| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Header$ |
| 3 |
|
|
! |
| 4 |
|
✗ |
SUBROUTINE advz(limit,dtz,w,sm,s0,sx,sy,sz) |
| 5 |
|
|
IMPLICIT NONE |
| 6 |
|
|
|
| 7 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| 8 |
|
|
C C |
| 9 |
|
|
C first-order moments (FOM) advection of tracer in Z direction C |
| 10 |
|
|
C C |
| 11 |
|
|
C Source : Pascal Simon (Meteo,CNRM) C |
| 12 |
|
|
C Adaptation : A.Armengaud (LGGE) juin 94 C |
| 13 |
|
|
C C |
| 14 |
|
|
C C |
| 15 |
|
|
C sont des arguments d'entree pour le s-pg... C |
| 16 |
|
|
C C |
| 17 |
|
|
C dq est l'argument de sortie pour le s-pg C |
| 18 |
|
|
C C |
| 19 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| 20 |
|
|
C |
| 21 |
|
|
C parametres principaux du modele |
| 22 |
|
|
C |
| 23 |
|
|
include "dimensions.h" |
| 24 |
|
|
include "paramet.h" |
| 25 |
|
|
|
| 26 |
|
|
C #include "traceur.h" |
| 27 |
|
|
|
| 28 |
|
|
C Arguments : |
| 29 |
|
|
C ----------- |
| 30 |
|
|
C dtz : frequence fictive d'appel du transport |
| 31 |
|
|
C w : flux de masse en z en Pa.m2.s-1 |
| 32 |
|
|
|
| 33 |
|
|
INTEGER ntra |
| 34 |
|
|
PARAMETER (ntra = 1) |
| 35 |
|
|
|
| 36 |
|
|
REAL dtz |
| 37 |
|
|
REAL w ( iip1,jjp1,llm ) |
| 38 |
|
|
|
| 39 |
|
|
C moments: SM total mass in each grid box |
| 40 |
|
|
C S0 mass of tracer in each grid box |
| 41 |
|
|
C Si 1rst order moment in i direction |
| 42 |
|
|
C |
| 43 |
|
|
REAL SM(iip1,jjp1,llm) |
| 44 |
|
|
+ ,S0(iip1,jjp1,llm,ntra) |
| 45 |
|
|
REAL sx(iip1,jjp1,llm,ntra) |
| 46 |
|
|
+ ,sy(iip1,jjp1,llm,ntra) |
| 47 |
|
|
+ ,sz(iip1,jjp1,llm,ntra) |
| 48 |
|
|
|
| 49 |
|
|
|
| 50 |
|
|
C Local : |
| 51 |
|
|
C ------- |
| 52 |
|
|
|
| 53 |
|
|
C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
| 54 |
|
|
C mass fluxes in kg |
| 55 |
|
|
C declaration : |
| 56 |
|
|
|
| 57 |
|
|
REAL WGRI(iip1,jjp1,0:llm) |
| 58 |
|
|
|
| 59 |
|
|
C |
| 60 |
|
|
C the moments F are used as temporary storage for |
| 61 |
|
|
C portions of grid boxes in transit at the current latitude |
| 62 |
|
|
C |
| 63 |
|
|
REAL FM(iim,llm) |
| 64 |
|
|
REAL F0(iim,llm,ntra),FX(iim,llm,ntra) |
| 65 |
|
|
REAL FY(iim,llm,ntra),FZ(iim,llm,ntra) |
| 66 |
|
|
C |
| 67 |
|
|
C work arrays |
| 68 |
|
|
C |
| 69 |
|
|
REAL ALF(iim),ALF1(iim),ALFQ(iim),ALF1Q(iim) |
| 70 |
|
|
