| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Header$ |
| 3 |
|
|
! |
| 4 |
|
✗ |
SUBROUTINE ADVYP(LIMIT,DTY,PBARV,SM,S0,SSX,SY,SZ |
| 5 |
|
|
. ,SSXX,SSXY,SSXZ,SYY,SYZ,SZZ,ntra ) |
| 6 |
|
|
IMPLICIT NONE |
| 7 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| 8 |
|
|
C C |
| 9 |
|
|
C second-order moments (SOM) advection of tracer in Y direction C |
| 10 |
|
|
C C |
| 11 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| 12 |
|
|
C C |
| 13 |
|
|
C Source : Pascal Simon ( Meteo, CNRM ) C |
| 14 |
|
|
C Adaptation : A.A. (LGGE) C |
| 15 |
|
|
C Derniere Modif : 19/10/95 LAST |
| 16 |
|
|
C C |
| 17 |
|
|
C sont les arguments d'entree pour le s-pg C |
| 18 |
|
|
C C |
| 19 |
|
|
C argument de sortie du s-pg C |
| 20 |
|
|
C C |
| 21 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| 22 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| 23 |
|
|
C |
| 24 |
|
|
C Rem : Probleme aux poles il faut reecrire ce cas specifique |
| 25 |
|
|
C Attention au sens de l'indexation |
| 26 |
|
|
C |
| 27 |
|
|
C parametres principaux du modele |
| 28 |
|
|
C |
| 29 |
|
|
C |
| 30 |
|
|
include "dimensions.h" |
| 31 |
|
|
include "paramet.h" |
| 32 |
|
|
include "comgeom.h" |
| 33 |
|
|
|
| 34 |
|
|
C Arguments : |
| 35 |
|
|
C ---------- |
| 36 |
|
|
C dty : frequence fictive d'appel du transport |
| 37 |
|
|
C parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
| 38 |
|
|
|
| 39 |
|
|
INTEGER lon,lat,niv |
| 40 |
|
|
INTEGER i,j,jv,k,kp,l |
| 41 |
|
|
INTEGER ntra |
| 42 |
|
|
C PARAMETER (ntra = 1) |
| 43 |
|
|
|
| 44 |
|
|
REAL dty |
| 45 |
|
|
REAL pbarv ( iip1,jjm, llm ) |
| 46 |
|
|
|
| 47 |
|
|
C moments: SM total mass in each grid box |
| 48 |
|
|
C S0 mass of tracer in each grid box |
| 49 |
|
|
C Si 1rst order moment in i direction |
| 50 |
|
|
C |
| 51 |
|
|
REAL SM(iip1,jjp1,llm) |
| 52 |
|
|
+ ,S0(iip1,jjp1,llm,ntra) |
| 53 |
|
|
REAL SSX(iip1,jjp1,llm,ntra) |
| 54 |
|
|
+ ,SY(iip1,jjp1,llm,ntra) |
| 55 |
|
|
+ ,SZ(iip1,jjp1,llm,ntra) |
| 56 |
|
|
+ ,SSXX(iip1,jjp1,llm,ntra) |
| 57 |
|
|
+ ,SSXY(iip1,jjp1,llm,ntra) |
| 58 |
|
|
+ ,SSXZ(iip1,jjp1,llm,ntra) |
| 59 |
|
|
+ ,SYY(iip1,jjp1,llm,ntra) |
| 60 |
|
|
+ ,SYZ(iip1,jjp1,llm,ntra) |
| 61 |
|
|
+ ,SZZ(iip1,jjp1,llm,ntra) |
| 62 |
|
|
C |
| 63 |
|
|
C Local : |
| 64 |
|
|
C ------- |
| 65 |
|
|
|
| 66 |
|
|
C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
| 67 |
|
|
C mass fluxes in kg |
| 68 |
|
|
C declaration : |
| 69 |
|
|
|
| 70 |
|
|
REAL VGRI(iip1,0:jjp1,llm) |
| 71 |
|
|
|
| 72 |
|
|
C Rem : UGRI et WGRI ne sont pas utilises dans |
| 73 |
|
|
C cette subroutine ( advection en y uniquement ) |
| 74 |
|
|
C Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
| 75 |
|
|
C |
| 76 |
|
|
C the moments F are similarly defined and used as temporary |
| 77 |
|
|
C storage for portions of the grid boxes in transit |
| 78 |
|
|
C |
| 79 |
|
|
C the moments Fij are used as temporary storage for |
| 80 |
|
|
C portions of the grid boxes in transit at the current level |
| 81 |
|
|
C |
| 82 |
|
|
C work arrays |
| 83 |
|
|
C |
| 84 |
|
|
C |
| 85 |
|
✗ |
REAL F0(iim,0:jjp1,ntra),FM(iim,0:jjp1) |
| 86 |
|
✗ |
