| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Header$ |
| 3 |
|
|
! |
| 4 |
|
✗ |
SUBROUTINE advy(limit,dty,pbarv,sm,s0,sx,sy,sz) |
| 5 |
|
|
IMPLICIT NONE |
| 6 |
|
|
|
| 7 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| 8 |
|
|
C C |
| 9 |
|
|
C first-order moments (SOM) advection of tracer in Y direction C |
| 10 |
|
|
C C |
| 11 |
|
|
C Source : Pascal Simon ( Meteo, CNRM ) C |
| 12 |
|
|
C Adaptation : A.A. (LGGE) C |
| 13 |
|
|
C Derniere Modif : 15/12/94 LAST |
| 14 |
|
|
C C |
| 15 |
|
|
C sont les arguments d'entree pour le s-pg C |
| 16 |
|
|
C C |
| 17 |
|
|
C argument de sortie du s-pg C |
| 18 |
|
|
C C |
| 19 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| 20 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| 21 |
|
|
C |
| 22 |
|
|
C Rem : Probleme aux poles il faut reecrire ce cas specifique |
| 23 |
|
|
C Attention au sens de l'indexation |
| 24 |
|
|
C |
| 25 |
|
|
C parametres principaux du modele |
| 26 |
|
|
C |
| 27 |
|
|
C |
| 28 |
|
|
include "dimensions.h" |
| 29 |
|
|
include "paramet.h" |
| 30 |
|
|
include "comgeom2.h" |
| 31 |
|
|
|
| 32 |
|
|
C Arguments : |
| 33 |
|
|
C ---------- |
| 34 |
|
|
C dty : frequence fictive d'appel du transport |
| 35 |
|
|
C parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
| 36 |
|
|
|
| 37 |
|
|
INTEGER lon,lat,niv |
| 38 |
|
|
INTEGER i,j,jv,k,kp,l |
| 39 |
|
|
INTEGER ntra |
| 40 |
|
|
PARAMETER (ntra = 1) |
| 41 |
|
|
|
| 42 |
|
|
REAL dty |
| 43 |
|
|
REAL pbarv ( iip1,jjm, llm ) |
| 44 |
|
|
|
| 45 |
|
|
C moments: SM total mass in each grid box |
| 46 |
|
|
C S0 mass of tracer in each grid box |
| 47 |
|
|
C Si 1rst order moment in i direction |
| 48 |
|
|
C |
| 49 |
|
|
REAL SM(iip1,jjp1,llm) |
| 50 |
|
|
+ ,S0(iip1,jjp1,llm,ntra) |
| 51 |
|
|
REAL sx(iip1,jjp1,llm,ntra) |
| 52 |
|
|
+ ,sy(iip1,jjp1,llm,ntra) |
| 53 |
|
|
+ ,sz(iip1,jjp1,llm,ntra) |
| 54 |
|
|
|
| 55 |
|
|
|
| 56 |
|
|
C Local : |
| 57 |
|
|
C ------- |
| 58 |
|
|
|
| 59 |
|
|
C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
| 60 |
|
|
C mass fluxes in kg |
| 61 |
|
|
C declaration : |
| 62 |
|
|
|
| 63 |
|
|
REAL VGRI(iip1,0:jjp1,llm) |
| 64 |
|
|
|
| 65 |
|
|
C Rem : UGRI et WGRI ne sont pas utilises dans |
| 66 |
|
|
C cette subroutine ( advection en y uniquement ) |
| 67 |
|
|
C Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
| 68 |
|
|
C |
| 69 |
|
|
