| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
! $Header$ |
| 3 |
|
|
|
| 4 |
|
✗ |
SUBROUTINE conflx(dtime, pres_h, pres_f, t, q, con_t, con_q, pqhfl, w, d_t, & |
| 5 |
|
✗ |
d_q, rain, snow, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & |
| 6 |
|
|
kdtop, pmflxr, pmflxs) |
| 7 |
|
|
|
| 8 |
|
|
USE dimphy |
| 9 |
|
|
IMPLICIT NONE |
| 10 |
|
|
! ====================================================================== |
| 11 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) date: 19941014 |
| 12 |
|
|
! Objet: Schema flux de masse pour la convection |
| 13 |
|
|
! (schema de Tiedtke avec qqs modifications mineures) |
| 14 |
|
|
! Dec.97: Prise en compte des modifications introduites par |
| 15 |
|
|
! Olivier Boucher et Alexandre Armengaud pour melange |
| 16 |
|
|
! et lessivage des traceurs passifs. |
| 17 |
|
|
! ====================================================================== |
| 18 |
|
|
include "YOMCST.h" |
| 19 |
|
|
include "YOETHF.h" |
| 20 |
|
|
! Entree: |
| 21 |
|
|
REAL dtime ! pas d'integration (s) |
| 22 |
|
|
REAL pres_h(klon, klev+1) ! pression half-level (Pa) |
| 23 |
|
|
REAL pres_f(klon, klev) ! pression full-level (Pa) |
| 24 |
|
|
REAL t(klon, klev) ! temperature (K) |
| 25 |
|
|
REAL q(klon, klev) ! humidite specifique (g/g) |
| 26 |
|
|
REAL w(klon, klev) ! vitesse verticale (Pa/s) |
| 27 |
|
|
REAL con_t(klon, klev) ! convergence de temperature (K/s) |
| 28 |
|
|
REAL con_q(klon, klev) ! convergence de l'eau vapeur (g/g/s) |
| 29 |
|
|
REAL pqhfl(klon) ! evaporation (negative vers haut) mm/s |
| 30 |
|
|
! Sortie: |
| 31 |
|
|
REAL d_t(klon, klev) ! incrementation de temperature |
| 32 |
|
|
REAL d_q(klon, klev) ! incrementation d'humidite |
| 33 |
|
|
REAL pmfu(klon, klev) ! flux masse (kg/m2/s) panache ascendant |
| 34 |
|
|
REAL pmfd(klon, klev) ! flux masse (kg/m2/s) panache descendant |
| 35 |
|
|
REAL pen_u(klon, klev) |
| 36 |
|
|
REAL pen_d(klon, klev) |
| 37 |
|
|
REAL pde_u(klon, klev) |
| 38 |
|
|
REAL pde_d(klon, klev) |
| 39 |
|
|
REAL rain(klon) ! pluie (mm/s) |
| 40 |
|
|
REAL snow(klon) ! neige (mm/s) |
| 41 |
|
|
REAL pmflxr(klon, klev+1) |
| 42 |
|
|
REAL pmflxs(klon, klev+1) |
| 43 |
|
|
INTEGER kcbot(klon) ! niveau du bas de la convection |
| 44 |
|
|
INTEGER kctop(klon) ! niveau du haut de la convection |
| 45 |
|
|
INTEGER kdtop(klon) ! niveau du haut des downdrafts |
| 46 |
|
|
! Local: |
| 47 |
|
✗ |
REAL pt(klon, klev) |
| 48 |
|
✗ |
REAL pq(klon, klev) |
| 49 |
|
✗ |
REAL pqs(klon, klev) |
| 50 |
|
✗ |
REAL pvervel(klon, klev) |
| 51 |
|
✗ |
LOGICAL land(klon) |
| 52 |
|
|
|
| 53 |
|
✗ |
REAL d_t_bis(klon, klev) |
| 54 |
|
✗ |
REAL d_q_bis(klon, klev) |
| 55 |
|
✗ |
REAL paprs(klon, klev+1) |
| 56 |
|
✗ |
REAL paprsf(klon, klev) |
| 57 |
|
✗ |
REAL zgeom(klon, klev) |
| 58 |
|
✗ |
REAL zcvgq(klon, klev) |
| 59 |
|
✗ |
REAL zcvgt(klon, klev) |
| 60 |
|
|
! AA |
| 61 |
|
✗ |
REAL zmfu(klon, klev) |
| 62 |
|
✗ |
REAL zmfd(klon, klev) |
| 63 |
|
✗ |
REAL zen_u(klon, klev) |
| 64 |
|
✗ |
REAL zen_d(klon, klev) |
| 65 |
|
✗ |
REAL zde_u(klon, klev) |
| 66 |
|
✗ |
REAL zde_d(klon, klev) |
| 67 |
|
✗ |
REAL zmflxr(klon, klev+1) |
| 68 |
|
✗ |
REAL zmflxs(klon, klev+1) |
| 69 |
|
|
! AA |
| 70 |
|
|
|
| 71 |
|
|
|
| 72 |
|
|
INTEGER i, k |
| 73 |
|
|
REAL zdelta, zqsat |
| 74 |
|
|
|
| 75 |
|
|
include "FCTTRE.h" |
| 76 |
|
|
|
| 77 |
|
|
! initialiser les variables de sortie (pour securite) |
| 78 |
|
✗ |
DO i = 1, klon |
| 79 |
|
✗ |
rain(i) = 0.0 |
| 80 |
|
✗ |
snow(i) = 0.0 |
| 81 |
|
✗ |
kcbot(i) = 0 |
| 82 |
|
✗ |
kctop(i) = 0 |
| 83 |
|
✗ |
kdtop(i) = 0 |
| 84 |
|
|
END DO |
| 85 |
|
✗ |
DO k = 1, klev |
| 86 |
|
✗ |
DO i = 1, klon |
| 87 |
|
✗ |
d_t(i, k) = 0.0 |
| 88 |
|
✗ |
d_q(i, k) = 0.0 |
| 89 |
|
✗ |
pmfu(i, k) = 0.0 |
| 90 |
|
✗ |
pmfd(i, k) = 0.0 |
| 91 |
|
✗ |
pen_u(i, k) = 0.0 |
| 92 |
|
✗ |
pde_u(i, k) = 0.0 |
| 93 |
|
✗ |
pen_d(i, k) = 0.0 |
| 94 |
|
✗ |
pde_d(i, k) = 0.0 |
| 95 |
|
✗ |
zmfu(i, k) = 0.0 |
| 96 |
|
✗ |
zmfd(i, k) = 0.0 |
| 97 |
|
✗ |
zen_u(i, k) = 0.0 |
| 98 |
|
✗ |
zde_u(i, k) = 0.0 |
| 99 |
|
✗ |
zen_d(i, k) = 0.0 |
| 100 |
|
✗ |
zde_d(i, k) = 0.0 |
| 101 |
|
|
END DO |
| 102 |
|
|
END DO |
| 103 |
|
✗ |
DO k = 1, klev + 1 |
| 104 |
|
✗ |
DO i = 1, klon |
| 105 |
|
✗ |
zmflxr(i, k) = 0.0 |
| 106 |
|
✗ |
zmflxs(i, k) = 0.0 |
| 107 |
|
|
END DO |
| 108 |
|
|
END DO |
| 109 |
|
|
|
| 110 |
|
|
! calculer la nature du sol (pour l'instant, ocean partout) |
| 111 |
|
✗ |
DO i = 1, klon |
| 112 |
|
✗ |
land(i) = .FALSE. |
| 113 |
|
|
END DO |
| 114 |
|
|
|
| 115 |
|
|
! preparer les variables d'entree (attention: l'ordre des niveaux |
| 116 |
|
|
! verticaux augmente du haut vers le bas) |
| 117 |
|
✗ |
DO k = 1, klev |
| 118 |
|
✗ |
DO i = 1, klon |
| 119 |
|
✗ |
pt(i, k) = t(i, klev-k+1) |
| 120 |
|
✗ |
pq(i, k) = q(i, klev-k+1) |
| 121 |
|
✗ |
paprsf(i, k) = pres_f(i, klev-k+1) |
| 122 |
|
✗ |
paprs(i, k) = pres_h(i, klev+1-k+1) |
| 123 |
|
✗ |
pvervel(i, k) = w(i, klev+1-k) |
| 124 |
|
✗ |
zcvgt(i, k) = con_t(i, klev-k+1) |
| 125 |
|
✗ |
zcvgq(i, k) = con_q(i, klev-k+1) |
| 126 |
|
|
|
| 127 |
|
✗ |
zdelta = max(0., sign(1.,rtt-pt(i,k))) |
| 128 |
|
✗ |
zqsat = r2es*foeew(pt(i,k), zdelta)/paprsf(i, k) |
| 129 |
|
✗ |
zqsat = min(0.5, zqsat) |
| 130 |
|
✗ |
zqsat = zqsat/(1.-retv*zqsat) |
| 131 |
|
✗ |
pqs(i, k) = zqsat |
| 132 |
|
|
END DO |
| 133 |
|
|
END DO |
| 134 |
|
✗ |
DO i = 1, klon |
| 135 |
|
✗ |
paprs(i, klev+1) = pres_h(i, 1) |
| 136 |
|
|
zgeom(i, klev) = rd*pt(i, klev)/(0.5*(paprs(i,klev+1)+paprsf(i, & |
| 137 |
|
✗ |
klev)))*(paprs(i,klev+1)-paprsf(i,klev)) |
| 138 |
|
|
END DO |
| 139 |
|
✗ |
DO k = klev - 1, 1, -1 |
| 140 |
|
✗ |
DO i = 1, klon |
| 141 |
|
|
zgeom(i, k) = zgeom(i, k+1) + rd*0.5*(pt(i,k+1)+pt(i,k))/paprs(i, k+1)* & |
| 142 |
|
✗ |
(paprsf(i,k+1)-paprsf(i,k)) |
| 143 |
|
|
END DO |
| 144 |
|
|
END DO |
| 145 |
|
|
|
| 146 |
|
|
! appeler la routine principale |
| 147 |
|
|
|
| 148 |
|
|
CALL flxmain(dtime, pt, pq, pqs, pqhfl, paprsf, paprs, zgeom, land, zcvgt, & |
| 149 |
|
|
zcvgq, pvervel, rain, snow, kcbot, kctop, kdtop, zmfu, zmfd, zen_u, & |
| 150 |
|
✗ |
zde_u, zen_d, zde_d, d_t_bis, d_q_bis, zmflxr, zmflxs) |
| 151 |
|
|
|
| 152 |
|
|
! AA-------------------------------------------------------- |
| 153 |
|
|
! AA rem : De la meme facon que l'on effectue le reindicage |
| 154 |
|
|
! AA pour la temperature t et le champ q |
| 155 |
|
|
! AA on reindice les flux necessaires a la convection |
| 156 |
|
|
! AA des traceurs |
| 157 |
|
|
! AA-------------------------------------------------------- |
| 158 |
|
✗ |
DO k = 1, klev |
| 159 |
|
✗ |
DO i = 1, klon |
| 160 |
|
✗ |
d_q(i, klev+1-k) = dtime*d_q_bis(i, k) |
| 161 |
|
✗ |
d_t(i, klev+1-k) = dtime*d_t_bis(i, k) |
| 162 |
|
|
END DO |
| 163 |
|
|
END DO |
| 164 |
|
|
|
| 165 |
|
✗ |
DO i = 1, klon |
| 166 |
|
✗ |
pmfu(i, 1) = 0. |
| 167 |
|
✗ |
pmfd(i, 1) = 0. |
| 168 |
|
✗ |
pen_d(i, 1) = 0. |
| 169 |
|
✗ |
pde_d(i, 1) = 0. |
| 170 |
|
|
END DO |
| 171 |
|
|
|
| 172 |
|
✗ |
DO k = 2, klev |
| 173 |
|
✗ |
DO i = 1, klon |
| 174 |
|
✗ |
pmfu(i, klev+2-k) = zmfu(i, k) |
| 175 |
|
✗ |
pmfd(i, klev+2-k) = zmfd(i, k) |
| 176 |
|
|
END DO |
| 177 |
|
|
END DO |
| 178 |
|
|
|
| 179 |
|
✗ |
DO k = 1, klev |
| 180 |
|
✗ |
DO i = 1, klon |
| 181 |
|
✗ |
pen_u(i, klev+1-k) = zen_u(i, k) |
| 182 |
|
✗ |
pde_u(i, klev+1-k) = zde_u(i, k) |
| 183 |
|
|
END DO |
| 184 |
|
|
END DO |
| 185 |
|
|
|
| 186 |
|
✗ |
DO k = 1, klev - 1 |
| 187 |
|
✗ |
DO i = 1, klon |
| 188 |
|
✗ |
pen_d(i, klev+1-k) = -zen_d(i, k+1) |
| 189 |
|
✗ |
pde_d(i, klev+1-k) = -zde_d(i, k+1) |
| 190 |
|
|
END DO |
| 191 |
|
|
END DO |
| 192 |
|
|
|
| 193 |
|
✗ |
DO k = 1, klev + 1 |
| 194 |
|
✗ |
DO i = 1, klon |
| 195 |
|
✗ |
pmflxr(i, klev+2-k) = zmflxr(i, k) |
| 196 |
|
✗ |
pmflxs(i, klev+2-k) = zmflxs(i, k) |
| 197 |
|
|
END DO |
| 198 |
|
|
END DO |
| 199 |
|
|
|
| 200 |
|
✗ |
RETURN |
| 201 |
|
