S0(i,j,l,ntra) |
| 640 |
|
|
END DO |
| 641 |
|
|
END DO |
| 642 |
|
|
END DO |
| 643 |
|
|
|
| 644 |
|
✗ |
PRINT*,'------ DIAG DANS ADVX2 - SORTIE -----' |
| 645 |
|
✗ |
PRINT*,'sqf=',sqf |
| 646 |
|
|
c------------------------------------------------------------- |
| 647 |
|
✗ |
RETURN |
| 648 |
|
|
END |
| 649 |
|
|
|