C the moments F are similarly defined and used as temporary |
| 70 |
|
|
C storage for portions of the grid boxes in transit |
| 71 |
|
|
C |
| 72 |
|
|
REAL F0(iim,0:jjp1,ntra),FM(iim,0:jjp1) |
| 73 |
|
|
REAL FX(iim,jjm,ntra),FY(iim,jjm,ntra) |
| 74 |
|
|
REAL FZ(iim,jjm,ntra) |
| 75 |
|
|
REAL S00(ntra) |
| 76 |
|
|
REAL SM0 ! Just temporal variable |
| 77 |
|
|
C |
| 78 |
|
|
C work arrays |
| 79 |
|
|
C |
| 80 |
|
|
REAL ALF(iim,0:jjp1),ALF1(iim,0:jjp1) |
| 81 |
|
|
REAL ALFQ(iim,0:jjp1),ALF1Q(iim,0:jjp1) |
| 82 |
|
|
REAL TEMPTM ! Just temporal variable |
| 83 |
|
|
c |
| 84 |
|
|
C Special pour poles |
| 85 |
|
|
c |
| 86 |
|
|
REAL sbms,sfms,sfzs,sbmn,sfmn,sfzn |
| 87 |
|
|
REAL sns0(ntra),snsz(ntra),snsm |
| 88 |
|
|
REAL s1v(llm),slatv(llm) |
| 89 |
|
|
REAL qy1(iim,llm,ntra),qylat(iim,llm,ntra) |
| 90 |
|
|
REAL cx1(llm,ntra), cxLAT(llm,ntra) |
| 91 |
|
|
REAL cy1(llm,ntra), cyLAT(llm,ntra) |
| 92 |
|
|
REAL z1(iim), zcos(iim), zsin(iim) |
| 93 |
|
|
real smpn,smps,s0pn,s0ps |
| 94 |
|
|
REAL SSUM |
| 95 |
|
|
EXTERNAL SSUM |
| 96 |
|
|
C |
| 97 |
|
|
REAL sqi,sqf |
| 98 |
|
|
LOGICAL LIMIT |
| 99 |
|
|
|
| 100 |
|
|
lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
| 101 |
|
|
lat = jjp1 ! a cause des dim. differentes entre les |
| 102 |
|
|
niv=llm |
| 103 |
|
|
|
| 104 |
|
|
C |
| 105 |
|
|
C the moments Fi are used as temporary storage for |
| 106 |
|
|
C portions of the grid boxes in transit at the current level |
| 107 |
|
|
C |
| 108 |
|
|
C work arrays |
| 109 |
|
|
C |
| 110 |
|
|
|
| 111 |
|
✗ |
DO l = 1,llm |
| 112 |
|
✗ |
DO j = 1,jjm |
| 113 |
|
✗ |
DO i = 1,iip1 |
| 114 |
|
✗ |
vgri (i,j,llm+1-l)=-1.*pbarv(i,j,l) |
| 115 |
|
|
enddo |
| 116 |
|
|
enddo |
| 117 |
|
✗ |
do i=1,iip1 |
| 118 |
|
✗ |
vgri(i,0,l) = 0. |
| 119 |
|
✗ |
vgri(i,jjp1,l) = 0. |
| 120 |
|
|
enddo |
| 121 |
|
|
enddo |
| 122 |
|
|
|
| 123 |
|
✗ |
DO 1 L=1,NIV |
| 124 |
|
|
C |
| 125 |
|
|
C place limits on appropriate moments before transport |
| 126 |
|
|
C (if flux-limiting is to be applied) |
| 127 |
|
|
C |
| 128 |
|
✗ |
IF(.NOT.LIMIT) GO TO 11 |
| 129 |
|
|
C |
| 130 |
|
✗ |
DO 10 JV=1,NTRA |
| 131 |
|
✗ |
DO 10 K=1,LAT |
| 132 |
|
✗ |
DO 100 I=1,LON |
| 133 |
|
|
sy(I,K,L,JV)=SIGN(AMIN1(AMAX1(S0(I,K,L,JV),0.), |
| 134 |
|
✗ |
+ ABS(sy(I,K,L,JV))),sy(I,K,L,JV)) |
| 135 |
|
✗ |
100 CONTINUE |
| 136 |
|
✗ |
10 CONTINUE |
| 137 |
|
|
C |
| 138 |
|
|
11 CONTINUE |
| 139 |