REAL FX(iim,jjm,ntra),FY(iim,jjm,ntra) |
| 87 |
|
✗ |
REAL FZ(iim,jjm,ntra) |
| 88 |
|
✗ |
REAL FXX(iim,jjm,ntra),FXY(iim,jjm,ntra) |
| 89 |
|
✗ |
REAL FXZ(iim,jjm,ntra),FYY(iim,jjm,ntra) |
| 90 |
|
✗ |
REAL FYZ(iim,jjm,ntra),FZZ(iim,jjm,ntra) |
| 91 |
|
✗ |
REAL S00(ntra) |
| 92 |
|
|
REAL SM0 ! Just temporal variable |
| 93 |
|
|
C |
| 94 |
|
|
C work arrays |
| 95 |
|
|
C |
| 96 |
|
|
REAL ALF(iim,0:jjp1),ALF1(iim,0:jjp1) |
| 97 |
|
|
REAL ALFQ(iim,0:jjp1),ALF1Q(iim,0:jjp1) |
| 98 |
|
|
REAL ALF2(iim,0:jjp1),ALF3(iim,0:jjp1) |
| 99 |
|
|
REAL ALF4(iim,0:jjp1) |
| 100 |
|
|
REAL TEMPTM ! Just temporal variable |
| 101 |
|
|
REAL SLPMAX,S1MAX,S1NEW,S2NEW |
| 102 |
|
|
c |
| 103 |
|
|
C Special pour poles |
| 104 |
|
|
c |
| 105 |
|
|
REAL sbms,sfms,sfzs,sbmn,sfmn,sfzn |
| 106 |
|
|
REAL sns0(ntra),snsz(ntra),snsm |
| 107 |
|
|
REAL qy1(iim,llm,ntra),qylat(iim,llm,ntra) |
| 108 |
|
|
REAL cx1(llm,ntra), cxLAT(llm,ntra) |
| 109 |
|
|
REAL cy1(llm,ntra), cyLAT(llm,ntra) |
| 110 |
|
|
REAL z1(iim), zcos(iim), zsin(iim) |
| 111 |
|
|
REAL SSUM |
| 112 |
|
|
EXTERNAL SSUM |
| 113 |
|
|
C |
| 114 |
|
|
REAL sqi,sqf |
| 115 |
|
|
LOGICAL LIMIT |
| 116 |
|
|
|
| 117 |
|
|
lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
| 118 |
|
|
lat = jjp1 ! a cause des dim. differentes entre les |
| 119 |
|
|
niv = llm ! tab. S et VGRI |
| 120 |
|
|
|
| 121 |
|
|
c----------------------------------------------------------------- |
| 122 |
|
|
C initialisations |
| 123 |
|
|
|
| 124 |
|
|
sbms = 0. |
| 125 |
|
|
sfms = 0. |
| 126 |
|
|
sfzs = 0. |
| 127 |
|
|
sbmn = 0. |
| 128 |
|
|
sfmn = 0. |
| 129 |
|
|
sfzn = 0. |
| 130 |
|
|
|
| 131 |
|
|
c----------------------------------------------------------------- |
| 132 |
|
|
C *** Test : diag de la qtite totale de traceur dans |
| 133 |
|
|
C l'atmosphere avant l'advection en Y |
| 134 |
|
|
c |
| 135 |
|
✗ |
sqi = 0. |
| 136 |
|
✗ |
sqf = 0. |
| 137 |
|
|
|
| 138 |
|
✗ |
DO l = 1,llm |
| 139 |
|
✗ |
DO j = 1,jjp1 |
| 140 |
|
✗ |
DO i = 1,iim |
| 141 |
|
✗ |
sqi = sqi + S0(i,j,l,ntra) |
| 142 |
|
|
END DO |
| 143 |
|
|
END DO |
| 144 |
|
|
END DO |
| 145 |
|
✗ |
PRINT*,'---------- DIAG DANS ADVY - ENTREE --------' |
| 146 |
|
✗ |
PRINT*,'sqi=',sqi |
| 147 |
|
|
|
| 148 |
|
|
c----------------------------------------------------------------- |
| 149 |
|
|
C Interface : adaptation nouveau modele |
| 150 |
|
|
C ------------------------------------- |
| 151 |
|
|
C |
| 152 |
|
|
C Conversion des flux de masses en kg |
| 153 |
|
|
C-AA 20/10/94 le signe -1 est necessaire car indexation opposee |
| 154 |
|
|
|
| 155 |
|
✗ |
DO 500 l = 1,llm |
| 156 |
|
✗ |
DO 500 j = 1,jjm |
| 157 |
|
✗ |
DO 500 i = 1,iip1 |
| 158 |
|
✗ |
vgri (i,j,llm+1-l)=-1.*pbarv (i,j,l) |
| 159 |
|
✗ |
500 CONTINUE |
| 160 |
|
|
|
| 161 |
|
|
CAA Initialisation de flux fictifs aux bords sup. des boites pol. |
| 162 |
|
|
|
| 163 |
|
✗ |
DO l = 1,llm |
| 164 |
|
✗ |
DO i = 1,iip1 |
| 165 |
|
✗ |
vgri(i,0,l) = 0. |
| 166 |
|
✗ |
vgri(i,jjp1,l) = 0. |
| 167 |
|
|
ENDDO |
| 168 |
|
|
ENDDO |
| 169 |
|
|
c |
| 170 |
|
|
c----------------- START HERE ----------------------- |
| 171 |
|
|