|
END SUBROUTINE conflx |
| 202 |
|
|
! -------------------------------------------------------------------- |
| 203 |
|
✗ |
SUBROUTINE flxmain(pdtime, pten, pqen, pqsen, pqhfl, pap, paph, pgeo, ldland, & |
| 204 |
|
✗ |
ptte, pqte, pvervel, prsfc, pssfc, kcbot, kctop, kdtop, & ! * |
| 205 |
|
|
! ldcum, ktype, |
| 206 |
|
✗ |
pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, dt_con, dq_con, pmflxr, pmflxs) |
| 207 |
|
✗ |
USE dimphy |
| 208 |
|
|
IMPLICIT NONE |
| 209 |
|
|
! ------------------------------------------------------------------ |
| 210 |
|
|
include "YOMCST.h" |
| 211 |
|
|
include "YOETHF.h" |
| 212 |
|
|
include "YOECUMF.h" |
| 213 |
|
|
! ---------------------------------------------------------------- |
| 214 |
|
|
REAL pten(klon, klev), pqen(klon, klev), pqsen(klon, klev) |
| 215 |
|
|
REAL ptte(klon, klev) |
| 216 |
|
|
REAL pqte(klon, klev) |
| 217 |
|
|
REAL pvervel(klon, klev) |
| 218 |
|
|
REAL pgeo(klon, klev), pap(klon, klev), paph(klon, klev+1) |
| 219 |
|
|
REAL pqhfl(klon) |
| 220 |
|
|
|
| 221 |
|
✗ |
REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
| 222 |
|
✗ |
REAL plude(klon, klev) |
| 223 |
|
|
REAL pmfu(klon, klev) |
| 224 |
|
|
REAL prsfc(klon), pssfc(klon) |
| 225 |
|
✗ |
INTEGER kcbot(klon), kctop(klon), ktype(klon) |
| 226 |
|
✗ |
LOGICAL ldland(klon), ldcum(klon) |
| 227 |
|
|
|
| 228 |
|
✗ |
REAL ztenh(klon, klev), zqenh(klon, klev), zqsenh(klon, klev) |
| 229 |
|
✗ |
REAL zgeoh(klon, klev) |
| 230 |
|
✗ |
REAL zmfub(klon), zmfub1(klon) |
| 231 |
|
✗ |
REAL zmfus(klon, klev), zmfuq(klon, klev), zmful(klon, klev) |
| 232 |
|
✗ |
REAL zdmfup(klon, klev), zdpmel(klon, klev) |
| 233 |
|
✗ |
REAL zentr(klon), zhcbase(klon) |
| 234 |
|
✗ |
REAL zdqpbl(klon), zdqcv(klon), zdhpbl(klon) |
| 235 |
|
✗ |
REAL zrfl(klon) |
| 236 |
|
|
REAL pmflxr(klon, klev+1) |
| 237 |
|
|
REAL pmflxs(klon, klev+1) |
| 238 |
|
✗ |
INTEGER ilab(klon, klev), ictop0(klon) |
| 239 |
|
|
LOGICAL llo1 |
| 240 |
|
|
REAL dt_con(klon, klev), dq_con(klon, klev) |
| 241 |
|
|
REAL zmfmax, zdh |
| 242 |
|
|
REAL pdtime, zqumqe, zdqmin, zalvdcp, zhsat, zzz |
| 243 |
|
|
REAL zhhat, zpbmpt, zgam, zeps, zfac |
| 244 |
|
|
INTEGER i, k, ikb, itopm2, kcum |
| 245 |
|
|
|
| 246 |
|
|
REAL pen_u(klon, klev), pde_u(klon, klev) |
| 247 |
|
|
REAL pen_d(klon, klev), pde_d(klon, klev) |
| 248 |
|
|
|
| 249 |
|
✗ |
REAL ptd(klon, klev), pqd(klon, klev), pmfd(klon, klev) |
| 250 |
|
✗ |
REAL zmfds(klon, klev), zmfdq(klon, klev), zdmfdp(klon, klev) |
| 251 |
|
|
INTEGER kdtop(klon) |
| 252 |
|
✗ |
LOGICAL lddraf(klon) |
| 253 |
|
|
! --------------------------------------------------------------------- |
| 254 |
|
|
LOGICAL firstcal |
| 255 |
|
|
SAVE firstcal |
| 256 |
|
|
DATA firstcal/.TRUE./ |
| 257 |
|
|
!$OMP THREADPRIVATE(firstcal) |
| 258 |
|
|
! --------------------------------------------------------------------- |
| 259 |
|
✗ |
IF (firstcal) THEN |
| 260 |
|
|
CALL flxsetup |
| 261 |
|
✗ |
firstcal = .FALSE. |
| 262 |
|
|
END IF |
| 263 |
|
|
! --------------------------------------------------------------------- |
| 264 |
|
✗ |
DO i = 1, klon |
| 265 |
|
✗ |
ldcum(i) = .FALSE. |
| 266 |
|
|
END DO |
| 267 |
|
✗ |
DO k = 1, klev |
| 268 |
|
✗ |
DO i = 1, klon |
| 269 |
|
✗ |
dt_con(i, k) = 0.0 |
| 270 |
|
✗ |
dq_con(i, k) = 0.0 |
| 271 |
|
|
END DO |
| 272 |
|
|
END DO |
| 273 |
|
|
! ---------------------------------------------------------------------- |
| 274 |
|
|
! initialiser les variables et faire l'interpolation verticale |
| 275 |
|
|
! ---------------------------------------------------------------------- |
| 276 |
|
|
CALL flxini(pten, pqen, pqsen, pgeo, paph, zgeoh, ztenh, zqenh, zqsenh, & |
| 277 |
|
|
ptu, pqu, ptd, pqd, pmfd, zmfds, zmfdq, zdmfdp, pmfu, zmfus, zmfuq, & |
| 278 |
|
✗ |
zdmfup, zdpmel, plu, plude, ilab, pen_u, pde_u, pen_d, pde_d) |
| 279 |
|
|
! --------------------------------------------------------------------- |
| 280 |
|
|
! determiner les valeurs au niveau de base de la tour convective |
| 281 |
|
|
! --------------------------------------------------------------------- |
| 282 |
|
✗ |
CALL flxbase(ztenh, zqenh, zgeoh, paph, ptu, pqu, plu, ldcum, kcbot, ilab) |
| 283 |
|
|
! --------------------------------------------------------------------- |
| 284 |
|
|
! calculer la convergence totale de l'humidite et celle en provenance |
| 285 |
|
|
! de la couche limite, plus precisement, la convergence integree entre |
| 286 |
|
|
! le sol et la base de la convection. Cette derniere convergence est |
| 287 |
|
|
! comparee avec l'evaporation obtenue dans la couche limite pour |
| 288 |
|
|
! determiner le type de la convection |
| 289 |
|
|
! --------------------------------------------------------------------- |
| 290 |
|
|
k = 1 |
| 291 |
|
✗ |
DO i = 1, klon |
| 292 |
|
✗ |
zdqcv(i) = pqte(i, k)*(paph(i,k+1)-paph(i,k)) |
| 293 |
|
✗ |
zdhpbl(i) = 0.0 |
| 294 |
|
✗ |
zdqpbl(i) = 0.0 |
| 295 |
|
|
END DO |
| 296 |
|
|
|
| 297 |
|
✗ |
DO k = 2, klev |
| 298 |
|
✗ |
DO i = 1, klon |
| 299 |
|
✗ |
zdqcv(i) = zdqcv(i) + pqte(i, k)*(paph(i,k+1)-paph(i,k)) |
| 300 |
|
✗ |
IF (k>=kcbot(i)) THEN |
| 301 |
|
✗ |
zdqpbl(i) = zdqpbl(i) + pqte(i, k)*(paph(i,k+1)-paph(i,k)) |
| 302 |
|
|
zdhpbl(i) = zdhpbl(i) + (rcpd*ptte(i,k)+rlvtt*pqte(i,k))*(paph(i,k+1) & |
| 303 |
|
✗ |
-paph(i,k)) |
| 304 |
|
|
END IF |
| 305 |
|
|
END DO |
| 306 |
|
|
END DO |
| 307 |
|
|
|
| 308 |
|
✗ |
DO i = 1, klon |
| 309 |
|
✗ |
ktype(i) = 2 |
| 310 |
|
✗ |
IF (zdqcv(i)>max(0.,-1.5*pqhfl(i)*rg)) ktype(i) = 1 |
| 311 |
|
|
! cc if (zdqcv(i).GT.MAX(0.,-1.1*pqhfl(i)*RG)) ktype(i) = 1 |
| 312 |
|
|
END DO |
| 313 |
|
|
|
| 314 |
|
|
! --------------------------------------------------------------------- |
| 315 |
|
|
! determiner le flux de masse entrant a travers la base. |
| 316 |
|
|
! on ignore, pour l'instant, l'effet du panache descendant |
| 317 |
|
|
! --------------------------------------------------------------------- |
| 318 |
|
✗ |
DO i = 1, klon |
| 319 |
|
✗ |
ikb = kcbot(i) |
| 320 |
|
✗ |
zqumqe = pqu(i, ikb) + plu(i, ikb) - zqenh(i, ikb) |
| 321 |
|
✗ |
zdqmin = max(0.01*zqenh(i,ikb), 1.E-10) |
| 322 |
|
✗ |
IF (zdqpbl(i)>0. .AND. zqumqe>zdqmin .AND. ldcum(i)) THEN |
| 323 |
|
✗ |
zmfub(i) = zdqpbl(i)/(rg*max(zqumqe,zdqmin)) |
| 324 |
|
|
ELSE |
| 325 |
|
✗ |
zmfub(i) = 0.01 |
| 326 |
|
✗ |
ldcum(i) = .FALSE. |
| 327 |
|
|
END IF |
| 328 |
|
✗ |
IF (ktype(i)==2) THEN |
| 329 |
|
✗ |
zdh = rcpd*(ptu(i,ikb)-ztenh(i,ikb)) + rlvtt*zqumqe |
| 330 |
|
✗ |
zdh = rg*max(zdh, 1.0E5*zdqmin) |
| 331 |
|
✗ |
IF (zdhpbl(i)>0. .AND. ldcum(i)) zmfub(i) = zdhpbl(i)/zdh |
| 332 |
|
|
END IF |
| 333 |
|
✗ |
zmfmax = (paph(i,ikb)-paph(i,ikb-1))/(rg*pdtime) |
| 334 |
|
✗ |
zmfub(i) = min(zmfub(i), zmfmax) |
| 335 |
|
✗ |
zentr(i) = entrscv |
| 336 |
|
✗ |
IF (ktype(i)==1) zentr(i) = entrpen |
| 337 |
|
|
END DO |
| 338 |
|
|
! ----------------------------------------------------------------------- |
| 339 |
|
|
! DETERMINE CLOUD ASCENT FOR ENTRAINING PLUME |
| 340 |
|
|
! ----------------------------------------------------------------------- |
| 341 |
|
|
! (A) calculer d'abord la hauteur "theorique" de la tour convective sans |
| 342 |
|
|
! considerer l'entrainement ni le detrainement du panache, sachant |
| 343 |
|
|
! ces derniers peuvent abaisser la hauteur theorique. |
| 344 |
|
|
|
| 345 |
|
✗ |
DO i = 1, klon |
| 346 |
|
✗ |
ikb = kcbot(i) |
| 347 |
|
✗ |
zhcbase(i) = rcpd*ptu(i, ikb) + zgeoh(i, ikb) + rlvtt*pqu(i, ikb) |
| 348 |
|
✗ |
ictop0(i) = kcbot(i) - 1 |
| 349 |
|
|
END DO |
| 350 |
|
|
|
| 351 |
|
✗ |
zalvdcp = rlvtt/rcpd |
| 352 |
|
✗ |
DO k = klev - 1, 3, -1 |
| 353 |
|
✗ |
DO i = 1, klon |
| 354 |
|
✗ |
zhsat = rcpd*ztenh(i, k) + zgeoh(i, k) + rlvtt*zqsenh(i, k) |
| 355 |
|
|
zgam = r5les*zalvdcp*zqsenh(i, k)/((1.-retv*zqsenh(i,k))*(ztenh(i, & |
| 356 |
|
✗ |
k)-r4les)**2) |
| 357 |
|
✗ |
zzz = rcpd*ztenh(i, k)*0.608 |