|
|
C |
| 140 |
|
|
C le flux a travers le pole Nord est traite separement |
| 141 |
|
|
C |
| 142 |
|
|
SM0=0. |
| 143 |
|
✗ |
DO 20 JV=1,NTRA |
| 144 |
|
|
S00(JV)=0. |
| 145 |
|
✗ |
20 CONTINUE |
| 146 |
|
|
C |
| 147 |
|
✗ |
DO 21 I=1,LON |
| 148 |
|
|
C |
| 149 |
|
✗ |
IF(VGRI(I,0,L).LE.0.) THEN |
| 150 |
|
✗ |
FM(I,0)=-VGRI(I,0,L)*DTY |
| 151 |
|
✗ |
ALF(I,0)=FM(I,0)/SM(I,1,L) |
| 152 |
|
✗ |
SM(I,1,L)=SM(I,1,L)-FM(I,0) |
| 153 |
|
✗ |
SM0=SM0+FM(I,0) |
| 154 |
|
|
ENDIF |
| 155 |
|
|
C |
| 156 |
|
✗ |
ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
| 157 |
|
✗ |
ALF1(I,0)=1.-ALF(I,0) |
| 158 |
|
✗ |
ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
| 159 |
|
|
C |
| 160 |
|
✗ |
21 CONTINUE |
| 161 |
|
|
C |
| 162 |
|
✗ |
DO 22 JV=1,NTRA |
| 163 |
|
✗ |
DO 220 I=1,LON |
| 164 |
|
|
C |
| 165 |
|
✗ |
IF(VGRI(I,0,L).LE.0.) THEN |
| 166 |
|
|
C |
| 167 |
|
|
F0(I,0,JV)=ALF(I,0)* |
| 168 |
|
✗ |
+ ( S0(I,1,L,JV)-ALF1(I,0)*sy(I,1,L,JV) ) |
| 169 |
|
|
C |
| 170 |
|
✗ |
S00(JV)=S00(JV)+F0(I,0,JV) |
| 171 |
|
✗ |
S0(I,1,L,JV)=S0(I,1,L,JV)-F0(I,0,JV) |
| 172 |
|
✗ |
sy(I,1,L,JV)=ALF1Q(I,0)*sy(I,1,L,JV) |
| 173 |
|
✗ |
sx(I,1,L,JV)=ALF1 (I,0)*sx(I,1,L,JV) |
| 174 |
|
✗ |
sz(I,1,L,JV)=ALF1 (I,0)*sz(I,1,L,JV) |
| 175 |
|
|
C |
| 176 |
|
|
ENDIF |
| 177 |
|
|
C |
| 178 |
|
✗ |
220 CONTINUE |
| 179 |
|
✗ |
22 CONTINUE |
| 180 |
|
|
C |
| 181 |
|
✗ |
DO 23 I=1,LON |
| 182 |
|
✗ |
IF(VGRI(I,0,L).GT.0.) THEN |
| 183 |
|
✗ |
FM(I,0)=VGRI(I,0,L)*DTY |
| 184 |
|
✗ |
ALF(I,0)=FM(I,0)/SM0 |
| 185 |
|
|
ENDIF |
| 186 |
|
✗ |
23 CONTINUE |
| 187 |
|
|
C |
| 188 |
|
✗ |
DO 24 JV=1,NTRA |
| 189 |
|
✗ |
DO 240 I=1,LON |
| 190 |
|
✗ |
IF(VGRI(I,0,L).GT.0.) THEN |
| 191 |
|
✗ |
F0(I,0,JV)=ALF(I,0)*S00(JV) |
| 192 |
|
|
ENDIF |
| 193 |
|
✗ |
240 CONTINUE |
| 194 |
|
✗ |
24 CONTINUE |
| 195 |
|
|
C |
| 196 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
| 197 |
|
|
C |
| 198 |
|
✗ |
DO 25 I=1,LON |
| 199 |
|
|
C |
| 200 |
|
✗ |
IF(VGRI(I,0,L).GT.0.) THEN |
| 201 |
|
✗ |
SM(I,1,L)=SM(I,1,L)+FM(I,0) |
| 202 |
|
✗ |
ALF(I,0)=FM(I,0)/SM(I,1,L) |
| 203 |
|
|
ENDIF |
| 204 |
|
|
C |
| 205 |
|
✗ |
ALF1(I,0)=1.-ALF(I,0) |
| 206 |
|
|
C |
| 207 |
|
✗ |
25 CONTINUE |
| 208 |
|
|
C |
| 209 |
|
✗ |
DO 26 JV=1,NTRA |
| 210 |
|
✗ |
DO 260 I=1,LON |
| 211 |
|
|
C |
| 212 |
|
✗ |
IF(VGRI(I,0,L).GT.0.) THEN |
| 213 |
|
|
C |
| 214 |
|
✗ |
TEMPTM=ALF(I,0)*S0(I,1,L,JV)-ALF1(I,0)*F0(I,0,JV) |