REAL TEMPTM ! Just temporal variable |
| 71 |
|
|
REAL sqi,sqf |
| 72 |
|
|
C |
| 73 |
|
|
LOGICAL LIMIT |
| 74 |
|
|
INTEGER lon,lat,niv |
| 75 |
|
|
INTEGER i,j,jv,k,l,lp |
| 76 |
|
|
|
| 77 |
|
|
lon = iim |
| 78 |
|
|
lat = jjp1 |
| 79 |
|
|
niv = llm |
| 80 |
|
|
|
| 81 |
|
|
C *** Test de passage d'arguments ****** |
| 82 |
|
|
|
| 83 |
|
|
c DO 399 l = 1, llm |
| 84 |
|
|
c DO 399 j = 1, jjp1 |
| 85 |
|
|
c DO 399 i = 1, iip1 |
| 86 |
|
|
c IF (S0(i,j,l,ntra) .lt. 0. ) THEN |
| 87 |
|
|
c PRINT*,'S0(',i,j,l,')=',S0(i,j,l,ntra) |
| 88 |
|
|
c print*, 'sx(',i,j,l,')=',sx(i,j,l,ntra) |
| 89 |
|
|
c print*, 'sy(',i,j,l,')=',sy(i,j,l,ntra) |
| 90 |
|
|
c print*, 'sz(',i,j,l,')=',sz(i,j,l,ntra) |
| 91 |
|
|
c PRINT*, 'AIE !! debut ADVZ - pbl arg. passage dans ADVZ' |
| 92 |
|
|
c STOP |
| 93 |
|
|
c ENDIF |
| 94 |
|
|
399 CONTINUE |
| 95 |
|
|
|
| 96 |
|
|
C----------------------------------------------------------------- |
| 97 |
|
|
C *** Test : diag de la qqtite totale de traceur |
| 98 |
|
|
C dans l'atmosphere avant l'advection en z |
| 99 |
|
✗ |
sqi = 0. |
| 100 |
|
✗ |
sqf = 0. |
| 101 |
|
|
|
| 102 |
|
✗ |
DO l = 1,llm |
| 103 |
|
✗ |
DO j = 1,jjp1 |
| 104 |
|
✗ |
DO i = 1,iim |
| 105 |
|
|
cIM 240305 sqi = sqi + S0(i,j,l,9) |
| 106 |
|
✗ |
sqi = sqi + S0(i,j,l,ntra) |
| 107 |
|
|
ENDDO |
| 108 |
|
|
ENDDO |
| 109 |
|
|
ENDDO |
| 110 |
|
✗ |
PRINT*,'-------- DIAG DANS ADVZ - ENTREE ---------' |
| 111 |
|
✗ |
PRINT*,'sqi=',sqi |
| 112 |
|
|
|
| 113 |
|
|
C----------------------------------------------------------------- |
| 114 |
|
|
C Interface : adaptation nouveau modele |
| 115 |
|
|
C ------------------------------------- |
| 116 |
|
|
C |
| 117 |
|
|
C Conversion du flux de masse en kg.s-1 |
| 118 |
|
|
|
| 119 |
|
✗ |
DO 500 l = 1,llm |
| 120 |
|
✗ |
DO 500 j = 1,jjp1 |
| 121 |
|
✗ |
DO 500 i = 1,iip1 |
| 122 |
|
|
c wgri (i,j,llm+1-l) = w (i,j,l) / g |
| 123 |
|
✗ |
wgri (i,j,llm+1-l) = w (i,j,l) |
| 124 |
|
|
c wgri (i,j,0) = 0. ! a detruire ult. |
| 125 |
|
|
c wgri (i,j,l) = 0.1 ! w (i,j,l) |
| 126 |
|
|
c wgri (i,j,llm) = 0. ! a detruire ult. |
| 127 |
|
✗ |
500 CONTINUE |
| 128 |
|
✗ |
DO j = 1,jjp1 |
| 129 |
|
✗ |
DO i = 1,iip1 |
| 130 |
|
✗ |
wgri(i,j,0)=0. |
| 131 |
|
|
enddo |
| 132 |
|
|
enddo |
| 133 |
|
|
|
| 134 |
|
|
