| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
! $Id: conema3.F90 2346 2015-08-21 15:13:46Z emillour $ |
| 3 |
|
|
|
| 4 |
|
✗ |
SUBROUTINE conema3(dtime, paprs, pplay, t, q, u, v, tra, ntra, work1, work2, & |
| 5 |
|
✗ |
d_t, d_q, d_u, d_v, d_tra, rain, snow, kbas, ktop, upwd, dnwd, dnwdbis, & |
| 6 |
|
|
bas, top, ma, cape, tvp, rflag, pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, & |
| 7 |
|
✗ |
dplcldr, qcond_incld) |
| 8 |
|
|
|
| 9 |
|
|
USE dimphy |
| 10 |
|
|
USE infotrac_phy, ONLY: nbtr |
| 11 |
|
|
IMPLICIT NONE |
| 12 |
|
|
! ====================================================================== |
| 13 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
| 14 |
|
|
! Objet: schema de convection de Emanuel (1991) interface |
| 15 |
|
|
! Mai 1998: Interface modifiee pour implementation dans LMDZ |
| 16 |
|
|
! ====================================================================== |
| 17 |
|
|
! Arguments: |
| 18 |
|
|
! dtime---input-R-pas d'integration (s) |
| 19 |
|
|
! paprs---input-R-pression inter-couches (Pa) |
| 20 |
|
|
! pplay---input-R-pression au milieu des couches (Pa) |
| 21 |
|
|
! t-------input-R-temperature (K) |
| 22 |
|
|
! q-------input-R-humidite specifique (kg/kg) |
| 23 |
|
|
! u-------input-R-vitesse du vent zonal (m/s) |
| 24 |
|
|
! v-------input-R-vitesse duvent meridien (m/s) |
| 25 |
|
|
! tra-----input-R-tableau de rapport de melange des traceurs |
| 26 |
|
|
! work*: input et output: deux variables de travail, |
| 27 |
|
|
! on peut les mettre a 0 au debut |
| 28 |
|
|
|
| 29 |
|
|
! d_t-----output-R-increment de la temperature |
| 30 |
|
|
! d_q-----output-R-increment de la vapeur d'eau |
| 31 |
|
|
! d_u-----output-R-increment de la vitesse zonale |
| 32 |
|
|
! d_v-----output-R-increment de la vitesse meridienne |
| 33 |
|
|
! d_tra---output-R-increment du contenu en traceurs |
| 34 |
|
|
! rain----output-R-la pluie (mm/s) |
| 35 |
|
|
! snow----output-R-la neige (mm/s) |
| 36 |
|
|
! kbas----output-R-bas du nuage (integer) |
| 37 |
|
|
! ktop----output-R-haut du nuage (integer) |
| 38 |
|
|
! upwd----output-R-saturated updraft mass flux (kg/m**2/s) |
| 39 |
|
|
! dnwd----output-R-saturated downdraft mass flux (kg/m**2/s) |
| 40 |
|
|
! dnwdbis-output-R-unsaturated downdraft mass flux (kg/m**2/s) |
| 41 |
|
|
! bas-----output-R-bas du nuage (real) |
| 42 |
|
|
! top-----output-R-haut du nuage (real) |
| 43 |
|
|
! Ma------output-R-flux ascendant non dilue (kg/m**2/s) |