| 358 |
|
|
zhhat = zhsat - (zzz+zgam*zzz)/(1.+zgam*zzz/rlvtt)*max(zqsenh(i,k)- & |
| 359 |
|
✗ |
zqenh(i,k), 0.) |
| 360 |
|
✗ |
IF (k<ictop0(i) .AND. zhcbase(i)>zhhat) ictop0(i) = k |
| 361 |
|
|
END DO |
| 362 |
|
|
END DO |
| 363 |
|
|
|
| 364 |
|
|
! (B) calculer le panache ascendant |
| 365 |
|
|
|
| 366 |
|
|
CALL flxasc(pdtime, ztenh, zqenh, pten, pqen, pqsen, pgeo, zgeoh, pap, & |
| 367 |
|
|
paph, pqte, pvervel, ldland, ldcum, ktype, ilab, ptu, pqu, plu, pmfu, & |
| 368 |
|
|
zmfub, zentr, zmfus, zmfuq, zmful, plude, zdmfup, kcbot, kctop, ictop0, & |
| 369 |
|
✗ |
kcum, pen_u, pde_u) |
| 370 |
|
✗ |
IF (kcum==0) GO TO 1000 |
| 371 |
|
|
|
| 372 |
|
|
! verifier l'epaisseur de la convection et changer eventuellement |
| 373 |
|
|
! le taux d'entrainement/detrainement |
| 374 |
|
|
|
| 375 |
|
✗ |
DO i = 1, klon |
| 376 |
|
✗ |
zpbmpt = paph(i, kcbot(i)) - paph(i, kctop(i)) |
| 377 |
|
✗ |
IF (ldcum(i) .AND. ktype(i)==1 .AND. zpbmpt<2.E4) ktype(i) = 2 |
| 378 |
|
✗ |
IF (ldcum(i)) ictop0(i) = kctop(i) |
| 379 |
|
✗ |
IF (ktype(i)==2) zentr(i) = entrscv |
| 380 |
|
|
END DO |
| 381 |
|
|
|
| 382 |
|
✗ |
IF (lmfdd) THEN ! si l'on considere le panache descendant |
| 383 |
|
|
|
| 384 |
|
|
! calculer la precipitation issue du panache ascendant pour |
| 385 |
|
|
! determiner l'existence du panache descendant dans la convection |
| 386 |
|
✗ |
DO i = 1, klon |
| 387 |
|
✗ |
zrfl(i) = zdmfup(i, 1) |
| 388 |
|
|
END DO |
| 389 |
|
✗ |
DO k = 2, klev |
| 390 |
|
✗ |
DO i = 1, klon |
| 391 |
|
✗ |
zrfl(i) = zrfl(i) + zdmfup(i, k) |
| 392 |
|
|
END DO |
| 393 |
|
|
END DO |
| 394 |
|
|
|
| 395 |
|
|
! determiner le LFS (level of free sinking: niveau de plonge libre) |
| 396 |
|
|
CALL flxdlfs(ztenh, zqenh, zgeoh, paph, ptu, pqu, ldcum, kcbot, kctop, & |
| 397 |
|
✗ |
zmfub, zrfl, ptd, pqd, pmfd, zmfds, zmfdq, zdmfdp, kdtop, lddraf) |
| 398 |
|
|
|
| 399 |
|
|
! calculer le panache descendant |
| 400 |
|
|
CALL flxddraf(ztenh, zqenh, zgeoh, paph, zrfl, ptd, pqd, pmfd, zmfds, & |
| 401 |
|
✗ |
zmfdq, zdmfdp, lddraf, pen_d, pde_d) |
| 402 |
|
|
|
| 403 |
|
|
! calculer de nouveau le flux de masse entrant a travers la base |
| 404 |
|
|
! de la convection, sachant qu'il a ete modifie par le panache |
| 405 |
|
|
! descendant |
| 406 |
|
✗ |
DO i = 1, klon |
| 407 |
|
✗ |
IF (lddraf(i)) THEN |
| 408 |
|
✗ |
ikb = kcbot(i) |
| 409 |
|
✗ |
llo1 = pmfd(i, ikb) < 0. |
| 410 |
|
|
zeps = 0. |
| 411 |
|
✗ |
IF (llo1) zeps = cmfdeps |
| 412 |
|
|
zqumqe = pqu(i, ikb) + plu(i, ikb) - zeps*pqd(i, ikb) - & |
| 413 |
|
✗ |
(1.-zeps)*zqenh(i, ikb) |
| 414 |
|
✗ |
zdqmin = max(0.01*zqenh(i,ikb), 1.E-10) |
| 415 |
|
✗ |
zmfmax = (paph(i,ikb)-paph(i,ikb-1))/(rg*pdtime) |
| 416 |
|
✗ |
IF (zdqpbl(i)>0. .AND. zqumqe>zdqmin .AND. ldcum(i) .AND. & |
| 417 |
|
|
zmfub(i)<zmfmax) THEN |
| 418 |
|
✗ |
zmfub1(i) = zdqpbl(i)/(rg*max(zqumqe,zdqmin)) |
| 419 |
|
|
ELSE |
| 420 |
|
✗ |
zmfub1(i) = zmfub(i) |
| 421 |
|
|
END IF |
| 422 |
|
✗ |
IF (ktype(i)==2) THEN |
| 423 |
|
|
zdh = rcpd*(ptu(i,ikb)-zeps*ptd(i,ikb)-(1.-zeps)*ztenh(i,ikb)) + & |
| 424 |
|
✗ |
rlvtt*zqumqe |
| 425 |
|
✗ |
zdh = rg*max(zdh, 1.0E5*zdqmin) |
| 426 |
|
✗ |
IF (zdhpbl(i)>0. .AND. ldcum(i)) zmfub1(i) = zdhpbl(i)/zdh |
| 427 |
|
|
END IF |
| 428 |
|
✗ |
IF (.NOT. ((ktype(i)==1 .OR. ktype(i)==2) .AND. abs(zmfub1(i)-zmfub(i & |
| 429 |
|
✗ |
))<0.2*zmfub(i))) zmfub1(i) = zmfub(i) |
| 430 |
|
|
END IF |
| 431 |
|
|
END DO |
| 432 |
|
✗ |
DO k = 1, klev |
| 433 |
|
✗ |
DO i = 1, klon |
| 434 |
|
✗ |
IF (lddraf(i)) THEN |
| 435 |
|
✗ |
zfac = zmfub1(i)/max(zmfub(i), 1.E-10) |
| 436 |
|
✗ |
pmfd(i, k) = pmfd(i, k)*zfac |
| 437 |
|
✗ |
zmfds(i, k) = zmfds(i, k)*zfac |
| 438 |
|
✗ |
zmfdq(i, k) = zmfdq(i, k)*zfac |
| 439 |
|
✗ |
zdmfdp(i, k) = zdmfdp(i, k)*zfac |
| 440 |
|
✗ |
pen_d(i, k) = pen_d(i, k)*zfac |
| 441 |
|
✗ |
pde_d(i, k) = pde_d(i, k)*zfac |
| 442 |
|
|
END IF |
| 443 |
|
|
END DO |
| 444 |
|
|
END DO |
| 445 |
|
✗ |
DO i = 1, klon |
| 446 |
|
✗ |
IF (lddraf(i)) zmfub(i) = zmfub1(i) |
| 447 |
|
|
END DO |
| 448 |
|
|
|
| 449 |
|
|
END IF ! fin de test sur lmfdd |
| 450 |
|
|
|
| 451 |
|
|
! ----------------------------------------------------------------------- |
| 452 |
|
|
! calculer de nouveau le panache ascendant |
| 453 |
|
|
! ----------------------------------------------------------------------- |
| 454 |
|
|
CALL flxasc(pdtime, ztenh, zqenh, pten, pqen, pqsen, pgeo, zgeoh, pap, & |
| 455 |
|
|
paph, pqte, pvervel, ldland, ldcum, ktype, ilab, ptu, pqu, plu, pmfu, & |
| 456 |
|
|
zmfub, zentr, zmfus, zmfuq, zmful, plude, zdmfup, kcbot, kctop, ictop0, & |
| 457 |
|
✗ |
kcum, pen_u, pde_u) |
| 458 |
|
|
|
| 459 |
|
|
! ----------------------------------------------------------------------- |
| 460 |
|
|
! determiner les flux convectifs en forme finale, ainsi que |
| 461 |
|
|
! la quantite des precipitations |
| 462 |
|
|
! ----------------------------------------------------------------------- |
| 463 |
|
|
CALL flxflux(pdtime, pqen, pqsen, ztenh, zqenh, pap, paph, ldland, zgeoh, & |
| 464 |
|
|
kcbot, kctop, lddraf, kdtop, ktype, ldcum, pmfu, pmfd, zmfus, zmfds, & |
| 465 |
|
|
zmfuq, zmfdq, zmful, plude, zdmfup, zdmfdp, pten, prsfc, pssfc, zdpmel, & |
| 466 |
|
✗ |
itopm2, pmflxr, pmflxs) |
| 467 |
|
|
|
| 468 |
|
|
! ---------------------------------------------------------------------- |
| 469 |
|
|
! calculer les tendances pour T et Q |
| 470 |
|
|
! ---------------------------------------------------------------------- |
| 471 |
|
|
CALL flxdtdq(pdtime, itopm2, paph, ldcum, pten, zmfus, zmfds, zmfuq, zmfdq, & |
| 472 |
|
✗ |
zmful, zdmfup, zdmfdp, zdpmel, dt_con, dq_con) |
| 473 |
|
|
|
| 474 |
|
|
1000 CONTINUE |
| 475 |
|
✗ |
RETURN |
| 476 |
|
|
END SUBROUTINE flxmain |
| 477 |
|
✗ |
SUBROUTINE flxini(pten, pqen, pqsen, pgeo, paph, pgeoh, ptenh, pqenh, pqsenh, & |
| 478 |
|
|
ptu, pqu, ptd, pqd, pmfd, pmfds, pmfdq, pdmfdp, pmfu, pmfus, pmfuq, & |
| 479 |
|
|
pdmfup, pdpmel, plu, plude, klab, pen_u, pde_u, pen_d, pde_d) |
| 480 |
|
|
USE dimphy |
| 481 |
|
|
IMPLICIT NONE |
| 482 |
|
|
! ---------------------------------------------------------------------- |
| 483 |
|
|
! THIS ROUTINE INTERPOLATES LARGE-SCALE FIELDS OF T,Q ETC. |
| 484 |
|
|
! TO HALF LEVELS (I.E. GRID FOR MASSFLUX SCHEME), |
| 485 |
|
|
! AND INITIALIZES VALUES FOR UPDRAFTS |
| 486 |
|
|
! ---------------------------------------------------------------------- |
| 487 |
|
|
include "YOMCST.h" |
| 488 |
|
|
include "YOETHF.h" |
| 489 |
|
|
|
| 490 |
|
|
REAL pten(klon, klev) ! temperature (environnement) |
| 491 |
|
|
REAL pqen(klon, klev) ! humidite (environnement) |
| 492 |
|
|
REAL pqsen(klon, klev) ! humidite saturante (environnement) |
| 493 |
|
|
REAL pgeo(klon, klev) ! geopotentiel (g * metre) |
| 494 |
|
|
REAL pgeoh(klon, klev) ! geopotentiel aux demi-niveaux |
| 495 |
|
|
REAL paph(klon, klev+1) ! pression aux demi-niveaux |
| 496 |
|
|
REAL ptenh(klon, klev) ! temperature aux demi-niveaux |
| 497 |
|
|
REAL pqenh(klon, klev) ! humidite aux demi-niveaux |
| 498 |
|
|
REAL pqsenh(klon, klev) ! humidite saturante aux demi-niveaux |
| 499 |
|
|
|
| 500 |
|
|
REAL ptu(klon, klev) ! temperature du panache ascendant (p-a) |
| 501 |
|
|
REAL pqu(klon, klev) ! humidite du p-a |
| 502 |
|
|
REAL plu(klon, klev) ! eau liquide du p-a |
| 503 |
|
|
REAL pmfu(klon, klev) ! flux de masse du p-a |
| 504 |
|
|
REAL pmfus(klon, klev) ! flux de l'energie seche dans le p-a |
| 505 |
|
|
REAL pmfuq(klon, klev) ! flux de l'humidite dans le p-a |
| 506 |
|
|
REAL pdmfup(klon, klev) ! quantite de l'eau precipitee dans p-a |
| 507 |
|
|
REAL plude(klon, klev) ! quantite de l'eau liquide jetee du |
| 508 |
|
|
! p-a a l'environnement |
| 509 |
|
|
REAL pdpmel(klon, klev) ! quantite de neige fondue |
| 510 |
|
|
|
| 511 |
|
|
REAL ptd(klon, klev) ! temperature du panache descendant (p-d) |
| 512 |
|
|
REAL pqd(klon, klev) ! humidite du p-d |