C boucle sur les niveaux |
| 172 |
|
|
C |
| 173 |
|
✗ |
DO 1 L=1,NIV |
| 174 |
|
|
C |
| 175 |
|
|
C place limits on appropriate moments before transport |
| 176 |
|
|
C (if flux-limiting is to be applied) |
| 177 |
|
|
C |
| 178 |
|
✗ |
IF(.NOT.LIMIT) GO TO 11 |
| 179 |
|
|
C |
| 180 |
|
✗ |
DO 10 JV=1,NTRA |
| 181 |
|
✗ |
DO 10 K=1,LAT |
| 182 |
|
✗ |
DO 100 I=1,LON |
| 183 |
|
✗ |
IF(S0(I,K,L,JV).GT.0.) THEN |
| 184 |
|
✗ |
SLPMAX=AMAX1(S0(I,K,L,JV),0.) |
| 185 |
|
✗ |
S1MAX=1.5*SLPMAX |
| 186 |
|
✗ |
S1NEW=AMIN1(S1MAX,AMAX1(-S1MAX,SY(I,K,L,JV))) |
| 187 |
|
|
S2NEW=AMIN1( 2.*SLPMAX-ABS(S1NEW)/3. , |
| 188 |
|
✗ |
+ AMAX1(ABS(S1NEW)-SLPMAX,SYY(I,K,L,JV)) ) |
| 189 |
|
✗ |
SY (I,K,L,JV)=S1NEW |
| 190 |
|
✗ |
SYY(I,K,L,JV)=S2NEW |
| 191 |
|
✗ |
SSXY(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SSXY(I,K,L,JV))) |
| 192 |
|
✗ |
SYZ(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SYZ(I,K,L,JV))) |
| 193 |
|
|
ELSE |
| 194 |
|
✗ |
SY (I,K,L,JV)=0. |
| 195 |
|
✗ |
SYY(I,K,L,JV)=0. |
| 196 |
|
✗ |
SSXY(I,K,L,JV)=0. |
| 197 |
|
✗ |
SYZ(I,K,L,JV)=0. |
| 198 |
|
|
ENDIF |
| 199 |
|
✗ |
100 CONTINUE |
| 200 |
|
✗ |
10 CONTINUE |
| 201 |
|
|
C |
| 202 |
|
|
11 CONTINUE |
| 203 |
|
|
C |
| 204 |
|
|
C le flux a travers le pole Nord est traite separement |
| 205 |
|
|
C |
| 206 |
|
|
SM0=0. |
| 207 |
|
✗ |
DO 20 JV=1,NTRA |
| 208 |
|
✗ |
S00(JV)=0. |
| 209 |
|
✗ |
20 CONTINUE |
| 210 |
|
|
C |
| 211 |
|
✗ |
DO 21 I=1,LON |
| 212 |
|
|
C |
| 213 |
|
✗ |
IF(VGRI(I,0,L).LE.0.) THEN |
| 214 |
|
✗ |
FM(I,0)=-VGRI(I,0,L)*DTY |
| 215 |
|
✗ |
ALF(I,0)=FM(I,0)/SM(I,1,L) |
| 216 |
|
✗ |
SM(I,1,L)=SM(I,1,L)-FM(I,0) |
| 217 |
|
✗ |
SM0=SM0+FM(I,0) |
| 218 |
|
|
ENDIF |
| 219 |
|
|
C |
| 220 |
|
✗ |
ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
| 221 |
|
✗ |
ALF1(I,0)=1.-ALF(I,0) |
| 222 |
|
✗ |
ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
| 223 |
|
✗ |
ALF2(I,0)=ALF1(I,0)-ALF(I,0) |
| 224 |
|
✗ |
ALF3(I,0)=ALF(I,0)*ALFQ(I,0) |
| 225 |
|
✗ |
ALF4(I,0)=ALF1(I,0)*ALF1Q(I,0) |
| 226 |
|
|
C |
| 227 |
|
✗ |
21 CONTINUE |
| 228 |
|
|
c print*,'ADVYP 21' |
| 229 |
|
|
C |
| 230 |
|
✗ |
DO 22 JV=1,NTRA |
| 231 |
|
✗ |
DO 220 I=1,LON |
| 232 |
|
|
C |
| 233 |
|
✗ |
IF(VGRI(I,0,L).LE.0.) THEN |
| 234 |
|
|
C |
| 235 |
|
|
F0(I,0,JV)=ALF(I,0)* ( S0(I,1,L,JV)-ALF1(I,0)* |
| 236 |
|
✗ |
+ ( SY(I,1,L,JV)-ALF2(I,0)*SYY(I,1,L,JV) ) ) |
| 237 |
|
|
C |
| 238 |
|
✗ |
S00(JV)=S00(JV)+F0(I,0,JV) |
| 239 |
|
✗ |
S0 (I,1,L,JV)=S0(I,1,L,JV)-F0(I,0,JV) |
| 240 |
|
|
SY (I,1,L,JV)=ALF1Q(I,0)* |
| 241 |
|
✗ |
+ (SY(I,1,L,JV)+3.*ALF(I,0)*SYY(I,1,L,JV)) |
| 242 |
|
✗ |
SYY(I,1,L,JV)=ALF4 (I,0)*SYY(I,1,L,JV) |
| 243 |
|
|
SSX (I,1,L,JV)=ALF1 (I,0)* |
| 244 |
|
✗ |
+ (SSX(I,1,L,JV)+ALF(I,0)*SSXY(I,1,L,JV) ) |
| 245 |
|
|
SZ (I,1,L,JV)=ALF1 (I,0)* |
| 246 |
|
✗ |
+ (SZ(I,1,L,JV)+ALF(I,0)*SSXZ(I,1,L,JV) ) |
| 247 |
|
✗ |
SSXX(I,1,L,JV)=ALF1 (I,0)*SSXX(I,1,L,JV) |
| 248 |
|
✗ |
SSXZ(I,1,L,JV)=ALF1 (I,0)*SSXZ(I,1,L,JV) |
| 249 |
|
✗ |
SZZ(I,1,L,JV)=ALF1 (I,0)*SZZ(I,1,L,JV) |
| 250 |
|
✗ |
SSXY(I,1,L,JV)=ALF1Q(I,0)*SSXY(I,1,L,JV) |
| 251 |
|
✗ |
SYZ(I,1,L,JV)=ALF1Q(I,0)*SYZ(I,1,L,JV) |
| 252 |
|
|
C |
| 253 |
|
|
ENDIF |
| 254 |
|
