| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! |
| 3 |
|
|
! |
| 4 |
|
✗ |
SUBROUTINE coefcdrag (klon, knon, nsrf, zxli, & |
| 5 |
|
✗ |
speed, t, q, zgeop, psol, & |
| 6 |
|
|
ts, qsurf, rugos, okri, ri1, & |
| 7 |
|
|
cdram, cdrah, cdran, zri1, pref) |
| 8 |
|
|
|
| 9 |
|
|
USE indice_sol_mod |
| 10 |
|
|
|
| 11 |
|
|
IMPLICIT none |
| 12 |
|
|
!------------------------------------------------------------------------- |
| 13 |
|
|
! Objet : calcul des cdrags pour le moment (cdram) et les flux de chaleur |
| 14 |
|
|
! sensible et latente (cdrah), du cdrag neutre (cdran), |
| 15 |
|
|
! du nombre de Richardson entre la surface et le niveau de reference |
| 16 |
|
|
! (zri1) et de la pression au niveau de reference (pref). |
| 17 |
|
|
! |
| 18 |
|
|
! I. Musat, 01.07.2002 |
| 19 |
|
|
!------------------------------------------------------------------------- |
| 20 |
|
|
! |
| 21 |
|
|
! klon----input-I- dimension de la grille physique (= nb_pts_latitude X nb_pts_longitude) |
| 22 |
|
|
! knon----input-I- nombre de points pour un type de surface |
| 23 |
|
|
! nsrf----input-I- indice pour le type de surface; voir indice_sol_mod.F90 |
| 24 |
|
|
! zxli----input-L- TRUE si calcul des cdrags selon Laurent Li |
| 25 |
|
|
! speed---input-R- module du vent au 1er niveau du modele |
| 26 |
|
|
! t-------input-R- temperature de l'air au 1er niveau du modele |
| 27 |
|
|
! q-------input-R- humidite de l'air au 1er niveau du modele |
| 28 |
|
|
! zgeop---input-R- geopotentiel au 1er niveau du modele |
| 29 |
|
|
! psol----input-R- pression au sol |
| 30 |
|
|
! ts------input-R- temperature de l'air a la surface |
| 31 |
|
|
! qsurf---input-R- humidite de l'air a la surface |
| 32 |
|
|
! rugos---input-R- rugosite |
| 33 |
|
|
! okri----input-L- TRUE si on veut tester le nb. Richardson entre la sfce |
| 34 |
|
|
! et zref par rapport au Ri entre la sfce et la 1ere couche |
| 35 |
|
|
! ri1-----input-R- nb. Richardson entre la surface et la 1ere couche |
| 36 |
|
|
! |
| 37 |
|
|
! cdram--output-R- cdrag pour le moment |
| 38 |
|
|
! cdrah--output-R- cdrag pour les flux de chaleur latente et sensible |
| 39 |
|
|
! cdran--output-R- cdrag neutre |
| 40 |
|
|
! zri1---output-R- nb. Richardson entre la surface et la couche zgeop/RG |
| 41 |
|
|
! pref---output-R- pression au niveau zgeop/RG |
| 42 |
|
|
! |
| 43 |
|
|
INTEGER, intent(in) :: klon, knon, nsrf |
| 44 |
|
|
LOGICAL, intent(in) :: zxli |
| 45 |
|
|
REAL, dimension(klon), intent(in) :: speed, t, q, zgeop, psol |
| 46 |
|
|