| 44 |
|
|
! cape----output-R-CAPE |
| 45 |
|
|
! tvp-----output-R-virtual temperature of the lifted parcel |
| 46 |
|
|
! rflag---output-R-flag sur le fonctionnement de convect |
| 47 |
|
|
! pbase---output-R-pression a la base du nuage (Pa) |
| 48 |
|
|
! bbase---output-R-buoyancy a la base du nuage (K) |
| 49 |
|
|
! dtvpdt1-output-R-derivative of parcel virtual temp wrt T1 |
| 50 |
|
|
! dtvpdq1-output-R-derivative of parcel virtual temp wrt Q1 |
| 51 |
|
|
! dplcldt-output-R-derivative of the PCP pressure wrt T1 |
| 52 |
|
|
! dplcldr-output-R-derivative of the PCP pressure wrt Q1 |
| 53 |
|
|
! ====================================================================== |
| 54 |
|
|
|
| 55 |
|
|
include "conema3.h" |
| 56 |
|
|
INTEGER i, l, m, itra |
| 57 |
|
|
INTEGER ntra ! if no tracer transport |
| 58 |
|
|
! is needed, set ntra = 1 (or 0) |
| 59 |
|
|
REAL dtime |
| 60 |
|
|
|
| 61 |
|
✗ |
REAL d_t2(klon, klev), d_q2(klon, klev) ! sbl |
| 62 |
|
✗ |
REAL d_u2(klon, klev), d_v2(klon, klev) ! sbl |
| 63 |
|
✗ |
REAL em_d_t2(klev), em_d_q2(klev) ! sbl |
| 64 |
|
✗ |
REAL em_d_u2(klev), em_d_v2(klev) ! sbl |
| 65 |
|
|
|
| 66 |
|
|
REAL paprs(klon, klev+1), pplay(klon, klev) |
| 67 |
|
|
REAL t(klon, klev), q(klon, klev), d_t(klon, klev), d_q(klon, klev) |
| 68 |
|
|
REAL u(klon, klev), v(klon, klev), tra(klon, klev, ntra) |
| 69 |
|
|
REAL d_u(klon, klev), d_v(klon, klev), d_tra(klon, klev, ntra) |
| 70 |
|
|
REAL work1(klon, klev), work2(klon, klev) |
| 71 |
|
|
REAL upwd(klon, klev), dnwd(klon, klev), dnwdbis(klon, klev) |
| 72 |
|
|
REAL rain(klon) |
| 73 |
|
|
REAL snow(klon) |
| 74 |
|
|
REAL cape(klon), tvp(klon, klev), rflag(klon) |
| 75 |
|
|
REAL pbase(klon), bbase(klon) |
| 76 |
|
|
REAL dtvpdt1(klon, klev), dtvpdq1(klon, klev) |
| 77 |
|
|
REAL dplcldt(klon), dplcldr(klon) |
| 78 |
|
|
INTEGER kbas(klon), ktop(klon) |
| 79 |
|
|
|
| 80 |
|
✗ |
REAL wd(klon) |
| 81 |
|
|
REAL qcond_incld(klon, klev) |
| 82 |
|
|
|
| 83 |
|
|
LOGICAL, SAVE :: first = .TRUE. |
| 84 |
|
|
!$OMP THREADPRIVATE(first) |
| 85 |
|
|
|
| 86 |
|
|
! ym REAL em_t(klev) |
| 87 |
|
|
REAL, ALLOCATABLE, SAVE :: em_t(:) |
| 88 |
|
|
!$OMP THREADPRIVATE(em_t) |
| 89 |
|
|
! ym REAL em_q(klev) |
| 90 |
|
|
REAL, ALLOCATABLE, SAVE :: em_q(:) |
| 91 |
|
|
!$OMP THREADPRIVATE(em_q) |
| 92 |
|
|
! ym REAL em_qs(klev) |
| 93 |
|
|
REAL, ALLOCATABLE, SAVE :: em_qs(:) |
| 94 |
|
|
!$OMP THREADPRIVATE(em_qs) |