|
C |
| 255 |
|
✗ |
220 CONTINUE |
| 256 |
|
✗ |
22 CONTINUE |
| 257 |
|
|
C |
| 258 |
|
✗ |
DO 23 I=1,LON |
| 259 |
|
✗ |
IF(VGRI(I,0,L).GT.0.) THEN |
| 260 |
|
✗ |
FM(I,0)=VGRI(I,0,L)*DTY |
| 261 |
|
✗ |
ALF(I,0)=FM(I,0)/SM0 |
| 262 |
|
|
ENDIF |
| 263 |
|
✗ |
23 CONTINUE |
| 264 |
|
|
C |
| 265 |
|
✗ |
DO 24 JV=1,NTRA |
| 266 |
|
✗ |
DO 240 I=1,LON |
| 267 |
|
✗ |
IF(VGRI(I,0,L).GT.0.) THEN |
| 268 |
|
✗ |
F0(I,0,JV)=ALF(I,0)*S00(JV) |
| 269 |
|
|
ENDIF |
| 270 |
|
✗ |
240 CONTINUE |
| 271 |
|
✗ |
24 CONTINUE |
| 272 |
|
|
C |
| 273 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
| 274 |
|
|
C |
| 275 |
|
|
c print*,'av ADVYP 25' |
| 276 |
|
✗ |
DO 25 I=1,LON |
| 277 |
|
|
C |
| 278 |
|
✗ |
IF(VGRI(I,0,L).GT.0.) THEN |
| 279 |
|
✗ |
SM(I,1,L)=SM(I,1,L)+FM(I,0) |
| 280 |
|
✗ |
ALF(I,0)=FM(I,0)/SM(I,1,L) |
| 281 |
|
|
ENDIF |
| 282 |
|
|
C |
| 283 |
|
✗ |
ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
| 284 |
|
✗ |
ALF1(I,0)=1.-ALF(I,0) |
| 285 |
|
✗ |
ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
| 286 |
|
✗ |
ALF2(I,0)=ALF1(I,0)-ALF(I,0) |
| 287 |
|
✗ |
ALF3(I,0)=ALF1(I,0)*ALF(I,0) |
| 288 |
|
|
C |
| 289 |
|
✗ |
25 CONTINUE |
| 290 |
|
|
c print*,'av ADVYP 25' |
| 291 |
|
|
C |
| 292 |
|
✗ |
DO 26 JV=1,NTRA |
| 293 |
|
✗ |
DO 260 I=1,LON |
| 294 |
|
|
C |
| 295 |
|
✗ |
IF(VGRI(I,0,L).GT.0.) THEN |
| 296 |
|
|
C |
| 297 |
|
✗ |
TEMPTM=ALF(I,0)*S0(I,1,L,JV)-ALF1(I,0)*F0(I,0,JV) |
| 298 |
|
✗ |
S0 (I,1,L,JV)=S0(I,1,L,JV)+F0(I,0,JV) |
| 299 |
|
|
SYY(I,1,L,JV)=ALF1Q(I,0)*SYY(I,1,L,JV) |
| 300 |
|
✗ |
+ +5.*( ALF3 (I,0)*SY (I,1,L,JV)-ALF2(I,0)*TEMPTM ) |
| 301 |
|
✗ |
SY (I,1,L,JV)=ALF1 (I,0)*SY (I,1,L,JV)+3.*TEMPTM |
| 302 |
|
✗ |
SSXY(I,1,L,JV)=ALF1 (I,0)*SSXY(I,1,L,JV)+3.*ALF(I,0)*SSX(I,1,L,JV) |
| 303 |
|
✗ |
SYZ(I,1,L,JV)=ALF1 (I,0)*SYZ(I,1,L,JV)+3.*ALF(I,0)*SZ(I,1,L,JV) |
| 304 |
|
|
C |
| 305 |
|
|
ENDIF |
| 306 |
|
|
C |
| 307 |
|
✗ |
260 CONTINUE |
| 308 |
|
✗ |
26 CONTINUE |
| 309 |
|
|
C |
| 310 |
|
|
C calculate flux and moments between adjacent boxes |
| 311 |
|
|
C 1- create temporary moments/masses for partial boxes in transit |
| 312 |
|
|
C 2- reajusts moments remaining in the box |
| 313 |
|
|
C |
| 314 |
|
|
C flux from KP to K if V(K).lt.0 and from K to KP if V(K).gt.0 |
| 315 |
|
|
C |
| 316 |
|
|
c print*,'av ADVYP 30' |
| 317 |
|
✗ |
DO 30 K=1,LAT-1 |
| 318 |
|
✗ |
KP=K+1 |
| 319 |
|
✗ |
DO 300 I=1,LON |
| 320 |
|
|
C |
| 321 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 322 |
|
✗ |
FM(I,K)=-VGRI(I,K,L)*DTY |
| 323 |
|
✗ |
ALF(I,K)=FM(I,K)/SM(I,KP,L) |
| 324 |
|
✗ |
SM(I,KP,L)=SM(I,KP,L)-FM(I,K) |
| 325 |
|
|
ELSE |
| 326 |
|
✗ |
FM(I,K)=VGRI(I,K,L)*DTY |
| 327 |
|
✗ |
ALF(I,K)=FM(I,K)/SM(I,K,L) |
| 328 |
|
✗ |
SM(I,K,L)=SM(I,K,L)-FM(I,K) |
| 329 |
|
|
ENDIF |
| 330 |
|
|
C |
| 331 |
|
✗ |
ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
| 332 |
|
✗ |
ALF1(I,K)=1.-ALF(I,K) |
| 333 |
|
✗ |
ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
| 334 |
|
✗ |
ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
| 335 |
|
✗ |
ALF3(I,K)=ALF(I,K)*ALFQ(I,K) |
| 336 |
|
✗ |
ALF4(I,K)=ALF1(I,K)*ALF1Q(I,K) |
| 337 |
|
|
C |
| 338 |
|
✗ |