| 215 |
|
✗ |
S0(I,1,L,JV)=S0(I,1,L,JV)+F0(I,0,JV) |
| 216 |
|
✗ |
sy(I,1,L,JV)=ALF1(I,0)*sy(I,1,L,JV)+3.*TEMPTM |
| 217 |
|
|
C |
| 218 |
|
|
ENDIF |
| 219 |
|
|
C |
| 220 |
|
✗ |
260 CONTINUE |
| 221 |
|
✗ |
26 CONTINUE |
| 222 |
|
|
C |
| 223 |
|
|
C calculate flux and moments between adjacent boxes |
| 224 |
|
|
C 1- create temporary moments/masses for partial boxes in transit |
| 225 |
|
|
C 2- reajusts moments remaining in the box |
| 226 |
|
|
C |
| 227 |
|
|
C flux from KP to K if V(K).lt.0 and from K to KP if V(K).gt.0 |
| 228 |
|
|
C |
| 229 |
|
✗ |
DO 30 K=1,LAT-1 |
| 230 |
|
✗ |
KP=K+1 |
| 231 |
|
✗ |
DO 300 I=1,LON |
| 232 |
|
|
C |
| 233 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 234 |
|
✗ |
FM(I,K)=-VGRI(I,K,L)*DTY |
| 235 |
|
✗ |
ALF(I,K)=FM(I,K)/SM(I,KP,L) |
| 236 |
|
✗ |
SM(I,KP,L)=SM(I,KP,L)-FM(I,K) |
| 237 |
|
|
ELSE |
| 238 |
|
✗ |
FM(I,K)=VGRI(I,K,L)*DTY |
| 239 |
|
✗ |
ALF(I,K)=FM(I,K)/SM(I,K,L) |
| 240 |
|
✗ |
SM(I,K,L)=SM(I,K,L)-FM(I,K) |
| 241 |
|
|
ENDIF |
| 242 |
|
|
C |
| 243 |
|
✗ |
ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
| 244 |
|
✗ |
ALF1(I,K)=1.-ALF(I,K) |
| 245 |
|
✗ |
ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
| 246 |
|
|
C |
| 247 |
|
✗ |
300 CONTINUE |
| 248 |
|
✗ |
30 CONTINUE |
| 249 |
|
|
C |
| 250 |
|
✗ |
DO 31 JV=1,NTRA |
| 251 |
|
✗ |
DO 31 K=1,LAT-1 |
| 252 |
|
✗ |
KP=K+1 |
| 253 |
|
✗ |
DO 310 I=1,LON |
| 254 |
|
|
C |
| 255 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 256 |
|
|
C |
| 257 |
|
|
F0(I,K,JV)=ALF (I,K)* |
| 258 |
|
✗ |
+ ( S0(I,KP,L,JV)-ALF1(I,K)*sy(I,KP,L,JV) ) |
| 259 |
|
✗ |
FY(I,K,JV)=ALFQ(I,K)*sy(I,KP,L,JV) |
| 260 |
|
✗ |
FX(I,K,JV)=ALF (I,K)*sx(I,KP,L,JV) |
| 261 |
|
✗ |
FZ(I,K,JV)=ALF (I,K)*sz(I,KP,L,JV) |
| 262 |
|
|
C |
| 263 |
|
✗ |
S0(I,KP,L,JV)=S0(I,KP,L,JV)-F0(I,K,JV) |
| 264 |
|
✗ |
sy(I,KP,L,JV)=ALF1Q(I,K)*sy(I,KP,L,JV) |
| 265 |
|
✗ |
sx(I,KP,L,JV)=sx(I,KP,L,JV)-FX(I,K,JV) |
| 266 |
|
✗ |
sz(I,KP,L,JV)=sz(I,KP,L,JV)-FZ(I,K,JV) |
| 267 |
|
|
C |
| 268 |
|
|
ELSE |
| 269 |
|
|
C |
| 270 |
|
|
F0(I,K,JV)=ALF (I,K)* |
| 271 |
|
✗ |
+ ( S0(I,K,L,JV)+ALF1(I,K)*sy(I,K,L,JV) ) |
| 272 |
|
✗ |
FY(I,K,JV)=ALFQ(I,K)*sy(I,K,L,JV) |
| 273 |
|
✗ |
FX(I,K,JV)=ALF(I,K)*sx(I,K,L,JV) |
| 274 |
|
✗ |
FZ(I,K,JV)=ALF(I,K)*sz(I,K,L,JV) |
| 275 |
|
|
C |
| 276 |
|
✗ |
S0(I,K,L,JV)=S0(I,K,L,JV)-F0(I,K,JV) |
| 277 |
|
✗ |
sy(I,K,L,JV)=ALF1Q(I,K)*sy(I,K,L,JV) |