| 95 |
|
|
! ym REAL em_u(klev), em_v(klev), em_tra(klev,nbtr) |
| 96 |
|
|
REAL, ALLOCATABLE, SAVE :: em_u(:), em_v(:), em_tra(:, :) |
| 97 |
|
|
!$OMP THREADPRIVATE(em_u,em_v,em_tra) |
| 98 |
|
|
! ym REAL em_ph(klev+1), em_p(klev) |
| 99 |
|
|
REAL, ALLOCATABLE, SAVE :: em_ph(:), em_p(:) |
| 100 |
|
|
!$OMP THREADPRIVATE(em_ph,em_p) |
| 101 |
|
|
! ym REAL em_work1(klev), em_work2(klev) |
| 102 |
|
|
REAL, ALLOCATABLE, SAVE :: em_work1(:), em_work2(:) |
| 103 |
|
|
!$OMP THREADPRIVATE(em_work1,em_work2) |
| 104 |
|
|
! ym REAL em_precip, em_d_t(klev), em_d_q(klev) |
| 105 |
|
|
REAL, SAVE :: em_precip |
| 106 |
|
|
!$OMP THREADPRIVATE(em_precip) |
| 107 |
|
|
REAL, ALLOCATABLE, SAVE :: em_d_t(:), em_d_q(:) |
| 108 |
|
|
!$OMP THREADPRIVATE(em_d_t,em_d_q) |
| 109 |
|
|
! ym REAL em_d_u(klev), em_d_v(klev), em_d_tra(klev,nbtr) |
| 110 |
|
|
REAL, ALLOCATABLE, SAVE :: em_d_u(:), em_d_v(:), em_d_tra(:, :) |
| 111 |
|
|
!$OMP THREADPRIVATE(em_d_u,em_d_v,em_d_tra) |
| 112 |
|
|
! ym REAL em_upwd(klev), em_dnwd(klev), em_dnwdbis(klev) |
| 113 |
|
|
REAL, ALLOCATABLE, SAVE :: em_upwd(:), em_dnwd(:), em_dnwdbis(:) |
| 114 |
|
|
!$OMP THREADPRIVATE(em_upwd,em_dnwd,em_dnwdbis) |
| 115 |
|
✗ |
REAL em_dtvpdt1(klev), em_dtvpdq1(klev) |
| 116 |
|
|
REAL em_dplcldt, em_dplcldr |
| 117 |
|
|
! ym SAVE em_t,em_q, em_qs, em_ph, em_p, em_work1, em_work2 |
| 118 |
|
|
! ym SAVE em_u,em_v, em_tra |
| 119 |
|
|
! ym SAVE em_d_u,em_d_v, em_d_tra |
| 120 |
|
|
! ym SAVE em_precip, em_d_t, em_d_q, em_upwd, em_dnwd, em_dnwdbis |
| 121 |
|
|
|
| 122 |
|
|
INTEGER em_bas, em_top |
| 123 |
|
|
SAVE em_bas, em_top |
| 124 |
|
|
!$OMP THREADPRIVATE(em_bas,em_top) |
| 125 |
|
|
REAL em_wd |
| 126 |
|
✗ |
REAL em_qcond(klev) |
| 127 |
|
✗ |
REAL em_qcondc(klev) |
| 128 |
|
|
|
| 129 |
|
|
REAL zx_t, zx_qs, zdelta, zcor |
| 130 |
|
|
INTEGER iflag |
| 131 |
|
|
REAL sigsum |
| 132 |
|
|
! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 133 |
|
|
! VARIABLES A SORTIR |
| 134 |
|
|
! ccccccccccccccccccccccccccccccccccccccccccccccccc |
| 135 |
|
|
|
| 136 |
|
|
! ym REAL emmip(klev) !variation de flux ascnon dilue i et i+1 |
| 137 |
|
|
REAL, ALLOCATABLE, SAVE :: emmip(:) |
| 138 |
|
|
!$OMP THREADPRIVATE(emmip) |
| 139 |
|
|
! ym SAVE emmip |
| 140 |
|
|
! ym real emMke(klev) |
| 141 |
|
|
REAL, ALLOCATABLE, SAVE :: emmke(:) |
| 142 |
|
|
!$OMP THREADPRIVATE(emMke) |
| 143 |
|
|
! ym save emMke |
| 144 |
|
|
REAL top |
| 145 |