300 CONTINUE |
| 339 |
|
✗ |
30 CONTINUE |
| 340 |
|
|
c print*,'ap ADVYP 30' |
| 341 |
|
|
C |
| 342 |
|
✗ |
DO 31 JV=1,NTRA |
| 343 |
|
✗ |
DO 31 K=1,LAT-1 |
| 344 |
|
✗ |
KP=K+1 |
| 345 |
|
✗ |
DO 310 I=1,LON |
| 346 |
|
|
C |
| 347 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 348 |
|
|
C |
| 349 |
|
|
F0 (I,K,JV)=ALF (I,K)* ( S0(I,KP,L,JV)-ALF1(I,K)* |
| 350 |
|
✗ |
+ ( SY(I,KP,L,JV)-ALF2(I,K)*SYY(I,KP,L,JV) ) ) |
| 351 |
|
|
FY (I,K,JV)=ALFQ(I,K)* |
| 352 |
|
✗ |
+ (SY(I,KP,L,JV)-3.*ALF1(I,K)*SYY(I,KP,L,JV)) |
| 353 |
|
✗ |
FYY(I,K,JV)=ALF3(I,K)*SYY(I,KP,L,JV) |
| 354 |
|
|
FX (I,K,JV)=ALF (I,K)* |
| 355 |
|
✗ |
+ (SSX(I,KP,L,JV)-ALF1(I,K)*SSXY(I,KP,L,JV)) |
| 356 |
|
|
FZ (I,K,JV)=ALF (I,K)* |
| 357 |
|
✗ |
+ (SZ(I,KP,L,JV)-ALF1(I,K)*SYZ(I,KP,L,JV)) |
| 358 |
|
✗ |
FXY(I,K,JV)=ALFQ(I,K)*SSXY(I,KP,L,JV) |
| 359 |
|
✗ |
FYZ(I,K,JV)=ALFQ(I,K)*SYZ(I,KP,L,JV) |
| 360 |
|
✗ |
FXX(I,K,JV)=ALF (I,K)*SSXX(I,KP,L,JV) |
| 361 |
|
✗ |
FXZ(I,K,JV)=ALF (I,K)*SSXZ(I,KP,L,JV) |
| 362 |
|
✗ |
FZZ(I,K,JV)=ALF (I,K)*SZZ(I,KP,L,JV) |
| 363 |
|
|
C |
| 364 |
|
✗ |
S0 (I,KP,L,JV)=S0(I,KP,L,JV)-F0(I,K,JV) |
| 365 |
|
|
SY (I,KP,L,JV)=ALF1Q(I,K)* |
| 366 |
|
✗ |
+ (SY(I,KP,L,JV)+3.*ALF(I,K)*SYY(I,KP,L,JV)) |
| 367 |
|
✗ |
SYY(I,KP,L,JV)=ALF4(I,K)*SYY(I,KP,L,JV) |
| 368 |
|
✗ |
SSX (I,KP,L,JV)=SSX (I,KP,L,JV)-FX (I,K,JV) |
| 369 |
|
✗ |
SZ (I,KP,L,JV)=SZ (I,KP,L,JV)-FZ (I,K,JV) |
| 370 |
|
✗ |
SSXX(I,KP,L,JV)=SSXX(I,KP,L,JV)-FXX(I,K,JV) |
| 371 |
|
✗ |
SSXZ(I,KP,L,JV)=SSXZ(I,KP,L,JV)-FXZ(I,K,JV) |
| 372 |
|
✗ |
SZZ(I,KP,L,JV)=SZZ(I,KP,L,JV)-FZZ(I,K,JV) |
| 373 |
|
✗ |
SSXY(I,KP,L,JV)=ALF1Q(I,K)*SSXY(I,KP,L,JV) |
| 374 |
|
✗ |
SYZ(I,KP,L,JV)=ALF1Q(I,K)*SYZ(I,KP,L,JV) |
| 375 |
|
|
C |
| 376 |
|
|
ELSE |
| 377 |
|
|
C |
| 378 |
|
|
F0 (I,K,JV)=ALF (I,K)* ( S0(I,K,L,JV)+ALF1(I,K)* |
| 379 |
|
✗ |
+ ( SY(I,K,L,JV)+ALF2(I,K)*SYY(I,K,L,JV) ) ) |
| 380 |
|
|
FY (I,K,JV)=ALFQ(I,K)* |
| 381 |
|
✗ |
+ (SY(I,K,L,JV)+3.*ALF1(I,K)*SYY(I,K,L,JV)) |
| 382 |
|
✗ |
FYY(I,K,JV)=ALF3(I,K)*SYY(I,K,L,JV) |
| 383 |
|
✗ |
FX (I,K,JV)=ALF (I,K)*(SSX(I,K,L,JV)+ALF1(I,K)*SSXY(I,K,L,JV)) |
| 384 |
|
✗ |
FZ (I,K,JV)=ALF (I,K)*(SZ(I,K,L,JV)+ALF1(I,K)*SYZ(I,K,L,JV)) |
| 385 |
|
✗ |
FXY(I,K,JV)=ALFQ(I,K)*SSXY(I,K,L,JV) |
| 386 |
|
✗ |
FYZ(I,K,JV)=ALFQ(I,K)*SYZ(I,K,L,JV) |
| 387 |
|
✗ |
FXX(I,K,JV)=ALF (I,K)*SSXX(I,K,L,JV) |
| 388 |
|
✗ |
FXZ(I,K,JV)=ALF (I,K)*SSXZ(I,K,L,JV) |
| 389 |
|
✗ |
FZZ(I,K,JV)=ALF (I,K)*SZZ(I,K,L,JV) |
| 390 |
|
|
C |
| 391 |
|
✗ |
S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
| 392 |
|
|
SY (I,K,L,JV)=ALF1Q(I,K)* |
| 393 |
|
✗ |
+ (SY(I,K,L,JV)-3.*ALF(I,K)*SYY(I,K,L,JV)) |
| 394 |
|
✗ |
SYY(I,K,L,JV)=ALF4(I,K)*SYY(I,K,L,JV) |
| 395 |
|
✗ |
SSX (I,K,L,JV)=SSX (I,K,L,JV)-FX (I,K,JV) |
| 396 |
|
✗ |
SZ (I,K,L,JV)=SZ (I,K,L,JV)-FZ (I,K,JV) |
| 397 |
|
✗ |
SSXX(I,K,L,JV)=SSXX(I,K,L,JV)-FXX(I,K,JV) |
| 398 |
|
✗ |
SSXZ(I,K,L,JV)=SSXZ(I,K,L,JV)-FXZ(I,K,JV) |
| 399 |
|
✗ |
SZZ(I,K,L,JV)=SZZ(I,K,L,JV)-FZZ(I,K,JV) |
| 400 |
|
✗ |
SSXY(I,K,L,JV)=ALF1Q(I,K)*SSXY(I,K,L,JV) |
| 401 |
|
✗ |
SYZ(I,K,L,JV)=ALF1Q(I,K)*SYZ(I,K,L,JV) |
| 402 |
|
|
C |
| 403 |
|
|
ENDIF |
| 404 |
|
|
C |
| 405 |
|
✗ |
310 CONTINUE |
| 406 |