| 513 |
|
|
REAL pmfd(klon, klev) ! flux de masse du p-d |
| 514 |
|
|
REAL pmfds(klon, klev) ! flux de l'energie seche dans le p-d |
| 515 |
|
|
REAL pmfdq(klon, klev) ! flux de l'humidite dans le p-d |
| 516 |
|
|
REAL pdmfdp(klon, klev) ! quantite de precipitation dans p-d |
| 517 |
|
|
|
| 518 |
|
|
REAL pen_u(klon, klev) ! quantite de masse entrainee pour p-a |
| 519 |
|
|
REAL pde_u(klon, klev) ! quantite de masse detrainee pour p-a |
| 520 |
|
|
REAL pen_d(klon, klev) ! quantite de masse entrainee pour p-d |
| 521 |
|
|
REAL pde_d(klon, klev) ! quantite de masse detrainee pour p-d |
| 522 |
|
|
|
| 523 |
|
|
INTEGER klab(klon, klev) |
| 524 |
|
✗ |
LOGICAL llflag(klon) |
| 525 |
|
|
INTEGER k, i, icall |
| 526 |
|
|
REAL zzs |
| 527 |
|
|
! ---------------------------------------------------------------------- |
| 528 |
|
|
! SPECIFY LARGE SCALE PARAMETERS AT HALF LEVELS |
| 529 |
|
|
! ADJUST TEMPERATURE FIELDS IF STATICLY UNSTABLE |
| 530 |
|
|
! ---------------------------------------------------------------------- |
| 531 |
|
✗ |
DO k = 2, klev |
| 532 |
|
|
|
| 533 |
|
✗ |
DO i = 1, klon |
| 534 |
|
✗ |
pgeoh(i, k) = pgeo(i, k) + (pgeo(i,k-1)-pgeo(i,k))*0.5 |
| 535 |
|
|
ptenh(i, k) = (max(rcpd*pten(i,k-1)+pgeo(i,k-1),rcpd*pten(i,k)+pgeo(i, & |
| 536 |
|
✗ |
k))-pgeoh(i,k))/rcpd |
| 537 |
|
✗ |
pqsenh(i, k) = pqsen(i, k-1) |
| 538 |
|
✗ |
llflag(i) = .TRUE. |
| 539 |
|
|
END DO |
| 540 |
|
|
|
| 541 |
|
✗ |
icall = 0 |
| 542 |
|
✗ |
CALL flxadjtq(paph(1,k), ptenh(1,k), pqsenh(1,k), llflag, icall) |
| 543 |
|
|
|
| 544 |
|
✗ |
DO i = 1, klon |
| 545 |
|
|
pqenh(i, k) = min(pqen(i,k-1), pqsen(i,k-1)) + & |
| 546 |
|
✗ |
(pqsenh(i,k)-pqsen(i,k-1)) |
| 547 |
|
✗ |
pqenh(i, k) = max(pqenh(i,k), 0.) |
| 548 |
|
|
END DO |
| 549 |
|
|
|
| 550 |
|
|
END DO |
| 551 |
|
|
|
| 552 |
|
✗ |
DO i = 1, klon |
| 553 |
|
✗ |
ptenh(i, klev) = (rcpd*pten(i,klev)+pgeo(i,klev)-pgeoh(i,klev))/rcpd |
| 554 |
|
✗ |
pqenh(i, klev) = pqen(i, klev) |
| 555 |
|
✗ |
ptenh(i, 1) = pten(i, 1) |
| 556 |
|
✗ |
pqenh(i, 1) = pqen(i, 1) |
| 557 |
|
✗ |
pgeoh(i, 1) = pgeo(i, 1) |
| 558 |
|
|
END DO |
| 559 |
|
|
|
| 560 |
|
✗ |
DO k = klev - 1, 2, -1 |
| 561 |
|
✗ |
DO i = 1, klon |
| 562 |
|
✗ |
zzs = max(rcpd*ptenh(i,k)+pgeoh(i,k), rcpd*ptenh(i,k+1)+pgeoh(i,k+1)) |
| 563 |
|
✗ |
ptenh(i, k) = (zzs-pgeoh(i,k))/rcpd |
| 564 |
|
|
END DO |
| 565 |
|
|
END DO |
| 566 |
|
|
|
| 567 |
|
|
! ----------------------------------------------------------------------- |
| 568 |
|
|
! INITIALIZE VALUES FOR UPDRAFTS AND DOWNDRAFTS |
| 569 |
|
|
! ----------------------------------------------------------------------- |
| 570 |
|
✗ |
DO k = 1, klev |
| 571 |
|
✗ |
DO i = 1, klon |
| 572 |
|
✗ |
ptu(i, k) = ptenh(i, k) |
| 573 |
|
✗ |
pqu(i, k) = pqenh(i, k) |
| 574 |
|
✗ |
plu(i, k) = 0. |
| 575 |
|
✗ |
pmfu(i, k) = 0. |
| 576 |
|
✗ |
pmfus(i, k) = 0. |
| 577 |
|
✗ |
pmfuq(i, k) = 0. |
| 578 |
|
✗ |
pdmfup(i, k) = 0. |
| 579 |
|
✗ |
pdpmel(i, k) = 0. |
| 580 |
|
✗ |
plude(i, k) = 0. |
| 581 |
|
|
|
| 582 |
|
✗ |
klab(i, k) = 0 |
| 583 |
|
|
|
| 584 |
|
✗ |
ptd(i, k) = ptenh(i, k) |
| 585 |
|
✗ |
pqd(i, k) = pqenh(i, k) |
| 586 |
|
✗ |
pmfd(i, k) = 0.0 |
| 587 |
|
✗ |
pmfds(i, k) = 0.0 |
| 588 |
|
✗ |
pmfdq(i, k) = 0.0 |
| 589 |
|
✗ |
pdmfdp(i, k) = 0.0 |
| 590 |
|
|
|
| 591 |
|
✗ |
pen_u(i, k) = 0.0 |
| 592 |
|
✗ |
pde_u(i, k) = 0.0 |
| 593 |
|
✗ |
pen_d(i, k) = 0.0 |
| 594 |
|
✗ |
pde_d(i, k) = 0.0 |
| 595 |
|
|
END DO |
| 596 |
|
|
END DO |
| 597 |
|
|
|
| 598 |
|
✗ |
RETURN |
| 599 |
|
|
END SUBROUTINE flxini |
| 600 |
|
✗ |
SUBROUTINE flxbase(ptenh, pqenh, pgeoh, paph, ptu, pqu, plu, ldcum, kcbot, & |
| 601 |
|
✗ |
klab) |
| 602 |
|
✗ |
USE dimphy |
| 603 |
|
|
IMPLICIT NONE |
| 604 |
|
|
! ---------------------------------------------------------------------- |
| 605 |
|
|
! THIS ROUTINE CALCULATES CLOUD BASE VALUES (T AND Q) |
| 606 |
|
|
|
| 607 |
|
|
! INPUT ARE ENVIRONM. VALUES OF T,Q,P,PHI AT HALF LEVELS. |
| 608 |
|
|
! IT RETURNS CLOUD BASE VALUES AND FLAGS AS FOLLOWS; |
| 609 |
|
|
! klab=1 FOR SUBCLOUD LEVELS |
| 610 |
|
|
! klab=2 FOR CONDENSATION LEVEL |
| 611 |
|
|
|
| 612 |
|
|
! LIFT SURFACE AIR DRY-ADIABATICALLY TO CLOUD BASE |
| 613 |
|
|
! (NON ENTRAINING PLUME,I.E.CONSTANT MASSFLUX) |
| 614 |
|
|
! ---------------------------------------------------------------------- |
| 615 |
|
|
include "YOMCST.h" |
| 616 |
|
|
include "YOETHF.h" |
| 617 |
|
|
! ---------------------------------------------------------------- |
| 618 |
|
|
REAL ptenh(klon, klev), pqenh(klon, klev) |
| 619 |
|
|
REAL pgeoh(klon, klev), paph(klon, klev+1) |
| 620 |
|
|
|
| 621 |
|
|
REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
| 622 |
|
|
INTEGER klab(klon, klev), kcbot(klon) |
| 623 |
|
|
|
| 624 |
|
✗ |
LOGICAL llflag(klon), ldcum(klon) |
| 625 |
|
|
INTEGER i, k, icall, is |
| 626 |
|
✗ |
REAL zbuo, zqold(klon) |
| 627 |
|
|
! ---------------------------------------------------------------------- |
| 628 |
|
|
! INITIALIZE VALUES AT LIFTING LEVEL |
| 629 |
|
|
! ---------------------------------------------------------------------- |
| 630 |
|
✗ |
DO i = 1, klon |
| 631 |
|
✗ |
klab(i, klev) = 1 |
| 632 |
|
✗ |
kcbot(i) = klev - 1 |
| 633 |
|
✗ |
ldcum(i) = .FALSE. |
| 634 |
|
|
END DO |
| 635 |
|
|
! ---------------------------------------------------------------------- |
| 636 |
|
|
! DO ASCENT IN SUBCLOUD LAYER, |
| 637 |
|
|
! CHECK FOR EXISTENCE OF CONDENSATION LEVEL, |
| 638 |
|
|
! ADJUST T,Q AND L ACCORDINGLY |
| 639 |
|
|
! CHECK FOR BUOYANCY AND SET FLAGS |
| 640 |
|
|
! ---------------------------------------------------------------------- |
| 641 |
|
✗ |
DO k = klev - 1, 2, -1 |
| 642 |
|
|
|
| 643 |
|
|
is = 0 |
| 644 |
|
✗ |
DO i = 1, klon |
| 645 |
|
✗ |
IF (klab(i,k+1)==1) is = is + 1 |
| 646 |
|
✗ |
llflag(i) = .FALSE. |
| 647 |
|
✗ |
IF (klab(i,k+1)==1) llflag(i) = .TRUE. |
| 648 |
|
|
END DO |
| 649 |
|
✗ |
IF (is==0) GO TO 290 |
| 650 |
|
|
|
| 651 |
|
✗ |
DO i = 1, klon |
| 652 |
|
✗ |
IF (llflag(i)) THEN |
| 653 |
|
✗ |
pqu(i, k) = pqu(i, k+1) |
| 654 |
|
✗ |
ptu(i, k) = ptu(i, k+1) + (pgeoh(i,k+1)-pgeoh(i,k))/rcpd |
| 655 |
|
|
zbuo = ptu(i, k)*(1.+retv*pqu(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
| 656 |
|
✗ |
) + 0.5 |
| 657 |
|
✗ |
IF (zbuo>0.) klab(i, k) = 1 |
| 658 |
|
✗ |
zqold(i) = pqu(i, k) |
| 659 |
|
|
END IF |
| 660 |
|
|
END DO |
| 661 |
|
|
|
| 662 |
|
✗ |
icall = 1 |
| 663 |
|
✗ |
CALL flxadjtq(paph(1,k), ptu(1,k), pqu(1,k), llflag, icall) |
| 664 |
|
|
|
| 665 |
|
✗ |
DO i = 1, klon |
| 666 |
|
✗ |
IF (llflag(i) .AND. pqu(i,k)/=zqold(i)) THEN |
| 667 |
|
✗ |
klab(i, k) = 2 |
| 668 |
|
✗ |
plu(i, k) = plu(i, k) + zqold(i) - pqu(i, k) |
| 669 |
|
|
zbuo = ptu(i, k)*(1.+retv*pqu(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
| 670 |
|
✗ |
) + 0.5 |
| 671 |
|
✗ |
IF (zbuo>0.) kcbot(i) = k |
| 672 |
|
✗ |
IF (zbuo>0.) ldcum(i) = .TRUE. |
| 673 |
|
|
END IF |
| 674 |
|
|
END DO |
| 675 |
|
|
|
| 676 |
|
✗ |
290 END DO |
| 677 |
|
|
|
| 678 |
|
✗ |
RETURN |
| 679 |
|
|
END SUBROUTINE flxbase |
| 680 |
|
✗ |
SUBROUTINE flxasc(pdtime, ptenh, pqenh, pten, pqen, pqsen, pgeo, pgeoh, pap, & |
| 681 |
|
✗ |
paph, pqte, pvervel, ldland, ldcum, ktype, klab, ptu, pqu, plu, pmfu, & |
| 682 |
|
✗ |
pmfub, pentr, pmfus, pmfuq, pmful, plude, pdmfup, kcbot, kctop, kctop0, & |
| 683 |
|
|
kcum, pen_u, pde_u) |
| 684 |
|
✗ |
USE dimphy |
| 685 |
|
|
IMPLICIT NONE |
| 686 |
|
|
! ---------------------------------------------------------------------- |
| 687 |
|
|
! THIS ROUTINE DOES THE CALCULATIONS FOR CLOUD ASCENTS |
| 688 |
|
|
! FOR CUMULUS PARAMETERIZATION |
| 689 |
|
|
! ---------------------------------------------------------------------- |
| 690 |
|
|
include "YOMCST.h" |
| 691 |
|
|
include "YOETHF.h" |
| 692 |
|
|
include "YOECUMF.h" |
| 693 |
|
|
|
| 694 |
|
|
REAL pdtime |
| 695 |
|
|
REAL pten(klon, klev), ptenh(klon, klev) |
