GCC Code Coverage Report


Directory: ./
File: phys/cltrac.f90
Date: 2022-01-11 19:19:34
Exec Total Coverage
Lines: 0 45 0.0%
Branches: 0 26 0.0%

Line Branch Exec Source
1 !
2 ! $Id $
3 !
4 SUBROUTINE cltrac(dtime,coef,t,tr,flux,paprs,pplay,delp, &
5 d_tr,d_tr_dry,flux_tr_dry) !jyg
6
7 USE dimphy
8 IMPLICIT NONE
9 !======================================================================
10 ! Auteur(s): O. Boucher (LOA/LMD) date: 19961127
11 ! inspire de clvent
12 ! Objet: diffusion verticale de traceurs avec flux fixe a la surface
13 ! ou/et flux du type c-drag
14 !
15 ! Arguments:
16 !-----------
17 ! dtime.......input-R- intervalle du temps (en secondes)
18 ! coef........input-R- le coefficient d'echange (m**2/s) l>1
19 ! t...........input-R- temperature (K)
20 ! tr..........input-R- la q. de traceurs
21 ! flux........input-R- le flux de traceurs a la surface
22 ! paprs.......input-R- pression a inter-couche (Pa)
23 ! pplay.......input-R- pression au milieu de couche (Pa)
24 ! delp........input-R- epaisseur de couche (Pa)
25 ! cdrag.......input-R- cdrag pour le flux de surface (non active)
26 ! tr0.........input-R- traceurs a la surface ou dans l'ocean (non active)
27 ! d_tr........output-R- le changement de tr
28 ! d_tr_dry....output-R- le changement de tr du au depot sec (1st layer)
29 ! flux_tr_dry.output-R- depot sec
30 !!! flux_tr..output-R- flux de tr
31 !======================================================================
32 include "YOMCST.h"
33 !
34 ! Entree
35 !
36 REAL,INTENT(IN) :: dtime
37 REAL,DIMENSION(klon,klev),INTENT(IN) :: coef
38 REAL,DIMENSION(klon,klev),INTENT(IN) :: t, tr
39 REAL,DIMENSION(klon),INTENT(IN) :: flux !(at/s/m2)
40 REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs
41 REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay, delp
42 !
43 ! Sorties
44 !
45 REAL ,DIMENSION(klon,klev),INTENT(OUT) :: d_tr
46 REAL ,DIMENSION(klon),INTENT(OUT) :: d_tr_dry !jyg
47 REAL ,DIMENSION(klon),INTENT(OUT) :: flux_tr_dry !jyg
48 ! REAL ,DIMENSION(klon,klev),INTENT(OUT) :: flux_tr
49 !
50 ! Local
51 !
52 INTEGER :: i, k
53 REAL,DIMENSION(klon) :: cdrag, tr0
54 REAL,DIMENSION(klon,klev) :: zx_ctr
55 REAL,DIMENSION(klon,klev) :: zx_dtr
56 REAL,DIMENSION(klon) :: zx_buf
57 REAL,DIMENSION(klon,klev) :: zx_coef
58 REAL,DIMENSION(klon,klev) :: local_tr
59 REAL,DIMENSION(klon) :: zx_alf1,zx_alf2,zx_flux
60
61 !======================================================================
62
63 DO k = 1, klev
64 DO i = 1, klon
65 local_tr(i,k) = tr(i,k)
66 ENDDO
67 ENDDO
68
69 !======================================================================
70
71 DO i = 1, klon
72 zx_alf1(i) = (paprs(i,1)-pplay(i,2))/(pplay(i,1)-pplay(i,2))
73 zx_alf2(i) = 1.0 - zx_alf1(i)
74 flux_tr_dry(i) = -flux(i)*dtime !jyg
75 zx_flux(i) = flux_tr_dry(i)*RG !jyg
76 !! zx_flux(i) = -flux(i)*dtime*RG !jyg
77 ! Pour le moment le flux est prescrit cdrag et zx_coef(1) vaut 0
78 cdrag(i) = 0.0
79 tr0(i) = 0.0
80 zx_coef(i,1) = cdrag(i)*dtime*RG
81 zx_ctr(i,1)=0.
82 zx_dtr(i,1)=0.
83 ENDDO
84
85 !======================================================================
86
87 DO k = 2, klev
88 DO i = 1, klon
89 zx_coef(i,k) = coef(i,k)*RG/(pplay(i,k-1)-pplay(i,k)) &
90 *(paprs(i,k)*2/(t(i,k)+t(i,k-1))/RD)**2
91 zx_coef(i,k) = zx_coef(i,k)*dtime*RG
92 ENDDO
93 ENDDO
94
95 !======================================================================
96
97 DO i = 1, klon
98 zx_buf(i) = delp(i,1) + zx_coef(i,1)*zx_alf1(i) + zx_coef(i,2)
99 !
100 zx_ctr(i,2) = (local_tr(i,1)*delp(i,1)+ &
101 zx_coef(i,1)*tr0(i)-zx_flux(i))/zx_buf(i)
102 !
103 zx_dtr(i,2) = (zx_coef(i,2)-zx_alf2(i)*zx_coef(i,1)) / &
104 zx_buf(i)
105 d_tr_dry(i) = -zx_flux(i)/zx_buf(i) !jyg
106 ENDDO
107
108 DO k = 3, klev
109 DO i = 1, klon
110 zx_buf(i) = delp(i,k-1) + zx_coef(i,k) &
111 + zx_coef(i,k-1)*(1.-zx_dtr(i,k-1))
112 zx_ctr(i,k) = (local_tr(i,k-1)*delp(i,k-1) &
113 +zx_coef(i,k-1)*zx_ctr(i,k-1) )/zx_buf(i)
114 zx_dtr(i,k) = zx_coef(i,k)/zx_buf(i)
115 ENDDO
116 ENDDO
117
118 DO i = 1, klon
119 local_tr(i,klev) = ( local_tr(i,klev)*delp(i,klev) &
120 +zx_coef(i,klev)*zx_ctr(i,klev) ) &
121 / ( delp(i,klev) + zx_coef(i,klev) &
122 -zx_coef(i,klev)*zx_dtr(i,klev) )
123 ENDDO
124
125 DO k = klev-1, 1, -1
126 DO i = 1, klon
127 local_tr(i,k) = zx_ctr(i,k+1) + zx_dtr(i,k+1)*local_tr(i,k+1)
128 ENDDO
129 ENDDO
130
131 !======================================================================
132 !== flux_tr est le flux de traceur (positif vers bas)
133 ! DO i = 1, klon
134 ! flux_tr(i,1) = zx_coef(i,1)/(RG*dtime)
135 ! ENDDO
136 ! DO k = 2, klev
137 ! DO i = 1, klon
138 ! flux_tr(i,k) = zx_coef(i,k)/(RG*dtime)
139 ! . * (local_tr(i,k)-local_tr(i,k-1))
140 ! ENDDO
141 ! ENDDO
142 !======================================================================
143 DO k = 1, klev
144 DO i = 1, klon
145 d_tr(i,k) = local_tr(i,k) - tr(i,k)
146 ENDDO
147 ENDDO
148
149 END SUBROUTINE cltrac
150