|
✗ |
31 CONTINUE |
| 407 |
|
|
c print*,'ap ADVYP 31' |
| 408 |
|
|
C |
| 409 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
| 410 |
|
|
C |
| 411 |
|
✗ |
DO 32 K=1,LAT-1 |
| 412 |
|
✗ |
KP=K+1 |
| 413 |
|
✗ |
DO 320 I=1,LON |
| 414 |
|
|
C |
| 415 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 416 |
|
✗ |
SM(I,K,L)=SM(I,K,L)+FM(I,K) |
| 417 |
|
✗ |
ALF(I,K)=FM(I,K)/SM(I,K,L) |
| 418 |
|
|
ELSE |
| 419 |
|
✗ |
SM(I,KP,L)=SM(I,KP,L)+FM(I,K) |
| 420 |
|
✗ |
ALF(I,K)=FM(I,K)/SM(I,KP,L) |
| 421 |
|
|
ENDIF |
| 422 |
|
|
C |
| 423 |
|
✗ |
ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
| 424 |
|
✗ |
ALF1(I,K)=1.-ALF(I,K) |
| 425 |
|
✗ |
ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
| 426 |
|
✗ |
ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
| 427 |
|
✗ |
ALF3(I,K)=ALF1(I,K)*ALF(I,K) |
| 428 |
|
|
C |
| 429 |
|
✗ |
320 CONTINUE |
| 430 |
|
✗ |
32 CONTINUE |
| 431 |
|
|
c print*,'ap ADVYP 32' |
| 432 |
|
|
C |
| 433 |
|
✗ |
DO 33 JV=1,NTRA |
| 434 |
|
✗ |
DO 33 K=1,LAT-1 |
| 435 |
|
✗ |
KP=K+1 |
| 436 |
|
✗ |
DO 330 I=1,LON |
| 437 |
|
|
C |
| 438 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 439 |
|
|
C |
| 440 |
|
✗ |
TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
| 441 |
|
✗ |
S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
| 442 |
|
|
SYY(I,K,L,JV)=ALFQ(I,K)*FYY(I,K,JV)+ALF1Q(I,K)*SYY(I,K,L,JV) |
| 443 |
|
✗ |
+ +5.*( ALF3(I,K)*(FY(I,K,JV)-SY(I,K,L,JV))+ALF2(I,K)*TEMPTM ) |
| 444 |
|
|
SY (I,K,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*SY(I,K,L,JV) |
| 445 |
|
✗ |
+ +3.*TEMPTM |
| 446 |
|
|
SSXY(I,K,L,JV)=ALF (I,K)*FXY(I,K,JV)+ALF1(I,K)*SSXY(I,K,L,JV) |
| 447 |
|
✗ |
+ +3.*(ALF1(I,K)*FX (I,K,JV)-ALF (I,K)*SSX (I,K,L,JV)) |
| 448 |
|
|
SYZ(I,K,L,JV)=ALF (I,K)*FYZ(I,K,JV)+ALF1(I,K)*SYZ(I,K,L,JV) |
| 449 |
|
✗ |
+ +3.*(ALF1(I,K)*FZ (I,K,JV)-ALF (I,K)*SZ (I,K,L,JV)) |
| 450 |
|
✗ |
SSX (I,K,L,JV)=SSX (I,K,L,JV)+FX (I,K,JV) |
| 451 |
|
✗ |
SZ (I,K,L,JV)=SZ (I,K,L,JV)+FZ (I,K,JV) |
| 452 |
|
✗ |
SSXX(I,K,L,JV)=SSXX(I,K,L,JV)+FXX(I,K,JV) |
| 453 |
|
✗ |
SSXZ(I,K,L,JV)=SSXZ(I,K,L,JV)+FXZ(I,K,JV) |
| 454 |
|
✗ |
SZZ(I,K,L,JV)=SZZ(I,K,L,JV)+FZZ(I,K,JV) |
| 455 |
|
|
C |
| 456 |
|
|
ELSE |
| 457 |
|
|
C |
| 458 |
|
✗ |
TEMPTM=ALF(I,K)*S0(I,KP,L,JV)-ALF1(I,K)*F0(I,K,JV) |
| 459 |
|
✗ |
S0 (I,KP,L,JV)=S0(I,KP,L,JV)+F0(I,K,JV) |
| 460 |
|
|
SYY(I,KP,L,JV)=ALFQ(I,K)*FYY(I,K,JV)+ALF1Q(I,K)*SYY(I,KP,L,JV) |
| 461 |
|
✗ |
+ +5.*( ALF3(I,K)*(SY(I,KP,L,JV)-FY(I,K,JV))-ALF2(I,K)*TEMPTM ) |
| 462 |
|
|
SY (I,KP,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*SY(I,KP,L,JV) |
| 463 |
|
✗ |
+ +3.*TEMPTM |
| 464 |
|
|
SSXY(I,KP,L,JV)=ALF(I,K)*FXY(I,K,JV)+ALF1(I,K)*SSXY(I,KP,L,JV) |
| 465 |
|
✗ |
+ +3.*(ALF(I,K)*SSX(I,KP,L,JV)-ALF1(I,K)*FX(I,K,JV)) |
| 466 |
|
|
SYZ(I,KP,L,JV)=ALF(I,K)*FYZ(I,K,JV)+ALF1(I,K)*SYZ(I,KP,L,JV) |
| 467 |
|
✗ |
+ +3.*(ALF(I,K)*SZ(I,KP,L,JV)-ALF1(I,K)*FZ(I,K,JV)) |
| 468 |
|
✗ |
SSX (I,KP,L,JV)=SSX (I,KP,L,JV)+FX (I,K,JV) |
| 469 |
|
✗ |
SZ (I,KP,L,JV)=SZ (I,KP,L,JV)+FZ (I,K,JV) |
| 470 |
|
✗ |
SSXX(I,KP,L,JV)=SSXX(I,KP,L,JV)+FXX(I,K,JV) |
| 471 |
|
✗ |
SSXZ(I,KP,L,JV)=SSXZ(I,KP,L,JV)+FXZ(I,K,JV) |
| 472 |
|
✗ |
