| Directory: | ./ |
|---|---|
| File: | phys/cloudth_mod.f90 |
| Date: | 2022-01-11 19:19:34 |
| Exec | Total | Coverage | |
|---|---|---|---|
| Lines: | 173 | 603 | 28.7% |
| Branches: | 74 | 302 | 24.5% |
| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | MODULE cloudth_mod | ||
| 2 | |||
| 3 | IMPLICIT NONE | ||
| 4 | |||
| 5 | CONTAINS | ||
| 6 | |||
| 7 | ✗ | SUBROUTINE cloudth(ngrid,klev,ind2, & | |
| 8 | ✗ | & ztv,po,zqta,fraca, & | |
| 9 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & | ||
| 10 | & ratqs,zqs,t) | ||
| 11 | |||
| 12 | |||
| 13 | IMPLICIT NONE | ||
| 14 | |||
| 15 | |||
| 16 | !=========================================================================== | ||
| 17 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) | ||
| 18 | ! Date : 25 Mai 2010 | ||
| 19 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques | ||
| 20 | !=========================================================================== | ||
| 21 | |||
| 22 | |||
| 23 | ! | ||
| 24 | ! $Header$ | ||
| 25 | ! | ||
| 26 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 27 | ! veillez � n'utiliser que des ! pour les commentaires | ||
| 28 | ! et � bien positionner les & des lignes de continuation | ||
| 29 | ! (les placer en colonne 6 et en colonne 73) | ||
| 30 | ! | ||
| 31 | ! | ||
| 32 | ! A1.0 Fundamental constants | ||
| 33 | REAL RPI,RCLUM,RHPLA,RKBOL,RNAVO | ||
| 34 | ! A1.1 Astronomical constants | ||
| 35 | REAL RDAY,REA,REPSM,RSIYEA,RSIDAY,ROMEGA | ||
| 36 | ! A1.1.bis Constantes concernant l'orbite de la Terre: | ||
| 37 | REAL R_ecc, R_peri, R_incl | ||
| 38 | ! A1.2 Geoide | ||
| 39 | REAL RA,RG,R1SA | ||
| 40 | ! A1.3 Radiation | ||
| 41 | ! REAL RSIGMA,RI0 | ||
| 42 | REAL RSIGMA | ||
| 43 | ! A1.4 Thermodynamic gas phase | ||
| 44 | REAL RMO3,RMCO2,RMC,RMCH4,RMN2O,RMCFC11,RMCFC12 | ||
| 45 | REAL R,RMD,RMV,RD,RV,RCPD,RCPV,RCVD,RCVV | ||
| 46 | REAL RKAPPA,RETV, eps_w | ||
| 47 | ! A1.5,6 Thermodynamic liquid,solid phases | ||
| 48 | REAL RCW,RCS | ||
| 49 | ! A1.7 Thermodynamic transition of phase | ||
| 50 | REAL RLVTT,RLSTT,RLMLT,RTT,RATM | ||
| 51 | ! A1.8 Curve of saturation | ||
| 52 | REAL RESTT,RALPW,RBETW,RGAMW,RALPS,RBETS,RGAMS | ||
| 53 | REAL RALPD,RBETD,RGAMD | ||
| 54 | ! | ||
| 55 | COMMON/YOMCST/RPI ,RCLUM ,RHPLA ,RKBOL ,RNAVO & | ||
| 56 | & ,RDAY ,REA ,REPSM ,RSIYEA,RSIDAY,ROMEGA & | ||
| 57 | & ,R_ecc, R_peri, R_incl & | ||
| 58 | & ,RA ,RG ,R1SA & | ||
| 59 | & ,RSIGMA & | ||
| 60 | & ,R ,RMD ,RMV ,RD ,RV ,RCPD & | ||
| 61 | & ,RMO3 ,RMCO2 ,RMC ,RMCH4 ,RMN2O ,RMCFC11 ,RMCFC12 & | ||
| 62 | & ,RCPV ,RCVD ,RCVV ,RKAPPA,RETV, eps_w & | ||
| 63 | & ,RCW ,RCS & | ||
| 64 | & ,RLVTT ,RLSTT ,RLMLT ,RTT ,RATM & | ||
| 65 | & ,RESTT ,RALPW ,RBETW ,RGAMW ,RALPS ,RBETS ,RGAMS & | ||
| 66 | & ,RALPD ,RBETD ,RGAMD | ||
| 67 | ! ------------------------------------------------------------------ | ||
| 68 | !$OMP THREADPRIVATE(/YOMCST/) | ||
| 69 | ! | ||
| 70 | ! $Id: YOETHF.h 2799 2017-02-24 18:50:33Z jyg $ | ||
| 71 | ! | ||
| 72 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 73 | ! veillez n'utiliser que des ! pour les commentaires | ||
| 74 | ! et bien positionner les & des lignes de continuation | ||
| 75 | ! (les placer en colonne 6 et en colonne 73) | ||
| 76 | ! | ||
| 77 | !* COMMON *YOETHF* DERIVED CONSTANTS SPECIFIC TO ECMWF THERMODYNAMICS | ||
| 78 | ! | ||
| 79 | ! *R__ES* *CONSTANTS USED FOR COMPUTATION OF SATURATION | ||
| 80 | ! MIXING RATIO OVER LIQUID WATER(*R_LES*) OR | ||
| 81 | ! ICE(*R_IES*). | ||
| 82 | ! *RVTMP2* *RVTMP2=RCPV/RCPD-1. | ||
| 83 | ! *RHOH2O* *DENSITY OF LIQUID WATER. (RATM/100.) | ||
| 84 | ! | ||
| 85 | REAL R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES | ||
| 86 | REAL RVTMP2, RHOH2O | ||
| 87 | REAL R5ALVCP,R5ALSCP,RALVDCP,RALSDCP,RALFDCP,RTWAT,RTBER,RTBERCU | ||
| 88 | REAL RTICE,RTICECU,RTWAT_RTICE_R,RTWAT_RTICECU_R,RKOOP1,RKOOP2 | ||
| 89 | LOGICAL OK_BAD_ECMWF_THERMO ! If TRUE, then variables set by rrtm/suphec.F90 | ||
| 90 | ! If FALSE, then variables set by suphel.F90 | ||
| 91 | COMMON /YOETHF/R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES, & | ||
| 92 | & RVTMP2, RHOH2O, & | ||
| 93 | & R5ALVCP,R5ALSCP,RALVDCP,RALSDCP, & | ||
| 94 | & RALFDCP,RTWAT,RTBER,RTBERCU, & | ||
| 95 | & RTICE,RTICECU,RTWAT_RTICE_R,RTWAT_RTICECU_R,RKOOP1,& | ||
| 96 | & RKOOP2, & | ||
| 97 | & OK_BAD_ECMWF_THERMO | ||
| 98 | |||
| 99 | !$OMP THREADPRIVATE(/YOETHF/) | ||
| 100 | ! | ||
| 101 | ! $Header$ | ||
| 102 | ! | ||
| 103 | ! | ||
| 104 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 105 | ! veillez n'utiliser que des ! pour les commentaires | ||
| 106 | ! et bien positionner les & des lignes de continuation | ||
| 107 | ! (les placer en colonne 6 et en colonne 73) | ||
| 108 | ! | ||
| 109 | ! ------------------------------------------------------------------ | ||
| 110 | ! This COMDECK includes the Thermodynamical functions for the cy39 | ||
| 111 | ! ECMWF Physics package. | ||
| 112 | ! Consistent with YOMCST Basic physics constants, assuming the | ||
| 113 | ! partial pressure of water vapour is given by a first order | ||
| 114 | ! Taylor expansion of Qs(T) w.r.t. to Temperature, using constants | ||
| 115 | ! in YOETHF | ||
| 116 | ! ------------------------------------------------------------------ | ||
| 117 | REAL PTARG, PDELARG, P5ARG, PQSARG, PCOARG | ||
| 118 | REAL FOEEW, FOEDE, qsats, qsatl, dqsats, dqsatl | ||
| 119 | LOGICAL thermcep | ||
| 120 | PARAMETER (thermcep=.TRUE.) | ||
| 121 | ! | ||
| 122 | FOEEW ( PTARG,PDELARG ) = EXP ( & | ||
| 123 | & (R3LES*(1.-PDELARG)+R3IES*PDELARG) * (PTARG-RTT) & | ||
| 124 | & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG)) ) | ||
| 125 | ! | ||
| 126 | FOEDE ( PTARG,PDELARG,P5ARG,PQSARG,PCOARG ) = PQSARG*PCOARG*P5ARG & | ||
| 127 | & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG))**2 | ||
| 128 | ! | ||
| 129 | qsats(ptarg) = 100.0 * 0.622 * 10.0 & | ||
| 130 | & ** (2.07023 - 0.00320991 * ptarg & | ||
| 131 | & - 2484.896 / ptarg + 3.56654 * LOG10(ptarg)) | ||
| 132 | qsatl(ptarg) = 100.0 * 0.622 * 10.0 & | ||
| 133 | & ** (23.8319 - 2948.964 / ptarg & | ||
| 134 | & - 5.028 * LOG10(ptarg) & | ||
| 135 | & - 29810.16 * EXP( - 0.0699382 * ptarg) & | ||
| 136 | & + 25.21935 * EXP( - 2999.924 / ptarg)) | ||
| 137 | ! | ||
| 138 | dqsats(ptarg,pqsarg) = RLVTT/RCPD*pqsarg * (3.56654/ptarg & | ||
| 139 | & +2484.896*LOG(10.)/ptarg**2 & | ||
| 140 | & -0.00320991*LOG(10.)) | ||
| 141 | dqsatl(ptarg,pqsarg) = RLVTT/RCPD*pqsarg*LOG(10.)* & | ||
| 142 | & (2948.964/ptarg**2-5.028/LOG(10.)/ptarg & | ||
| 143 | & +25.21935*2999.924/ptarg**2*EXP(-2999.924/ptarg) & | ||
| 144 | & +29810.16*0.0699382*EXP(-0.0699382*ptarg)) | ||
| 145 | integer :: iflag_thermals,nsplit_thermals | ||
| 146 | |||
| 147 | !!! nrlmd le 10/04/2012 | ||
| 148 | integer :: iflag_trig_bl,iflag_clos_bl | ||
| 149 | integer :: tau_trig_shallow,tau_trig_deep | ||
| 150 | real :: s_trig | ||
| 151 | !!! fin nrlmd le 10/04/2012 | ||
| 152 | |||
| 153 | real,parameter :: r_aspect_thermals=2.,l_mix_thermals=30. | ||
| 154 | real :: alp_bl_k | ||
| 155 | real :: tau_thermals,fact_thermals_ed_dz | ||
| 156 | integer,parameter :: w2di_thermals=0 | ||
| 157 | integer :: isplit | ||
| 158 | |||
| 159 | integer :: iflag_coupl,iflag_clos,iflag_wake | ||
| 160 | integer :: iflag_thermals_ed,iflag_thermals_optflux,iflag_thermals_closure | ||
| 161 | |||
| 162 | common/ctherm1/iflag_thermals,nsplit_thermals,iflag_thermals_closure | ||
| 163 | common/ctherm2/tau_thermals,alp_bl_k,fact_thermals_ed_dz | ||
| 164 | common/ctherm4/iflag_coupl,iflag_clos,iflag_wake | ||
| 165 | common/ctherm5/iflag_thermals_ed,iflag_thermals_optflux | ||
| 166 | |||
| 167 | !!! nrlmd le 10/04/2012 | ||
| 168 | common/ctherm6/iflag_trig_bl,iflag_clos_bl | ||
| 169 | common/ctherm7/tau_trig_shallow,tau_trig_deep | ||
| 170 | common/ctherm8/s_trig | ||
| 171 | !!! fin nrlmd le 10/04/2012 | ||
| 172 | |||
| 173 | !$OMP THREADPRIVATE(/ctherm1/,/ctherm2/,/ctherm4/,/ctherm5/) | ||
| 174 | !$OMP THREADPRIVATE(/ctherm6/,/ctherm7/,/ctherm8/) | ||
| 175 | ! | ||
| 176 | ! $Id: nuage.h 2945 2017-07-12 14:20:24Z jbmadeleine $ | ||
| 177 | ! | ||
| 178 | REAL rad_froid, rad_chau1, rad_chau2, t_glace_max, t_glace_min | ||
| 179 | REAL exposant_glace | ||
| 180 | REAL rei_min,rei_max | ||
| 181 | REAL tau_cld_cv,coefw_cld_cv | ||
| 182 | |||
| 183 | REAL tmax_fonte_cv | ||
| 184 | |||
| 185 | INTEGER iflag_t_glace, iflag_cloudth_vert, iflag_cld_cv | ||
| 186 | INTEGER iflag_rain_incloud_vol | ||
| 187 | |||
| 188 | common /nuagecom/ rad_froid,rad_chau1, rad_chau2,t_glace_max, & | ||
| 189 | & t_glace_min,exposant_glace,rei_min,rei_max, & | ||
| 190 | & tau_cld_cv,coefw_cld_cv, & | ||
| 191 | & tmax_fonte_cv, & | ||
| 192 | & iflag_t_glace,iflag_cloudth_vert,iflag_cld_cv, & | ||
| 193 | & iflag_rain_incloud_vol | ||
| 194 | !$OMP THREADPRIVATE(/nuagecom/) | ||
| 195 | |||
| 196 | INTEGER itap,ind1,ind2 | ||
| 197 | INTEGER ngrid,klev,klon,l,ig | ||
| 198 | |||
| 199 | REAL ztv(ngrid,klev) | ||
| 200 | REAL po(ngrid) | ||
| 201 | ✗ | REAL zqenv(ngrid) | |
| 202 | REAL zqta(ngrid,klev) | ||
| 203 | |||
| 204 | REAL fraca(ngrid,klev+1) | ||
| 205 | REAL zpspsk(ngrid,klev) | ||
| 206 | REAL paprs(ngrid,klev+1) | ||
| 207 | REAL pplay(ngrid,klev) | ||
| 208 | REAL ztla(ngrid,klev) | ||
| 209 | REAL zthl(ngrid,klev) | ||
| 210 | |||
| 211 | ✗ | REAL zqsatth(ngrid,klev) | |
| 212 | ✗ | REAL zqsatenv(ngrid,klev) | |
| 213 | |||
| 214 | |||
| 215 | ✗ | REAL sigma1(ngrid,klev) | |
| 216 | ✗ | REAL sigma2(ngrid,klev) | |
| 217 | ✗ | REAL qlth(ngrid,klev) | |
| 218 | ✗ | REAL qlenv(ngrid,klev) | |
| 219 | ✗ | REAL qltot(ngrid,klev) | |
| 220 | ✗ | REAL cth(ngrid,klev) | |
| 221 | ✗ | REAL cenv(ngrid,klev) | |
| 222 | REAL ctot(ngrid,klev) | ||
| 223 | ✗ | REAL rneb(ngrid,klev) | |
| 224 | REAL t(ngrid,klev) | ||
| 225 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi | ||
| 226 | REAL rdd,cppd,Lv | ||
| 227 | REAL alth,alenv,ath,aenv | ||
| 228 | REAL sth,senv,sigma1s,sigma2s,xth,xenv | ||
| 229 | REAL Tbef,zdelta,qsatbef,zcor | ||
| 230 | REAL qlbef | ||
| 231 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur | ||
| 232 | |||
| 233 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) | ||
| 234 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) | ||
| 235 | REAL zqs(ngrid), qcloud(ngrid) | ||
| 236 | REAL erf | ||
| 237 | |||
| 238 | |||
| 239 | |||
| 240 | |||
| 241 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
| 242 | ! Gestion de deux versions de cloudth | ||
| 243 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
| 244 | |||
| 245 | ✗ | IF (iflag_cloudth_vert.GE.1) THEN | |
| 246 | CALL cloudth_vert(ngrid,klev,ind2, & | ||
| 247 | & ztv,po,zqta,fraca, & | ||
| 248 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & | ||
| 249 | ✗ | & ratqs,zqs,t) | |
| 250 | ✗ | RETURN | |
| 251 | ENDIF | ||
| 252 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
| 253 | |||
| 254 | |||
| 255 | !------------------------------------------------------------------------------- | ||
| 256 | ! Initialisation des variables r?elles | ||
| 257 | !------------------------------------------------------------------------------- | ||
| 258 | ✗ | sigma1(:,:)=0. | |
| 259 | ✗ | sigma2(:,:)=0. | |
| 260 | ✗ | qlth(:,:)=0. | |
| 261 | ✗ | qlenv(:,:)=0. | |
| 262 | ✗ | qltot(:,:)=0. | |
| 263 | ✗ | rneb(:,:)=0. | |
| 264 | ✗ | qcloud(:)=0. | |
| 265 | ✗ | cth(:,:)=0. | |
| 266 | ✗ | cenv(:,:)=0. | |
| 267 | ✗ | ctot(:,:)=0. | |
| 268 | qsatmmussig1=0. | ||
| 269 | qsatmmussig2=0. | ||
| 270 | rdd=287.04 | ||
| 271 | cppd=1005.7 | ||
| 272 | pi=3.14159 | ||
| 273 | Lv=2.5e6 | ||
| 274 | sqrt2pi=sqrt(2.*pi) | ||
| 275 | |||
| 276 | |||
| 277 | |||
| 278 | !------------------------------------------------------------------------------- | ||
| 279 | ! Calcul de la fraction du thermique et des ?cart-types des distributions | ||
| 280 | !------------------------------------------------------------------------------- | ||
| 281 | ✗ | do ind1=1,ngrid | |
| 282 | |||
| 283 | ✗ | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then | |
| 284 | |||
| 285 | ✗ | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) | |
| 286 | |||
| 287 | |||
| 288 | ! zqenv(ind1)=po(ind1) | ||
| 289 | ✗ | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) | |
| 290 | ✗ | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 291 | ✗ | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 292 | ✗ | qsatbef=MIN(0.5,qsatbef) | |
| 293 | ✗ | zcor=1./(1.-retv*qsatbef) | |
| 294 | ✗ | qsatbef=qsatbef*zcor | |
| 295 | ✗ | zqsatenv(ind1,ind2)=qsatbef | |
| 296 | |||
| 297 | |||
| 298 | |||
| 299 | |||
| 300 | ✗ | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) | |
| 301 | ✗ | aenv=1./(1.+(alenv*Lv/cppd)) | |
| 302 | ✗ | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) | |
| 303 | |||
| 304 | |||
| 305 | |||
| 306 | |||
| 307 | ✗ | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) | |
| 308 | ✗ | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 309 | ✗ | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 310 | ✗ | qsatbef=MIN(0.5,qsatbef) | |
| 311 | ✗ | zcor=1./(1.-retv*qsatbef) | |
| 312 | ✗ | qsatbef=qsatbef*zcor | |
| 313 | ✗ | zqsatth(ind1,ind2)=qsatbef | |
| 314 | |||
| 315 | ✗ | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) | |
| 316 | ✗ | ath=1./(1.+(alth*Lv/cppd)) | |
| 317 | ✗ | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) | |
| 318 | |||
| 319 | |||
| 320 | |||
| 321 | !------------------------------------------------------------------------------ | ||
| 322 | ! Calcul des ?cart-types pour s | ||
| 323 | !------------------------------------------------------------------------------ | ||
| 324 | |||
| 325 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) | ||
| 326 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2) | ||
| 327 | ! if (paprs(ind1,ind2).gt.90000) then | ||