|
|
REAL bas |
| 146 |
|
|
! ym real emMa(klev) |
| 147 |
|
|
REAL, ALLOCATABLE, SAVE :: emma(:) |
| 148 |
|
|
!$OMP THREADPRIVATE(emMa) |
| 149 |
|
|
! ym save emMa |
| 150 |
|
|
REAL ma(klon, klev) |
| 151 |
|
✗ |
REAL ment(klev, klev) |
| 152 |
|
✗ |
REAL qent(klev, klev) |
| 153 |
|
✗ |
REAL tps(klev), tls(klev) |
| 154 |
|
✗ |
REAL sij(klev, klev) |
| 155 |
|
✗ |
REAL em_cape, em_tvp(klev) |
| 156 |
|
|
REAL em_pbase, em_bbase |
| 157 |
|
|
INTEGER iw, j, k, ix, iy |
| 158 |
|
|
|
| 159 |
|
|
! -- sb: pour schema nuages: |
| 160 |
|
|
|
| 161 |
|
|
INTEGER iflagcon |
| 162 |
|
✗ |
INTEGER em_ifc(klev) |
| 163 |
|
|
|
| 164 |
|
|
REAL em_pradj |
| 165 |
|
✗ |
REAL em_cldf(klev), em_cldq(klev) |
| 166 |
|
✗ |
REAL em_ftadj(klev), em_fradj(klev) |
| 167 |
|
|
|
| 168 |
|
✗ |
INTEGER ifc(klon, klev) |
| 169 |
|
✗ |
REAL pradj(klon) |
| 170 |
|
✗ |
REAL cldf(klon, klev), cldq(klon, klev) |
| 171 |
|
✗ |
REAL ftadj(klon, klev), fqadj(klon, klev) |
| 172 |
|
|
|
| 173 |
|
|
! sb -- |
| 174 |
|
|
|
| 175 |
|
|
! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 176 |
|
|
|
| 177 |
|
|
include "YOMCST.h" |
| 178 |
|
|
include "YOETHF.h" |
| 179 |
|
|
include "FCTTRE.h" |
| 180 |
|
|
|
| 181 |
|
✗ |
IF (first) THEN |
| 182 |
|
|
|
| 183 |
|
✗ |
ALLOCATE (em_t(klev)) |
| 184 |
|
✗ |
ALLOCATE (em_q(klev)) |
| 185 |
|
✗ |
ALLOCATE (em_qs(klev)) |
| 186 |
|
✗ |
ALLOCATE (em_u(klev), em_v(klev), em_tra(klev,nbtr)) |
| 187 |
|
✗ |
ALLOCATE (em_ph(klev+1), em_p(klev)) |
| 188 |
|
✗ |
ALLOCATE (em_work1(klev), em_work2(klev)) |
| 189 |
|
✗ |
ALLOCATE (em_d_t(klev), em_d_q(klev)) |
| 190 |
|
✗ |
ALLOCATE (em_d_u(klev), em_d_v(klev), em_d_tra(klev,nbtr)) |
| 191 |
|
✗ |
ALLOCATE (em_upwd(klev), em_dnwd(klev), em_dnwdbis(klev)) |
| 192 |
|
✗ |
ALLOCATE (emmip(klev)) |
| 193 |
|
✗ |
ALLOCATE (emmke(klev)) |
| 194 |
|
✗ |
ALLOCATE (emma(klev)) |
| 195 |
|
|
|
| 196 |
|
✗ |
first = .FALSE. |
| 197 |
|
|
END IF |
| 198 |
|
|
|
| 199 |
|
✗ |
qcond_incld(:, :) = 0. |
| 200 |
|
|
|
| 201 |
|
|
! @$$ print*,'debut conema' |
| 202 |
|
|
|
| 203 |
|
✗ |
DO i = 1, klon |
| 204 |
|
✗ |
DO l = 1, klev + 1 |
| 205 |
|
✗ |
em_ph(l) = paprs(i, l)/100.0 |
| 206 |
|
|
END DO |
| 207 |
|
|
|
| 208 |
|
✗ |
DO l = 1, klev |
| 209 |
|
✗ |
em_p(l) = pplay(i, l)/100.0 |
| 210 |
|
✗ |
em_t(l) = t(i, l) |
| 211 |
|
✗ |
em_q(l) = q(i, l) |
| 212 |
|
✗ |
em_u(l) = u(i, l) |
| 213 |
|
✗ |
em_v(l) = v(i, l) |
| 214 |
|
✗ |
DO itra = 1, ntra |