REAL, dimension(klon), intent(in) :: ts, qsurf, rugos, ri1 |
| 47 |
|
|
LOGICAL, intent(in) :: okri |
| 48 |
|
|
! |
| 49 |
|
|
REAL, dimension(klon), intent(out) :: cdram, cdrah, cdran, zri1, pref |
| 50 |
|
|
!------------------------------------------------------------------------- |
| 51 |
|
|
! |
| 52 |
|
|
include "YOMCST.h" |
| 53 |
|
|
include "YOETHF.h" |
| 54 |
|
|
INCLUDE "clesphys.h" |
| 55 |
|
|
! Quelques constantes : |
| 56 |
|
|
REAL, parameter :: RKAR=0.40, CB=5.0, CC=5.0, CD=5.0, cepdu2=(0.1)**2 |
| 57 |
|
|
! |
| 58 |
|
|
! Variables locales : |
| 59 |
|
|
INTEGER :: i |
| 60 |
|
✗ |
REAL, dimension(klon) :: zdu2, zdphi, ztsolv, ztvd |
| 61 |
|
✗ |
REAL, dimension(klon) :: zscf, friv, frih, zucf, zcr |
| 62 |
|
✗ |
REAL, dimension(klon) :: zcfm1, zcfh1 |
| 63 |
|
✗ |
REAL, dimension(klon) :: zcfm2, zcfh2 |
| 64 |
|
✗ |
REAL, dimension(klon) :: trm0, trm1 |
| 65 |
|
|
|
| 66 |
|
|
CHARACTER (LEN=80) :: abort_message |
| 67 |
|
|
CHARACTER (LEN=20) :: modname = 'coefcdra' |
| 68 |
|
|
|
| 69 |
|
|
|
| 70 |
|
|
! |
| 71 |
|
|
|
| 72 |
|
|
|
| 73 |
|
|
!------------------------------------------------------------------------- |
| 74 |
|
|
REAL :: fsta, fins, x |
| 75 |
|
|
fsta(x) = 1.0 / (1.0+10.0*x*(1+8.0*x)) |
| 76 |
|
|
fins(x) = SQRT(1.0-18.0*x) |
| 77 |
|
|
!------------------------------------------------------------------------- |
| 78 |
|
|
|
| 79 |
|
✗ |
abort_message='obsolete, remplace par cdrag, use at you own risk' |
| 80 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 81 |
|
|
|
| 82 |
|
|
! |
| 83 |
|
✗ |
DO i = 1, knon |
| 84 |
|
|
! |
| 85 |
|
✗ |
zdphi(i) = zgeop(i) |
| 86 |
|
✗ |
zdu2(i) = max(cepdu2,speed(i)**2) |
| 87 |
|
|
pref(i) = exp(log(psol(i)) - zdphi(i)/(RD*t(i)* & |
| 88 |
|
✗ |
(1.+ RETV * max(q(i),0.0)))) |
| 89 |
|
✗ |
ztsolv(i) = ts(i) |
| 90 |
|
|
! ztvd(i) = t(i) * (psol(i)/pref(i))**RKAPPA |
| 91 |
|
|
! ztvd(i) = (t(i)+zdphi(i)/RCPD/(1.+RVTMP2*q(i))) & |
| 92 |
|
|
! *(1.+RETV*q(i)) |
| 93 |
|
✗ |
ztvd(i) = (t(i)+zdphi(i)/RCPD/(1.+RVTMP2*q(i))) |
| 94 |
|
✗ |
trm0(i) = 1. + RETV * max(qsurf(i),0.0) |
| 95 |
|
✗ |
trm1(i) = 1. + RETV * max(q(i),0.0) |
| 96 |
|
✗ |
ztsolv(i) = ztsolv(i) * trm0(i) |
| 97 |
|
✗ |
ztvd(i) = ztvd(i) * trm1(i) |
| 98 |
|
✗ |
zri1(i) = zdphi(i)*(ztvd(i)-ztsolv(i))/(zdu2(i)*ztvd(i)) |
| 99 |
|
|
! |
| 100 |
|
|
! on teste zri1 par rapport au Richardson de la 1ere couche ri1 |
| 101 |
|
|
! |
| 102 |
|
|
!IM +++ |
| 103 |
|
|
IF(1.EQ.0) THEN |
| 104 |
|
|
IF (okri) THEN |
| 105 |
|
|
IF (ri1(i).GE.0.0.AND.zri1(i).LT.0.0) THEN |