| 328 | ! ratqs(ind1,ind2)=0.002 | ||
| 329 | ! else | ||
| 330 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 | ||
| 331 | ! endif | ||
| 332 | ✗ | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) | |
| 333 | ✗ | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) | |
| 334 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) | ||
| 335 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 | ||
| 336 | |||
| 337 | !------------------------------------------------------------------------------ | ||
| 338 | ! Calcul de l'eau condens?e et de la couverture nuageuse | ||
| 339 | !------------------------------------------------------------------------------ | ||
| 340 | sqrt2pi=sqrt(2.*pi) | ||
| 341 | ✗ | xth=sth/(sqrt(2.)*sigma2s) | |
| 342 | ✗ | xenv=senv/(sqrt(2.)*sigma1s) | |
| 343 | ✗ | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) | |
| 344 | ✗ | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) | |
| 345 | ✗ | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) | |
| 346 | |||
| 347 | ✗ | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) | |
| 348 | ✗ | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) | |
| 349 | ✗ | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) | |
| 350 | |||
| 351 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
| 352 | ✗ | if (ctot(ind1,ind2).lt.1.e-10) then | |
| 353 | ✗ | ctot(ind1,ind2)=0. | |
| 354 | ✗ | qcloud(ind1)=zqsatenv(ind1,ind2) | |
| 355 | |||
| 356 | else | ||
| 357 | |||
| 358 | ctot(ind1,ind2)=ctot(ind1,ind2) | ||
| 359 | ✗ | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) | |
| 360 | |||
| 361 | endif | ||
| 362 | |||
| 363 | |||
| 364 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' | ||
| 365 | |||
| 366 | |||
| 367 | else ! gaussienne environnement seule | ||
| 368 | |||
| 369 | ✗ | zqenv(ind1)=po(ind1) | |
| 370 | ✗ | Tbef=t(ind1,ind2) | |
| 371 | ✗ | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 372 | ✗ | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 373 | ✗ | qsatbef=MIN(0.5,qsatbef) | |
| 374 | ✗ | zcor=1./(1.-retv*qsatbef) | |
| 375 | ✗ | qsatbef=qsatbef*zcor | |
| 376 | ✗ | zqsatenv(ind1,ind2)=qsatbef | |
| 377 | |||
| 378 | |||
| 379 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) | ||
| 380 | ✗ | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) | |
| 381 | ✗ | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) | |
| 382 | ✗ | aenv=1./(1.+(alenv*Lv/cppd)) | |
| 383 | ✗ | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) | |
| 384 | |||
| 385 | |||
| 386 | ✗ | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) | |
| 387 | |||
| 388 | sqrt2pi=sqrt(2.*pi) | ||
| 389 | ✗ | xenv=senv/(sqrt(2.)*sigma1s) | |
| 390 | ✗ | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) | |
| 391 | ✗ | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) | |
| 392 | |||
| 393 | ✗ | if (ctot(ind1,ind2).lt.1.e-3) then | |
| 394 | ✗ | ctot(ind1,ind2)=0. | |
| 395 | ✗ | qcloud(ind1)=zqsatenv(ind1,ind2) | |
| 396 | |||
| 397 | else | ||
| 398 | |||
| 399 | ctot(ind1,ind2)=ctot(ind1,ind2) | ||
| 400 | ✗ | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) | |
| 401 | |||
| 402 | endif | ||
| 403 | |||
| 404 | |||
| 405 | |||
| 406 | |||
| 407 | |||
| 408 | |||
| 409 | endif | ||
| 410 | enddo | ||
| 411 | |||
| 412 | return | ||
| 413 | ! end | ||
| 414 | END SUBROUTINE cloudth | ||
| 415 | |||
| 416 | |||
| 417 | |||
| 418 | !=========================================================================== | ||
| 419 | ✗ | SUBROUTINE cloudth_vert(ngrid,klev,ind2, & | |
| 420 | & ztv,po,zqta,fraca, & | ||
| 421 | ✗ | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & | |
| 422 | & ratqs,zqs,t) | ||
| 423 | |||
| 424 | !=========================================================================== | ||
| 425 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) | ||
| 426 | ! Date : 25 Mai 2010 | ||
| 427 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques | ||
| 428 | !=========================================================================== | ||
| 429 | |||
| 430 | |||
| 431 | ✗ | USE ioipsl_getin_p_mod, ONLY : getin_p | |
| 432 | |||
| 433 | IMPLICIT NONE | ||
| 434 | |||
| 435 | ! | ||
| 436 | ! $Header$ | ||
| 437 | ! | ||
| 438 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 439 | ! veillez � n'utiliser que des ! pour les commentaires | ||
| 440 | ! et � bien positionner les & des lignes de continuation | ||
| 441 | ! (les placer en colonne 6 et en colonne 73) | ||
| 442 | ! | ||
| 443 | ! | ||
| 444 | ! A1.0 Fundamental constants | ||
| 445 | REAL RPI,RCLUM,RHPLA,RKBOL,RNAVO | ||
| 446 | ! A1.1 Astronomical constants | ||
| 447 | REAL RDAY,REA,REPSM,RSIYEA,RSIDAY,ROMEGA | ||
| 448 | ! A1.1.bis Constantes concernant l'orbite de la Terre: | ||
| 449 | REAL R_ecc, R_peri, R_incl | ||
| 450 | ! A1.2 Geoide | ||
| 451 | REAL RA,RG,R1SA | ||
| 452 | ! A1.3 Radiation | ||
| 453 | ! REAL RSIGMA,RI0 | ||
| 454 | REAL RSIGMA | ||
| 455 | ! A1.4 Thermodynamic gas phase | ||
| 456 | REAL RMO3,RMCO2,RMC,RMCH4,RMN2O,RMCFC11,RMCFC12 | ||
| 457 | REAL R,RMD,RMV,RD,RV,RCPD,RCPV,RCVD,RCVV | ||
| 458 | REAL RKAPPA,RETV, eps_w | ||
| 459 | ! A1.5,6 Thermodynamic liquid,solid phases | ||
| 460 | REAL RCW,RCS | ||
| 461 | ! A1.7 Thermodynamic transition of phase | ||
| 462 | REAL RLVTT,RLSTT,RLMLT,RTT,RATM | ||
| 463 | ! A1.8 Curve of saturation | ||
| 464 | REAL RESTT,RALPW,RBETW,RGAMW,RALPS,RBETS,RGAMS | ||
| 465 | REAL RALPD,RBETD,RGAMD | ||
| 466 | ! | ||
| 467 | COMMON/YOMCST/RPI ,RCLUM ,RHPLA ,RKBOL ,RNAVO & | ||
| 468 | & ,RDAY ,REA ,REPSM ,RSIYEA,RSIDAY,ROMEGA & | ||
| 469 | & ,R_ecc, R_peri, R_incl & | ||
| 470 | & ,RA ,RG ,R1SA & | ||
| 471 | & ,RSIGMA & | ||
| 472 | & ,R ,RMD ,RMV ,RD ,RV ,RCPD & | ||
| 473 | & ,RMO3 ,RMCO2 ,RMC ,RMCH4 ,RMN2O ,RMCFC11 ,RMCFC12 & | ||
| 474 | & ,RCPV ,RCVD ,RCVV ,RKAPPA,RETV, eps_w & | ||
| 475 | & ,RCW ,RCS & | ||
| 476 | & ,RLVTT ,RLSTT ,RLMLT ,RTT ,RATM & | ||
| 477 | & ,RESTT ,RALPW ,RBETW ,RGAMW ,RALPS ,RBETS ,RGAMS & | ||
| 478 | & ,RALPD ,RBETD ,RGAMD | ||
| 479 | ! ------------------------------------------------------------------ | ||
| 480 | !$OMP THREADPRIVATE(/YOMCST/) | ||
| 481 | ! | ||
| 482 | ! $Id: YOETHF.h 2799 2017-02-24 18:50:33Z jyg $ | ||
| 483 | ! | ||
| 484 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 485 | ! veillez n'utiliser que des ! pour les commentaires | ||
| 486 | ! et bien positionner les & des lignes de continuation | ||
| 487 | ! (les placer en colonne 6 et en colonne 73) | ||
| 488 | ! | ||
| 489 | !* COMMON *YOETHF* DERIVED CONSTANTS SPECIFIC TO ECMWF THERMODYNAMICS | ||
| 490 | ! | ||
| 491 | ! *R__ES* *CONSTANTS USED FOR COMPUTATION OF SATURATION | ||
| 492 | ! MIXING RATIO OVER LIQUID WATER(*R_LES*) OR | ||
| 493 | ! ICE(*R_IES*). | ||
| 494 | ! *RVTMP2* *RVTMP2=RCPV/RCPD-1. | ||
| 495 | ! *RHOH2O* *DENSITY OF LIQUID WATER. (RATM/100.) | ||
| 496 | ! | ||
| 497 | REAL R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES | ||
| 498 | REAL RVTMP2, RHOH2O | ||
| 499 | REAL R5ALVCP,R5ALSCP,RALVDCP,RALSDCP,RALFDCP,RTWAT,RTBER,RTBERCU | ||
| 500 | REAL RTICE,RTICECU,RTWAT_RTICE_R,RTWAT_RTICECU_R,RKOOP1,RKOOP2 | ||
| 501 | LOGICAL OK_BAD_ECMWF_THERMO ! If TRUE, then variables set by rrtm/suphec.F90 | ||
| 502 | ! If FALSE, then variables set by suphel.F90 | ||
| 503 | COMMON /YOETHF/R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES, & | ||
| 504 | & RVTMP2, RHOH2O, & | ||
| 505 | & R5ALVCP,R5ALSCP,RALVDCP,RALSDCP, & | ||
| 506 | & RALFDCP,RTWAT,RTBER,RTBERCU, & | ||
| 507 | & RTICE,RTICECU,RTWAT_RTICE_R,RTWAT_RTICECU_R,RKOOP1,& | ||
| 508 | & RKOOP2, & | ||
| 509 | & OK_BAD_ECMWF_THERMO | ||
| 510 | |||
| 511 | !$OMP THREADPRIVATE(/YOETHF/) | ||
| 512 | ! | ||
| 513 | ! $Header$ | ||
| 514 | ! | ||
| 515 | ! | ||
| 516 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 517 | ! veillez n'utiliser que des ! pour les commentaires | ||
| 518 | ! et bien positionner les & des lignes de continuation | ||
| 519 | ! (les placer en colonne 6 et en colonne 73) | ||
| 520 | ! | ||
| 521 | ! ------------------------------------------------------------------ | ||
| 522 | ! This COMDECK includes the Thermodynamical functions for the cy39 | ||
| 523 | ! ECMWF Physics package. | ||
| 524 | ! Consistent with YOMCST Basic physics constants, assuming the | ||
| 525 | ! partial pressure of water vapour is given by a first order | ||
| 526 | ! Taylor expansion of Qs(T) w.r.t. to Temperature, using constants | ||
| 527 | ! in YOETHF | ||
| 528 | ! ------------------------------------------------------------------ | ||
| 529 | REAL PTARG, PDELARG, P5ARG, PQSARG, PCOARG | ||
| 530 | REAL FOEEW, FOEDE, qsats, qsatl, dqsats, dqsatl | ||
| 531 | LOGICAL thermcep | ||
| 532 | PARAMETER (thermcep=.TRUE.) | ||
| 533 | ! | ||
| 534 | FOEEW ( PTARG,PDELARG ) = EXP ( & | ||
| 535 | & (R3LES*(1.-PDELARG)+R3IES*PDELARG) * (PTARG-RTT) & | ||
| 536 | & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG)) ) | ||
| 537 | ! | ||
| 538 | FOEDE ( PTARG,PDELARG,P5ARG,PQSARG,PCOARG ) = PQSARG*PCOARG*P5ARG & | ||
| 539 | & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG))**2 | ||
| 540 | ! | ||
| 541 | qsats(ptarg) = 100.0 * 0.622 * 10.0 & | ||
| 542 | & ** (2.07023 - 0.00320991 * ptarg & | ||
| 543 | & - 2484.896 / ptarg + 3.56654 * LOG10(ptarg)) | ||
| 544 | qsatl(ptarg) = 100.0 * 0.622 * 10.0 & | ||
| 545 | & ** (23.8319 - 2948.964 / ptarg & | ||
| 546 | & - 5.028 * LOG10(ptarg) & | ||
| 547 | & - 29810.16 * EXP( - 0.0699382 * ptarg) & | ||
| 548 | & + 25.21935 * EXP( - 2999.924 / ptarg)) | ||
| 549 | ! | ||
| 550 | dqsats(ptarg,pqsarg) = RLVTT/RCPD*pqsarg * (3.56654/ptarg & | ||
| 551 | & +2484.896*LOG(10.)/ptarg**2 & | ||
| 552 | & -0.00320991*LOG(10.)) | ||
| 553 | dqsatl(ptarg,pqsarg) = RLVTT/RCPD*pqsarg*LOG(10.)* & | ||
| 554 | & (2948.964/ptarg**2-5.028/LOG(10.)/ptarg & | ||
| 555 | & +25.21935*2999.924/ptarg**2*EXP(-2999.924/ptarg) & | ||
| 556 | & +29810.16*0.0699382*EXP(-0.0699382*ptarg)) | ||
| 557 | integer :: iflag_thermals,nsplit_thermals | ||
| 558 | |||
| 559 | !!! nrlmd le 10/04/2012 | ||
| 560 | integer :: iflag_trig_bl,iflag_clos_bl | ||
| 561 | integer :: tau_trig_shallow,tau_trig_deep | ||
| 562 | real :: s_trig | ||
| 563 | !!! fin nrlmd le 10/04/2012 | ||
| 564 | |||
| 565 | real,parameter :: r_aspect_thermals=2.,l_mix_thermals=30. | ||
| 566 | real :: alp_bl_k | ||
| 567 | real :: tau_thermals,fact_thermals_ed_dz | ||
| 568 | integer,parameter :: w2di_thermals=0 | ||
| 569 | integer :: isplit | ||
| 570 | |||
| 571 | integer :: iflag_coupl,iflag_clos,iflag_wake | ||
| 572 | integer :: iflag_thermals_ed,iflag_thermals_optflux,iflag_thermals_closure | ||
| 573 | |||
| 574 | common/ctherm1/iflag_thermals,nsplit_thermals,iflag_thermals_closure | ||
| 575 | common/ctherm2/tau_thermals,alp_bl_k,fact_thermals_ed_dz | ||
| 576 | common/ctherm4/iflag_coupl,iflag_clos,iflag_wake | ||
| 577 | common/ctherm5/iflag_thermals_ed,iflag_thermals_optflux | ||
| 578 | |||
| 579 | !!! nrlmd le 10/04/2012 | ||
| 580 | common/ctherm6/iflag_trig_bl,iflag_clos_bl | ||
| 581 | common/ctherm7/tau_trig_shallow,tau_trig_deep | ||
| 582 | common/ctherm8/s_trig | ||
| 583 | !!! fin nrlmd le 10/04/2012 | ||
| 584 | |||
| 585 | !$OMP THREADPRIVATE(/ctherm1/,/ctherm2/,/ctherm4/,/ctherm5/) | ||
| 586 | !$OMP THREADPRIVATE(/ctherm6/,/ctherm7/,/ctherm8/) | ||
| 587 | ! | ||
| 588 | ! $Id: nuage.h 2945 2017-07-12 14:20:24Z jbmadeleine $ | ||
| 589 | ! | ||
| 590 | REAL rad_froid, rad_chau1, rad_chau2, t_glace_max, t_glace_min | ||
| 591 | REAL exposant_glace | ||
| 592 | REAL rei_min,rei_max | ||
| 593 | REAL tau_cld_cv,coefw_cld_cv | ||
| 594 | |||
| 595 | REAL tmax_fonte_cv | ||
| 596 | |||
| 597 | INTEGER iflag_t_glace, iflag_cloudth_vert, iflag_cld_cv | ||
| 598 | INTEGER iflag_rain_incloud_vol | ||
| 599 | |||
| 600 | common /nuagecom/ rad_froid,rad_chau1, rad_chau2,t_glace_max, & | ||
| 601 | & t_glace_min,exposant_glace,rei_min,rei_max, & | ||
| 602 | & tau_cld_cv,coefw_cld_cv, & | ||
| 603 | & tmax_fonte_cv, & | ||
| 604 | & iflag_t_glace,iflag_cloudth_vert,iflag_cld_cv, & | ||
| 605 | & iflag_rain_incloud_vol | ||
| 606 | !$OMP THREADPRIVATE(/nuagecom/) | ||
| 607 | |||
| 608 | INTEGER itap,ind1,ind2 | ||
| 609 | INTEGER ngrid,klev,klon,l,ig | ||
| 610 | |||
| 611 | REAL ztv(ngrid,klev) | ||
| 612 | REAL po(ngrid) | ||
| 613 | ✗ | REAL zqenv(ngrid) | |
| 614 | REAL zqta(ngrid,klev) | ||
| 615 | |||
| 616 | REAL fraca(ngrid,klev+1) | ||
| 617 | REAL zpspsk(ngrid,klev) | ||
| 618 | REAL paprs(ngrid,klev+1) | ||
| 619 | REAL pplay(ngrid,klev) | ||
| 620 | REAL ztla(ngrid,klev) | ||
| 621 | REAL zthl(ngrid,klev) | ||
| 622 | |||
| 623 | ✗ | REAL zqsatth(ngrid,klev) | |
| 624 | ✗ | REAL zqsatenv(ngrid,klev) | |
| 625 | |||
| 626 | |||
| 627 | ✗ | REAL sigma1(ngrid,klev) | |
| 628 | ✗ | REAL sigma2(ngrid,klev) | |
| 629 | ✗ | REAL qlth(ngrid,klev) | |
| 630 | ✗ | REAL qlenv(ngrid,klev) | |
| 631 | ✗ | REAL qltot(ngrid,klev) | |
| 632 | ✗ | REAL cth(ngrid,klev) | |
| 633 | ✗ | REAL cenv(ngrid,klev) | |
| 634 | REAL ctot(ngrid,klev) | ||
| 635 | ✗ | REAL rneb(ngrid,klev) | |
| 636 | REAL t(ngrid,klev) | ||
| 637 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi | ||
| 638 | REAL rdd,cppd,Lv,sqrt2,sqrtpi | ||
| 639 | REAL alth,alenv,ath,aenv | ||
| 640 | REAL sth,senv,sigma1s,sigma2s,xth,xenv | ||
| 641 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv | ||
| 642 | REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth | ||
| 643 | REAL Tbef,zdelta,qsatbef,zcor | ||
| 644 | REAL qlbef | ||
| 645 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur | ||
| 646 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity | ||
| 647 | ! (J Jouhaud, JL Dufresne, JB Madeleine) | ||
| 648 | REAL,SAVE :: vert_alpha | ||
| 649 | !$OMP THREADPRIVATE(vert_alpha) | ||
| 650 | LOGICAL, SAVE :: firstcall = .TRUE. | ||
| 651 | !$OMP THREADPRIVATE(firstcall) | ||
| 652 | |||
| 653 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) | ||