| 215 |
|
✗ |
em_tra(l, itra) = tra(i, l, itra) |
| 216 |
|
|
END DO |
| 217 |
|
|
! @$$ print*,'em_t',em_t |
| 218 |
|
|
! @$$ print*,'em_q',em_q |
| 219 |
|
|
! @$$ print*,'em_qs',em_qs |
| 220 |
|
|
! @$$ print*,'em_u',em_u |
| 221 |
|
|
! @$$ print*,'em_v',em_v |
| 222 |
|
|
! @$$ print*,'em_tra',em_tra |
| 223 |
|
|
! @$$ print*,'em_p',em_p |
| 224 |
|
|
|
| 225 |
|
|
|
| 226 |
|
|
|
| 227 |
|
|
zx_t = em_t(l) |
| 228 |
|
✗ |
zdelta = max(0., sign(1.,rtt-zx_t)) |
| 229 |
|
✗ |
zx_qs = r2es*foeew(zx_t, zdelta)/em_p(l)/100.0 |
| 230 |
|
✗ |
zx_qs = min(0.5, zx_qs) |
| 231 |
|
|
! @$$ print*,'zx_qs',zx_qs |
| 232 |
|
✗ |
zcor = 1./(1.-retv*zx_qs) |
| 233 |
|
✗ |
zx_qs = zx_qs*zcor |
| 234 |
|
✗ |
em_qs(l) = zx_qs |
| 235 |
|
|
! @$$ print*,'em_qs',em_qs |
| 236 |
|
|
|
| 237 |
|
✗ |
em_work1(l) = work1(i, l) |
| 238 |
|
✗ |
em_work2(l) = work2(i, l) |
| 239 |
|
✗ |
emmke(l) = 0 |
| 240 |
|
|
! emMa(l)=0 |
| 241 |
|
|
! Ma(i,l)=0 |
| 242 |
|
|
|
| 243 |
|
✗ |
em_dtvpdt1(l) = 0. |
| 244 |
|
✗ |
em_dtvpdq1(l) = 0. |
| 245 |
|
✗ |
dtvpdt1(i, l) = 0. |
| 246 |
|
✗ |
dtvpdq1(i, l) = 0. |
| 247 |
|
|
END DO |
| 248 |
|
|
|
| 249 |
|
✗ |
em_dplcldt = 0. |
| 250 |
|
✗ |
em_dplcldr = 0. |
| 251 |
|
✗ |
rain(i) = 0.0 |
| 252 |
|
✗ |
snow(i) = 0.0 |
| 253 |
|
✗ |
kbas(i) = 1 |
| 254 |
|
✗ |
ktop(i) = 1 |
| 255 |
|
|
! ajout SB: |
| 256 |
|
✗ |
bas = 1 |
| 257 |
|
✗ |
top = 1 |
| 258 |
|
|
|
| 259 |
|
|
|
| 260 |
|
|
! sb3d write(*,1792) (em_work1(m),m=1,klev) |
| 261 |
|
|
1792 FORMAT ('sig avant convect ', /, 10(1X,E13.5)) |
| 262 |
|
|
|
| 263 |
|
|
! sb d write(*,1793) (em_work2(m),m=1,klev) |
| 264 |
|
|
1793 FORMAT ('w avant convect ', /, 10(1X,E13.5)) |
| 265 |
|
|
|
| 266 |
|
|
! @$$ print*,'avant convect' |
| 267 |
|
|
! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 268 |
|
|
|
| 269 |
|
|
|
| 270 |
|
|
! print*,'avant convect i=',i |
| 271 |
|
|
CALL convect3(dtime, epmax, ok_adj_ema, em_t, em_q, em_qs, em_u, em_v, & |
| 272 |
|
|
em_tra, em_p, em_ph, klev, klev+1, klev-1, ntra, dtime, iflag, em_d_t, & |
| 273 |
|
|
em_d_q, em_d_u, em_d_v, em_d_tra, em_precip, em_bas, em_top, em_upwd, & |
| 274 |
|
|
em_dnwd, em_dnwdbis, em_work1, em_work2, emmip, emmke, emma, ment, & |
| 275 |
|
|
qent, tps, tls, sij, em_cape, em_tvp, em_pbase, em_bbase, em_dtvpdt1, & |
| 276 |
|
|
em_dtvpdq1, em_dplcldt, em_dplcldr, & ! sbl |
| 277 |
|
✗ |
em_d_t2, em_d_q2, em_d_u2, em_d_v2, em_wd, em_qcond, em_qcondc) !sbl |