| 696 |
|
|
REAL pqen(klon, klev), pqenh(klon, klev), pqsen(klon, klev) |
| 697 |
|
|
REAL pgeo(klon, klev), pgeoh(klon, klev) |
| 698 |
|
|
REAL pap(klon, klev), paph(klon, klev+1) |
| 699 |
|
|
REAL pqte(klon, klev) |
| 700 |
|
|
REAL pvervel(klon, klev) ! vitesse verticale en Pa/s |
| 701 |
|
|
|
| 702 |
|
|
REAL pmfub(klon), pentr(klon) |
| 703 |
|
|
REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
| 704 |
|
|
REAL plude(klon, klev) |
| 705 |
|
|
REAL pmfu(klon, klev), pmfus(klon, klev) |
| 706 |
|
|
REAL pmfuq(klon, klev), pmful(klon, klev) |
| 707 |
|
|
REAL pdmfup(klon, klev) |
| 708 |
|
|
INTEGER ktype(klon), klab(klon, klev), kcbot(klon), kctop(klon) |
| 709 |
|
|
INTEGER kctop0(klon) |
| 710 |
|
|
LOGICAL ldland(klon), ldcum(klon) |
| 711 |
|
|
|
| 712 |
|
|
REAL pen_u(klon, klev), pde_u(klon, klev) |
| 713 |
|
✗ |
REAL zqold(klon) |
| 714 |
|
✗ |
REAL zdland(klon) |
| 715 |
|
✗ |
LOGICAL llflag(klon) |
| 716 |
|
|
INTEGER k, i, is, icall, kcum |
| 717 |
|
|
REAL ztglace, zdphi, zqeen, zseen, zscde, zqude |
| 718 |
|
|
REAL zmfusk, zmfuqk, zmfulk, zbuo, zdnoprc, zprcon, zlnew |
| 719 |
|
|
|
| 720 |
|
✗ |
REAL zpbot(klon), zptop(klon), zrho(klon) |
| 721 |
|
|
REAL zdprho, zentr, zpmid, zmftest, zmfmax |
| 722 |
|
|
LOGICAL llo1, llo2 |
| 723 |
|
|
|
| 724 |
|
✗ |
REAL zwmax(klon), zzzmb |
| 725 |
|
✗ |
INTEGER klwmin(klon) ! level of maximum vertical velocity |
| 726 |
|
|
REAL fact |
| 727 |
|
|
! ---------------------------------------------------------------------- |
| 728 |
|
✗ |
ztglace = rtt - 13. |
| 729 |
|
|
|
| 730 |
|
|
! Chercher le niveau ou la vitesse verticale est maximale: |
| 731 |
|
✗ |
DO i = 1, klon |
| 732 |
|
✗ |
klwmin(i) = klev |
| 733 |
|
✗ |
zwmax(i) = 0.0 |
| 734 |
|
|
END DO |
| 735 |
|
✗ |
DO k = klev, 3, -1 |
| 736 |
|
✗ |
DO i = 1, klon |
| 737 |
|
✗ |
IF (pvervel(i,k)<zwmax(i)) THEN |
| 738 |
|
✗ |
zwmax(i) = pvervel(i, k) |
| 739 |
|
✗ |
klwmin(i) = k |
| 740 |
|
|
END IF |
| 741 |
|
|
END DO |
| 742 |
|
|
END DO |
| 743 |
|
|
! ---------------------------------------------------------------------- |
| 744 |
|
|
! SET DEFAULT VALUES |
| 745 |
|
|
! ---------------------------------------------------------------------- |
| 746 |
|
✗ |
DO i = 1, klon |
| 747 |
|
✗ |
IF (.NOT. ldcum(i)) ktype(i) = 0 |
| 748 |
|
|
END DO |
| 749 |
|
|
|
| 750 |
|
✗ |
DO k = 1, klev |
| 751 |
|
✗ |
DO i = 1, klon |
| 752 |
|
✗ |
plu(i, k) = 0. |
| 753 |
|
✗ |
pmfu(i, k) = 0. |
| 754 |
|
✗ |
pmfus(i, k) = 0. |
| 755 |
|
✗ |
pmfuq(i, k) = 0. |
| 756 |
|
✗ |
pmful(i, k) = 0. |
| 757 |
|
✗ |
plude(i, k) = 0. |
| 758 |
|
✗ |
pdmfup(i, k) = 0. |
| 759 |
|
✗ |
IF (.NOT. ldcum(i) .OR. ktype(i)==3) klab(i, k) = 0 |
| 760 |
|
✗ |
IF (.NOT. ldcum(i) .AND. paph(i,k)<4.E4) kctop0(i) = k |
| 761 |
|
|
END DO |
| 762 |
|
|
END DO |
| 763 |
|
|
|
| 764 |
|
✗ |
DO i = 1, klon |
| 765 |
|
✗ |
IF (ldland(i)) THEN |
| 766 |
|
✗ |
zdland(i) = 3.0E4 |
| 767 |
|
✗ |
zdphi = pgeoh(i, kctop0(i)) - pgeoh(i, kcbot(i)) |
| 768 |
|
✗ |
IF (ptu(i,kctop0(i))>=ztglace) zdland(i) = zdphi |
| 769 |
|
✗ |
zdland(i) = max(3.0E4, zdland(i)) |
| 770 |
|
✗ |
zdland(i) = min(5.0E4, zdland(i)) |
| 771 |
|
|
END IF |
| 772 |
|
|
END DO |
| 773 |
|
|
|
| 774 |
|
|
! Initialiser les valeurs au niveau d'ascendance |
| 775 |
|
|
|
| 776 |
|
✗ |
DO i = 1, klon |
| 777 |
|
✗ |
kctop(i) = klev - 1 |
| 778 |
|
✗ |
IF (.NOT. ldcum(i)) THEN |
| 779 |
|
✗ |
kcbot(i) = klev - 1 |
| 780 |
|
✗ |
pmfub(i) = 0. |
| 781 |
|
✗ |
pqu(i, klev) = 0. |
| 782 |
|
|
END IF |
| 783 |
|
✗ |
pmfu(i, klev) = pmfub(i) |
| 784 |
|
✗ |
pmfus(i, klev) = pmfub(i)*(rcpd*ptu(i,klev)+pgeoh(i,klev)) |
| 785 |
|
✗ |
pmfuq(i, klev) = pmfub(i)*pqu(i, klev) |
| 786 |
|
|
END DO |
| 787 |
|
|
|
| 788 |
|
✗ |
DO i = 1, klon |
| 789 |
|
✗ |
ldcum(i) = .FALSE. |
| 790 |
|
|
END DO |
| 791 |
|
|
! ---------------------------------------------------------------------- |
| 792 |
|
|
! DO ASCENT: SUBCLOUD LAYER (klab=1) ,CLOUDS (klab=2) |
| 793 |
|
|
! BY DOING FIRST DRY-ADIABATIC ASCENT AND THEN |
| 794 |
|
|
! BY ADJUSTING T,Q AND L ACCORDINGLY IN *flxadjtq*, |
| 795 |
|
|
! THEN CHECK FOR BUOYANCY AND SET FLAGS ACCORDINGLY |
| 796 |
|
|
! ---------------------------------------------------------------------- |
| 797 |
|
✗ |
DO k = klev - 1, 3, -1 |
| 798 |
|
|
|
| 799 |
|
✗ |
IF (lmfmid .AND. k<klev-1) THEN |
| 800 |
|
✗ |
DO i = 1, klon |
| 801 |
|
|
IF (.NOT. ldcum(i) .AND. klab(i,k+1)==0 .AND. & |
| 802 |
|
✗ |
pqen(i,k)>0.9*pqsen(i,k) .AND. pap(i,k)/paph(i,klev+1)>0.4) THEN |
| 803 |
|
✗ |
ptu(i, k+1) = pten(i, k) + (pgeo(i,k)-pgeoh(i,k+1))/rcpd |
| 804 |
|
✗ |
pqu(i, k+1) = pqen(i, k) |
| 805 |
|
✗ |
plu(i, k+1) = 0.0 |
| 806 |
|
✗ |
zzzmb = max(cmfcmin, -pvervel(i,k)/rg) |
| 807 |
|
✗ |
zmfmax = (paph(i,k)-paph(i,k-1))/(rg*pdtime) |
| 808 |
|
✗ |
pmfub(i) = min(zzzmb, zmfmax) |
| 809 |
|
✗ |
pmfu(i, k+1) = pmfub(i) |
| 810 |
|
✗ |
pmfus(i, k+1) = pmfub(i)*(rcpd*ptu(i,k+1)+pgeoh(i,k+1)) |
| 811 |
|
✗ |
pmfuq(i, k+1) = pmfub(i)*pqu(i, k+1) |
| 812 |
|
✗ |
pmful(i, k+1) = 0.0 |
| 813 |
|
✗ |
pdmfup(i, k+1) = 0.0 |
| 814 |
|
✗ |
kcbot(i) = k |
| 815 |
|
✗ |
klab(i, k+1) = 1 |
| 816 |
|
✗ |
ktype(i) = 3 |
| 817 |
|
✗ |
pentr(i) = entrmid |
| 818 |
|
|
END IF |
| 819 |
|
|
END DO |
| 820 |
|
|
END IF |
| 821 |
|
|
|
| 822 |
|
|
is = 0 |
| 823 |
|
✗ |
DO i = 1, klon |
| 824 |
|
✗ |
is = is + klab(i, k+1) |
| 825 |
|
✗ |
IF (klab(i,k+1)==0) klab(i, k) = 0 |
| 826 |
|
✗ |
llflag(i) = .FALSE. |
| 827 |
|
✗ |
IF (klab(i,k+1)>0) llflag(i) = .TRUE. |
| 828 |
|
|
END DO |
| 829 |
|
✗ |
IF (is==0) GO TO 480 |
| 830 |
|
|
|
| 831 |
|
|
! calculer le taux d'entrainement et de detrainement |
| 832 |
|
|
|
| 833 |
|
✗ |
DO i = 1, klon |
| 834 |
|
✗ |
pen_u(i, k) = 0.0 |
| 835 |
|
✗ |
pde_u(i, k) = 0.0 |
| 836 |
|
✗ |
zrho(i) = paph(i, k+1)/(rd*ptenh(i,k+1)) |
| 837 |
|
✗ |
zpbot(i) = paph(i, kcbot(i)) |
| 838 |
|
✗ |
zptop(i) = paph(i, kctop0(i)) |
| 839 |
|
|
END DO |
| 840 |
|
|
|
| 841 |
|
✗ |
DO i = 1, klon |
| 842 |
|
✗ |
IF (ldcum(i)) THEN |
| 843 |
|
✗ |
zdprho = (paph(i,k+1)-paph(i,k))/(rg*zrho(i)) |
| 844 |
|
✗ |
zentr = pentr(i)*pmfu(i, k+1)*zdprho |
| 845 |
|
✗ |
llo1 = k < kcbot(i) |
| 846 |
|
✗ |
IF (llo1) pde_u(i, k) = zentr |
| 847 |
|
✗ |
zpmid = 0.5*(zpbot(i)+zptop(i)) |
| 848 |
|
|
llo2 = llo1 .AND. ktype(i) == 2 .AND. (zpbot(i)-paph(i,k)<0.2E5 .OR. & |
| 849 |
|
✗ |
paph(i,k)>zpmid) |
| 850 |
|
✗ |
IF (llo2) pen_u(i, k) = zentr |
| 851 |
|
|
llo2 = llo1 .AND. (ktype(i)==1 .OR. ktype(i)==3) .AND. & |
| 852 |
|
✗ |
(k>=max(klwmin(i),kctop0(i)+2) .OR. pap(i,k)>zpmid) |
| 853 |
|
✗ |
IF (llo2) pen_u(i, k) = zentr |
| 854 |
|
✗ |
llo1 = pen_u(i, k) > 0. .AND. (ktype(i)==1 .OR. ktype(i)==2) |
| 855 |
|
|
IF (llo1) THEN |
| 856 |
|
✗ |
fact = 1. + 3.*(1.-min(1.,(zpbot(i)-pap(i,k))/1.5E4)) |
| 857 |
|
✗ |
zentr = zentr*fact |
| 858 |
|
✗ |
pen_u(i, k) = pen_u(i, k)*fact |
| 859 |
|
✗ |
pde_u(i, k) = pde_u(i, k)*fact |
| 860 |
|
|
END IF |
| 861 |
|
✗ |
IF (llo2 .AND. pqenh(i,k+1)>1.E-5) pen_u(i, k) = zentr + & |
| 862 |
|
✗ |
max(pqte(i,k), 0.)/pqenh(i, k+1)*zrho(i)*zdprho |
| 863 |
|
|
END IF |
| 864 |
|
|
END DO |
| 865 |
|
|
|
| 866 |
|
|
! ---------------------------------------------------------------------- |
| 867 |
|
|
! DO ADIABATIC ASCENT FOR ENTRAINING/DETRAINING PLUME |
| 868 |
|
|
! ---------------------------------------------------------------------- |
| 869 |
|
|
|
| 870 |
|
✗ |
DO i = 1, klon |
| 871 |
|
✗ |
IF (llflag(i)) THEN |
| 872 |
|
✗ |
IF (k<kcbot(i)) THEN |
| 873 |
|
✗ |
zmftest = pmfu(i, k+1) + pen_u(i, k) - pde_u(i, k) |
| 874 |
|
✗ |
zmfmax = min(zmftest, (paph(i,k)-paph(i,k-1))/(rg*pdtime)) |
| 875 |
|
✗ |
pen_u(i, k) = max(pen_u(i,k)-max(0.0,zmftest-zmfmax), 0.0) |
| 876 |
|
|
END IF |
| 877 |
|
✗ |
pde_u(i, k) = min(pde_u(i,k), 0.75*pmfu(i,k+1)) |
| 878 |
|
|
! calculer le flux de masse du niveau k a partir de celui du k+1 |
| 879 |
|
✗ |