| 654 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) | ||
| 655 | REAL zqs(ngrid), qcloud(ngrid) | ||
| 656 | REAL erf | ||
| 657 | |||
| 658 | !------------------------------------------------------------------------------ | ||
| 659 | ! Initialisation des variables r?elles | ||
| 660 | !------------------------------------------------------------------------------ | ||
| 661 | ✗ | sigma1(:,:)=0. | |
| 662 | ✗ | sigma2(:,:)=0. | |
| 663 | ✗ | qlth(:,:)=0. | |
| 664 | ✗ | qlenv(:,:)=0. | |
| 665 | ✗ | qltot(:,:)=0. | |
| 666 | ✗ | rneb(:,:)=0. | |
| 667 | ✗ | qcloud(:)=0. | |
| 668 | ✗ | cth(:,:)=0. | |
| 669 | ✗ | cenv(:,:)=0. | |
| 670 | ✗ | ctot(:,:)=0. | |
| 671 | qsatmmussig1=0. | ||
| 672 | qsatmmussig2=0. | ||
| 673 | rdd=287.04 | ||
| 674 | cppd=1005.7 | ||
| 675 | pi=3.14159 | ||
| 676 | Lv=2.5e6 | ||
| 677 | sqrt2pi=sqrt(2.*pi) | ||
| 678 | sqrt2=sqrt(2.) | ||
| 679 | sqrtpi=sqrt(pi) | ||
| 680 | |||
| 681 | ✗ | IF (firstcall) THEN | |
| 682 | ✗ | vert_alpha=0.5 | |
| 683 | ✗ | CALL getin_p('cloudth_vert_alpha',vert_alpha) | |
| 684 | ✗ | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha | |
| 685 | ✗ | firstcall=.FALSE. | |
| 686 | ENDIF | ||
| 687 | |||
| 688 | !------------------------------------------------------------------------------- | ||
| 689 | ! Calcul de la fraction du thermique et des ?cart-types des distributions | ||
| 690 | !------------------------------------------------------------------------------- | ||
| 691 | ✗ | do ind1=1,ngrid | |
| 692 | |||
| 693 | ✗ | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then | |
| 694 | |||
| 695 | ✗ | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) | |
| 696 | |||
| 697 | |||
| 698 | ! zqenv(ind1)=po(ind1) | ||
| 699 | ✗ | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) | |
| 700 | ✗ | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 701 | ✗ | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 702 | ✗ | qsatbef=MIN(0.5,qsatbef) | |
| 703 | ✗ | zcor=1./(1.-retv*qsatbef) | |
| 704 | ✗ | qsatbef=qsatbef*zcor | |
| 705 | ✗ | zqsatenv(ind1,ind2)=qsatbef | |
| 706 | |||
| 707 | |||
| 708 | |||
| 709 | |||
| 710 | ✗ | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) | |
| 711 | ✗ | aenv=1./(1.+(alenv*Lv/cppd)) | |
| 712 | ✗ | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) | |
| 713 | |||
| 714 | |||
| 715 | |||
| 716 | |||
| 717 | ✗ | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) | |
| 718 | ✗ | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 719 | ✗ | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 720 | ✗ | qsatbef=MIN(0.5,qsatbef) | |
| 721 | ✗ | zcor=1./(1.-retv*qsatbef) | |
| 722 | ✗ | qsatbef=qsatbef*zcor | |
| 723 | ✗ | zqsatth(ind1,ind2)=qsatbef | |
| 724 | |||
| 725 | ✗ | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) | |
| 726 | ✗ | ath=1./(1.+(alth*Lv/cppd)) | |
| 727 | ✗ | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) | |
| 728 | |||
| 729 | |||
| 730 | |||
| 731 | !------------------------------------------------------------------------------ | ||
| 732 | ! Calcul des ?cart-types pour s | ||
| 733 | !------------------------------------------------------------------------------ | ||
| 734 | |||
| 735 | ✗ | sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) | |
| 736 | ✗ | sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) | |
| 737 | ! if (paprs(ind1,ind2).gt.90000) then | ||
| 738 | ! ratqs(ind1,ind2)=0.002 | ||
| 739 | ! else | ||
| 740 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 | ||
| 741 | ! endif | ||
| 742 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) | ||
| 743 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) | ||
| 744 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) | ||
| 745 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 | ||
| 746 | |||
| 747 | !------------------------------------------------------------------------------ | ||
| 748 | ! Calcul de l'eau condens?e et de la couverture nuageuse | ||
| 749 | !------------------------------------------------------------------------------ | ||
| 750 | sqrt2pi=sqrt(2.*pi) | ||
| 751 | ✗ | xth=sth/(sqrt(2.)*sigma2s) | |
| 752 | ✗ | xenv=senv/(sqrt(2.)*sigma1s) | |
| 753 | ✗ | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) | |
| 754 | ✗ | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) | |
| 755 | ✗ | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) | |
| 756 | |||
| 757 | ✗ | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) | |
| 758 | ✗ | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) | |
| 759 | ✗ | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) | |
| 760 | |||
| 761 | ✗ | IF (iflag_cloudth_vert == 1) THEN | |
| 762 | !------------------------------------------------------------------------------- | ||
| 763 | ! Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs | ||
| 764 | !------------------------------------------------------------------------------- | ||
| 765 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) | ||
| 766 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) | ||
| 767 | ✗ | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) | |
| 768 | ✗ | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) | |
| 769 | ! deltasenv=aenv*0.01*po(ind1) | ||
| 770 | ! deltasth=ath*0.01*zqta(ind1,ind2) | ||
| 771 | ✗ | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) | |
| 772 | ✗ | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) | |
| 773 | ✗ | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) | |
| 774 | ✗ | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) | |
| 775 | ✗ | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) | |
| 776 | ✗ | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) | |
| 777 | |||
| 778 | ✗ | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) | |
| 779 | ✗ | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) | |
| 780 | ✗ | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) | |
| 781 | |||
| 782 | ✗ | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) | |
| 783 | ✗ | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) | |
| 784 | ✗ | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) | |
| 785 | ✗ | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) | |
| 786 | |||
| 787 | ✗ | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 | |
| 788 | ! qlenv(ind1,ind2)=IntJ | ||
| 789 | ! print*, qlenv(ind1,ind2),'VERIF EAU' | ||
| 790 | |||
| 791 | |||
| 792 | ✗ | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) | |
| 793 | ! IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2)) | ||
| 794 | ! IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1)) | ||
| 795 | ✗ | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) | |
| 796 | ✗ | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) | |
| 797 | ✗ | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) | |
| 798 | ✗ | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 | |
| 799 | ! qlth(ind1,ind2)=IntJ | ||
| 800 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' | ||
| 801 | ✗ | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) | |
| 802 | |||
| 803 | ✗ | ELSE IF (iflag_cloudth_vert == 2) THEN | |
| 804 | |||
| 805 | !------------------------------------------------------------------------------- | ||
| 806 | ! Version 3: Modification Jean Jouhaud. On condense a partir de -delta s | ||
| 807 | !------------------------------------------------------------------------------- | ||
| 808 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) | ||
| 809 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) | ||
| 810 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) | ||
| 811 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) | ||
| 812 | ✗ | deltasenv=aenv*vert_alpha*sigma1s | |
| 813 | ✗ | deltasth=ath*vert_alpha*sigma2s | |
| 814 | |||
| 815 | ✗ | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) | |
| 816 | ✗ | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) | |
| 817 | ✗ | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) | |
| 818 | ✗ | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) | |
| 819 | ! coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) | ||
| 820 | ! coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) | ||
| 821 | |||
| 822 | ✗ | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) | |
| 823 | ✗ | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) | |
| 824 | ✗ | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) | |
| 825 | |||
| 826 | ✗ | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp(-1.*xenv2**2) | |
| 827 | ✗ | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) | |
| 828 | ✗ | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) | |
| 829 | ✗ | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp(-1.*xenv1**2)-exp(-1.*xenv2**2)) | |
| 830 | |||
| 831 | ! IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) | ||
| 832 | ! IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) | ||
| 833 | ! IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) | ||
| 834 | |||
| 835 | ✗ | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 | |
| 836 | ! qlenv(ind1,ind2)=IntJ | ||
| 837 | ! print*, qlenv(ind1,ind2),'VERIF EAU' | ||
| 838 | |||
| 839 | ✗ | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp(-1.*xth2**2) | |
| 840 | ✗ | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) | |
| 841 | ✗ | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) | |
| 842 | ✗ | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp(-1.*xth1**2)-exp(-1.*xth2**2)) | |
| 843 | |||
| 844 | ✗ | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 | |
| 845 | ! qlth(ind1,ind2)=IntJ | ||
| 846 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' | ||
| 847 | ✗ | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) | |
| 848 | |||
| 849 | |||
| 850 | |||
| 851 | |||
| 852 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) | ||
| 853 | |||
| 854 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
| 855 | |||
| 856 | ✗ | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then | |
| 857 | ✗ | ctot(ind1,ind2)=0. | |
| 858 | ✗ | qcloud(ind1)=zqsatenv(ind1,ind2) | |
| 859 | |||
| 860 | else | ||
| 861 | |||
| 862 | ✗ | ctot(ind1,ind2)=ctot(ind1,ind2) | |
| 863 | ✗ | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) | |
| 864 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & | ||
| 865 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) | ||
| 866 | |||
| 867 | endif | ||
| 868 | |||
| 869 | |||
| 870 | |||
| 871 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' | ||
| 872 | |||
| 873 | |||
| 874 | else ! gaussienne environnement seule | ||
| 875 | |||
| 876 | ✗ | zqenv(ind1)=po(ind1) | |
| 877 | ✗ | Tbef=t(ind1,ind2) | |
| 878 | ✗ | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 879 | ✗ | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 880 | ✗ | qsatbef=MIN(0.5,qsatbef) | |
| 881 | ✗ | zcor=1./(1.-retv*qsatbef) | |
| 882 | ✗ | qsatbef=qsatbef*zcor | |
| 883 | ✗ | zqsatenv(ind1,ind2)=qsatbef | |
| 884 | |||
| 885 | |||
| 886 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) | ||
| 887 | ✗ | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) | |
| 888 | ✗ | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) | |
| 889 | ✗ | aenv=1./(1.+(alenv*Lv/cppd)) | |
| 890 | ✗ | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) | |
| 891 | |||
| 892 | |||
| 893 | ✗ | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) | |
| 894 | |||
| 895 | sqrt2pi=sqrt(2.*pi) | ||
| 896 | ✗ | xenv=senv/(sqrt(2.)*sigma1s) | |
| 897 | ✗ | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) | |
| 898 | ✗ | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) | |
| 899 | |||
| 900 | ✗ | if (ctot(ind1,ind2).lt.1.e-3) then | |
| 901 | ✗ | ctot(ind1,ind2)=0. | |
| 902 | ✗ | qcloud(ind1)=zqsatenv(ind1,ind2) | |
| 903 | |||
| 904 | else | ||
| 905 | |||
| 906 | ctot(ind1,ind2)=ctot(ind1,ind2) | ||
| 907 | ✗ | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) | |
| 908 | |||
| 909 | endif | ||
| 910 | |||
| 911 | |||
| 912 | |||
| 913 | |||
| 914 | |||
| 915 | |||
| 916 | endif | ||
| 917 | enddo | ||
| 918 | |||
| 919 | ✗ | return | |
| 920 | ! end | ||
| 921 | END SUBROUTINE cloudth_vert | ||
| 922 | |||
| 923 | |||
| 924 | |||
| 925 | |||
| 926 | 18720 | SUBROUTINE cloudth_v3(ngrid,klev,ind2, & | |
| 927 | 18720 | & ztv,po,zqta,fraca, & | |
| 928 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & | ||
| 929 | & ratqs,zqs,t) | ||
| 930 | |||
| 931 | |||
| 932 | IMPLICIT NONE | ||
| 933 | |||
| 934 | |||
| 935 | !=========================================================================== | ||
| 936 | ! Author : Arnaud Octavio Jam (LMD/CNRS) | ||
| 937 | ! Date : 25 Mai 2010 | ||
| 938 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques | ||
| 939 | !=========================================================================== | ||
| 940 | |||
| 941 | |||
| 942 | ! | ||
| 943 | ! $Header$ | ||
| 944 | ! | ||
| 945 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 946 | ! veillez � n'utiliser que des ! pour les commentaires | ||
| 947 | ! et � bien positionner les & des lignes de continuation | ||
| 948 | ! (les placer en colonne 6 et en colonne 73) | ||
| 949 | ! | ||
| 950 | ! | ||
| 951 | ! A1.0 Fundamental constants | ||
| 952 | REAL RPI,RCLUM,RHPLA,RKBOL,RNAVO | ||
| 953 | ! A1.1 Astronomical constants | ||
| 954 | REAL RDAY,REA,REPSM,RSIYEA,RSIDAY,ROMEGA | ||
| 955 | ! A1.1.bis Constantes concernant l'orbite de la Terre: | ||
| 956 | REAL R_ecc, R_peri, R_incl | ||
| 957 | ! A1.2 Geoide | ||
| 958 | REAL RA,RG,R1SA | ||
| 959 | ! A1.3 Radiation | ||
| 960 | ! REAL RSIGMA,RI0 | ||
| 961 | REAL RSIGMA | ||
| 962 | ! A1.4 Thermodynamic gas phase | ||
| 963 | REAL RMO3,RMCO2,RMC,RMCH4,RMN2O,RMCFC11,RMCFC12 | ||
| 964 | REAL R,RMD,RMV,RD,RV,RCPD,RCPV,RCVD,RCVV | ||
| 965 | REAL RKAPPA,RETV, eps_w | ||