| 278 |
|
|
! print*,'apres convect ' |
| 279 |
|
|
|
| 280 |
|
|
! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 281 |
|
|
|
| 282 |
|
|
! -- sb: Appel schema statistique de nuages couple a la convection |
| 283 |
|
|
! (Bony et Emanuel 2001): |
| 284 |
|
|
|
| 285 |
|
|
! -- creer cvthermo.h qui contiendra les cstes thermo de LMDZ: |
| 286 |
|
|
|
| 287 |
|
|
iflagcon = 3 |
| 288 |
|
|
! CALL cv_thermo(iflagcon) |
| 289 |
|
|
|
| 290 |
|
|
! -- appel schema de nuages: |
| 291 |
|
|
|
| 292 |
|
|
! CALL CLOUDS_SUB_LS(klev,em_q,em_qs,em_t |
| 293 |
|
|
! i ,em_p,em_ph,dtime,em_qcondc |
| 294 |
|
|
! o ,em_cldf,em_cldq,em_pradj,em_ftadj,em_fradj,em_ifc) |
| 295 |
|
|
|
| 296 |
|
✗ |
DO k = 1, klev |
| 297 |
|
✗ |
cldf(i, k) = em_cldf(k) ! cloud fraction (0-1) |
| 298 |
|
✗ |
cldq(i, k) = em_cldq(k) ! in-cloud water content (kg/kg) |
| 299 |
|
✗ |
ftadj(i, k) = em_ftadj(k) ! (dT/dt)_{LS adj} (K/s) |
| 300 |
|
✗ |
fqadj(i, k) = em_fradj(k) ! (dq/dt)_{LS adj} (kg/kg/s) |
| 301 |
|
✗ |
ifc(i, k) = em_ifc(k) ! flag convergence clouds_gno (1 ou 2) |
| 302 |
|
|
END DO |
| 303 |
|
✗ |
pradj(i) = em_pradj ! precip from LS supersat adj (mm/day) |
| 304 |
|
|
|
| 305 |
|
|
! sb -- |
| 306 |
|
|
|
| 307 |
|
|
! SB: |
| 308 |
|
✗ |
IF (iflag/=1 .AND. iflag/=4) THEN |
| 309 |
|
✗ |
em_cape = 0. |
| 310 |
|
✗ |
DO l = 1, klev |
| 311 |
|
✗ |
em_upwd(l) = 0. |
| 312 |
|
✗ |
em_dnwd(l) = 0. |
| 313 |
|
✗ |
em_dnwdbis(l) = 0. |
| 314 |
|
✗ |
emma(l) = 0. |
| 315 |
|
✗ |
em_tvp(l) = 0. |
| 316 |
|
|
END DO |
| 317 |
|
|
END IF |
| 318 |
|
|
! fin SB |
| 319 |
|
|
|
| 320 |
|
|
! If sig has been set to zero, then set Ma to zero |
| 321 |
|
|
|
| 322 |
|
|
sigsum = 0. |
| 323 |
|
✗ |
DO k = 1, klev |
| 324 |
|
✗ |
sigsum = sigsum + em_work1(k) |
| 325 |
|
|
END DO |
| 326 |
|
✗ |
IF (sigsum==0.0) THEN |
| 327 |
|
✗ |
DO k = 1, klev |
| 328 |
|
✗ |
emma(k) = 0. |
| 329 |
|
|
END DO |
| 330 |
|
|
END IF |
| 331 |
|
|
|
| 332 |
|
|
! sb3d print*,'i, iflag=',i,iflag |
| 333 |
|
|
|
| 334 |
|
|
! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 335 |
|
|
|
| 336 |
|
|
! SORTIE DES ICB ET INB |
| 337 |
|
|
! en fait inb et icb correspondent au niveau ou se trouve |
| 338 |
|
|
! le nuage,le numero d'interface |
| 339 |
|
|
! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 340 |
|
|
|
| 341 |
|
|
! modif SB: |
| 342 |
|
✗ |
IF (iflag==1 .OR. iflag==4) THEN |
| 343 |
|
✗ |
top = em_top |
| 344 |
|
✗ |
bas = em_bas |