SZZ(I,KP,L,JV)=SZZ(I,KP,L,JV)+FZZ(I,K,JV) |
| 473 |
|
|
C |
| 474 |
|
|
ENDIF |
| 475 |
|
|
C |
| 476 |
|
✗ |
330 CONTINUE |
| 477 |
|
✗ |
33 CONTINUE |
| 478 |
|
|
c print*,'ap ADVYP 33' |
| 479 |
|
|
C |
| 480 |
|
|
C traitement special pour le pole Sud (idem pole Nord) |
| 481 |
|
|
C |
| 482 |
|
|
K=LAT |
| 483 |
|
|
C |
| 484 |
|
|
SM0=0. |
| 485 |
|
✗ |
DO 40 JV=1,NTRA |
| 486 |
|
✗ |
S00(JV)=0. |
| 487 |
|
✗ |
40 CONTINUE |
| 488 |
|
|
C |
| 489 |
|
✗ |
DO 41 I=1,LON |
| 490 |
|
|
C |
| 491 |
|
✗ |
IF(VGRI(I,K,L).GE.0.) THEN |
| 492 |
|
✗ |
FM(I,K)=VGRI(I,K,L)*DTY |
| 493 |
|
✗ |
ALF(I,K)=FM(I,K)/SM(I,K,L) |
| 494 |
|
✗ |
SM(I,K,L)=SM(I,K,L)-FM(I,K) |
| 495 |
|
✗ |
SM0=SM0+FM(I,K) |
| 496 |
|
|
ENDIF |
| 497 |
|
|
C |
| 498 |
|
✗ |
ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
| 499 |
|
✗ |
ALF1(I,K)=1.-ALF(I,K) |
| 500 |
|
✗ |
ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
| 501 |
|
✗ |
ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
| 502 |
|
✗ |
ALF3(I,K)=ALF(I,K)*ALFQ(I,K) |
| 503 |
|
✗ |
ALF4(I,K)=ALF1(I,K)*ALF1Q(I,K) |
| 504 |
|
|
C |
| 505 |
|
✗ |
41 CONTINUE |
| 506 |
|
|
c print*,'ap ADVYP 41' |
| 507 |
|
|
C |
| 508 |
|
✗ |
DO 42 JV=1,NTRA |
| 509 |
|
✗ |
DO 420 I=1,LON |
| 510 |
|
|
C |
| 511 |
|
✗ |
IF(VGRI(I,K,L).GE.0.) THEN |
| 512 |
|
|
F0 (I,K,JV)=ALF(I,K)* ( S0(I,K,L,JV)+ALF1(I,K)* |
| 513 |
|
✗ |
+ ( SY(I,K,L,JV)+ALF2(I,K)*SYY(I,K,L,JV) ) ) |
| 514 |
|
✗ |
S00(JV)=S00(JV)+F0(I,K,JV) |
| 515 |
|
|
C |
| 516 |
|
✗ |
S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
| 517 |
|
|
SY (I,K,L,JV)=ALF1Q(I,K)* |
| 518 |
|
✗ |
+ (SY(I,K,L,JV)-3.*ALF(I,K)*SYY(I,K,L,JV)) |
| 519 |
|
✗ |
SYY(I,K,L,JV)=ALF4 (I,K)*SYY(I,K,L,JV) |
| 520 |
|
✗ |
SSX (I,K,L,JV)=ALF1(I,K)*(SSX(I,K,L,JV)-ALF(I,K)*SSXY(I,K,L,JV)) |
| 521 |
|
✗ |
SZ (I,K,L,JV)=ALF1(I,K)*(SZ(I,K,L,JV)-ALF(I,K)*SYZ(I,K,L,JV)) |
| 522 |
|
✗ |
SSXX(I,K,L,JV)=ALF1 (I,K)*SSXX(I,K,L,JV) |
| 523 |
|
✗ |
SSXZ(I,K,L,JV)=ALF1 (I,K)*SSXZ(I,K,L,JV) |
| 524 |
|
✗ |
SZZ(I,K,L,JV)=ALF1 (I,K)*SZZ(I,K,L,JV) |
| 525 |
|
✗ |
SSXY(I,K,L,JV)=ALF1Q(I,K)*SSXY(I,K,L,JV) |
| 526 |
|
✗ |
SYZ(I,K,L,JV)=ALF1Q(I,K)*SYZ(I,K,L,JV) |
| 527 |
|
|
ENDIF |
| 528 |
|
|
C |
| 529 |
|
✗ |
420 CONTINUE |
| 530 |
|
✗ |
42 CONTINUE |
| 531 |
|
|
c print*,'ap ADVYP 42' |
| 532 |
|
|
C |
| 533 |
|
✗ |
DO 43 I=1,LON |
| 534 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 535 |
|
✗ |
FM(I,K)=-VGRI(I,K,L)*DTY |
| 536 |
|
✗ |
ALF(I,K)=FM(I,K)/SM0 |
| 537 |
|
|
ENDIF |
| 538 |
|
✗ |
43 CONTINUE |
| 539 |
|
|
c print*,'ap ADVYP 43' |
| 540 |
|
|
C |
| 541 |
|
✗ |
DO 44 JV=1,NTRA |
| 542 |
|
✗ |
DO 440 I=1,LON |
| 543 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 544 |
|
✗ |
F0(I,K,JV)=ALF(I,K)*S00(JV) |
| 545 |
|
|
ENDIF |
| 546 |
|
✗ |
440 CONTINUE |
| 547 |
|
✗ |
44 CONTINUE |
| 548 |
|
|
C |
| 549 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
| 550 |
|
|
C |
| 551 |
|
✗ |
DO 45 I=1,LON |
| 552 |
|
|
C |
| 553 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 554 |
|
✗ |
SM(I,K,L)=SM(I,K,L)+FM(I,K) |
| 555 |
|
✗ |
ALF(I,K)=FM(I,K)/SM(I,K,L) |
| 556 |
|
|
ENDIF |
| 557 |
|
|
C |
| 558 |
|
✗ |
ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