| 278 |
|
✗ |
sx(I,K,L,JV)=sx(I,K,L,JV)-FX(I,K,JV) |
| 279 |
|
✗ |
sz(I,K,L,JV)=sz(I,K,L,JV)-FZ(I,K,JV) |
| 280 |
|
|
C |
| 281 |
|
|
ENDIF |
| 282 |
|
|
C |
| 283 |
|
✗ |
310 CONTINUE |
| 284 |
|
✗ |
31 CONTINUE |
| 285 |
|
|
C |
| 286 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
| 287 |
|
|
C |
| 288 |
|
✗ |
DO 32 K=1,LAT-1 |
| 289 |
|
✗ |
KP=K+1 |
| 290 |
|
✗ |
DO 320 I=1,LON |
| 291 |
|
|
C |
| 292 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 293 |
|
✗ |
SM(I,K,L)=SM(I,K,L)+FM(I,K) |
| 294 |
|
✗ |
ALF(I,K)=FM(I,K)/SM(I,K,L) |
| 295 |
|
|
ELSE |
| 296 |
|
✗ |
SM(I,KP,L)=SM(I,KP,L)+FM(I,K) |
| 297 |
|
✗ |
ALF(I,K)=FM(I,K)/SM(I,KP,L) |
| 298 |
|
|
ENDIF |
| 299 |
|
|
C |
| 300 |
|
✗ |
ALF1(I,K)=1.-ALF(I,K) |
| 301 |
|
|
C |
| 302 |
|
✗ |
320 CONTINUE |
| 303 |
|
✗ |
32 CONTINUE |
| 304 |
|
|
C |
| 305 |
|
✗ |
DO 33 JV=1,NTRA |
| 306 |
|
✗ |
DO 33 K=1,LAT-1 |
| 307 |
|
✗ |
KP=K+1 |
| 308 |
|
✗ |
DO 330 I=1,LON |
| 309 |
|
|
C |
| 310 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 311 |
|
|
C |
| 312 |
|
✗ |
TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
| 313 |
|
✗ |
S0(I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
| 314 |
|
|
sy(I,K,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*sy(I,K,L,JV) |
| 315 |
|
✗ |
+ +3.*TEMPTM |
| 316 |
|
✗ |
sx(I,K,L,JV)=sx(I,K,L,JV)+FX(I,K,JV) |
| 317 |
|
✗ |
sz(I,K,L,JV)=sz(I,K,L,JV)+FZ(I,K,JV) |
| 318 |
|
|
C |
| 319 |
|
|
ELSE |
| 320 |
|
|
C |
| 321 |
|
✗ |
TEMPTM=ALF(I,K)*S0(I,KP,L,JV)-ALF1(I,K)*F0(I,K,JV) |
| 322 |
|
✗ |
S0(I,KP,L,JV)=S0(I,KP,L,JV)+F0(I,K,JV) |
| 323 |
|
|
sy(I,KP,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*sy(I,KP,L,JV) |
| 324 |
|
✗ |
+ +3.*TEMPTM |
| 325 |
|
✗ |
sx(I,KP,L,JV)=sx(I,KP,L,JV)+FX(I,K,JV) |
| 326 |
|
✗ |
sz(I,KP,L,JV)=sz(I,KP,L,JV)+FZ(I,K,JV) |
| 327 |
|
|
C |
| 328 |
|
|
ENDIF |
| 329 |
|
|
C |
| 330 |
|
✗ |
330 CONTINUE |
| 331 |
|
✗ |
33 CONTINUE |
| 332 |
|
|
C |
| 333 |
|
|
C traitement special pour le pole Sud (idem pole Nord) |
| 334 |
|
|
C |
| 335 |
|
|
K=LAT |
| 336 |
|
|
C |
| 337 |
|
|
SM0=0. |
| 338 |
|
✗ |
DO 40 JV=1,NTRA |
| 339 |
|
|
S00(JV)=0. |
| 340 |
|
✗ |
40 CONTINUE |
| 341 |
|
|
C |
| 342 |
|
✗ |
DO 41 I=1,LON |
| 343 |
|
|
C |
| 344 |
|
✗ |
IF(VGRI(I,K,L).GE.0.) THEN |
| 345 |
|
✗ |
FM(I,K)=VGRI(I,K,L)*DTY |
| 346 |
|
✗ |
ALF(I,K)=FM(I,K)/SM(I,K,L) |
| 347 |
|
✗ |
SM(I,K,L)=SM(I,K,L)-FM(I,K) |