pmfu(i, k) = pmfu(i, k+1) + pen_u(i, k) - pde_u(i, k) |
| 880 |
|
|
! calculer les valeurs Su, Qu et l du niveau k dans le panache |
| 881 |
|
|
! montant |
| 882 |
|
✗ |
zqeen = pqenh(i, k+1)*pen_u(i, k) |
| 883 |
|
✗ |
zseen = (rcpd*ptenh(i,k+1)+pgeoh(i,k+1))*pen_u(i, k) |
| 884 |
|
✗ |
zscde = (rcpd*ptu(i,k+1)+pgeoh(i,k+1))*pde_u(i, k) |
| 885 |
|
✗ |
zqude = pqu(i, k+1)*pde_u(i, k) |
| 886 |
|
✗ |
plude(i, k) = plu(i, k+1)*pde_u(i, k) |
| 887 |
|
✗ |
zmfusk = pmfus(i, k+1) + zseen - zscde |
| 888 |
|
✗ |
zmfuqk = pmfuq(i, k+1) + zqeen - zqude |
| 889 |
|
✗ |
zmfulk = pmful(i, k+1) - plude(i, k) |
| 890 |
|
✗ |
plu(i, k) = zmfulk*(1./max(cmfcmin,pmfu(i,k))) |
| 891 |
|
✗ |
pqu(i, k) = zmfuqk*(1./max(cmfcmin,pmfu(i,k))) |
| 892 |
|
✗ |
ptu(i, k) = (zmfusk*(1./max(cmfcmin,pmfu(i,k)))-pgeoh(i,k))/rcpd |
| 893 |
|
✗ |
ptu(i, k) = max(100., ptu(i,k)) |
| 894 |
|
✗ |
ptu(i, k) = min(400., ptu(i,k)) |
| 895 |
|
✗ |
zqold(i) = pqu(i, k) |
| 896 |
|
|
ELSE |
| 897 |
|
✗ |
zqold(i) = 0.0 |
| 898 |
|
|
END IF |
| 899 |
|
|
END DO |
| 900 |
|
|
|
| 901 |
|
|
! ---------------------------------------------------------------------- |
| 902 |
|
|
! DO CORRECTIONS FOR MOIST ASCENT BY ADJUSTING T,Q AND L |
| 903 |
|
|
! ---------------------------------------------------------------------- |
| 904 |
|
|
|
| 905 |
|
✗ |
icall = 1 |
| 906 |
|
✗ |
CALL flxadjtq(paph(1,k), ptu(1,k), pqu(1,k), llflag, icall) |
| 907 |
|
|
|
| 908 |
|
✗ |
DO i = 1, klon |
| 909 |
|
✗ |
IF (llflag(i) .AND. pqu(i,k)/=zqold(i)) THEN |
| 910 |
|
✗ |
klab(i, k) = 2 |
| 911 |
|
✗ |
plu(i, k) = plu(i, k) + zqold(i) - pqu(i, k) |
| 912 |
|
|
zbuo = ptu(i, k)*(1.+retv*pqu(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
| 913 |
|
✗ |
) |
| 914 |
|
✗ |
IF (klab(i,k+1)==1) zbuo = zbuo + 0.5 |
| 915 |
|
✗ |
IF (zbuo>0. .AND. pmfu(i,k)>=0.1*pmfub(i)) THEN |
| 916 |
|
✗ |
kctop(i) = k |
| 917 |
|
✗ |
ldcum(i) = .TRUE. |
| 918 |
|
|
zdnoprc = 1.5E4 |
| 919 |
|
✗ |
IF (ldland(i)) zdnoprc = zdland(i) |
| 920 |
|
✗ |
zprcon = cprcon |
| 921 |
|
✗ |
IF ((zpbot(i)-paph(i,k))<zdnoprc) zprcon = 0.0 |
| 922 |
|
✗ |
zlnew = plu(i, k)/(1.+zprcon*(pgeoh(i,k)-pgeoh(i,k+1))) |
| 923 |
|
✗ |
pdmfup(i, k) = max(0., (plu(i,k)-zlnew)*pmfu(i,k)) |
| 924 |
|
✗ |
plu(i, k) = zlnew |
| 925 |
|
|
ELSE |
| 926 |
|
✗ |
klab(i, k) = 0 |
| 927 |
|
✗ |
pmfu(i, k) = 0. |
| 928 |
|
|
END IF |
| 929 |
|
|
END IF |
| 930 |
|
|
END DO |
| 931 |
|
✗ |
DO i = 1, klon |
| 932 |
|
✗ |
IF (llflag(i)) THEN |
| 933 |
|
✗ |
pmful(i, k) = plu(i, k)*pmfu(i, k) |
| 934 |
|
✗ |
pmfus(i, k) = (rcpd*ptu(i,k)+pgeoh(i,k))*pmfu(i, k) |
| 935 |
|
✗ |
pmfuq(i, k) = pqu(i, k)*pmfu(i, k) |
| 936 |
|
|
END IF |
| 937 |
|
|
END DO |
| 938 |
|
|
|
| 939 |
|
✗ |
480 END DO |
| 940 |
|
|
! ---------------------------------------------------------------------- |
| 941 |
|
|
! DETERMINE CONVECTIVE FLUXES ABOVE NON-BUOYANCY LEVEL |
| 942 |
|
|
! (NOTE: CLOUD VARIABLES LIKE T,Q AND L ARE NOT |
| 943 |
|
|
! AFFECTED BY DETRAINMENT AND ARE ALREADY KNOWN |
| 944 |
|
|
! FROM PREVIOUS CALCULATIONS ABOVE) |
| 945 |
|
|
! ---------------------------------------------------------------------- |
| 946 |
|
✗ |
DO i = 1, klon |
| 947 |
|
✗ |
IF (kctop(i)==klev-1) ldcum(i) = .FALSE. |
| 948 |
|
✗ |
kcbot(i) = max(kcbot(i), kctop(i)) |
| 949 |
|
|
END DO |
| 950 |
|
|
|
| 951 |
|
|
ldcum(1) = ldcum(1) |
| 952 |
|
|
|
| 953 |
|
|
is = 0 |
| 954 |
|
✗ |
DO i = 1, klon |
| 955 |
|
✗ |
IF (ldcum(i)) is = is + 1 |
| 956 |
|
|
END DO |
| 957 |
|
✗ |
kcum = is |
| 958 |
|
✗ |
IF (is==0) GO TO 800 |
| 959 |
|
|
|
| 960 |
|
✗ |
DO i = 1, klon |
| 961 |
|
✗ |
IF (ldcum(i)) THEN |
| 962 |
|
✗ |
k = kctop(i) - 1 |
| 963 |
|
✗ |
pde_u(i, k) = (1.-cmfctop)*pmfu(i, k+1) |
| 964 |
|
✗ |
plude(i, k) = pde_u(i, k)*plu(i, k+1) |
| 965 |
|
✗ |
pmfu(i, k) = pmfu(i, k+1) - pde_u(i, k) |
| 966 |
|
✗ |
zlnew = plu(i, k) |
| 967 |
|
✗ |
pdmfup(i, k) = max(0., (plu(i,k)-zlnew)*pmfu(i,k)) |
| 968 |
|
|
plu(i, k) = zlnew |
| 969 |
|
✗ |
pmfus(i, k) = (rcpd*ptu(i,k)+pgeoh(i,k))*pmfu(i, k) |
| 970 |
|
✗ |
pmfuq(i, k) = pqu(i, k)*pmfu(i, k) |
| 971 |
|
✗ |
pmful(i, k) = plu(i, k)*pmfu(i, k) |
| 972 |
|
✗ |
plude(i, k-1) = pmful(i, k) |
| 973 |
|
|
END IF |
| 974 |
|
|
END DO |
| 975 |
|
|
|
| 976 |
|
|
800 CONTINUE |
| 977 |
|
✗ |
RETURN |
| 978 |
|
|
END SUBROUTINE flxasc |
| 979 |
|
✗ |
SUBROUTINE flxflux(pdtime, pqen, pqsen, ptenh, pqenh, pap, paph, ldland, & |
| 980 |
|
✗ |
pgeoh, kcbot, kctop, lddraf, kdtop, ktype, ldcum, pmfu, pmfd, pmfus, & |
| 981 |
|
|
pmfds, pmfuq, pmfdq, pmful, plude, pdmfup, pdmfdp, pten, prfl, psfl, & |
| 982 |
|
|
pdpmel, ktopm2, pmflxr, pmflxs) |
| 983 |
|
✗ |
USE dimphy |
| 984 |
|
|
USE print_control_mod, ONLY: prt_level |
| 985 |
|
|
IMPLICIT NONE |
| 986 |
|
|
! ---------------------------------------------------------------------- |
| 987 |
|
|
! THIS ROUTINE DOES THE FINAL CALCULATION OF CONVECTIVE |
| 988 |
|
|
! FLUXES IN THE CLOUD LAYER AND IN THE SUBCLOUD LAYER |
| 989 |
|
|
! ---------------------------------------------------------------------- |
| 990 |
|
|
include "YOMCST.h" |
| 991 |
|
|
include "YOETHF.h" |
| 992 |
|
|
include "YOECUMF.h" |
| 993 |
|
|
|
| 994 |
|
✗ |
REAL cevapcu(klon, klev) |
| 995 |
|
|
! ----------------------------------------------------------------- |
| 996 |
|
|
REAL pqen(klon, klev), pqenh(klon, klev), pqsen(klon, klev) |
| 997 |
|
|
REAL pten(klon, klev), ptenh(klon, klev) |
| 998 |
|
|
REAL paph(klon, klev+1), pgeoh(klon, klev) |
| 999 |
|
|
|
| 1000 |
|
|
REAL pap(klon, klev) |
| 1001 |
|
|
REAL ztmsmlt, zdelta, zqsat |
| 1002 |
|
|
|
| 1003 |
|
|
REAL pmfu(klon, klev), pmfus(klon, klev) |
| 1004 |
|
|
REAL pmfd(klon, klev), pmfds(klon, klev) |
| 1005 |
|
|
REAL pmfuq(klon, klev), pmful(klon, klev) |
| 1006 |
|
|
REAL pmfdq(klon, klev) |
| 1007 |
|
|
REAL plude(klon, klev) |
| 1008 |
|
|
REAL pdmfup(klon, klev), pdpmel(klon, klev) |
| 1009 |
|
|
! jq The variable maxpdmfdp(klon) has been introduced by Olivier Boucher |
| 1010 |
|
|
! jq 14/11/00 to fix the problem with the negative precipitation. |
| 1011 |
|
✗ |
REAL pdmfdp(klon, klev), maxpdmfdp(klon, klev) |
| 1012 |
|
|
REAL prfl(klon), psfl(klon) |
| 1013 |
|
|
REAL pmflxr(klon, klev+1), pmflxs(klon, klev+1) |
| 1014 |
|
|
INTEGER kcbot(klon), kctop(klon), ktype(klon) |
| 1015 |
|
|
LOGICAL ldland(klon), ldcum(klon) |
| 1016 |
|
|
INTEGER k, kp, i |
| 1017 |
|
|
REAL zcons1, zcons2, zcucov, ztmelp2 |
| 1018 |
|
|
REAL pdtime, zdp, zzp, zfac, zsnmlt, zrfl, zrnew |
| 1019 |
|
|
REAL zrmin, zrfln, zdrfl |
| 1020 |
|
|
REAL zpds, zpdr, zdenom |
| 1021 |
|
|
INTEGER ktopm2, itop, ikb |
| 1022 |
|
|
|
| 1023 |
|
|
LOGICAL lddraf(klon) |
| 1024 |
|
|
INTEGER kdtop(klon) |
| 1025 |
|
|
|
| 1026 |
|
|
include "FCTTRE.h" |
| 1027 |
|
|
|
| 1028 |
|
✗ |
DO k = 1, klev |
| 1029 |
|
✗ |
DO i = 1, klon |
| 1030 |
|
|
cevapcu(i, k) = 1.93E-6*261.*sqrt(1.E3/(38.3*0.293)*sqrt(0.5*(paph(i,k) & |
| 1031 |
|
✗ |
+paph(i,k+1))/paph(i,klev+1)))*0.5/rg |
| 1032 |
|
|
END DO |
| 1033 |
|
|
END DO |
| 1034 |
|
|
|
| 1035 |
|
|
! SPECIFY CONSTANTS |
| 1036 |
|
|
|
| 1037 |
|
✗ |
zcons1 = rcpd/(rlmlt*rg*pdtime) |
| 1038 |
|
✗ |
zcons2 = 1./(rg*pdtime) |
| 1039 |
|
|
zcucov = 0.05 |
| 1040 |
|
✗ |
ztmelp2 = rtt + 2. |
| 1041 |
|
|
|
| 1042 |
|
|
! DETERMINE FINAL CONVECTIVE FLUXES |
| 1043 |
|
|
|
| 1044 |
|
|
itop = klev |
| 1045 |
|
✗ |
DO i = 1, klon |
| 1046 |
|
✗ |
itop = min(itop, kctop(i)) |
| 1047 |
|
✗ |
IF (.NOT. ldcum(i) .OR. kdtop(i)<kctop(i)) lddraf(i) = .FALSE. |
| 1048 |
|
✗ |
IF (.NOT. ldcum(i)) ktype(i) = 0 |
| 1049 |
|
|
END DO |
| 1050 |
|
|
|
| 1051 |
|
✗ |
ktopm2 = itop - 2 |
| 1052 |
|
✗ |
DO k = ktopm2, klev |
| 1053 |
|
✗ |
DO i = 1, klon |
| 1054 |
|
✗ |
IF (ldcum(i) .AND. k>=kctop(i)-1) THEN |
| 1055 |
|
✗ |
pmfus(i, k) = pmfus(i, k) - pmfu(i, k)*(rcpd*ptenh(i,k)+pgeoh(i,k)) |
| 1056 |
|
✗ |
pmfuq(i, k) = pmfuq(i, k) - pmfu(i, k)*pqenh(i, k) |
| 1057 |
|
|
zdp = 1.5E4 |
| 1058 |
|