| 559 |
|
✗ |
ALF1(I,K)=1.-ALF(I,K) |
| 560 |
|
✗ |
ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
| 561 |
|
✗ |
ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
| 562 |
|
✗ |
ALF3(I,K)=ALF1(I,K)*ALF(I,K) |
| 563 |
|
|
C |
| 564 |
|
✗ |
45 CONTINUE |
| 565 |
|
|
c print*,'ap ADVYP 45' |
| 566 |
|
|
C |
| 567 |
|
✗ |
DO 46 JV=1,NTRA |
| 568 |
|
✗ |
DO 460 I=1,LON |
| 569 |
|
|
C |
| 570 |
|
✗ |
IF(VGRI(I,K,L).LT.0.) THEN |
| 571 |
|
|
C |
| 572 |
|
✗ |
TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
| 573 |
|
✗ |
S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
| 574 |
|
|
SYY(I,K,L,JV)=ALF1Q(I,K)*SYY(I,K,L,JV) |
| 575 |
|
✗ |
+ +5.*(-ALF3 (I,K)*SY (I,K,L,JV)+ALF2(I,K)*TEMPTM ) |
| 576 |
|
✗ |
SY (I,K,L,JV)=ALF1(I,K)*SY (I,K,L,JV)+3.*TEMPTM |
| 577 |
|
✗ |
SSXY(I,K,L,JV)=ALF1(I,K)*SSXY(I,K,L,JV)-3.*ALF(I,K)*SSX(I,K,L,JV) |
| 578 |
|
✗ |
SYZ(I,K,L,JV)=ALF1(I,K)*SYZ(I,K,L,JV)-3.*ALF(I,K)*SZ(I,K,L,JV) |
| 579 |
|
|
C |
| 580 |
|
|
ENDIF |
| 581 |
|
|
C |
| 582 |
|
✗ |
460 CONTINUE |
| 583 |
|
✗ |
46 CONTINUE |
| 584 |
|
|
c print*,'ap ADVYP 46' |
| 585 |
|
|
C |
| 586 |
|
✗ |
1 CONTINUE |
| 587 |
|
|
|
| 588 |
|
|
c-------------------------------------------------- |
| 589 |
|
|
C bouclage cyclique horizontal . |
| 590 |
|
|
|
| 591 |
|
✗ |
DO l = 1,llm |
| 592 |
|
✗ |
DO jv = 1,ntra |
| 593 |
|
✗ |
DO j = 1,jjp1 |
| 594 |
|
✗ |
SM(iip1,j,l) = SM(1,j,l) |
| 595 |
|
✗ |
S0(iip1,j,l,jv) = S0(1,j,l,jv) |
| 596 |
|
✗ |
SSX(iip1,j,l,jv) = SSX(1,j,l,jv) |
| 597 |
|
✗ |
SY(iip1,j,l,jv) = SY(1,j,l,jv) |
| 598 |
|
✗ |
SZ(iip1,j,l,jv) = SZ(1,j,l,jv) |
| 599 |
|
|
END DO |
| 600 |
|
|
END DO |
| 601 |
|
|
END DO |
| 602 |
|
|
|
| 603 |
|
|
c ------------------------------------------------------------------- |
| 604 |
|
|
C *** Test negativite: |
| 605 |
|
|
|
| 606 |
|
|
c DO jv = 1,ntra |
| 607 |
|
|
c DO l = 1,llm |
| 608 |
|
|
c DO j = 1,jjp1 |
| 609 |
|
|
c DO i = 1,iip1 |
| 610 |
|
|
c IF (s0( i,j,l,jv ).lt.0.) THEN |
| 611 |
|
|
c PRINT*, '------ S0 < 0 en FIN ADVYP ---' |
| 612 |
|
|
c PRINT*, 'S0(',i,j,l,jv,')=', S0(i,j,l,jv) |
| 613 |
|
|
cc STOP |
| 614 |
|
|
c ENDIF |
| 615 |
|
|
c ENDDO |
| 616 |
|
|
c ENDDO |
| 617 |
|
|
c ENDDO |
| 618 |
|
|
c ENDDO |
| 619 |
|
|
|
| 620 |
|
|
|
| 621 |
|
|
c ------------------------------------------------------------------- |
| 622 |
|
|
C *** Test : diag de la qtite totale de traceur dans |
| 623 |
|
|
C l'atmosphere avant l'advection en Y |
| 624 |
|
|
|
| 625 |
|
✗ |
DO l = 1,llm |
| 626 |
|
✗ |
DO j = 1,jjp1 |
| 627 |
|
✗ |
DO i = 1,iim |
| 628 |
|
✗ |
sqf = sqf + S0(i,j,l,ntra) |
| 629 |
|
|
END DO |
| 630 |
|
|
END DO |
| 631 |
|
|
END DO |
| 632 |
|
✗ |
PRINT*,'---------- DIAG DANS ADVY - SORTIE --------' |
| 633 |
|
✗ |
PRINT*,'sqf=',sqf |
| 634 |
|
|
c print*,'ap ADVYP fin' |
| 635 |
|
|
|
| 636 |
|
|
c----------------------------------------------------------------- |
| 637 |
|
|
C |
| 638 |
|
✗ |
RETURN |
| 639 |
|
|
END |
| 640 |
|
|
|
| 641 |
|
|
|
| 642 |
|
|
|
| 643 |
|
|
|
| 644 |
|
|
|
| 645 |
|
|
|
| 646 |
|
|
|
| 647 |
|
|
|
| 648 |
|
|
|
| 649 |
|
|
|
| 650 |
|
|
|
| 651 |
|
|
|
| 652 |
|
|
|