C----------------------------------------------------------------- |
| 135 |
|
|
|
| 136 |
|
|
C start here |
| 137 |
|
|
C boucle sur les latitudes |
| 138 |
|
|
C |
| 139 |
|
✗ |
DO 1 K=1,LAT |
| 140 |
|
|
C |
| 141 |
|
|
C place limits on appropriate moments before transport |
| 142 |
|
|
C (if flux-limiting is to be applied) |
| 143 |
|
|
C |
| 144 |
|
✗ |
IF(.NOT.LIMIT) GO TO 101 |
| 145 |
|
|
C |
| 146 |
|
✗ |
DO 10 JV=1,NTRA |
| 147 |
|
✗ |
DO 10 L=1,NIV |
| 148 |
|
✗ |
DO 100 I=1,LON |
| 149 |
|
|
sz(I,K,L,JV)=SIGN(AMIN1(AMAX1(S0(I,K,L,JV),0.), |
| 150 |
|
✗ |
+ ABS(sz(I,K,L,JV))),sz(I,K,L,JV)) |
| 151 |
|
✗ |
100 CONTINUE |
| 152 |
|
✗ |
10 CONTINUE |
| 153 |
|
|
C |
| 154 |
|
|
101 CONTINUE |
| 155 |
|
|
C |
| 156 |
|
|
C boucle sur les niveaux intercouches de 1 a NIV-1 |
| 157 |
|
|
C (flux nul au sommet L=0 et a la base L=NIV) |
| 158 |
|
|
C |
| 159 |
|
|
C calculate flux and moments between adjacent boxes |
| 160 |
|
|
C (flux from LP to L if WGRI(L).lt.0, from L to LP if WGRI(L).gt.0) |
| 161 |
|
|
C 1- create temporary moments/masses for partial boxes in transit |
| 162 |
|
|
C 2- reajusts moments remaining in the box |
| 163 |
|
|
C |
| 164 |
|
✗ |
DO 11 L=1,NIV-1 |
| 165 |
|
✗ |
LP=L+1 |
| 166 |
|
|
C |
| 167 |
|
✗ |
DO 110 I=1,LON |
| 168 |
|
|
C |
| 169 |
|
✗ |
IF(WGRI(I,K,L).LT.0.) THEN |
| 170 |
|
✗ |
FM(I,L)=-WGRI(I,K,L)*DTZ |
| 171 |
|
✗ |
ALF(I)=FM(I,L)/SM(I,K,LP) |
| 172 |
|
✗ |
SM(I,K,LP)=SM(I,K,LP)-FM(I,L) |
| 173 |
|
|
ELSE |
| 174 |
|
✗ |
FM(I,L)=WGRI(I,K,L)*DTZ |
| 175 |
|
✗ |
ALF(I)=FM(I,L)/SM(I,K,L) |
| 176 |
|
✗ |
SM(I,K,L)=SM(I,K,L)-FM(I,L) |
| 177 |
|
|
ENDIF |
| 178 |
|
|
C |
| 179 |
|
✗ |
ALFQ (I)=ALF(I)*ALF(I) |
| 180 |
|
✗ |
ALF1 (I)=1.-ALF(I) |
| 181 |
|
✗ |
ALF1Q(I)=ALF1(I)*ALF1(I) |
| 182 |
|
|
C |
| 183 |
|
✗ |
110 CONTINUE |
| 184 |
|
|
C |
| 185 |
|
✗ |
DO 111 JV=1,NTRA |
| 186 |
|
✗ |
DO 1110 I=1,LON |
| 187 |
|
|
C |
| 188 |
|
✗ |
IF(WGRI(I,K,L).LT.0.) THEN |
| 189 |
|
|
C |
| 190 |
|
✗ |
F0(I,L,JV)=ALF (I)*( S0(I,K,LP,JV)-ALF1(I)*sz(I,K,LP,JV) ) |
| 191 |
|
✗ |
FZ(I,L,JV)=ALFQ(I)*sz(I,K,LP,JV) |
| 192 |
|
✗ |
FX(I,L,JV)=ALF (I)*sx(I,K,LP,JV) |
| 193 |
|
✗ |
FY(I,L,JV)=ALF (I)*sy(I,K,LP,JV) |
| 194 |
|
|
C |
| 195 |
|
✗ |
S0(I,K,LP,JV)=S0(I,K,LP,JV)-F0(I,L,JV) |
| 196 |
|
✗ |
sz(I,K,LP,JV)=ALF1Q(I)*sz(I,K,LP,JV) |
| 197 |
|
✗ |