| 966 | ! A1.5,6 Thermodynamic liquid,solid phases | ||
| 967 | REAL RCW,RCS | ||
| 968 | ! A1.7 Thermodynamic transition of phase | ||
| 969 | REAL RLVTT,RLSTT,RLMLT,RTT,RATM | ||
| 970 | ! A1.8 Curve of saturation | ||
| 971 | REAL RESTT,RALPW,RBETW,RGAMW,RALPS,RBETS,RGAMS | ||
| 972 | REAL RALPD,RBETD,RGAMD | ||
| 973 | ! | ||
| 974 | COMMON/YOMCST/RPI ,RCLUM ,RHPLA ,RKBOL ,RNAVO & | ||
| 975 | & ,RDAY ,REA ,REPSM ,RSIYEA,RSIDAY,ROMEGA & | ||
| 976 | & ,R_ecc, R_peri, R_incl & | ||
| 977 | & ,RA ,RG ,R1SA & | ||
| 978 | & ,RSIGMA & | ||
| 979 | & ,R ,RMD ,RMV ,RD ,RV ,RCPD & | ||
| 980 | & ,RMO3 ,RMCO2 ,RMC ,RMCH4 ,RMN2O ,RMCFC11 ,RMCFC12 & | ||
| 981 | & ,RCPV ,RCVD ,RCVV ,RKAPPA,RETV, eps_w & | ||
| 982 | & ,RCW ,RCS & | ||
| 983 | & ,RLVTT ,RLSTT ,RLMLT ,RTT ,RATM & | ||
| 984 | & ,RESTT ,RALPW ,RBETW ,RGAMW ,RALPS ,RBETS ,RGAMS & | ||
| 985 | & ,RALPD ,RBETD ,RGAMD | ||
| 986 | ! ------------------------------------------------------------------ | ||
| 987 | !$OMP THREADPRIVATE(/YOMCST/) | ||
| 988 | ! | ||
| 989 | ! $Id: YOETHF.h 2799 2017-02-24 18:50:33Z jyg $ | ||
| 990 | ! | ||
| 991 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 992 | ! veillez n'utiliser que des ! pour les commentaires | ||
| 993 | ! et bien positionner les & des lignes de continuation | ||
| 994 | ! (les placer en colonne 6 et en colonne 73) | ||
| 995 | ! | ||
| 996 | !* COMMON *YOETHF* DERIVED CONSTANTS SPECIFIC TO ECMWF THERMODYNAMICS | ||
| 997 | ! | ||
| 998 | ! *R__ES* *CONSTANTS USED FOR COMPUTATION OF SATURATION | ||
| 999 | ! MIXING RATIO OVER LIQUID WATER(*R_LES*) OR | ||
| 1000 | ! ICE(*R_IES*). | ||
| 1001 | ! *RVTMP2* *RVTMP2=RCPV/RCPD-1. | ||
| 1002 | ! *RHOH2O* *DENSITY OF LIQUID WATER. (RATM/100.) | ||
| 1003 | ! | ||
| 1004 | REAL R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES | ||
| 1005 | REAL RVTMP2, RHOH2O | ||
| 1006 | REAL R5ALVCP,R5ALSCP,RALVDCP,RALSDCP,RALFDCP,RTWAT,RTBER,RTBERCU | ||
| 1007 | REAL RTICE,RTICECU,RTWAT_RTICE_R,RTWAT_RTICECU_R,RKOOP1,RKOOP2 | ||
| 1008 | LOGICAL OK_BAD_ECMWF_THERMO ! If TRUE, then variables set by rrtm/suphec.F90 | ||
| 1009 | ! If FALSE, then variables set by suphel.F90 | ||
| 1010 | COMMON /YOETHF/R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES, & | ||
| 1011 | & RVTMP2, RHOH2O, & | ||
| 1012 | & R5ALVCP,R5ALSCP,RALVDCP,RALSDCP, & | ||
| 1013 | & RALFDCP,RTWAT,RTBER,RTBERCU, & | ||
| 1014 | & RTICE,RTICECU,RTWAT_RTICE_R,RTWAT_RTICECU_R,RKOOP1,& | ||
| 1015 | & RKOOP2, & | ||
| 1016 | & OK_BAD_ECMWF_THERMO | ||
| 1017 | |||
| 1018 | !$OMP THREADPRIVATE(/YOETHF/) | ||
| 1019 | ! | ||
| 1020 | ! $Header$ | ||
| 1021 | ! | ||
| 1022 | ! | ||
| 1023 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 1024 | ! veillez n'utiliser que des ! pour les commentaires | ||
| 1025 | ! et bien positionner les & des lignes de continuation | ||
| 1026 | ! (les placer en colonne 6 et en colonne 73) | ||
| 1027 | ! | ||
| 1028 | ! ------------------------------------------------------------------ | ||
| 1029 | ! This COMDECK includes the Thermodynamical functions for the cy39 | ||
| 1030 | ! ECMWF Physics package. | ||
| 1031 | ! Consistent with YOMCST Basic physics constants, assuming the | ||
| 1032 | ! partial pressure of water vapour is given by a first order | ||
| 1033 | ! Taylor expansion of Qs(T) w.r.t. to Temperature, using constants | ||
| 1034 | ! in YOETHF | ||
| 1035 | ! ------------------------------------------------------------------ | ||
| 1036 | REAL PTARG, PDELARG, P5ARG, PQSARG, PCOARG | ||
| 1037 | REAL FOEEW, FOEDE, qsats, qsatl, dqsats, dqsatl | ||
| 1038 | LOGICAL thermcep | ||
| 1039 | PARAMETER (thermcep=.TRUE.) | ||
| 1040 | ! | ||
| 1041 | FOEEW ( PTARG,PDELARG ) = EXP ( & | ||
| 1042 | & (R3LES*(1.-PDELARG)+R3IES*PDELARG) * (PTARG-RTT) & | ||
| 1043 | & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG)) ) | ||
| 1044 | ! | ||
| 1045 | FOEDE ( PTARG,PDELARG,P5ARG,PQSARG,PCOARG ) = PQSARG*PCOARG*P5ARG & | ||
| 1046 | & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG))**2 | ||
| 1047 | ! | ||
| 1048 | qsats(ptarg) = 100.0 * 0.622 * 10.0 & | ||
| 1049 | & ** (2.07023 - 0.00320991 * ptarg & | ||
| 1050 | & - 2484.896 / ptarg + 3.56654 * LOG10(ptarg)) | ||
| 1051 | qsatl(ptarg) = 100.0 * 0.622 * 10.0 & | ||
| 1052 | & ** (23.8319 - 2948.964 / ptarg & | ||
| 1053 | & - 5.028 * LOG10(ptarg) & | ||
| 1054 | & - 29810.16 * EXP( - 0.0699382 * ptarg) & | ||
| 1055 | & + 25.21935 * EXP( - 2999.924 / ptarg)) | ||
| 1056 | ! | ||
| 1057 | dqsats(ptarg,pqsarg) = RLVTT/RCPD*pqsarg * (3.56654/ptarg & | ||
| 1058 | & +2484.896*LOG(10.)/ptarg**2 & | ||
| 1059 | & -0.00320991*LOG(10.)) | ||
| 1060 | dqsatl(ptarg,pqsarg) = RLVTT/RCPD*pqsarg*LOG(10.)* & | ||
| 1061 | & (2948.964/ptarg**2-5.028/LOG(10.)/ptarg & | ||
| 1062 | & +25.21935*2999.924/ptarg**2*EXP(-2999.924/ptarg) & | ||
| 1063 | & +29810.16*0.0699382*EXP(-0.0699382*ptarg)) | ||
| 1064 | integer :: iflag_thermals,nsplit_thermals | ||
| 1065 | |||
| 1066 | !!! nrlmd le 10/04/2012 | ||
| 1067 | integer :: iflag_trig_bl,iflag_clos_bl | ||
| 1068 | integer :: tau_trig_shallow,tau_trig_deep | ||
| 1069 | real :: s_trig | ||
| 1070 | !!! fin nrlmd le 10/04/2012 | ||
| 1071 | |||
| 1072 | real,parameter :: r_aspect_thermals=2.,l_mix_thermals=30. | ||
| 1073 | real :: alp_bl_k | ||
| 1074 | real :: tau_thermals,fact_thermals_ed_dz | ||
| 1075 | integer,parameter :: w2di_thermals=0 | ||
| 1076 | integer :: isplit | ||
| 1077 | |||
| 1078 | integer :: iflag_coupl,iflag_clos,iflag_wake | ||
| 1079 | integer :: iflag_thermals_ed,iflag_thermals_optflux,iflag_thermals_closure | ||
| 1080 | |||
| 1081 | common/ctherm1/iflag_thermals,nsplit_thermals,iflag_thermals_closure | ||
| 1082 | common/ctherm2/tau_thermals,alp_bl_k,fact_thermals_ed_dz | ||
| 1083 | common/ctherm4/iflag_coupl,iflag_clos,iflag_wake | ||
| 1084 | common/ctherm5/iflag_thermals_ed,iflag_thermals_optflux | ||
| 1085 | |||
| 1086 | !!! nrlmd le 10/04/2012 | ||
| 1087 | common/ctherm6/iflag_trig_bl,iflag_clos_bl | ||
| 1088 | common/ctherm7/tau_trig_shallow,tau_trig_deep | ||
| 1089 | common/ctherm8/s_trig | ||
| 1090 | !!! fin nrlmd le 10/04/2012 | ||
| 1091 | |||
| 1092 | !$OMP THREADPRIVATE(/ctherm1/,/ctherm2/,/ctherm4/,/ctherm5/) | ||
| 1093 | !$OMP THREADPRIVATE(/ctherm6/,/ctherm7/,/ctherm8/) | ||
| 1094 | ! | ||
| 1095 | ! $Id: nuage.h 2945 2017-07-12 14:20:24Z jbmadeleine $ | ||
| 1096 | ! | ||
| 1097 | REAL rad_froid, rad_chau1, rad_chau2, t_glace_max, t_glace_min | ||
| 1098 | REAL exposant_glace | ||
| 1099 | REAL rei_min,rei_max | ||
| 1100 | REAL tau_cld_cv,coefw_cld_cv | ||
| 1101 | |||
| 1102 | REAL tmax_fonte_cv | ||
| 1103 | |||
| 1104 | INTEGER iflag_t_glace, iflag_cloudth_vert, iflag_cld_cv | ||
| 1105 | INTEGER iflag_rain_incloud_vol | ||
| 1106 | |||
| 1107 | common /nuagecom/ rad_froid,rad_chau1, rad_chau2,t_glace_max, & | ||
| 1108 | & t_glace_min,exposant_glace,rei_min,rei_max, & | ||
| 1109 | & tau_cld_cv,coefw_cld_cv, & | ||
| 1110 | & tmax_fonte_cv, & | ||
| 1111 | & iflag_t_glace,iflag_cloudth_vert,iflag_cld_cv, & | ||
| 1112 | & iflag_rain_incloud_vol | ||
| 1113 | !$OMP THREADPRIVATE(/nuagecom/) | ||
| 1114 | |||
| 1115 | INTEGER itap,ind1,ind2 | ||
| 1116 | INTEGER ngrid,klev,klon,l,ig | ||
| 1117 | |||
| 1118 | REAL ztv(ngrid,klev) | ||
| 1119 | REAL po(ngrid) | ||
| 1120 | 37440 | REAL zqenv(ngrid) | |
| 1121 | REAL zqta(ngrid,klev) | ||
| 1122 | |||
| 1123 | REAL fraca(ngrid,klev+1) | ||
| 1124 | REAL zpspsk(ngrid,klev) | ||
| 1125 | REAL paprs(ngrid,klev+1) | ||
| 1126 | REAL pplay(ngrid,klev) | ||
| 1127 | REAL ztla(ngrid,klev) | ||
| 1128 | REAL zthl(ngrid,klev) | ||
| 1129 | |||
| 1130 | 37440 | REAL zqsatth(ngrid,klev) | |
| 1131 | 37440 | REAL zqsatenv(ngrid,klev) | |
| 1132 | |||
| 1133 | 37440 | REAL sigma1(ngrid,klev) | |
| 1134 | 37440 | REAL sigma2(ngrid,klev) | |
| 1135 | 37440 | REAL qlth(ngrid,klev) | |
| 1136 | 37440 | REAL qlenv(ngrid,klev) | |
| 1137 | 37440 | REAL qltot(ngrid,klev) | |
| 1138 | 37440 | REAL cth(ngrid,klev) | |
| 1139 | 37440 | REAL cenv(ngrid,klev) | |
| 1140 | REAL ctot(ngrid,klev) | ||
| 1141 | 37440 | REAL cth_vol(ngrid,klev) | |
| 1142 | 37440 | REAL cenv_vol(ngrid,klev) | |
| 1143 | REAL ctot_vol(ngrid,klev) | ||
| 1144 | 37440 | REAL rneb(ngrid,klev) | |
| 1145 | REAL t(ngrid,klev) | ||
| 1146 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,sqrt2,sqrtpi,pi | ||
| 1147 | REAL rdd,cppd,Lv | ||
| 1148 | REAL alth,alenv,ath,aenv | ||
| 1149 | REAL sth,senv,sigma1s,sigma2s,xth,xenv, exp_xenv1, exp_xenv2,exp_xth1,exp_xth2 | ||
| 1150 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks | ||
| 1151 | REAL Tbef,zdelta,qsatbef,zcor | ||
| 1152 | REAL qlbef | ||
| 1153 | REAL ratqs(ngrid,klev) ! Determine the width of the vapour distribution | ||
| 1154 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) | ||
| 1155 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) | ||
| 1156 | REAL zqs(ngrid), qcloud(ngrid) | ||
| 1157 | REAL erf | ||
| 1158 | |||
| 1159 | |||
| 1160 | |||
| 1161 | 18720 | IF (iflag_cloudth_vert.GE.1) THEN | |
| 1162 | CALL cloudth_vert_v3(ngrid,klev,ind2, & | ||
| 1163 | & ztv,po,zqta,fraca, & | ||
| 1164 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & | ||
| 1165 | 18720 | & ratqs,zqs,t) | |
| 1166 | 18720 | RETURN | |
| 1167 | ENDIF | ||
| 1168 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
| 1169 | |||
| 1170 | |||
| 1171 | !------------------------------------------------------------------------------- | ||
| 1172 | ! Initialisation des variables r?elles | ||
| 1173 | !------------------------------------------------------------------------------- | ||
| 1174 | ✗ | sigma1(:,:)=0. | |
| 1175 | ✗ | sigma2(:,:)=0. | |
| 1176 | ✗ | qlth(:,:)=0. | |
| 1177 | ✗ | qlenv(:,:)=0. | |
| 1178 | ✗ | qltot(:,:)=0. | |
| 1179 | ✗ | rneb(:,:)=0. | |
| 1180 | ✗ | qcloud(:)=0. | |
| 1181 | ✗ | cth(:,:)=0. | |
| 1182 | ✗ | cenv(:,:)=0. | |
| 1183 | ✗ | ctot(:,:)=0. | |
| 1184 | ✗ | cth_vol(:,:)=0. | |
| 1185 | ✗ | cenv_vol(:,:)=0. | |
| 1186 | ✗ | ctot_vol(:,:)=0. | |
| 1187 | qsatmmussig1=0. | ||
| 1188 | qsatmmussig2=0. | ||
| 1189 | rdd=287.04 | ||
| 1190 | cppd=1005.7 | ||
| 1191 | pi=3.14159 | ||
| 1192 | Lv=2.5e6 | ||
| 1193 | sqrt2pi=sqrt(2.*pi) | ||
| 1194 | sqrt2=sqrt(2.) | ||
| 1195 | sqrtpi=sqrt(pi) | ||
| 1196 | |||
| 1197 | |||
| 1198 | !------------------------------------------------------------------------------- | ||
| 1199 | ! Cloud fraction in the thermals and standard deviation of the PDFs | ||
| 1200 | !------------------------------------------------------------------------------- | ||
| 1201 | ✗ | do ind1=1,ngrid | |
| 1202 | |||
| 1203 | ✗ | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then | |
| 1204 | |||
| 1205 | ✗ | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) | |
| 1206 | |||
| 1207 | ✗ | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) | |
| 1208 | ✗ | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 1209 | ✗ | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 1210 | ✗ | qsatbef=MIN(0.5,qsatbef) | |
| 1211 | ✗ | zcor=1./(1.-retv*qsatbef) | |
| 1212 | ✗ | qsatbef=qsatbef*zcor | |
| 1213 | ✗ | zqsatenv(ind1,ind2)=qsatbef | |
| 1214 | |||
| 1215 | |||
| 1216 | ✗ | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 | |
| 1217 | ✗ | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 | |
| 1218 | ✗ | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 | |
| 1219 | |||
| 1220 | !po = qt de l'environnement ET des thermique | ||
| 1221 | !zqenv = qt environnement | ||
| 1222 | !zqsatenv = qsat environnement | ||
| 1223 | !zthl = Tl environnement | ||
| 1224 | |||
| 1225 | |||
| 1226 | ✗ | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) | |
| 1227 | ✗ | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 1228 | ✗ | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 1229 | ✗ | qsatbef=MIN(0.5,qsatbef) | |
| 1230 | ✗ | zcor=1./(1.-retv*qsatbef) | |
| 1231 | ✗ | qsatbef=qsatbef*zcor | |
| 1232 | ✗ | zqsatth(ind1,ind2)=qsatbef | |
| 1233 | |||
| 1234 | ✗ | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 | |
| 1235 | ✗ | ath=1./(1.+(alth*Lv/cppd)) !al, p84 | |
| 1236 | ✗ | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 | |
| 1237 | |||
| 1238 | !zqta = qt thermals | ||
| 1239 | !zqsatth = qsat thermals | ||
| 1240 | !ztla = Tl thermals | ||
| 1241 | |||
| 1242 | !------------------------------------------------------------------------------ | ||
| 1243 | ! s standard deviations | ||
| 1244 | !------------------------------------------------------------------------------ | ||
| 1245 | |||
| 1246 | ! tests | ||
| 1247 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) | ||
| 1248 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1) | ||
| 1249 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) | ||
| 1250 | ! final option | ||
| 1251 | ✗ | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) | |
| 1252 | ✗ | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) | |
| 1253 | |||
| 1254 | !------------------------------------------------------------------------------ | ||
| 1255 | ! Condensed water and cloud cover | ||
| 1256 | !------------------------------------------------------------------------------ | ||
| 1257 | ✗ | xth=sth/(sqrt2*sigma2s) | |
| 1258 | ✗ | xenv=senv/(sqrt2*sigma1s) | |
| 1259 | ✗ | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam | |
| 1260 | ✗ | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam | |
| 1261 | ✗ | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) | |
| 1262 | ✗ | ctot_vol(ind1,ind2)=ctot(ind1,ind2) | |
| 1263 | |||
| 1264 | ✗ | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth(ind1,ind2)) | |
| 1265 | ✗ | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) | |
| 1266 | ✗ | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) | |
| 1267 | |||
| 1268 | ✗ | if (ctot(ind1,ind2).lt.1.e-10) then | |
| 1269 | ✗ | ctot(ind1,ind2)=0. | |
| 1270 | ✗ | qcloud(ind1)=zqsatenv(ind1,ind2) | |