| 348 |
|
✗ |
SM0=SM0+FM(I,K) |
| 349 |
|
|
ENDIF |
| 350 |
|
|
C |
| 351 |
|
✗ |
ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
| 352 |
|
✗ |
ALF1(I,K)=1.-ALF(I,K) |
| 353 |
|
✗ |
ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
| 354 |
|
|
C |
| 355 |
|
✗ |
41 CONTINUE |
| 356 |
|
|
C |
| 357 |
|
✗ |
DO 42 JV=1,NTRA |
| 358 |
|
✗ |
DO 420 I=1,LON |
| 359 |
|
|
C |
| 360 |
|
✗ |
IF(VGRI(I,K,L).GE.0.) THEN |
| 361 |
|
|
F0 (I,K,JV)=ALF(I,K)* |
| 362 |
|
✗ |
+ ( S0(I,K,L,JV)+ALF1(I,K)*sy(I,K,L,JV) ) |
| 363 |
|
✗ |
S00(JV)=S00(JV)+F0(I,K,JV) |
| 364 |
|
|
C |
| 365 |
|
✗ |
S0(I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
| 366 |
|
✗ |
sy(I,K,L,JV)=ALF1Q(I,K)*sy(I,K,L,JV) |
| 367 |
|
✗ |
sx(I,K,L,JV)=ALF1(I,K)*sx(I,K,L,JV) |
| 368 |
|
✗ |
sz(I,K,L,JV)=ALF1(I,K)*sz(I,K,L,JV) |
| 369 |
|
|
ENDIF |
| 370 |
|
|
C |
| 371 |
|
✗ |
420 CONTINUE |
| 372 |
|
✗ |
42 CONTINUE |
| 373 |
|
|
C |
| 374 |
|
✗ |
DO 43 I=1,LON |
| 375 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 376 |
|
✗ |
FM(I,K)=-VGRI(I,K,L)*DTY |
| 377 |
|
✗ |
ALF(I,K)=FM(I,K)/SM0 |
| 378 |
|
|
ENDIF |
| 379 |
|
✗ |
43 CONTINUE |
| 380 |
|
|
C |
| 381 |
|
✗ |
DO 44 JV=1,NTRA |
| 382 |
|
✗ |
DO 440 I=1,LON |
| 383 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 384 |
|
✗ |
F0(I,K,JV)=ALF(I,K)*S00(JV) |
| 385 |
|
|
ENDIF |
| 386 |
|
✗ |
440 CONTINUE |
| 387 |
|
✗ |
44 CONTINUE |
| 388 |
|
|
C |
| 389 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
| 390 |
|
|
C |
| 391 |
|
✗ |
DO 45 I=1,LON |
| 392 |
|
|
C |
| 393 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 394 |
|
✗ |
SM(I,K,L)=SM(I,K,L)+FM(I,K) |
| 395 |
|
✗ |
ALF(I,K)=FM(I,K)/SM(I,K,L) |
| 396 |
|
|
ENDIF |
| 397 |
|
|
C |
| 398 |
|
✗ |
ALF1(I,K)=1.-ALF(I,K) |
| 399 |
|
|
C |
| 400 |
|
✗ |
45 CONTINUE |
| 401 |
|
|
C |
| 402 |
|
✗ |
DO 46 JV=1,NTRA |
| 403 |
|
✗ |
DO 460 I=1,LON |
| 404 |
|
|
C |
| 405 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 406 |
|
|
C |
| 407 |
|
✗ |
TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
| 408 |
|
✗ |
S0(I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
| 409 |
|
✗ |
sy(I,K,L,JV)=ALF1(I,K)*sy(I,K,L,JV)+3.*TEMPTM |
| 410 |
|
|
C |
| 411 |
|
|
ENDIF |
| 412 |
|
|
C |
| 413 |
|
✗ |
460 CONTINUE |
| 414 |
|
✗ |
46 CONTINUE |
| 415 |
|
|
C |
| 416 |
|
✗ |
1 CONTINUE |
| 417 |
|
|
C |
| 418 |
|
✗ |
RETURN |
| 419 |
|
|
END |
| 420 |
|
|
|
| 421 |
|
|
|