| 106 |
|
|
zri1(i) = ri1(i) |
| 107 |
|
|
ELSE IF(ri1(i).LT.0.0.AND.zri1(i).GE.0.0) THEN |
| 108 |
|
|
zri1(i) = ri1(i) |
| 109 |
|
|
ENDIF |
| 110 |
|
|
ENDIF |
| 111 |
|
|
ENDIF |
| 112 |
|
|
!IM --- |
| 113 |
|
|
! |
| 114 |
|
✗ |
cdran(i) = (RKAR/log(1.+zdphi(i)/(RG*rugos(i))))**2 |
| 115 |
|
|
|
| 116 |
|
✗ |
IF (zri1(i) .ge. 0.) THEN |
| 117 |
|
|
! |
| 118 |
|
|
! situation stable : pour eviter les inconsistances dans les cas |
| 119 |
|
|
! tres stables on limite zri1 a 20. cf Hess et al. (1995) |
| 120 |
|
|
! |
| 121 |
|
✗ |
zri1(i) = min(20.,zri1(i)) |
| 122 |
|
|
! |
| 123 |
|
✗ |
IF (.NOT.zxli) THEN |
| 124 |
|
✗ |
zscf(i) = SQRT(1.+CD*ABS(zri1(i))) |
| 125 |
|
✗ |
friv(i) = max(1. / (1.+2.*CB*zri1(i)/ zscf(i)), f_ri_cd_min) |
| 126 |
|
✗ |
zcfm1(i) = cdran(i) * friv(i) |
| 127 |
|
✗ |
frih(i) = max(1./ (1.+3.*CB*zri1(i)*zscf(i)), f_ri_cd_min ) |
| 128 |
|
|
! zcfh1(i) = cdran(i) * frih(i) |
| 129 |
|
✗ |
zcfh1(i) = f_cdrag_ter*cdran(i) * frih(i) |
| 130 |
|
✗ |
IF(nsrf.EQ.is_oce) zcfh1(i)=f_cdrag_oce*cdran(i)*frih(i) |
| 131 |
|
✗ |
cdram(i) = zcfm1(i) |
| 132 |
|
✗ |
cdrah(i) = zcfh1(i) |
| 133 |
|
|
ELSE |
| 134 |
|
✗ |
cdram(i) = cdran(i)* fsta(zri1(i)) |
| 135 |
|
✗ |
cdrah(i) = cdran(i)* fsta(zri1(i)) |
| 136 |
|
|
ENDIF |
| 137 |
|
|
! |
| 138 |
|
|
ELSE |
| 139 |
|
|
! |
| 140 |
|
|
! situation instable |
| 141 |
|
|
! |
| 142 |
|
✗ |
IF (.NOT.zxli) THEN |
| 143 |
|
|
zucf(i) = 1./(1.+3.0*CB*CC*cdran(i)*SQRT(ABS(zri1(i)) & |
| 144 |
|
✗ |
*(1.0+zdphi(i)/(RG*rugos(i))))) |
| 145 |
|
✗ |
zcfm2(i) = cdran(i)*max((1.-2.0*CB*zri1(i)*zucf(i)),f_ri_cd_min) |
| 146 |
|
|
! zcfh2(i) = cdran(i)*max((1.-3.0*CB*zri1(i)*zucf(i)),f_ri_cd_min) |
| 147 |
|
✗ |
zcfh2(i) = f_cdrag_ter*cdran(i)*max((1.-3.0*CB*zri1(i)*zucf(i)),f_ri_cd_min) |
| 148 |
|
✗ |
cdram(i) = zcfm2(i) |
| 149 |
|
✗ |
cdrah(i) = zcfh2(i) |
| 150 |
|
|
ELSE |
| 151 |
|
✗ |
cdram(i) = cdran(i)* fins(zri1(i)) |
| 152 |
|
✗ |
cdrah(i) = cdran(i)* fins(zri1(i)) |
| 153 |
|
|
ENDIF |
| 154 |
|
|
! |
| 155 |
|
|
! cdrah sur l'ocean cf. Miller et al. (1992) |
| 156 |
|
|
! |
| 157 |
|
|
zcr(i) = (0.0016/(cdran(i)*SQRT(zdu2(i))))*ABS(ztvd(i)-ztsolv(i)) & |
| 158 |
|
✗ |
**(1./3.) |
| 159 |
|
|
! IF (nsrf.EQ.is_oce) cdrah(i) = cdran(i)*(1.0+zcr(i)**1.25) & |
| 160 |
|
|
! **(1./1.25) |
| 161 |
|
✗ |
IF (nsrf.EQ.is_oce) cdrah(i)=f_cdrag_oce*cdran(i)*(1.0+zcr(i)**1.25) & |
| 162 |
|
✗ |
**(1./1.25) |
| 163 |
|
|
ENDIF |
| 164 |
|
|
! |
| 165 |
|
|
END DO |
| 166 |
|
✗ |
RETURN |
| 167 |
|
|
END SUBROUTINE coefcdrag |
| 168 |
|
|
|