✗ |
IF (ldland(i)) zdp = 3.E4 |
| 1059 |
|
|
|
| 1060 |
|
|
! l'eau liquide detrainee est precipitee quand certaines |
| 1061 |
|
|
! conditions sont reunies (sinon, elle est consideree |
| 1062 |
|
|
! evaporee dans l'environnement) |
| 1063 |
|
|
|
| 1064 |
|
✗ |
IF (paph(i,kcbot(i))-paph(i,kctop(i))>=zdp .AND. pqen(i,k-1)>0.8* & |
| 1065 |
|
✗ |
pqsen(i,k-1)) pdmfup(i, k-1) = pdmfup(i, k-1) + plude(i, k-1) |
| 1066 |
|
|
|
| 1067 |
|
✗ |
IF (lddraf(i) .AND. k>=kdtop(i)) THEN |
| 1068 |
|
✗ |
pmfds(i, k) = pmfds(i, k) - pmfd(i, k)*(rcpd*ptenh(i,k)+pgeoh(i,k)) |
| 1069 |
|
✗ |
pmfdq(i, k) = pmfdq(i, k) - pmfd(i, k)*pqenh(i, k) |
| 1070 |
|
|
ELSE |
| 1071 |
|
✗ |
pmfd(i, k) = 0. |
| 1072 |
|
✗ |
pmfds(i, k) = 0. |
| 1073 |
|
✗ |
pmfdq(i, k) = 0. |
| 1074 |
|
✗ |
pdmfdp(i, k-1) = 0. |
| 1075 |
|
|
END IF |
| 1076 |
|
|
ELSE |
| 1077 |
|
✗ |
pmfu(i, k) = 0. |
| 1078 |
|
✗ |
pmfus(i, k) = 0. |
| 1079 |
|
✗ |
pmfuq(i, k) = 0. |
| 1080 |
|
✗ |
pmful(i, k) = 0. |
| 1081 |
|
✗ |
pdmfup(i, k-1) = 0. |
| 1082 |
|
✗ |
plude(i, k-1) = 0. |
| 1083 |
|
✗ |
pmfd(i, k) = 0. |
| 1084 |
|
✗ |
pmfds(i, k) = 0. |
| 1085 |
|
✗ |
pmfdq(i, k) = 0. |
| 1086 |
|
✗ |
pdmfdp(i, k-1) = 0. |
| 1087 |
|
|
END IF |
| 1088 |
|
|
END DO |
| 1089 |
|
|
END DO |
| 1090 |
|
|
|
| 1091 |
|
✗ |
DO k = ktopm2, klev |
| 1092 |
|
✗ |
DO i = 1, klon |
| 1093 |
|
✗ |
IF (ldcum(i) .AND. k>kcbot(i)) THEN |
| 1094 |
|
|
ikb = kcbot(i) |
| 1095 |
|
✗ |
zzp = ((paph(i,klev+1)-paph(i,k))/(paph(i,klev+1)-paph(i,ikb))) |
| 1096 |
|
✗ |
IF (ktype(i)==3) zzp = zzp**2 |
| 1097 |
|
✗ |
pmfu(i, k) = pmfu(i, ikb)*zzp |
| 1098 |
|
✗ |
pmfus(i, k) = pmfus(i, ikb)*zzp |
| 1099 |
|
✗ |
pmfuq(i, k) = pmfuq(i, ikb)*zzp |
| 1100 |
|
✗ |
pmful(i, k) = pmful(i, ikb)*zzp |
| 1101 |
|
|
END IF |
| 1102 |
|
|
END DO |
| 1103 |
|
|
END DO |
| 1104 |
|
|
|
| 1105 |
|
|
! CALCULATE RAIN/SNOW FALL RATES |
| 1106 |
|
|
! CALCULATE MELTING OF SNOW |
| 1107 |
|
|
! CALCULATE EVAPORATION OF PRECIP |
| 1108 |
|
|
|
| 1109 |
|
✗ |
DO k = 1, klev + 1 |
| 1110 |
|
✗ |
DO i = 1, klon |
| 1111 |
|
✗ |
pmflxr(i, k) = 0.0 |
| 1112 |
|
✗ |
pmflxs(i, k) = 0.0 |
| 1113 |
|
|
END DO |
| 1114 |
|
|
END DO |
| 1115 |
|
✗ |
DO k = ktopm2, klev |
| 1116 |
|
✗ |
DO i = 1, klon |
| 1117 |
|
✗ |
IF (ldcum(i)) THEN |
| 1118 |
|
✗ |
IF (pmflxs(i,k)>0.0 .AND. pten(i,k)>ztmelp2) THEN |
| 1119 |
|
✗ |
zfac = zcons1*(paph(i,k+1)-paph(i,k)) |
| 1120 |
|
✗ |
zsnmlt = min(pmflxs(i,k), zfac*(pten(i,k)-ztmelp2)) |
| 1121 |
|
✗ |
pdpmel(i, k) = zsnmlt |
| 1122 |
|
✗ |
ztmsmlt = pten(i, k) - zsnmlt/zfac |
| 1123 |
|
✗ |
zdelta = max(0., sign(1.,rtt-ztmsmlt)) |
| 1124 |
|
✗ |
zqsat = r2es*foeew(ztmsmlt, zdelta)/pap(i, k) |
| 1125 |
|
✗ |
zqsat = min(0.5, zqsat) |
| 1126 |
|
✗ |
zqsat = zqsat/(1.-retv*zqsat) |
| 1127 |
|
✗ |
pqsen(i, k) = zqsat |
| 1128 |
|
|
END IF |
| 1129 |
|
✗ |
IF (pten(i,k)>rtt) THEN |
| 1130 |
|
|
pmflxr(i, k+1) = pmflxr(i, k) + pdmfup(i, k) + pdmfdp(i, k) + & |
| 1131 |
|
✗ |
pdpmel(i, k) |
| 1132 |
|
✗ |
pmflxs(i, k+1) = pmflxs(i, k) - pdpmel(i, k) |
| 1133 |
|
|
ELSE |
| 1134 |
|
✗ |
pmflxs(i, k+1) = pmflxs(i, k) + pdmfup(i, k) + pdmfdp(i, k) |
| 1135 |
|
✗ |
pmflxr(i, k+1) = pmflxr(i, k) |
| 1136 |
|
|
END IF |
| 1137 |
|
|
! si la precipitation est negative, on ajuste le plux du |
| 1138 |
|
|
! panache descendant pour eliminer la negativite |
| 1139 |
|
✗ |
IF ((pmflxr(i,k+1)+pmflxs(i,k+1))<0.0) THEN |
| 1140 |
|
✗ |
pdmfdp(i, k) = -pmflxr(i, k) - pmflxs(i, k) - pdmfup(i, k) |
| 1141 |
|
✗ |
pmflxr(i, k+1) = 0.0 |
| 1142 |
|
✗ |
pmflxs(i, k+1) = 0.0 |
| 1143 |
|
✗ |
pdpmel(i, k) = 0.0 |
| 1144 |
|
|
END IF |
| 1145 |
|
|
END IF |
| 1146 |
|
|
END DO |
| 1147 |
|
|
END DO |
| 1148 |
|
|
|
| 1149 |
|
|
! jq The new variable is initialized here. |
| 1150 |
|
|
! jq It contains the humidity which is fed to the downdraft |
| 1151 |
|
|
! jq by evaporation of precipitation in the column below the base |
| 1152 |
|
|
! jq of convection. |
| 1153 |
|
|
! jq |
| 1154 |
|
|
! jq In the former version, this term has been subtracted from precip |
| 1155 |
|
|
! jq as well as the evaporation. |
| 1156 |
|
|
! jq |
| 1157 |
|
✗ |
DO k = 1, klev |
| 1158 |
|
✗ |
DO i = 1, klon |
| 1159 |
|
✗ |
maxpdmfdp(i, k) = 0.0 |
| 1160 |
|
|
END DO |
| 1161 |
|
|
END DO |
| 1162 |
|
✗ |
DO k = 1, klev |
| 1163 |
|
✗ |
DO kp = k, klev |
| 1164 |
|
✗ |
DO i = 1, klon |
| 1165 |
|
✗ |
maxpdmfdp(i, k) = maxpdmfdp(i, k) + pdmfdp(i, kp) |
| 1166 |
|
|
END DO |
| 1167 |
|
|
END DO |
| 1168 |
|
|
END DO |
| 1169 |
|
|
! jq End of initialization |
| 1170 |
|
|
|
| 1171 |
|
✗ |
DO k = ktopm2, klev |
| 1172 |
|
✗ |
DO i = 1, klon |
| 1173 |
|
✗ |
IF (ldcum(i) .AND. k>=kcbot(i)) THEN |
| 1174 |
|
✗ |
zrfl = pmflxr(i, k) + pmflxs(i, k) |
| 1175 |
|
✗ |
IF (zrfl>1.0E-20) THEN |
| 1176 |
|
|
zrnew = (max(0.,sqrt(zrfl/zcucov)-cevapcu(i, & |
| 1177 |
|
|
k)*(paph(i,k+1)-paph(i,k))*max(0.,pqsen(i,k)-pqen(i,k))))**2* & |
| 1178 |
|
✗ |
zcucov |
| 1179 |
|
|
zrmin = zrfl - zcucov*max(0., 0.8*pqsen(i,k)-pqen(i,k))*zcons2*( & |
| 1180 |
|
✗ |
paph(i,k+1)-paph(i,k)) |
| 1181 |
|
✗ |
zrnew = max(zrnew, zrmin) |
| 1182 |
|
✗ |
zrfln = max(zrnew, 0.) |
| 1183 |
|
✗ |
zdrfl = min(0., zrfln-zrfl) |
| 1184 |
|
|
! jq At least the amount of precipiation needed to feed the |
| 1185 |
|
|
! downdraft |
| 1186 |
|
|
! jq with humidity below the base of convection has to be left and |
| 1187 |
|
|
! can't |
| 1188 |
|
|
! jq be evaporated (surely the evaporation can't be positive): |
| 1189 |
|
|
zdrfl = max(zdrfl, min(-pmflxr(i,k)-pmflxs(i,k)-maxpdmfdp(i, & |
| 1190 |
|
✗ |
k),0.0)) |
| 1191 |
|
|
! jq End of insertion |
| 1192 |
|
|
|
| 1193 |
|
✗ |
zdenom = 1.0/max(1.0E-20, pmflxr(i,k)+pmflxs(i,k)) |
| 1194 |
|
✗ |
IF (pten(i,k)>rtt) THEN |
| 1195 |
|
✗ |
zpdr = pdmfdp(i, k) |
| 1196 |
|
|
zpds = 0.0 |
| 1197 |
|
|
ELSE |
| 1198 |
|
|
zpdr = 0.0 |
| 1199 |
|
✗ |
zpds = pdmfdp(i, k) |
| 1200 |
|
|
END IF |
| 1201 |
|
|
pmflxr(i, k+1) = pmflxr(i, k) + zpdr + pdpmel(i, k) + & |
| 1202 |
|
✗ |
zdrfl*pmflxr(i, k)*zdenom |
| 1203 |
|
|
pmflxs(i, k+1) = pmflxs(i, k) + zpds - pdpmel(i, k) + & |
| 1204 |
|
✗ |
zdrfl*pmflxs(i, k)*zdenom |
| 1205 |
|
✗ |
pdmfup(i, k) = pdmfup(i, k) + zdrfl |
| 1206 |
|
|
ELSE |
| 1207 |
|
✗ |
pmflxr(i, k+1) = 0.0 |
| 1208 |
|
✗ |
pmflxs(i, k+1) = 0.0 |
| 1209 |
|
✗ |
pdmfdp(i, k) = 0.0 |
| 1210 |
|
✗ |
pdpmel(i, k) = 0.0 |
| 1211 |
|
|
END IF |
| 1212 |
|
✗ |
IF (pmflxr(i,k)+pmflxs(i,k)<-1.E-26 .AND. prt_level>=1) WRITE (*, *) & |
| 1213 |
|
✗ |
'precip. < 1e-16 ', pmflxr(i, k) + pmflxs(i, k) |
| 1214 |
|
|
END IF |
| 1215 |
|
|
END DO |
| 1216 |
|
|
END DO |
| 1217 |
|
|
|
| 1218 |
|
✗ |
DO i = 1, klon |
| 1219 |
|
✗ |
prfl(i) = pmflxr(i, klev+1) |
| 1220 |
|
✗ |
psfl(i) = pmflxs(i, klev+1) |
| 1221 |
|
|
END DO |
| 1222 |
|
|
|
| 1223 |
|
✗ |
RETURN |
| 1224 |
|
|
END SUBROUTINE flxflux |
| 1225 |
|
✗ |
SUBROUTINE flxdtdq(pdtime, ktopm2, paph, ldcum, pten, pmfus, pmfds, pmfuq, & |
| 1226 |
|
|
pmfdq, pmful, pdmfup, pdmfdp, pdpmel, dt_con, dq_con) |
| 1227 |
|
✗ |
USE dimphy |
| 1228 |
|
|
IMPLICIT NONE |
| 1229 |
|
|
! ---------------------------------------------------------------------- |
| 1230 |
|
|
! calculer les tendances T et Q |
| 1231 |
|
|
! ---------------------------------------------------------------------- |
| 1232 |
|
|
include "YOMCST.h" |
| 1233 |
|
|
include "YOETHF.h" |
| 1234 |
|
|
include "YOECUMF.h" |
| 1235 |
|
|
! ----------------------------------------------------------------- |
| 1236 |
|
|
LOGICAL llo1 |
| 1237 |
|
|
|
| 1238 |
|
|
REAL pten(klon, klev), paph(klon, klev+1) |
| 1239 |
|
|
REAL pmfus(klon, klev), pmfuq(klon, klev), pmful(klon, klev) |
| 1240 |
|
|
REAL pmfds(klon, klev), pmfdq(klon, klev) |
| 1241 |
|
|
REAL pdmfup(klon, klev) |
| 1242 |
|
|
REAL pdmfdp(klon, klev) |
| 1243 |
|
|
REAL pdpmel(klon, klev) |
| 1244 |
|
|
LOGICAL ldcum(klon) |
| 1245 |
|
|
REAL dt_con(klon, klev), dq_con(klon, klev) |
| 1246 |
|