| 1271 | else | ||
| 1272 | ✗ | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) | |
| 1273 | endif | ||
| 1274 | |||
| 1275 | else ! Environnement only, follow the if l.110 | ||
| 1276 | |||
| 1277 | ✗ | zqenv(ind1)=po(ind1) | |
| 1278 | ✗ | Tbef=t(ind1,ind2) | |
| 1279 | ✗ | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 1280 | ✗ | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 1281 | ✗ | qsatbef=MIN(0.5,qsatbef) | |
| 1282 | ✗ | zcor=1./(1.-retv*qsatbef) | |
| 1283 | ✗ | qsatbef=qsatbef*zcor | |
| 1284 | ✗ | zqsatenv(ind1,ind2)=qsatbef | |
| 1285 | |||
| 1286 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) | ||
| 1287 | ✗ | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) | |
| 1288 | ✗ | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) | |
| 1289 | ✗ | aenv=1./(1.+(alenv*Lv/cppd)) | |
| 1290 | ✗ | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) | |
| 1291 | |||
| 1292 | ✗ | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) | |
| 1293 | |||
| 1294 | ✗ | xenv=senv/(sqrt2*sigma1s) | |
| 1295 | ✗ | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) | |
| 1296 | ✗ | ctot_vol(ind1,ind2)=ctot(ind1,ind2) | |
| 1297 | ✗ | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) | |
| 1298 | |||
| 1299 | ✗ | if (ctot(ind1,ind2).lt.1.e-3) then | |
| 1300 | ✗ | ctot(ind1,ind2)=0. | |
| 1301 | ✗ | qcloud(ind1)=zqsatenv(ind1,ind2) | |
| 1302 | else | ||
| 1303 | ✗ | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) | |
| 1304 | endif | ||
| 1305 | |||
| 1306 | |||
| 1307 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183 | ||
| 1308 | enddo ! from the loop on ngrid l.108 | ||
| 1309 | return | ||
| 1310 | ! end | ||
| 1311 | ✗ | END SUBROUTINE cloudth_v3 | |
| 1312 | |||
| 1313 | |||
| 1314 | |||
| 1315 | !=========================================================================== | ||
| 1316 | 18720 | SUBROUTINE cloudth_vert_v3(ngrid,klev,ind2, & | |
| 1317 | & ztv,po,zqta,fraca, & | ||
| 1318 | 18720 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & | |
| 1319 | & ratqs,zqs,t) | ||
| 1320 | |||
| 1321 | !=========================================================================== | ||
| 1322 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) | ||
| 1323 | ! Date : 25 Mai 2010 | ||
| 1324 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques | ||
| 1325 | !=========================================================================== | ||
| 1326 | |||
| 1327 | |||
| 1328 |
1/6✓ Branch 0 taken 18720 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
|
18720 | USE ioipsl_getin_p_mod, ONLY : getin_p |
| 1329 | USE phys_output_var_mod, ONLY : cloudth_sth,cloudth_senv, & | ||
| 1330 | & cloudth_sigmath,cloudth_sigmaenv | ||
| 1331 | |||
| 1332 | IMPLICIT NONE | ||
| 1333 | |||
| 1334 | ! | ||
| 1335 | ! $Header$ | ||
| 1336 | ! | ||
| 1337 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 1338 | ! veillez � n'utiliser que des ! pour les commentaires | ||
| 1339 | ! et � bien positionner les & des lignes de continuation | ||
| 1340 | ! (les placer en colonne 6 et en colonne 73) | ||
| 1341 | ! | ||
| 1342 | ! | ||
| 1343 | ! A1.0 Fundamental constants | ||
| 1344 | REAL RPI,RCLUM,RHPLA,RKBOL,RNAVO | ||
| 1345 | ! A1.1 Astronomical constants | ||
| 1346 | REAL RDAY,REA,REPSM,RSIYEA,RSIDAY,ROMEGA | ||
| 1347 | ! A1.1.bis Constantes concernant l'orbite de la Terre: | ||
| 1348 | REAL R_ecc, R_peri, R_incl | ||
| 1349 | ! A1.2 Geoide | ||
| 1350 | REAL RA,RG,R1SA | ||
| 1351 | ! A1.3 Radiation | ||
| 1352 | ! REAL RSIGMA,RI0 | ||
| 1353 | REAL RSIGMA | ||
| 1354 | ! A1.4 Thermodynamic gas phase | ||
| 1355 | REAL RMO3,RMCO2,RMC,RMCH4,RMN2O,RMCFC11,RMCFC12 | ||
| 1356 | REAL R,RMD,RMV,RD,RV,RCPD,RCPV,RCVD,RCVV | ||
| 1357 | REAL RKAPPA,RETV, eps_w | ||
| 1358 | ! A1.5,6 Thermodynamic liquid,solid phases | ||
| 1359 | REAL RCW,RCS | ||
| 1360 | ! A1.7 Thermodynamic transition of phase | ||
| 1361 | REAL RLVTT,RLSTT,RLMLT,RTT,RATM | ||
| 1362 | ! A1.8 Curve of saturation | ||
| 1363 | REAL RESTT,RALPW,RBETW,RGAMW,RALPS,RBETS,RGAMS | ||
| 1364 | REAL RALPD,RBETD,RGAMD | ||
| 1365 | ! | ||
| 1366 | COMMON/YOMCST/RPI ,RCLUM ,RHPLA ,RKBOL ,RNAVO & | ||
| 1367 | & ,RDAY ,REA ,REPSM ,RSIYEA,RSIDAY,ROMEGA & | ||
| 1368 | & ,R_ecc, R_peri, R_incl & | ||
| 1369 | & ,RA ,RG ,R1SA & | ||
| 1370 | & ,RSIGMA & | ||
| 1371 | & ,R ,RMD ,RMV ,RD ,RV ,RCPD & | ||
| 1372 | & ,RMO3 ,RMCO2 ,RMC ,RMCH4 ,RMN2O ,RMCFC11 ,RMCFC12 & | ||
| 1373 | & ,RCPV ,RCVD ,RCVV ,RKAPPA,RETV, eps_w & | ||
| 1374 | & ,RCW ,RCS & | ||
| 1375 | & ,RLVTT ,RLSTT ,RLMLT ,RTT ,RATM & | ||
| 1376 | & ,RESTT ,RALPW ,RBETW ,RGAMW ,RALPS ,RBETS ,RGAMS & | ||
| 1377 | & ,RALPD ,RBETD ,RGAMD | ||
| 1378 | ! ------------------------------------------------------------------ | ||
| 1379 | !$OMP THREADPRIVATE(/YOMCST/) | ||
| 1380 | ! | ||
| 1381 | ! $Id: YOETHF.h 2799 2017-02-24 18:50:33Z jyg $ | ||
| 1382 | ! | ||
| 1383 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 1384 | ! veillez n'utiliser que des ! pour les commentaires | ||
| 1385 | ! et bien positionner les & des lignes de continuation | ||
| 1386 | ! (les placer en colonne 6 et en colonne 73) | ||
| 1387 | ! | ||
| 1388 | !* COMMON *YOETHF* DERIVED CONSTANTS SPECIFIC TO ECMWF THERMODYNAMICS | ||
| 1389 | ! | ||
| 1390 | ! *R__ES* *CONSTANTS USED FOR COMPUTATION OF SATURATION | ||
| 1391 | ! MIXING RATIO OVER LIQUID WATER(*R_LES*) OR | ||
| 1392 | ! ICE(*R_IES*). | ||
| 1393 | ! *RVTMP2* *RVTMP2=RCPV/RCPD-1. | ||
| 1394 | ! *RHOH2O* *DENSITY OF LIQUID WATER. (RATM/100.) | ||
| 1395 | ! | ||
| 1396 | REAL R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES | ||
| 1397 | REAL RVTMP2, RHOH2O | ||
| 1398 | REAL R5ALVCP,R5ALSCP,RALVDCP,RALSDCP,RALFDCP,RTWAT,RTBER,RTBERCU | ||
| 1399 | REAL RTICE,RTICECU,RTWAT_RTICE_R,RTWAT_RTICECU_R,RKOOP1,RKOOP2 | ||
| 1400 | LOGICAL OK_BAD_ECMWF_THERMO ! If TRUE, then variables set by rrtm/suphec.F90 | ||
| 1401 | ! If FALSE, then variables set by suphel.F90 | ||
| 1402 | COMMON /YOETHF/R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES, & | ||
| 1403 | & RVTMP2, RHOH2O, & | ||
| 1404 | & R5ALVCP,R5ALSCP,RALVDCP,RALSDCP, & | ||
| 1405 | & RALFDCP,RTWAT,RTBER,RTBERCU, & | ||
| 1406 | & RTICE,RTICECU,RTWAT_RTICE_R,RTWAT_RTICECU_R,RKOOP1,& | ||
| 1407 | & RKOOP2, & | ||
| 1408 | & OK_BAD_ECMWF_THERMO | ||
| 1409 | |||
| 1410 | !$OMP THREADPRIVATE(/YOETHF/) | ||
| 1411 | ! | ||
| 1412 | ! $Header$ | ||
| 1413 | ! | ||
| 1414 | ! | ||
| 1415 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 1416 | ! veillez n'utiliser que des ! pour les commentaires | ||
| 1417 | ! et bien positionner les & des lignes de continuation | ||
| 1418 | ! (les placer en colonne 6 et en colonne 73) | ||
| 1419 | ! | ||
| 1420 | ! ------------------------------------------------------------------ | ||
| 1421 | ! This COMDECK includes the Thermodynamical functions for the cy39 | ||
| 1422 | ! ECMWF Physics package. | ||
| 1423 | ! Consistent with YOMCST Basic physics constants, assuming the | ||
| 1424 | ! partial pressure of water vapour is given by a first order | ||
| 1425 | ! Taylor expansion of Qs(T) w.r.t. to Temperature, using constants | ||
| 1426 | ! in YOETHF | ||
| 1427 | ! ------------------------------------------------------------------ | ||
| 1428 | REAL PTARG, PDELARG, P5ARG, PQSARG, PCOARG | ||
| 1429 | REAL FOEEW, FOEDE, qsats, qsatl, dqsats, dqsatl | ||
| 1430 | LOGICAL thermcep | ||
| 1431 | PARAMETER (thermcep=.TRUE.) | ||
| 1432 | ! | ||
| 1433 | FOEEW ( PTARG,PDELARG ) = EXP ( & | ||
| 1434 | & (R3LES*(1.-PDELARG)+R3IES*PDELARG) * (PTARG-RTT) & | ||
| 1435 | & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG)) ) | ||
| 1436 | ! | ||
| 1437 | FOEDE ( PTARG,PDELARG,P5ARG,PQSARG,PCOARG ) = PQSARG*PCOARG*P5ARG & | ||
| 1438 | & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG))**2 | ||
| 1439 | ! | ||
| 1440 | qsats(ptarg) = 100.0 * 0.622 * 10.0 & | ||
| 1441 | & ** (2.07023 - 0.00320991 * ptarg & | ||
| 1442 | & - 2484.896 / ptarg + 3.56654 * LOG10(ptarg)) | ||
| 1443 | qsatl(ptarg) = 100.0 * 0.622 * 10.0 & | ||
| 1444 | & ** (23.8319 - 2948.964 / ptarg & | ||
| 1445 | & - 5.028 * LOG10(ptarg) & | ||
| 1446 | & - 29810.16 * EXP( - 0.0699382 * ptarg) & | ||
| 1447 | & + 25.21935 * EXP( - 2999.924 / ptarg)) | ||
| 1448 | ! | ||
| 1449 | dqsats(ptarg,pqsarg) = RLVTT/RCPD*pqsarg * (3.56654/ptarg & | ||
| 1450 | & +2484.896*LOG(10.)/ptarg**2 & | ||
| 1451 | & -0.00320991*LOG(10.)) | ||
| 1452 | dqsatl(ptarg,pqsarg) = RLVTT/RCPD*pqsarg*LOG(10.)* & | ||
| 1453 | & (2948.964/ptarg**2-5.028/LOG(10.)/ptarg & | ||
| 1454 | & +25.21935*2999.924/ptarg**2*EXP(-2999.924/ptarg) & | ||
| 1455 | & +29810.16*0.0699382*EXP(-0.0699382*ptarg)) | ||
| 1456 | integer :: iflag_thermals,nsplit_thermals | ||
| 1457 | |||
| 1458 | !!! nrlmd le 10/04/2012 | ||
| 1459 | integer :: iflag_trig_bl,iflag_clos_bl | ||
| 1460 | integer :: tau_trig_shallow,tau_trig_deep | ||
| 1461 | real :: s_trig | ||
| 1462 | !!! fin nrlmd le 10/04/2012 | ||
| 1463 | |||
| 1464 | real,parameter :: r_aspect_thermals=2.,l_mix_thermals=30. | ||
| 1465 | real :: alp_bl_k | ||
| 1466 | real :: tau_thermals,fact_thermals_ed_dz | ||
| 1467 | integer,parameter :: w2di_thermals=0 | ||
| 1468 | integer :: isplit | ||
| 1469 | |||
| 1470 | integer :: iflag_coupl,iflag_clos,iflag_wake | ||
| 1471 | integer :: iflag_thermals_ed,iflag_thermals_optflux,iflag_thermals_closure | ||
| 1472 | |||
| 1473 | common/ctherm1/iflag_thermals,nsplit_thermals,iflag_thermals_closure | ||
| 1474 | common/ctherm2/tau_thermals,alp_bl_k,fact_thermals_ed_dz | ||
| 1475 | common/ctherm4/iflag_coupl,iflag_clos,iflag_wake | ||
| 1476 | common/ctherm5/iflag_thermals_ed,iflag_thermals_optflux | ||
| 1477 | |||
| 1478 | !!! nrlmd le 10/04/2012 | ||
| 1479 | common/ctherm6/iflag_trig_bl,iflag_clos_bl | ||
| 1480 | common/ctherm7/tau_trig_shallow,tau_trig_deep | ||
| 1481 | common/ctherm8/s_trig | ||
| 1482 | !!! fin nrlmd le 10/04/2012 | ||
| 1483 | |||
| 1484 | !$OMP THREADPRIVATE(/ctherm1/,/ctherm2/,/ctherm4/,/ctherm5/) | ||
| 1485 | !$OMP THREADPRIVATE(/ctherm6/,/ctherm7/,/ctherm8/) | ||
| 1486 | ! | ||
| 1487 | ! $Id: nuage.h 2945 2017-07-12 14:20:24Z jbmadeleine $ | ||
| 1488 | ! | ||
| 1489 | REAL rad_froid, rad_chau1, rad_chau2, t_glace_max, t_glace_min | ||
| 1490 | REAL exposant_glace | ||
| 1491 | REAL rei_min,rei_max | ||
| 1492 | REAL tau_cld_cv,coefw_cld_cv | ||
| 1493 | |||
| 1494 | REAL tmax_fonte_cv | ||
| 1495 | |||
| 1496 | INTEGER iflag_t_glace, iflag_cloudth_vert, iflag_cld_cv | ||
| 1497 | INTEGER iflag_rain_incloud_vol | ||
| 1498 | |||
| 1499 | common /nuagecom/ rad_froid,rad_chau1, rad_chau2,t_glace_max, & | ||
| 1500 | & t_glace_min,exposant_glace,rei_min,rei_max, & | ||
| 1501 | & tau_cld_cv,coefw_cld_cv, & | ||
| 1502 | & tmax_fonte_cv, & | ||
| 1503 | & iflag_t_glace,iflag_cloudth_vert,iflag_cld_cv, & | ||
| 1504 | & iflag_rain_incloud_vol | ||
| 1505 | !$OMP THREADPRIVATE(/nuagecom/) | ||
| 1506 | |||
| 1507 | INTEGER itap,ind1,ind2 | ||
| 1508 | INTEGER ngrid,klev,klon,l,ig | ||
| 1509 | |||
| 1510 | REAL ztv(ngrid,klev) | ||
| 1511 | REAL po(ngrid) | ||
| 1512 | 37440 | REAL zqenv(ngrid) | |
| 1513 | REAL zqta(ngrid,klev) | ||
| 1514 | |||
| 1515 | REAL fraca(ngrid,klev+1) | ||
| 1516 | REAL zpspsk(ngrid,klev) | ||
| 1517 | REAL paprs(ngrid,klev+1) | ||
| 1518 | REAL pplay(ngrid,klev) | ||
| 1519 | REAL ztla(ngrid,klev) | ||
| 1520 | REAL zthl(ngrid,klev) | ||
| 1521 | |||
| 1522 | 37440 | REAL zqsatth(ngrid,klev) | |
| 1523 | 37440 | REAL zqsatenv(ngrid,klev) | |
| 1524 | |||
| 1525 | 37440 | REAL sigma1(ngrid,klev) | |
| 1526 | 37440 | REAL sigma2(ngrid,klev) | |
| 1527 | 37440 | REAL qlth(ngrid,klev) | |
| 1528 | 37440 | REAL qlenv(ngrid,klev) | |
| 1529 | 37440 | REAL qltot(ngrid,klev) | |
| 1530 | 37440 | REAL cth(ngrid,klev) | |
| 1531 | 37440 | REAL cenv(ngrid,klev) | |
| 1532 | REAL ctot(ngrid,klev) | ||
| 1533 | 37440 | REAL cth_vol(ngrid,klev) | |
| 1534 | 37440 | REAL cenv_vol(ngrid,klev) | |
| 1535 | REAL ctot_vol(ngrid,klev) | ||
| 1536 | 37440 | REAL rneb(ngrid,klev) | |
| 1537 | REAL t(ngrid,klev) | ||
| 1538 | REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi | ||
| 1539 | REAL rdd,cppd,Lv | ||
| 1540 | REAL alth,alenv,ath,aenv | ||
| 1541 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs | ||
| 1542 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks | ||
| 1543 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 | ||
| 1544 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv | ||
| 1545 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth | ||
| 1546 | REAL Tbef,zdelta,qsatbef,zcor | ||
| 1547 | REAL qlbef | ||
| 1548 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur | ||
| 1549 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity | ||
| 1550 | ! (J Jouhaud, JL Dufresne, JB Madeleine) | ||
| 1551 | REAL,SAVE :: vert_alpha, vert_alpha_th | ||
| 1552 | !$OMP THREADPRIVATE(vert_alpha, vert_alpha_th) | ||
| 1553 | REAL,SAVE :: sigma1s_factor=1.1 | ||
| 1554 | REAL,SAVE :: sigma1s_power=0.6 | ||
| 1555 | REAL,SAVE :: sigma2s_factor=0.09 | ||
| 1556 | REAL,SAVE :: sigma2s_power=0.5 | ||
| 1557 | REAL,SAVE :: cloudth_ratqsmin=-1. | ||
| 1558 | !$OMP THREADPRIVATE(sigma1s_factor,sigma1s_power,sigma2s_factor,sigma2s_power,cloudth_ratqsmin) | ||
| 1559 | INTEGER, SAVE :: iflag_cloudth_vert_noratqs=0 | ||
| 1560 | !$OMP THREADPRIVATE(iflag_cloudth_vert_noratqs) | ||
| 1561 | |||
| 1562 | LOGICAL, SAVE :: firstcall = .TRUE. | ||
| 1563 | !$OMP THREADPRIVATE(firstcall) | ||
| 1564 | |||
| 1565 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) | ||
| 1566 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) | ||
| 1567 | REAL zqs(ngrid), qcloud(ngrid) | ||
| 1568 | REAL erf | ||
| 1569 | |||
| 1570 | 37440 | REAL rhodz(ngrid,klev) | |
| 1571 | 37440 | REAL zrho(ngrid,klev) | |
| 1572 | 18720 | REAL dz(ngrid,klev) | |
| 1573 | |||
| 1574 |
2/2✓ Branch 0 taken 18607680 times.