sx(I,K,LP,JV)=sx(I,K,LP,JV)-FX(I,L,JV) |
| 198 |
|
✗ |
sy(I,K,LP,JV)=sy(I,K,LP,JV)-FY(I,L,JV) |
| 199 |
|
|
C |
| 200 |
|
|
ELSE |
| 201 |
|
|
C |
| 202 |
|
✗ |
F0(I,L,JV)=ALF (I)*(S0(I,K,L,JV)+ALF1(I)*sz(I,K,L,JV) ) |
| 203 |
|
✗ |
FZ(I,L,JV)=ALFQ(I)*sz(I,K,L,JV) |
| 204 |
|
✗ |
FX(I,L,JV)=ALF (I)*sx(I,K,L,JV) |
| 205 |
|
✗ |
FY(I,L,JV)=ALF (I)*sy(I,K,L,JV) |
| 206 |
|
|
C |
| 207 |
|
✗ |
S0(I,K,L,JV)=S0(I,K,L,JV)-F0(I,L,JV) |
| 208 |
|
✗ |
sz(I,K,L,JV)=ALF1Q(I)*sz(I,K,L,JV) |
| 209 |
|
✗ |
sx(I,K,L,JV)=sx(I,K,L,JV)-FX(I,L,JV) |
| 210 |
|
✗ |
sy(I,K,L,JV)=sy(I,K,L,JV)-FY(I,L,JV) |
| 211 |
|
|
C |
| 212 |
|
|
ENDIF |
| 213 |
|
|
C |
| 214 |
|
✗ |
1110 CONTINUE |
| 215 |
|
✗ |
111 CONTINUE |
| 216 |
|
|
C |
| 217 |
|
✗ |
11 CONTINUE |
| 218 |
|
|
C |
| 219 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
| 220 |
|
|
C |
| 221 |
|
✗ |
DO 12 L=1,NIV-1 |
| 222 |
|
✗ |
LP=L+1 |
| 223 |
|
|
C |
| 224 |
|
✗ |
DO 120 I=1,LON |
| 225 |
|
|
C |
| 226 |
|
✗ |
IF(WGRI(I,K,L).LT.0.) THEN |
| 227 |
|
✗ |
SM(I,K,L)=SM(I,K,L)+FM(I,L) |
| 228 |
|
✗ |
ALF(I)=FM(I,L)/SM(I,K,L) |
| 229 |
|
|
ELSE |
| 230 |
|
✗ |
SM(I,K,LP)=SM(I,K,LP)+FM(I,L) |
| 231 |
|
✗ |
ALF(I)=FM(I,L)/SM(I,K,LP) |
| 232 |
|
|
ENDIF |
| 233 |
|
|
C |
| 234 |
|
✗ |
ALF1(I)=1.-ALF(I) |
| 235 |
|
✗ |
ALFQ(I)=ALF(I)*ALF(I) |
| 236 |
|
✗ |
ALF1Q(I)=ALF1(I)*ALF1(I) |
| 237 |
|
|
C |
| 238 |
|
✗ |
120 CONTINUE |
| 239 |
|
|
C |
| 240 |
|
✗ |
DO 121 JV=1,NTRA |
| 241 |
|
✗ |
DO 1210 I=1,LON |
| 242 |
|
|
C |
| 243 |
|
✗ |
IF(WGRI(I,K,L).LT.0.) THEN |
| 244 |
|
|
C |
| 245 |
|
✗ |
TEMPTM=-ALF(I)*S0(I,K,L,JV)+ALF1(I)*F0(I,L,JV) |
| 246 |
|
✗ |
S0(I,K,L,JV)=S0(I,K,L,JV)+F0(I,L,JV) |
| 247 |
|
✗ |
sz(I,K,L,JV)=ALF(I)*FZ(I,L,JV)+ALF1(I)*sz(I,K,L,JV)+3.*TEMPTM |
| 248 |
|
✗ |
sx(I,K,L,JV)=sx(I,K,L,JV)+FX(I,L,JV) |
| 249 |
|
✗ |
sy(I,K,L,JV)=sy(I,K,L,JV)+FY(I,L,JV) |
| 250 |
|
|
C |
| 251 |
|
|
ELSE |
| 252 |
|
|
C |
| 253 |
|
✗ |
TEMPTM=ALF(I)*S0(I,K,LP,JV)-ALF1(I)*F0(I,L,JV) |
| 254 |
|
✗ |
S0(I,K,LP,JV)=S0(I,K,LP,JV)+F0(I,L,JV) |
| 255 |
|
|
sz(I,K,LP,JV)=ALF(I)*FZ(I,L,JV)+ALF1(I)*sz(I,K,LP,JV) |
| 256 |
|
✗ |
+ +3.*TEMPTM |
| 257 |
|
✗ |
sx(I,K,LP,JV)=sx(I,K,LP,JV)+FX(I,L,JV) |
| 258 |
|
✗ |
sy(I,K,LP,JV)=sy(I,K,LP,JV)+FY(I,L,JV) |
| 259 |
|
|
C |
| 260 |
|
|
ENDIF |
| 261 |
|
|
C |
| 262 |
|
✗ |
1210 CONTINUE |
| 263 |