| 345 |
|
✗ |
kbas(i) = em_bas |
| 346 |
|
✗ |
ktop(i) = em_top |
| 347 |
|
|
END IF |
| 348 |
|
|
|
| 349 |
|
✗ |
pbase(i) = em_pbase |
| 350 |
|
✗ |
bbase(i) = em_bbase |
| 351 |
|
✗ |
rain(i) = em_precip/86400.0 |
| 352 |
|
✗ |
snow(i) = 0.0 |
| 353 |
|
✗ |
cape(i) = em_cape |
| 354 |
|
✗ |
wd(i) = em_wd |
| 355 |
|
✗ |
rflag(i) = real(iflag) |
| 356 |
|
|
! SB kbas(i) = em_bas |
| 357 |
|
|
! SB ktop(i) = em_top |
| 358 |
|
✗ |
dplcldt(i) = em_dplcldt |
| 359 |
|
✗ |
dplcldr(i) = em_dplcldr |
| 360 |
|
✗ |
DO l = 1, klev |
| 361 |
|
✗ |
d_t2(i, l) = dtime*em_d_t2(l) |
| 362 |
|
✗ |
d_q2(i, l) = dtime*em_d_q2(l) |
| 363 |
|
✗ |
d_u2(i, l) = dtime*em_d_u2(l) |
| 364 |
|
✗ |
d_v2(i, l) = dtime*em_d_v2(l) |
| 365 |
|
|
|
| 366 |
|
✗ |
d_t(i, l) = dtime*em_d_t(l) |
| 367 |
|
✗ |
d_q(i, l) = dtime*em_d_q(l) |
| 368 |
|
✗ |
d_u(i, l) = dtime*em_d_u(l) |
| 369 |
|
✗ |
d_v(i, l) = dtime*em_d_v(l) |
| 370 |
|
✗ |
DO itra = 1, ntra |
| 371 |
|
✗ |
d_tra(i, l, itra) = dtime*em_d_tra(l, itra) |
| 372 |
|
|
END DO |
| 373 |
|
✗ |
upwd(i, l) = em_upwd(l) |
| 374 |
|
✗ |
dnwd(i, l) = em_dnwd(l) |
| 375 |
|
✗ |
dnwdbis(i, l) = em_dnwdbis(l) |
| 376 |
|
✗ |
work1(i, l) = em_work1(l) |
| 377 |
|
✗ |
work2(i, l) = em_work2(l) |
| 378 |
|
✗ |
ma(i, l) = emma(l) |
| 379 |
|
✗ |
tvp(i, l) = em_tvp(l) |
| 380 |
|
✗ |
dtvpdt1(i, l) = em_dtvpdt1(l) |
| 381 |
|
✗ |
dtvpdq1(i, l) = em_dtvpdq1(l) |
| 382 |
|
|
|
| 383 |
|
✗ |
IF (iflag_clw==0) THEN |
| 384 |
|
✗ |
qcond_incld(i, l) = em_qcondc(l) |
| 385 |
|
✗ |
ELSE IF (iflag_clw==1) THEN |
| 386 |
|
✗ |
qcond_incld(i, l) = em_qcond(l) |
| 387 |
|
|
END IF |
| 388 |
|
|
END DO |
| 389 |
|
|
END DO |
| 390 |
|
|
|
| 391 |
|
|
! On calcule une eau liquide diagnostique en fonction de la |
| 392 |
|
|
! precip. |
| 393 |
|
✗ |
IF (iflag_clw==2) THEN |
| 394 |
|
✗ |
DO l = 1, klev |
| 395 |
|
✗ |
DO i = 1, klon |
| 396 |
|
✗ |
IF (ktop(i)-kbas(i)>0 .AND. l>=kbas(i) .AND. l<=ktop(i)) THEN |
| 397 |
|
|
qcond_incld(i, l) = rain(i)*8.E4 & ! s *(pplay(i,l |
| 398 |
|
|
! )-paprs(i,ktop(i)+1)) |
| 399 |
|
✗ |
/(pplay(i,kbas(i))-pplay(i,ktop(i))) |
| 400 |
|
|
! s **2 |
| 401 |
|
|
ELSE |
| 402 |
|
✗ |
qcond_incld(i, l) = 0. |
| 403 |
|
|
END IF |
| 404 |
|
|
END DO |
| 405 |
|
✗ |
PRINT *, 'l=', l, ', qcond_incld=', qcond_incld(1, l) |
| 406 |
|
|
END DO |
| 407 |
|
|
END IF |
| 408 |
|
|
|
| 409 |
|
|
|
| 410 |
|
✗ |
RETURN |
| 411 |
|
|
END SUBROUTINE conema3 |
| 412 |
|
|
|
| 413 |
|
|
|