✓ Branch 1 taken 18720 times.
|
18626400 | DO ind1 = 1, ngrid |
| 1575 | !Layer calculation | ||
| 1576 | 18607680 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg !kg/m2 | |
| 1577 | 18607680 | zrho(ind1,ind2) = pplay(ind1,ind2)/t(ind1,ind2)/rd !kg/m3 | |
| 1578 | 18720 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) !m : epaisseur de la couche en metre | |
| 1579 | END DO | ||
| 1580 | |||
| 1581 | |||
| 1582 | !------------------------------------------------------------------------------ | ||
| 1583 | ! Initialize | ||
| 1584 | !------------------------------------------------------------------------------ | ||
| 1585 |
4/4✓ Branch 0 taken 730080 times.
✓ Branch 1 taken 18720 times.
✓ Branch 2 taken 725699520 times.
✓ Branch 3 taken 730080 times.
|
726448320 | sigma1(:,:)=0. |
| 1586 |
4/4✓ Branch 0 taken 730080 times.
✓ Branch 1 taken 18720 times.
✓ Branch 2 taken 725699520 times.
✓ Branch 3 taken 730080 times.
|
726448320 | sigma2(:,:)=0. |
| 1587 |
4/4✓ Branch 0 taken 730080 times.
✓ Branch 1 taken 18720 times.
✓ Branch 2 taken 725699520 times.
✓ Branch 3 taken 730080 times.
|
726448320 | qlth(:,:)=0. |
| 1588 |
4/4✓ Branch 0 taken 730080 times.
✓ Branch 1 taken 18720 times.
✓ Branch 2 taken 725699520 times.
✓ Branch 3 taken 730080 times.
|
726448320 | qlenv(:,:)=0. |
| 1589 |
4/4✓ Branch 0 taken 730080 times.
✓ Branch 1 taken 18720 times.
✓ Branch 2 taken 725699520 times.
✓ Branch 3 taken 730080 times.
|
726448320 | qltot(:,:)=0. |
| 1590 |
4/4✓ Branch 0 taken 730080 times.
✓ Branch 1 taken 18720 times.
✓ Branch 2 taken 725699520 times.
✓ Branch 3 taken 730080 times.
|
726448320 | rneb(:,:)=0. |
| 1591 |
2/2✓ Branch 0 taken 18607680 times.
✓ Branch 1 taken 18720 times.
|
18626400 | qcloud(:)=0. |
| 1592 |
4/4✓ Branch 0 taken 730080 times.
✓ Branch 1 taken 18720 times.
✓ Branch 2 taken 725699520 times.
✓ Branch 3 taken 730080 times.
|
726448320 | cth(:,:)=0. |
| 1593 |
4/4✓ Branch 0 taken 730080 times.
✓ Branch 1 taken 18720 times.
✓ Branch 2 taken 725699520 times.
✓ Branch 3 taken 730080 times.
|
726448320 | cenv(:,:)=0. |
| 1594 |
4/4✓ Branch 0 taken 730080 times.
✓ Branch 1 taken 18720 times.
✓ Branch 2 taken 725699520 times.
✓ Branch 3 taken 730080 times.
|
726448320 | ctot(:,:)=0. |
| 1595 |
4/4✓ Branch 0 taken 730080 times.
✓ Branch 1 taken 18720 times.
✓ Branch 2 taken 725699520 times.
✓ Branch 3 taken 730080 times.
|
726448320 | cth_vol(:,:)=0. |
| 1596 |
4/4✓ Branch 0 taken 730080 times.
✓ Branch 1 taken 18720 times.
✓ Branch 2 taken 725699520 times.
✓ Branch 3 taken 730080 times.
|
726448320 | cenv_vol(:,:)=0. |
| 1597 |
4/4✓ Branch 0 taken 730080 times.
✓ Branch 1 taken 18720 times.
✓ Branch 2 taken 725699520 times.
✓ Branch 3 taken 730080 times.
|
726448320 | ctot_vol(:,:)=0. |
| 1598 | qsatmmussig1=0. | ||
| 1599 | qsatmmussig2=0. | ||
| 1600 | rdd=287.04 | ||
| 1601 | cppd=1005.7 | ||
| 1602 | pi=3.14159 | ||
| 1603 | Lv=2.5e6 | ||
| 1604 | sqrt2pi=sqrt(2.*pi) | ||
| 1605 | sqrt2=sqrt(2.) | ||
| 1606 | sqrtpi=sqrt(pi) | ||
| 1607 | |||
| 1608 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 18719 times.
|
18720 | IF (firstcall) THEN |
| 1609 | 1 | vert_alpha=0.5 | |
| 1610 | 1 | CALL getin_p('cloudth_vert_alpha',vert_alpha) | |
| 1611 | 1 | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha | |
| 1612 | ! The factor used for the thermal is equal to that of the environment | ||
| 1613 | ! if nothing is explicitly specified in the def file | ||
| 1614 | 1 | vert_alpha_th=vert_alpha | |
| 1615 | 1 | CALL getin_p('cloudth_vert_alpha_th',vert_alpha_th) | |
| 1616 | 1 | WRITE(*,*) 'cloudth_vert_alpha_th = ', vert_alpha_th | |
| 1617 | ! Factor used in the calculation of sigma1s | ||
| 1618 | 1 | CALL getin_p('cloudth_sigma1s_factor',sigma1s_factor) | |
| 1619 | 1 | WRITE(*,*) 'cloudth_sigma1s_factor = ', sigma1s_factor | |
| 1620 | ! Power used in the calculation of sigma1s | ||
| 1621 | 1 | CALL getin_p('cloudth_sigma1s_power',sigma1s_power) | |
| 1622 | 1 | WRITE(*,*) 'cloudth_sigma1s_power = ', sigma1s_power | |
| 1623 | ! Factor used in the calculation of sigma2s | ||
| 1624 | 1 | CALL getin_p('cloudth_sigma2s_factor',sigma2s_factor) | |
| 1625 | 1 | WRITE(*,*) 'cloudth_sigma2s_factor = ', sigma2s_factor | |
| 1626 | ! Power used in the calculation of sigma2s | ||
| 1627 | 1 | CALL getin_p('cloudth_sigma2s_power',sigma2s_power) | |
| 1628 | 1 | WRITE(*,*) 'cloudth_sigma2s_power = ', sigma2s_power | |
| 1629 | ! Minimum value for the environmental air subgrid water distrib | ||
| 1630 | 1 | CALL getin_p('cloudth_ratqsmin',cloudth_ratqsmin) | |
| 1631 | 1 | WRITE(*,*) 'cloudth_ratqsmin = ', cloudth_ratqsmin | |
| 1632 | ! Remove the dependency to ratqs from the variance of the vertical PDF | ||
| 1633 | 1 | CALL getin_p('iflag_cloudth_vert_noratqs',iflag_cloudth_vert_noratqs) | |
| 1634 | 1 | WRITE(*,*) 'iflag_cloudth_vert_noratqs = ', iflag_cloudth_vert_noratqs | |
| 1635 | |||
| 1636 | 1 | firstcall=.FALSE. | |
| 1637 | ENDIF | ||
| 1638 | |||
| 1639 | !------------------------------------------------------------------------------- | ||
| 1640 | ! Calcul de la fraction du thermique et des ecart-types des distributions | ||
| 1641 | !------------------------------------------------------------------------------- | ||
| 1642 |
2/2✓ Branch 0 taken 18607680 times.
✓ Branch 1 taken 18720 times.
|
18626400 | do ind1=1,ngrid |
| 1643 | |||
| 1644 |
4/4✓ Branch 0 taken 9678123 times.
✓ Branch 1 taken 8929557 times.
✓ Branch 2 taken 1304630 times.
✓ Branch 3 taken 8373493 times.
|
18607680 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then !Thermal and environnement |
| 1645 | |||
| 1646 | 1304630 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) !qt = a*qtth + (1-a)*qtenv | |
| 1647 | |||
| 1648 | |||
| 1649 | 1304630 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) | |
| 1650 | 1304630 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 1651 | 1304630 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 1652 | 1304630 | qsatbef=MIN(0.5,qsatbef) | |
| 1653 | 1304630 | zcor=1./(1.-retv*qsatbef) | |
| 1654 | 1304630 | qsatbef=qsatbef*zcor | |
| 1655 | 1304630 | zqsatenv(ind1,ind2)=qsatbef | |
| 1656 | |||
| 1657 | |||
| 1658 | 1304630 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 | |
| 1659 | 1304630 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 | |
| 1660 | 1304630 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 | |
| 1661 | |||
| 1662 | !zqenv = qt environnement | ||
| 1663 | !zqsatenv = qsat environnement | ||
| 1664 | !zthl = Tl environnement | ||
| 1665 | |||
| 1666 | |||
| 1667 | 1304630 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) | |
| 1668 | 1304630 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 1669 | 1304630 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 1670 | 1304630 | qsatbef=MIN(0.5,qsatbef) | |
| 1671 | 1304630 | zcor=1./(1.-retv*qsatbef) | |
| 1672 | 1304630 | qsatbef=qsatbef*zcor | |
| 1673 | 1304630 | zqsatth(ind1,ind2)=qsatbef | |
| 1674 | |||
| 1675 | 1304630 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 | |
| 1676 | 1304630 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 | |
| 1677 | 1304630 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 | |
| 1678 | |||
| 1679 | |||
| 1680 | !zqta = qt thermals | ||
| 1681 | !zqsatth = qsat thermals | ||
| 1682 | !ztla = Tl thermals | ||
| 1683 | |||
| 1684 | !------------------------------------------------------------------------------ | ||
| 1685 | ! s standard deviation | ||
| 1686 | !------------------------------------------------------------------------------ | ||
| 1687 | |||
| 1688 | sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & | ||
| 1689 | 1304630 | & (1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 | |
| 1690 | ! sigma1s_fraca = (1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 | ||
| 1691 | 1304630 | IF (cloudth_ratqsmin>0.) THEN | |
| 1692 | ✗ | sigma1s_ratqs = cloudth_ratqsmin*po(ind1) | |
| 1693 | ELSE | ||
| 1694 | 1304630 | sigma1s_ratqs = ratqs(ind1,ind2)*po(ind1) | |
| 1695 | ENDIF | ||
| 1696 | 1304630 | sigma1s = sigma1s_fraca + sigma1s_ratqs | |
| 1697 | 1304630 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) | |
| 1698 | ! tests | ||
| 1699 | ! sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) | ||
| 1700 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1) | ||
| 1701 | ! sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) | ||
| 1702 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2) | ||
| 1703 | ! if (paprs(ind1,ind2).gt.90000) then | ||
| 1704 | ! ratqs(ind1,ind2)=0.002 | ||
| 1705 | ! else | ||
| 1706 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 | ||
| 1707 | ! endif | ||
| 1708 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) | ||
| 1709 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) | ||
| 1710 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) | ||
| 1711 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 | ||
| 1712 | |||
| 1713 | 1304630 | IF (iflag_cloudth_vert == 1) THEN | |
| 1714 | !------------------------------------------------------------------------------- | ||
| 1715 | ! Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs | ||
| 1716 | !------------------------------------------------------------------------------- | ||
| 1717 | |||
| 1718 | ✗ | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) | |
| 1719 | ✗ | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) | |
| 1720 | |||
| 1721 | ✗ | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) | |
| 1722 | ✗ | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) | |
| 1723 | ✗ | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) | |
| 1724 | ✗ | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) | |
| 1725 | ✗ | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) | |
| 1726 | ✗ | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) | |
| 1727 | |||
| 1728 | ✗ | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) | |
| 1729 | ✗ | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) | |
| 1730 | ✗ | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) | |
| 1731 | |||
| 1732 | ! Environment | ||
| 1733 | ✗ | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) | |
| 1734 | ✗ | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) | |
| 1735 | ✗ | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) | |
| 1736 | ✗ | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) | |
| 1737 | |||
| 1738 | ✗ | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 | |
| 1739 | |||
| 1740 | ! Thermal | ||
| 1741 | ✗ | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) | |
| 1742 | ✗ | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) | |
| 1743 | ✗ | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) | |
| 1744 | ✗ | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) | |
| 1745 | ✗ | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 | |
| 1746 | ✗ | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) | |
| 1747 | |||
| 1748 |
1/2✓ Branch 0 taken 1304630 times.
✗ Branch 1 not taken.
|
1304630 | ELSE IF (iflag_cloudth_vert >= 3) THEN |
| 1749 |
1/2✓ Branch 0 taken 1304630 times.
✗ Branch 1 not taken.
|
1304630 | IF (iflag_cloudth_vert < 5) THEN |
| 1750 | !------------------------------------------------------------------------------- | ||
| 1751 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s | ||
| 1752 | !------------------------------------------------------------------------------- | ||
| 1753 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) | ||
| 1754 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) | ||
| 1755 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) | ||
| 1756 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) | ||
| 1757 |
1/2✓ Branch 0 taken 1304630 times.
✗ Branch 1 not taken.
|
1304630 | IF (iflag_cloudth_vert == 3) THEN |
| 1758 | 1304630 | deltasenv=aenv*vert_alpha*sigma1s | |
| 1759 | 1304630 | deltasth=ath*vert_alpha_th*sigma2s | |
| 1760 | ELSE IF (iflag_cloudth_vert == 4) THEN | ||
| 1761 | ✗ | IF (iflag_cloudth_vert_noratqs == 1) THEN | |
| 1762 | ✗ | deltasenv=vert_alpha*max(sigma1s_fraca,1e-10) | |
| 1763 | ✗ | deltasth=vert_alpha_th*sigma2s | |
| 1764 | ELSE | ||
| 1765 | ✗ | deltasenv=vert_alpha*sigma1s | |
| 1766 | ✗ | deltasth=vert_alpha_th*sigma2s | |
| 1767 | ENDIF | ||
| 1768 | ENDIF | ||
| 1769 | |||
| 1770 | 1304630 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) | |
| 1771 | 1304630 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) | |
| 1772 | 1304630 | exp_xenv1 = exp(-1.*xenv1**2) | |
| 1773 | 1304630 | exp_xenv2 = exp(-1.*xenv2**2) | |
| 1774 | 1304630 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) | |
| 1775 | 1304630 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) | |
| 1776 | 1304630 | exp_xth1 = exp(-1.*xth1**2) | |
| 1777 | 1304630 | exp_xth2 = exp(-1.*xth2**2) | |
| 1778 | |||
| 1779 | !CF_surfacique | ||
| 1780 | 1304630 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) | |
| 1781 | 1304630 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) | |
| 1782 | 1304630 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) | |
| 1783 | |||
| 1784 | |||
| 1785 | !CF_volumique & eau condense | ||
| 1786 | !environnement | ||
| 1787 | 1304630 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 | |
| 1788 | 1304630 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) | |
| 1789 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1304630 times.
|
1304630 | if (deltasenv .lt. 1.e-10) then |
| 1790 | ✗ | qlenv(ind1,ind2)=IntJ | |
| 1791 | ✗ | cenv_vol(ind1,ind2)=IntJ_CF | |
| 1792 | else | ||
| 1793 | 1304630 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) | |
| 1794 | 1304630 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) | |
| 1795 | 1304630 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) | |
| 1796 | 1304630 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) | |
| 1797 | 1304630 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) | |
| 1798 | 1304630 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 | |
| 1799 | 1304630 | cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF | |
| 1800 | endif | ||
| 1801 | |||
| 1802 | !thermique | ||
| 1803 | 1304630 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 | |
| 1804 | 1304630 | IntJ_CF=0.5*(1.-1.*erf(xth2)) | |
| 1805 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1304630 times.