|
✗ |
121 CONTINUE |
| 264 |
|
|
C |
| 265 |
|
✗ |
12 CONTINUE |
| 266 |
|
|
C |
| 267 |
|
|
C fin de la boucle principale sur les latitudes |
| 268 |
|
|
C |
| 269 |
|
✗ |
1 CONTINUE |
| 270 |
|
|
C |
| 271 |
|
|
C------------------------------------------------------------- |
| 272 |
|
|
C |
| 273 |
|
|
C ----------- AA Test en fin de ADVX ------ Controle des S* |
| 274 |
|
|
|
| 275 |
|
|
c DO 9999 l = 1, llm |
| 276 |
|
|
c DO 9999 j = 1, jjp1 |
| 277 |
|
|
c DO 9999 i = 1, iip1 |
| 278 |
|
|
c IF (S0(i,j,l,ntra).lt.0..and.LIMIT) THEN |
| 279 |
|
|
c PRINT*, '-------------------' |
| 280 |
|
|
c PRINT*, 'En fin de ADVZ' |
| 281 |
|
|
c PRINT*,'S0(',i,j,l,')=',S0(i,j,l,ntra) |
| 282 |
|
|
c print*, 'sx(',i,j,l,')=',sx(i,j,l,ntra) |
| 283 |
|
|
c print*, 'sy(',i,j,l,')=',sy(i,j,l,ntra) |
| 284 |
|
|
c print*, 'sz(',i,j,l,')=',sz(i,j,l,ntra) |
| 285 |
|
|
c WRITE (*,*) 'On arrete !! - pbl en fin de ADVZ1' |
| 286 |
|
|
c STOP |
| 287 |
|
|
c ENDIF |
| 288 |
|
|
9999 CONTINUE |
| 289 |
|
|
|
| 290 |
|
|
C *** ------------------- bouclage cyclique en X ------------ |
| 291 |
|
|
|
| 292 |
|
|
c DO l = 1,llm |
| 293 |
|
|
c DO j = 1,jjp1 |
| 294 |
|
|
c SM(iip1,j,l) = SM(1,j,l) |
| 295 |
|
|
c S0(iip1,j,l,ntra) = S0(1,j,l,ntra) |
| 296 |
|
|
C sx(iip1,j,l,ntra) = sx(1,j,l,ntra) |
| 297 |
|
|
c sy(iip1,j,l,ntra) = sy(1,j,l,ntra) |
| 298 |
|
|
c sz(iip1,j,l,ntra) = sz(1,j,l,ntra) |
| 299 |
|
|
c ENDDO |
| 300 |
|
|
c ENDDO |
| 301 |
|
|
|
| 302 |
|
|
C------------------------------------------------------------- |
| 303 |
|
|
C *** Test : diag de la qqtite totale de traceur |
| 304 |
|
|
C dans l'atmosphere avant l'advection en z |
| 305 |
|
✗ |
DO l = 1,llm |
| 306 |
|
✗ |
DO j = 1,jjp1 |
| 307 |
|
✗ |
DO i = 1,iim |
| 308 |
|
|
cIM 240305 sqf = sqf + S0(i,j,l,9) |
| 309 |
|
✗ |
sqf = sqf + S0(i,j,l,ntra) |
| 310 |
|
|
ENDDO |
| 311 |
|
|
ENDDO |
| 312 |
|
|
ENDDO |
| 313 |
|
✗ |
PRINT*,'-------- DIAG DANS ADVZ - SORTIE ---------' |
| 314 |
|
✗ |
PRINT*,'sqf=', sqf |
| 315 |
|
|
|
| 316 |
|
|
C------------------------------------------------------------- |
| 317 |
|
✗ |
RETURN |
| 318 |
|
|
END |
| 319 |
|
|
C_______________________________________________________________ |
| 320 |
|
|
C_______________________________________________________________ |
| 321 |
|
|
|