|
1304630 | if (deltasth .lt. 1.e-10) then |
| 1806 | ✗ | qlth(ind1,ind2)=IntJ | |
| 1807 | ✗ | cth_vol(ind1,ind2)=IntJ_CF | |
| 1808 | else | ||
| 1809 | 1304630 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) | |
| 1810 | 1304630 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) | |
| 1811 | 1304630 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) | |
| 1812 | 1304630 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) | |
| 1813 | 1304630 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) | |
| 1814 | 1304630 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 | |
| 1815 | 1304630 | cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF | |
| 1816 | endif | ||
| 1817 | |||
| 1818 | 1304630 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) | |
| 1819 | 1304630 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) | |
| 1820 | |||
| 1821 | ✗ | ELSE IF (iflag_cloudth_vert == 5) THEN | |
| 1822 | ✗ | sigma1s=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5)+ratqs(ind1,ind2)*po(ind1) !Environment | |
| 1823 | ✗ | sigma2s=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.02)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) !Thermals | |
| 1824 | !sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) | ||
| 1825 | !sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) | ||
| 1826 | ✗ | xth=sth/(sqrt(2.)*sigma2s) | |
| 1827 | ✗ | xenv=senv/(sqrt(2.)*sigma1s) | |
| 1828 | |||
| 1829 | !Volumique | ||
| 1830 | ✗ | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) | |
| 1831 | ✗ | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) | |
| 1832 | ✗ | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) | |
| 1833 | !print *,'jeanjean_CV=',ctot_vol(ind1,ind2) | ||
| 1834 | |||
| 1835 | ✗ | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth_vol(ind1,ind2)) | |
| 1836 | ✗ | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv_vol(ind1,ind2)) | |
| 1837 | ✗ | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) | |
| 1838 | |||
| 1839 | !Surfacique | ||
| 1840 | !Neggers | ||
| 1841 | !beta=0.0044 | ||
| 1842 | !inverse_rho=1.+beta*dz(ind1,ind2) | ||
| 1843 | !print *,'jeanjean : beta=',beta | ||
| 1844 | !cth(ind1,ind2)=cth_vol(ind1,ind2)*inverse_rho | ||
| 1845 | !cenv(ind1,ind2)=cenv_vol(ind1,ind2)*inverse_rho | ||
| 1846 | !ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) | ||
| 1847 | |||
| 1848 | !Brooks | ||
| 1849 | a_Brooks=0.6694 | ||
| 1850 | b_Brooks=0.1882 | ||
| 1851 | A_Maj_Brooks=0.1635 !-- sans shear | ||
| 1852 | !A_Maj_Brooks=0.17 !-- ARM LES | ||
| 1853 | !A_Maj_Brooks=0.18 !-- RICO LES | ||
| 1854 | !A_Maj_Brooks=0.19 !-- BOMEX LES | ||
| 1855 | Dx_Brooks=200000. | ||
| 1856 | ✗ | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) | |
| 1857 | !print *,'jeanjean_f=',f_Brooks | ||
| 1858 | |||
| 1859 | ✗ | cth(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cth_vol(ind1,ind2),1.)))- 1.)) | |
| 1860 | ✗ | cenv(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cenv_vol(ind1,ind2),1.)))- 1.)) | |
| 1861 | ✗ | ctot(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) | |
| 1862 | !print *,'JJ_ctot_1',ctot(ind1,ind2) | ||
| 1863 | |||
| 1864 | |||
| 1865 | |||
| 1866 | |||
| 1867 | |||
| 1868 | ENDIF ! of if (iflag_cloudth_vert<5) | ||
| 1869 | ENDIF ! of if (iflag_cloudth_vert==1 or 3 or 4) | ||
| 1870 | |||
| 1871 | ! if (ctot(ind1,ind2).lt.1.e-10) then | ||
| 1872 |
4/4✓ Branch 0 taken 629590 times.
✓ Branch 1 taken 675040 times.
✓ Branch 2 taken 62464 times.
✓ Branch 3 taken 567126 times.
|
1304630 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
| 1873 | 737504 | ctot(ind1,ind2)=0. | |
| 1874 | 737504 | ctot_vol(ind1,ind2)=0. | |
| 1875 | 737504 | qcloud(ind1)=zqsatenv(ind1,ind2) | |
| 1876 | |||
| 1877 | else | ||
| 1878 | |||
| 1879 | 567126 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) | |
| 1880 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & | ||
| 1881 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) | ||
| 1882 | |||
| 1883 | endif | ||
| 1884 | |||
| 1885 | else ! gaussienne environnement seule | ||
| 1886 | |||
| 1887 | 17303050 | zqenv(ind1)=po(ind1) | |
| 1888 | 17303050 | Tbef=t(ind1,ind2) | |
| 1889 | 17303050 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 1890 | 17303050 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 1891 | 17303050 | qsatbef=MIN(0.5,qsatbef) | |
| 1892 | 17303050 | zcor=1./(1.-retv*qsatbef) | |
| 1893 | 17303050 | qsatbef=qsatbef*zcor | |
| 1894 | 17303050 | zqsatenv(ind1,ind2)=qsatbef | |
| 1895 | |||
| 1896 | |||
| 1897 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) | ||
| 1898 | 17303050 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) | |
| 1899 | 17303050 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) | |
| 1900 | 17303050 | aenv=1./(1.+(alenv*Lv/cppd)) | |
| 1901 | 17303050 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) | |
| 1902 | sth=0. | ||
| 1903 | |||
| 1904 | |||
| 1905 | 17303050 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) | |
| 1906 | sigma2s=0. | ||
| 1907 | |||
| 1908 | sqrt2pi=sqrt(2.*pi) | ||
| 1909 | 17303050 | xenv=senv/(sqrt(2.)*sigma1s) | |
| 1910 | 17303050 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) | |
| 1911 | 17303050 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) | |
| 1912 | 17303050 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) | |
| 1913 | |||
| 1914 | 17303050 | if (ctot(ind1,ind2).lt.1.e-3) then | |
| 1915 | 13770146 | ctot(ind1,ind2)=0. | |
| 1916 | 13770146 | qcloud(ind1)=zqsatenv(ind1,ind2) | |
| 1917 | |||
| 1918 | else | ||
| 1919 | |||
| 1920 | ! ctot(ind1,ind2)=ctot(ind1,ind2) | ||
| 1921 | 3532904 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) | |
| 1922 | |||
| 1923 | endif | ||
| 1924 | |||
| 1925 | |||
| 1926 | |||
| 1927 | |||
| 1928 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492 | ||
| 1929 | ! Outputs used to check the PDFs | ||
| 1930 | 18607680 | cloudth_senv(ind1,ind2) = senv | |
| 1931 | 18607680 | cloudth_sth(ind1,ind2) = sth | |
| 1932 | 18607680 | cloudth_sigmaenv(ind1,ind2) = sigma1s | |
| 1933 | 18626400 | cloudth_sigmath(ind1,ind2) = sigma2s | |
| 1934 | |||
| 1935 | enddo ! from the loop on ngrid l.333 | ||
| 1936 | 18720 | return | |
| 1937 | ! end | ||
| 1938 | END SUBROUTINE cloudth_vert_v3 | ||
| 1939 | ! | ||
| 1940 | |||
| 1941 | |||
| 1942 | |||
| 1943 | |||
| 1944 | |||
| 1945 | |||
| 1946 | |||
| 1947 | |||
| 1948 | |||
| 1949 | |||
| 1950 | |||
| 1951 | ✗ | SUBROUTINE cloudth_v6(ngrid,klev,ind2, & | |
| 1952 | & ztv,po,zqta,fraca, & | ||
| 1953 | ✗ | & qcloud,ctot_surf,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & | |
| 1954 | & ratqs,zqs,T) | ||
| 1955 | |||
| 1956 | |||
| 1957 |
4/6✗ Branch 0 not taken.
✓ Branch 1 taken 1304630 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 1304630 times.
✓ Branch 4 taken 13770146 times.
✓ Branch 5 taken 3532904 times.
|
38519990 | USE ioipsl_getin_p_mod, ONLY : getin_p |
| 1958 | USE phys_output_var_mod, ONLY : cloudth_sth,cloudth_senv, & | ||
| 1959 | & cloudth_sigmath,cloudth_sigmaenv | ||
| 1960 | |||
| 1961 | IMPLICIT NONE | ||
| 1962 | |||
| 1963 | ! | ||
| 1964 | ! $Header$ | ||
| 1965 | ! | ||
| 1966 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 1967 | ! veillez � n'utiliser que des ! pour les commentaires | ||
| 1968 | ! et � bien positionner les & des lignes de continuation | ||
| 1969 | ! (les placer en colonne 6 et en colonne 73) | ||
| 1970 | ! | ||
| 1971 | ! | ||
| 1972 | ! A1.0 Fundamental constants | ||
| 1973 | REAL RPI,RCLUM,RHPLA,RKBOL,RNAVO | ||
| 1974 | ! A1.1 Astronomical constants | ||
| 1975 | REAL RDAY,REA,REPSM,RSIYEA,RSIDAY,ROMEGA | ||
| 1976 | ! A1.1.bis Constantes concernant l'orbite de la Terre: | ||
| 1977 | REAL R_ecc, R_peri, R_incl | ||
| 1978 | ! A1.2 Geoide | ||
| 1979 | REAL RA,RG,R1SA | ||
| 1980 | ! A1.3 Radiation | ||
| 1981 | ! REAL RSIGMA,RI0 | ||
| 1982 | REAL RSIGMA | ||
| 1983 | ! A1.4 Thermodynamic gas phase | ||
| 1984 | REAL RMO3,RMCO2,RMC,RMCH4,RMN2O,RMCFC11,RMCFC12 | ||
| 1985 | REAL R,RMD,RMV,RD,RV,RCPD,RCPV,RCVD,RCVV | ||
| 1986 | REAL RKAPPA,RETV, eps_w | ||
| 1987 | ! A1.5,6 Thermodynamic liquid,solid phases | ||
| 1988 | REAL RCW,RCS | ||
| 1989 | ! A1.7 Thermodynamic transition of phase | ||
| 1990 | REAL RLVTT,RLSTT,RLMLT,RTT,RATM | ||
| 1991 | ! A1.8 Curve of saturation | ||
| 1992 | REAL RESTT,RALPW,RBETW,RGAMW,RALPS,RBETS,RGAMS | ||
| 1993 | REAL RALPD,RBETD,RGAMD | ||
| 1994 | ! | ||
| 1995 | COMMON/YOMCST/RPI ,RCLUM ,RHPLA ,RKBOL ,RNAVO & | ||
| 1996 | & ,RDAY ,REA ,REPSM ,RSIYEA,RSIDAY,ROMEGA & | ||
| 1997 | & ,R_ecc, R_peri, R_incl & | ||
| 1998 | & ,RA ,RG ,R1SA & | ||
| 1999 | & ,RSIGMA & | ||
| 2000 | & ,R ,RMD ,RMV ,RD ,RV ,RCPD & | ||
| 2001 | & ,RMO3 ,RMCO2 ,RMC ,RMCH4 ,RMN2O ,RMCFC11 ,RMCFC12 & | ||
| 2002 | & ,RCPV ,RCVD ,RCVV ,RKAPPA,RETV, eps_w & | ||
| 2003 | & ,RCW ,RCS & | ||
| 2004 | & ,RLVTT ,RLSTT ,RLMLT ,RTT ,RATM & | ||
| 2005 | & ,RESTT ,RALPW ,RBETW ,RGAMW ,RALPS ,RBETS ,RGAMS & | ||
| 2006 | & ,RALPD ,RBETD ,RGAMD | ||
| 2007 | ! ------------------------------------------------------------------ | ||
| 2008 | !$OMP THREADPRIVATE(/YOMCST/) | ||
| 2009 | ! | ||
| 2010 | ! $Id: YOETHF.h 2799 2017-02-24 18:50:33Z jyg $ | ||
| 2011 | ! | ||
| 2012 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 2013 | ! veillez n'utiliser que des ! pour les commentaires | ||
| 2014 | ! et bien positionner les & des lignes de continuation | ||
| 2015 | ! (les placer en colonne 6 et en colonne 73) | ||
| 2016 | ! | ||
| 2017 | !* COMMON *YOETHF* DERIVED CONSTANTS SPECIFIC TO ECMWF THERMODYNAMICS | ||
| 2018 | ! | ||
| 2019 | ! *R__ES* *CONSTANTS USED FOR COMPUTATION OF SATURATION | ||
| 2020 | ! MIXING RATIO OVER LIQUID WATER(*R_LES*) OR | ||
| 2021 | ! ICE(*R_IES*). | ||
| 2022 | ! *RVTMP2* *RVTMP2=RCPV/RCPD-1. | ||
| 2023 | ! *RHOH2O* *DENSITY OF LIQUID WATER. (RATM/100.) | ||
| 2024 | ! | ||
| 2025 | REAL R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES | ||
| 2026 | REAL RVTMP2, RHOH2O | ||
| 2027 | REAL R5ALVCP,R5ALSCP,RALVDCP,RALSDCP,RALFDCP,RTWAT,RTBER,RTBERCU | ||
| 2028 | REAL RTICE,RTICECU,RTWAT_RTICE_R,RTWAT_RTICECU_R,RKOOP1,RKOOP2 | ||
| 2029 | LOGICAL OK_BAD_ECMWF_THERMO ! If TRUE, then variables set by rrtm/suphec.F90 | ||
| 2030 | ! If FALSE, then variables set by suphel.F90 | ||
| 2031 | COMMON /YOETHF/R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES, & | ||
| 2032 | & RVTMP2, RHOH2O, & | ||
| 2033 | & R5ALVCP,R5ALSCP,RALVDCP,RALSDCP, & | ||
| 2034 | & RALFDCP,RTWAT,RTBER,RTBERCU, & | ||
| 2035 | & RTICE,RTICECU,RTWAT_RTICE_R,RTWAT_RTICECU_R,RKOOP1,& | ||
| 2036 | & RKOOP2, & | ||
| 2037 | & OK_BAD_ECMWF_THERMO | ||
| 2038 | |||
| 2039 | !$OMP THREADPRIVATE(/YOETHF/) | ||
| 2040 | ! | ||
| 2041 | ! $Header$ | ||
| 2042 | ! | ||
| 2043 | ! | ||
| 2044 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 2045 | ! veillez n'utiliser que des ! pour les commentaires | ||
| 2046 | ! et bien positionner les & des lignes de continuation | ||
| 2047 | ! (les placer en colonne 6 et en colonne 73) | ||
| 2048 | ! | ||
| 2049 | ! ------------------------------------------------------------------ | ||
| 2050 | ! This COMDECK includes the Thermodynamical functions for the cy39 | ||
| 2051 | ! ECMWF Physics package. | ||
| 2052 | ! Consistent with YOMCST Basic physics constants, assuming the | ||
| 2053 | ! partial pressure of water vapour is given by a first order | ||
| 2054 | ! Taylor expansion of Qs(T) w.r.t. to Temperature, using constants | ||
| 2055 | ! in YOETHF | ||
| 2056 | ! ------------------------------------------------------------------ | ||
| 2057 | REAL PTARG, PDELARG, P5ARG, PQSARG, PCOARG | ||
| 2058 | REAL FOEEW, FOEDE, qsats, qsatl, dqsats, dqsatl | ||
| 2059 | LOGICAL thermcep | ||
| 2060 | PARAMETER (thermcep=.TRUE.) | ||
| 2061 | ! | ||
| 2062 | FOEEW ( PTARG,PDELARG ) = EXP ( & | ||
| 2063 | & (R3LES*(1.-PDELARG)+R3IES*PDELARG) * (PTARG-RTT) & | ||
| 2064 | & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG)) ) | ||
| 2065 | ! | ||
| 2066 | FOEDE ( PTARG,PDELARG,P5ARG,PQSARG,PCOARG ) = PQSARG*PCOARG*P5ARG & | ||
| 2067 | & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG))**2 | ||
| 2068 | ! | ||
| 2069 | qsats(ptarg) = 100.0 * 0.622 * 10.0 & | ||
| 2070 | & ** (2.07023 - 0.00320991 * ptarg & | ||
| 2071 | & - 2484.896 / ptarg + 3.56654 * LOG10(ptarg)) | ||
| 2072 | qsatl(ptarg) = 100.0 * 0.622 * 10.0 & | ||
| 2073 | & ** (23.8319 - 2948.964 / ptarg & | ||
| 2074 | & - 5.028 * LOG10(ptarg) & | ||
| 2075 | & - 29810.16 * EXP( - 0.0699382 * ptarg) & | ||
| 2076 | & + 25.21935 * EXP( - 2999.924 / ptarg)) | ||
| 2077 | ! | ||
| 2078 | dqsats(ptarg,pqsarg) = RLVTT/RCPD*pqsarg * (3.56654/ptarg & | ||
| 2079 | & +2484.896*LOG(10.)/ptarg**2 & | ||
| 2080 | & -0.00320991*LOG(10.)) | ||
| 2081 | dqsatl(ptarg,pqsarg) = RLVTT/RCPD*pqsarg*LOG(10.)* & | ||
| 2082 | & (2948.964/ptarg**2-5.028/LOG(10.)/ptarg & | ||
| 2083 | & +25.21935*2999.924/ptarg**2*EXP(-2999.924/ptarg) & | ||
| 2084 | & +29810.16*0.0699382*EXP(-0.0699382*ptarg)) | ||
| 2085 | integer :: iflag_thermals,nsplit_thermals | ||
| 2086 | |||
| 2087 | !!! nrlmd le 10/04/2012 | ||
| 2088 | integer :: iflag_trig_bl,iflag_clos_bl | ||
| 2089 | integer :: tau_trig_shallow,tau_trig_deep | ||
| 2090 | real :: s_trig | ||
| 2091 | !!! fin nrlmd le 10/04/2012 | ||
| 2092 | |||
| 2093 | real,parameter :: r_aspect_thermals=2.,l_mix_thermals=30. | ||
| 2094 | real :: alp_bl_k | ||
| 2095 | real :: tau_thermals,fact_thermals_ed_dz | ||
| 2096 | integer,parameter :: w2di_thermals=0 | ||
| 2097 | integer :: isplit | ||
| 2098 | |||
| 2099 | integer :: iflag_coupl,iflag_clos,iflag_wake | ||
| 2100 | integer :: iflag_thermals_ed,iflag_thermals_optflux,iflag_thermals_closure | ||
| 2101 | |||
| 2102 | common/ctherm1/iflag_thermals,nsplit_thermals,iflag_thermals_closure | ||
| 2103 | common/ctherm2/tau_thermals,alp_bl_k,fact_thermals_ed_dz | ||
| 2104 | common/ctherm4/iflag_coupl,iflag_clos,iflag_wake | ||
| 2105 | common/ctherm5/iflag_thermals_ed,iflag_thermals_optflux | ||
| 2106 | |||
| 2107 | !!! nrlmd le 10/04/2012 | ||
| 2108 | common/ctherm6/iflag_trig_bl,iflag_clos_bl | ||
| 2109 | common/ctherm7/tau_trig_shallow,tau_trig_deep | ||
| 2110 | common/ctherm8/s_trig | ||
| 2111 | !!! fin nrlmd le 10/04/2012 | ||
| 2112 | |||
| 2113 | !$OMP THREADPRIVATE(/ctherm1/,/ctherm2/,/ctherm4/,/ctherm5/) | ||
| 2114 | !$OMP THREADPRIVATE(/ctherm6/,/ctherm7/,/ctherm8/) | ||
| 2115 | ! | ||
| 2116 | ! $Id: nuage.h 2945 2017-07-12 14:20:24Z jbmadeleine $ | ||
| 2117 | ! | ||
| 2118 | REAL rad_froid, rad_chau1, rad_chau2, t_glace_max, t_glace_min | ||
| 2119 | REAL exposant_glace | ||
| 2120 | REAL rei_min,rei_max | ||
| 2121 | REAL tau_cld_cv,coefw_cld_cv | ||
| 2122 | |||
| 2123 | REAL tmax_fonte_cv | ||
| 2124 | |||
| 2125 | INTEGER iflag_t_glace, iflag_cloudth_vert, iflag_cld_cv | ||
| 2126 | INTEGER iflag_rain_incloud_vol | ||
| 2127 | |||
| 2128 | common /nuagecom/ rad_froid,rad_chau1, rad_chau2,t_glace_max, & | ||
| 2129 | & t_glace_min,exposant_glace,rei_min,rei_max, & | ||
| 2130 | & tau_cld_cv,coefw_cld_cv, & | ||
| 2131 | & tmax_fonte_cv, & | ||
| 2132 | & iflag_t_glace,iflag_cloudth_vert,iflag_cld_cv, & | ||
| 2133 | & iflag_rain_incloud_vol | ||
| 2134 | !$OMP THREADPRIVATE(/nuagecom/) | ||
| 2135 | |||
| 2136 | |||
| 2137 | !Domain variables | ||
| 2138 | INTEGER ngrid !indice Max lat-lon | ||
| 2139 | INTEGER klev !indice Max alt | ||
| 2140 | INTEGER ind1 !indice in [1:ngrid] | ||
| 2141 | INTEGER ind2 !indice in [1:klev] | ||
| 2142 | !thermal plume fraction | ||
| 2143 | REAL fraca(ngrid,klev+1) !thermal plumes fraction in the gridbox | ||
| 2144 | !temperatures | ||
| 2145 | REAL T(ngrid,klev) !temperature | ||
| 2146 | REAL zpspsk(ngrid,klev) !factor (p/p0)**kappa (used for potential variables) | ||
| 2147 | REAL ztv(ngrid,klev) !potential temperature (voir thermcell_env.F90) | ||
| 2148 | REAL ztla(ngrid,klev) !liquid temperature in the thermals (Tl_th) | ||
| 2149 | REAL zthl(ngrid,klev) !liquid temperature in the environment (Tl_env) | ||
| 2150 | !pressure | ||
| 2151 | REAL paprs(ngrid,klev+1) !pressure at the interface of levels | ||
| 2152 | REAL pplay(ngrid,klev) !pressure at the middle of the level | ||
| 2153 | !humidity | ||
| 2154 | REAL ratqs(ngrid,klev) !width of the total water subgrid-scale distribution | ||
| 2155 | REAL po(ngrid) !total water (qt) | ||
| 2156 | ✗ | REAL zqenv(ngrid) !total water in the environment (qt_env) | |
| 2157 | REAL zqta(ngrid,klev) !total water in the thermals (qt_th) | ||
| 2158 | ✗ | REAL zqsatth(ngrid,klev) !water saturation level in the thermals (q_sat_th) | |
| 2159 | ✗ | REAL zqsatenv(ngrid,klev) !water saturation level in the environment (q_sat_env) | |
| 2160 | ✗ | REAL qlth(ngrid,klev) !condensed water in the thermals | |
| 2161 | ✗ | REAL qlenv(ngrid,klev) !condensed water in the environment | |
| 2162 | ✗ | REAL qltot(ngrid,klev) !condensed water in the gridbox | |
| 2163 | !cloud fractions | ||
| 2164 | ✗ | REAL cth_vol(ngrid,klev) !cloud fraction by volume in the thermals | |
| 2165 | ✗ | REAL cenv_vol(ngrid,klev) !cloud fraction by volume in the environment | |
| 2166 | REAL ctot_vol(ngrid,klev) !cloud fraction by volume in the gridbox | ||
| 2167 | ✗ | REAL cth_surf(ngrid,klev) !cloud fraction by surface in the thermals | |
| 2168 | ✗ | REAL cenv_surf(ngrid,klev) !cloud fraction by surface in the environment | |
| 2169 | REAL ctot_surf(ngrid,klev) !cloud fraction by surface in the gridbox | ||
| 2170 | !PDF of saturation deficit variables | ||
| 2171 | REAL rdd,cppd,Lv | ||
| 2172 | REAL Tbef,zdelta,qsatbef,zcor | ||
| 2173 | REAL alth,alenv,ath,aenv | ||
| 2174 | REAL sth,senv !saturation deficits in the thermals and environment | ||
| 2175 | REAL sigma_env,sigma_th !standard deviations of the biGaussian PDF | ||
| 2176 | !cloud fraction variables | ||
| 2177 | REAL xth,xenv | ||
| 2178 | REAL inverse_rho,beta !Neggers et al. (2011) method | ||
| 2179 | REAL a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks !Brooks et al. (2005) method | ||
| 2180 | !Incloud total water variables | ||
| 2181 | REAL zqs(ngrid) !q_sat | ||
| 2182 | REAL qcloud(ngrid) !eau totale dans le nuage | ||
| 2183 | !Some arithmetic variables | ||
| 2184 | REAL erf,pi,sqrt2,sqrt2pi | ||
| 2185 | !Depth of the layer | ||
| 2186 | ✗ | REAL dz(ngrid,klev) !epaisseur de la couche en metre | |
| 2187 | ✗ | REAL rhodz(ngrid,klev) | |
| 2188 | ✗ | REAL zrho(ngrid,klev) | |
| 2189 | ✗ | DO ind1 = 1, ngrid | |
| 2190 | ✗ | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg ![kg/m2] | |
| 2191 | ✗ | zrho(ind1,ind2) = pplay(ind1,ind2)/T(ind1,ind2)/rd ![kg/m3] | |
| 2192 | ✗ | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) ![m] | |
| 2193 | END DO | ||
| 2194 | |||
| 2195 | !------------------------------------------------------------------------------ | ||
| 2196 | ! Initialization | ||
| 2197 | !------------------------------------------------------------------------------ | ||
| 2198 | ✗ | qlth(:,:)=0. | |
| 2199 | ✗ | qlenv(:,:)=0. | |
| 2200 | ✗ | qltot(:,:)=0. | |
| 2201 | ✗ | cth_vol(:,:)=0. | |
| 2202 | ✗ | cenv_vol(:,:)=0. | |
| 2203 | ✗ | ctot_vol(:,:)=0. | |
| 2204 | ✗ | cth_surf(:,:)=0. | |
| 2205 | ✗ | cenv_surf(:,:)=0. | |
| 2206 | ✗ | ctot_surf(:,:)=0. | |
| 2207 | ✗ | qcloud(:)=0. | |
| 2208 | rdd=287.04 | ||
| 2209 | cppd=1005.7 | ||
| 2210 | pi=3.14159 | ||
| 2211 | Lv=2.5e6 | ||
| 2212 | sqrt2=sqrt(2.) | ||
| 2213 | sqrt2pi=sqrt(2.*pi) | ||
| 2214 | |||
| 2215 | |||
| 2216 | ✗ | DO ind1=1,ngrid | |
| 2217 | !------------------------------------------------------------------------------- | ||
| 2218 | !Both thermal and environment in the gridbox | ||
| 2219 | !------------------------------------------------------------------------------- | ||
| 2220 | ✗ | IF ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) THEN | |
| 2221 | !-------------------------------------------- | ||
| 2222 | !calcul de qsat_env | ||
| 2223 | !-------------------------------------------- | ||
| 2224 | ✗ | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) | |
| 2225 | ✗ | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 2226 | ✗ | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 2227 | ✗ | qsatbef=MIN(0.5,qsatbef) | |
| 2228 | ✗ | zcor=1./(1.-retv*qsatbef) | |
| 2229 | ✗ | qsatbef=qsatbef*zcor | |
| 2230 | ✗ | zqsatenv(ind1,ind2)=qsatbef | |
| 2231 | !-------------------------------------------- | ||
| 2232 | !calcul de s_env | ||
| 2233 | !-------------------------------------------- | ||
| 2234 | ✗ | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam | |
| 2235 | ✗ | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam | |
| 2236 | ✗ | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam | |
| 2237 | !-------------------------------------------- | ||
| 2238 | !calcul de qsat_th | ||
| 2239 | !-------------------------------------------- | ||
| 2240 | ✗ | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) | |
| 2241 | ✗ | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 2242 | ✗ | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 2243 | ✗ | qsatbef=MIN(0.5,qsatbef) | |
| 2244 | ✗ | zcor=1./(1.-retv*qsatbef) | |
| 2245 | ✗ | qsatbef=qsatbef*zcor | |
| 2246 | ✗ | zqsatth(ind1,ind2)=qsatbef | |
| 2247 | !-------------------------------------------- | ||
| 2248 | !calcul de s_th | ||
| 2249 | !-------------------------------------------- | ||
| 2250 | ✗ | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 these Arnaud Jam | |
| 2251 | ✗ | ath=1./(1.+(alth*Lv/cppd)) !al, p84 these Arnaud Jam | |
| 2252 | ✗ | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 these Arnaud Jam | |
| 2253 | !-------------------------------------------- | ||
| 2254 | !calcul standard deviations bi-Gaussian PDF | ||
| 2255 | !-------------------------------------------- | ||
| 2256 | ✗ | sigma_th=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.01)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) | |
| 2257 | ✗ | sigma_env=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5)+ratqs(ind1,ind2)*po(ind1) | |
| 2258 | ✗ | xth=sth/(sqrt2*sigma_th) | |
| 2259 | ✗ | xenv=senv/(sqrt2*sigma_env) | |
| 2260 | !-------------------------------------------- | ||
| 2261 | !Cloud fraction by volume CF_vol | ||
| 2262 | !-------------------------------------------- | ||
| 2263 | ✗ | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) | |
| 2264 | ✗ | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) | |
| 2265 | ✗ | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) | |
| 2266 | !-------------------------------------------- | ||
| 2267 | !Condensed water qc | ||
| 2268 | !-------------------------------------------- | ||
| 2269 | ✗ | qlth(ind1,ind2)=sigma_th*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth_vol(ind1,ind2)) | |
| 2270 | ✗ | qlenv(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv_vol(ind1,ind2)) | |
| 2271 | ✗ | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) | |
| 2272 | !-------------------------------------------- | ||
| 2273 | !Cloud fraction by surface CF_surf | ||
| 2274 | !-------------------------------------------- | ||
| 2275 | !Method Neggers et al. (2011) : ok for cumulus clouds only | ||
| 2276 | !beta=0.0044 (Jouhaud et al.2018) | ||
| 2277 | !inverse_rho=1.+beta*dz(ind1,ind2) | ||
| 2278 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho | ||
| 2279 | !Method Brooks et al. (2005) : ok for all types of clouds | ||
| 2280 | a_Brooks=0.6694 | ||
| 2281 | b_Brooks=0.1882 | ||
| 2282 | A_Maj_Brooks=0.1635 !-- sans dependence au cisaillement de vent | ||
| 2283 | Dx_Brooks=200000. !-- si l'on considere des mailles de 200km de cote | ||
| 2284 | ✗ | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) | |
| 2285 | ✗ | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) | |
| 2286 | !-------------------------------------------- | ||
| 2287 | !Incloud Condensed water qcloud | ||
| 2288 | !-------------------------------------------- | ||
| 2289 | ✗ | if (ctot_surf(ind1,ind2) .lt. 1.e-10) then | |
| 2290 | ✗ | ctot_vol(ind1,ind2)=0. | |
| 2291 | ✗ | ctot_surf(ind1,ind2)=0. | |
| 2292 | ✗ | qcloud(ind1)=zqsatenv(ind1,ind2) | |
| 2293 | else | ||
| 2294 | ✗ | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqs(ind1) | |
| 2295 | endif | ||
| 2296 | |||
| 2297 | |||
| 2298 | |||
| 2299 | !------------------------------------------------------------------------------- | ||
| 2300 | !Environment only in the gridbox | ||
| 2301 | !------------------------------------------------------------------------------- | ||
| 2302 | ELSE | ||
| 2303 | !-------------------------------------------- | ||
| 2304 | !calcul de qsat_env | ||
| 2305 | !-------------------------------------------- | ||
| 2306 | ✗ | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) | |
| 2307 | ✗ | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) | |
| 2308 | ✗ | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) | |
| 2309 | ✗ | qsatbef=MIN(0.5,qsatbef) | |
| 2310 | ✗ | zcor=1./(1.-retv*qsatbef) | |
| 2311 | ✗ | qsatbef=qsatbef*zcor | |
| 2312 | ✗ | zqsatenv(ind1,ind2)=qsatbef | |
| 2313 | !-------------------------------------------- | ||
| 2314 | !calcul de s_env | ||
| 2315 | !-------------------------------------------- | ||
| 2316 | ✗ | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam | |
| 2317 | ✗ | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam | |
| 2318 | ✗ | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam | |
| 2319 | !-------------------------------------------- | ||
| 2320 | !calcul standard deviations Gaussian PDF | ||
| 2321 | !-------------------------------------------- | ||
| 2322 | ✗ | zqenv(ind1)=po(ind1) | |
| 2323 | ✗ | sigma_env=ratqs(ind1,ind2)*zqenv(ind1) | |
| 2324 | ✗ | xenv=senv/(sqrt2*sigma_env) | |
| 2325 | !-------------------------------------------- | ||
| 2326 | !Cloud fraction by volume CF_vol | ||
| 2327 | !-------------------------------------------- | ||
| 2328 | ✗ | ctot_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) | |
| 2329 | !-------------------------------------------- | ||
| 2330 | !Condensed water qc | ||
| 2331 | !-------------------------------------------- | ||
| 2332 | ✗ | qltot(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*ctot_vol(ind1,ind2)) | |
| 2333 | !-------------------------------------------- | ||
| 2334 | !Cloud fraction by surface CF_surf | ||
| 2335 | !-------------------------------------------- | ||
| 2336 | !Method Neggers et al. (2011) : ok for cumulus clouds only | ||
| 2337 | !beta=0.0044 (Jouhaud et al.2018) | ||
| 2338 | !inverse_rho=1.+beta*dz(ind1,ind2) | ||
| 2339 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho | ||
| 2340 | !Method Brooks et al. (2005) : ok for all types of clouds | ||
| 2341 | a_Brooks=0.6694 | ||
| 2342 | b_Brooks=0.1882 | ||
| 2343 | A_Maj_Brooks=0.1635 !-- sans dependence au shear | ||
| 2344 | Dx_Brooks=200000. | ||
| 2345 | ✗ | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) | |
| 2346 | ✗ | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) | |
| 2347 | !-------------------------------------------- | ||
| 2348 | !Incloud Condensed water qcloud | ||
| 2349 | !-------------------------------------------- | ||
| 2350 | ✗ | if (ctot_surf(ind1,ind2) .lt. 1.e-8) then | |
| 2351 | ✗ | ctot_vol(ind1,ind2)=0. | |
| 2352 | ✗ | ctot_surf(ind1,ind2)=0. | |
| 2353 | ✗ | qcloud(ind1)=zqsatenv(ind1,ind2) | |
| 2354 | else | ||
| 2355 | ✗ | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqsatenv(ind1,ind2) | |
| 2356 | endif | ||
| 2357 | |||
| 2358 | |||
| 2359 | END IF ! From the separation (thermal/envrionnement) et (environnement only) | ||
| 2360 | |||
| 2361 | ! Outputs used to check the PDFs | ||
| 2362 | ✗ | cloudth_senv(ind1,ind2) = senv | |
| 2363 | ✗ | cloudth_sth(ind1,ind2) = sth | |
| 2364 | ✗ | cloudth_sigmaenv(ind1,ind2) = sigma_env | |
| 2365 | ✗ | cloudth_sigmath(ind1,ind2) = sigma_th | |
| 2366 | |||
| 2367 | END DO ! From the loop on ngrid | ||
| 2368 | ✗ | return | |
| 2369 | |||
| 2370 | END SUBROUTINE cloudth_v6 | ||
| 2371 | END MODULE cloudth_mod | ||
| 2372 | |||
| 2373 | |||
| 2374 | |||
| 2375 | |||
| 2376 |