|
|
| 1247 |
|
|
INTEGER ktopm2 |
| 1248 |
|
|
REAL pdtime |
| 1249 |
|
|
|
| 1250 |
|
|
INTEGER i, k |
| 1251 |
|
|
REAL zalv, zdtdt, zdqdt |
| 1252 |
|
|
|
| 1253 |
|
✗ |
DO k = ktopm2, klev - 1 |
| 1254 |
|
✗ |
DO i = 1, klon |
| 1255 |
|
✗ |
IF (ldcum(i)) THEN |
| 1256 |
|
✗ |
llo1 = (pten(i,k)-rtt) > 0. |
| 1257 |
|
✗ |
zalv = rlstt |
| 1258 |
|
✗ |
IF (llo1) zalv = rlvtt |
| 1259 |
|
|
zdtdt = rg/(paph(i,k+1)-paph(i,k))/rcpd*(pmfus(i,k+1)-pmfus(i,k)+ & |
| 1260 |
|
|
pmfds(i,k+1)-pmfds(i,k)-rlmlt*pdpmel(i,k)-zalv*(pmful(i, & |
| 1261 |
|
✗ |
k+1)-pmful(i,k)-pdmfup(i,k)-pdmfdp(i,k))) |
| 1262 |
|
✗ |
dt_con(i, k) = zdtdt |
| 1263 |
|
|
zdqdt = rg/(paph(i,k+1)-paph(i,k))*(pmfuq(i,k+1)-pmfuq(i,k)+pmfdq(i,k & |
| 1264 |
|
✗ |
+1)-pmfdq(i,k)+pmful(i,k+1)-pmful(i,k)-pdmfup(i,k)-pdmfdp(i,k)) |
| 1265 |
|
✗ |
dq_con(i, k) = zdqdt |
| 1266 |
|
|
END IF |
| 1267 |
|
|
END DO |
| 1268 |
|
|
END DO |
| 1269 |
|
|
|
| 1270 |
|
|
k = klev |
| 1271 |
|
✗ |
DO i = 1, klon |
| 1272 |
|
✗ |
IF (ldcum(i)) THEN |
| 1273 |
|
✗ |
llo1 = (pten(i,k)-rtt) > 0. |
| 1274 |
|
✗ |
zalv = rlstt |
| 1275 |
|
✗ |
IF (llo1) zalv = rlvtt |
| 1276 |
|
|
zdtdt = -rg/(paph(i,k+1)-paph(i,k))/rcpd*(pmfus(i,k)+pmfds(i,k)+rlmlt* & |
| 1277 |
|
✗ |
pdpmel(i,k)-zalv*(pmful(i,k)+pdmfup(i,k)+pdmfdp(i,k))) |
| 1278 |
|
✗ |
dt_con(i, k) = zdtdt |
| 1279 |
|
|
zdqdt = -rg/(paph(i,k+1)-paph(i,k))*(pmfuq(i,k)+pmfdq(i,k)+pmful(i,k)+ & |
| 1280 |
|
✗ |
pdmfup(i,k)+pdmfdp(i,k)) |
| 1281 |
|
✗ |
dq_con(i, k) = zdqdt |
| 1282 |
|
|
END IF |
| 1283 |
|
|
END DO |
| 1284 |
|
|
|
| 1285 |
|
✗ |
RETURN |
| 1286 |
|
|
END SUBROUTINE flxdtdq |
| 1287 |
|
✗ |
SUBROUTINE flxdlfs(ptenh, pqenh, pgeoh, paph, ptu, pqu, ldcum, kcbot, kctop, & |
| 1288 |
|
✗ |
pmfub, prfl, ptd, pqd, pmfd, pmfds, pmfdq, pdmfdp, kdtop, lddraf) |
| 1289 |
|
✗ |
USE dimphy |
| 1290 |
|
|
IMPLICIT NONE |
| 1291 |
|
|
|
| 1292 |
|
|
! ---------------------------------------------------------------------- |
| 1293 |
|
|
! THIS ROUTINE CALCULATES LEVEL OF FREE SINKING FOR |
| 1294 |
|
|
! CUMULUS DOWNDRAFTS AND SPECIFIES T,Q,U AND V VALUES |
| 1295 |
|
|
|
| 1296 |
|
|
! TO PRODUCE LFS-VALUES FOR CUMULUS DOWNDRAFTS |
| 1297 |
|
|
! FOR MASSFLUX CUMULUS PARAMETERIZATION |
| 1298 |
|
|
|
| 1299 |
|
|
! INPUT ARE ENVIRONMENTAL VALUES OF T,Q,U,V,P,PHI |
| 1300 |
|
|
! AND UPDRAFT VALUES T,Q,U AND V AND ALSO |
| 1301 |
|
|
! CLOUD BASE MASSFLUX AND CU-PRECIPITATION RATE. |
| 1302 |
|
|
! IT RETURNS T,Q,U AND V VALUES AND MASSFLUX AT LFS. |
| 1303 |
|
|
|
| 1304 |
|
|
! CHECK FOR NEGATIVE BUOYANCY OF AIR OF EQUAL PARTS OF |
| 1305 |
|
|
! MOIST ENVIRONMENTAL AIR AND CLOUD AIR. |
| 1306 |
|
|
! ---------------------------------------------------------------------- |
| 1307 |
|
|
include "YOMCST.h" |
| 1308 |
|
|
include "YOETHF.h" |
| 1309 |
|
|
include "YOECUMF.h" |
| 1310 |
|
|
|
| 1311 |
|
|
REAL ptenh(klon, klev) |
| 1312 |
|
|
REAL pqenh(klon, klev) |
| 1313 |
|
|
REAL pgeoh(klon, klev), paph(klon, klev+1) |
| 1314 |
|
|
REAL ptu(klon, klev), pqu(klon, klev) |
| 1315 |
|
|
REAL pmfub(klon) |
| 1316 |
|
|
REAL prfl(klon) |
| 1317 |
|
|
|
| 1318 |
|
|
REAL ptd(klon, klev), pqd(klon, klev) |
| 1319 |
|
|
REAL pmfd(klon, klev), pmfds(klon, klev), pmfdq(klon, klev) |
| 1320 |
|
|
REAL pdmfdp(klon, klev) |
| 1321 |
|
|
INTEGER kcbot(klon), kctop(klon), kdtop(klon) |
| 1322 |
|
|
LOGICAL ldcum(klon), lddraf(klon) |
| 1323 |
|
|
|
| 1324 |
|
✗ |
REAL ztenwb(klon, klev), zqenwb(klon, klev), zcond(klon) |
| 1325 |
|
|
REAL zttest, zqtest, zbuo, zmftop |
| 1326 |
|
✗ |
LOGICAL llo2(klon) |
| 1327 |
|
|
INTEGER i, k, is, icall |
| 1328 |
|
|
! ---------------------------------------------------------------------- |
| 1329 |
|
✗ |
DO i = 1, klon |
| 1330 |
|
✗ |
lddraf(i) = .FALSE. |
| 1331 |
|
✗ |
kdtop(i) = klev + 1 |
| 1332 |
|
|
END DO |
| 1333 |
|
|
|
| 1334 |
|
|
! ---------------------------------------------------------------------- |
| 1335 |
|
|
! DETERMINE LEVEL OF FREE SINKING BY |
| 1336 |
|
|
! DOING A SCAN FROM TOP TO BASE OF CUMULUS CLOUDS |
| 1337 |
|
|
|
| 1338 |
|
|
! FOR EVERY POINT AND PROCEED AS FOLLOWS: |
| 1339 |
|
|
! (1) DETEMINE WET BULB ENVIRONMENTAL T AND Q |
| 1340 |
|
|
! (2) DO MIXING WITH CUMULUS CLOUD AIR |
| 1341 |
|
|
! (3) CHECK FOR NEGATIVE BUOYANCY |
| 1342 |
|
|
|
| 1343 |
|
|
! THE ASSUMPTION IS THAT AIR OF DOWNDRAFTS IS MIXTURE |
| 1344 |
|
|
! OF 50% CLOUD AIR + 50% ENVIRONMENTAL AIR AT WET BULB |
| 1345 |
|
|
! TEMPERATURE (I.E. WHICH BECAME SATURATED DUE TO |
| 1346 |
|
|
! EVAPORATION OF RAIN AND CLOUD WATER) |
| 1347 |
|
|
! ---------------------------------------------------------------------- |
| 1348 |
|
|
|
| 1349 |
|
✗ |
DO k = 3, klev - 3 |
| 1350 |
|
|
|
| 1351 |
|
|
is = 0 |
| 1352 |
|
✗ |
DO i = 1, klon |
| 1353 |
|
✗ |
ztenwb(i, k) = ptenh(i, k) |
| 1354 |
|
✗ |
zqenwb(i, k) = pqenh(i, k) |
| 1355 |
|
|
llo2(i) = ldcum(i) .AND. prfl(i) > 0. .AND. .NOT. lddraf(i) .AND. & |
| 1356 |
|
✗ |
(k<kcbot(i) .AND. k>kctop(i)) |
| 1357 |
|
✗ |
IF (llo2(i)) is = is + 1 |
| 1358 |
|
|
END DO |
| 1359 |
|
✗ |
IF (is==0) GO TO 290 |
| 1360 |
|
|
|
| 1361 |
|
✗ |
icall = 2 |
| 1362 |
|
✗ |
CALL flxadjtq(paph(1,k), ztenwb(1,k), zqenwb(1,k), llo2, icall) |
| 1363 |
|
|
|
| 1364 |
|
|
! ---------------------------------------------------------------------- |
| 1365 |
|
|
! DO MIXING OF CUMULUS AND ENVIRONMENTAL AIR |
| 1366 |
|
|
! AND CHECK FOR NEGATIVE BUOYANCY. |
| 1367 |
|
|
! THEN SET VALUES FOR DOWNDRAFT AT LFS. |
| 1368 |
|
|
! ---------------------------------------------------------------------- |
| 1369 |
|
✗ |
DO i = 1, klon |
| 1370 |
|
✗ |
IF (llo2(i)) THEN |
| 1371 |
|
✗ |
zttest = 0.5*(ptu(i,k)+ztenwb(i,k)) |
| 1372 |
|
✗ |
zqtest = 0.5*(pqu(i,k)+zqenwb(i,k)) |
| 1373 |
|
✗ |
zbuo = zttest*(1.+retv*zqtest) - ptenh(i, k)*(1.+retv*pqenh(i,k)) |
| 1374 |
|
✗ |
zcond(i) = pqenh(i, k) - zqenwb(i, k) |
| 1375 |
|
✗ |
zmftop = -cmfdeps*pmfub(i) |
| 1376 |
|
✗ |
IF (zbuo<0. .AND. prfl(i)>10.*zmftop*zcond(i)) THEN |
| 1377 |
|
✗ |
kdtop(i) = k |
| 1378 |
|
✗ |
lddraf(i) = .TRUE. |
| 1379 |
|
✗ |
ptd(i, k) = zttest |
| 1380 |
|
✗ |
pqd(i, k) = zqtest |
| 1381 |
|
✗ |
pmfd(i, k) = zmftop |
| 1382 |
|
✗ |
pmfds(i, k) = pmfd(i, k)*(rcpd*ptd(i,k)+pgeoh(i,k)) |
| 1383 |
|
✗ |
pmfdq(i, k) = pmfd(i, k)*pqd(i, k) |
| 1384 |
|
✗ |
pdmfdp(i, k-1) = -0.5*pmfd(i, k)*zcond(i) |
| 1385 |
|
✗ |
prfl(i) = prfl(i) + pdmfdp(i, k-1) |
| 1386 |
|
|
END IF |
| 1387 |
|
|
END IF |
| 1388 |
|
|
END DO |
| 1389 |
|
|
|
| 1390 |
|
✗ |
290 END DO |
| 1391 |
|
|
|
| 1392 |
|
✗ |
RETURN |
| 1393 |
|
|
END SUBROUTINE flxdlfs |
| 1394 |
|
✗ |
SUBROUTINE flxddraf(ptenh, pqenh, pgeoh, paph, prfl, ptd, pqd, pmfd, pmfds, & |
| 1395 |
|
✗ |
pmfdq, pdmfdp, lddraf, pen_d, pde_d) |
| 1396 |
|
✗ |
USE dimphy |
| 1397 |
|
|
IMPLICIT NONE |
| 1398 |
|
|
|
| 1399 |
|
|
! ---------------------------------------------------------------------- |
| 1400 |
|
|
! THIS ROUTINE CALCULATES CUMULUS DOWNDRAFT DESCENT |
| 1401 |
|
|
|
| 1402 |
|
|
! TO PRODUCE THE VERTICAL PROFILES FOR CUMULUS DOWNDRAFTS |
| 1403 |
|
|
! (I.E. T,Q,U AND V AND FLUXES) |
| 1404 |
|
|
|
| 1405 |
|
|
! INPUT IS T,Q,P,PHI,U,V AT HALF LEVELS. |
| 1406 |
|
|
! IT RETURNS FLUXES OF S,Q AND EVAPORATION RATE |
| 1407 |
|
|
! AND U,V AT LEVELS WHERE DOWNDRAFT OCCURS |
| 1408 |
|
|
|
| 1409 |
|
|
! CALCULATE MOIST DESCENT FOR ENTRAINING/DETRAINING PLUME BY |
| 1410 |
|
|
! A) MOVING AIR DRY-ADIABATICALLY TO NEXT LEVEL BELOW AND |
| 1411 |
|
|
! B) CORRECTING FOR EVAPORATION TO OBTAIN SATURATED STATE. |
| 1412 |
|
|
|
| 1413 |
|
|
! ---------------------------------------------------------------------- |
| 1414 |
|
|
include "YOMCST.h" |
| 1415 |
|
|
include "YOETHF.h" |
| 1416 |
|
|
include "YOECUMF.h" |
| 1417 |
|
|
|
| 1418 |
|
|
REAL ptenh(klon, klev), pqenh(klon, klev) |
| 1419 |
|
|
REAL pgeoh(klon, klev), paph(klon, klev+1) |
| 1420 |
|
|
|
| 1421 |
|
|
REAL ptd(klon, klev), pqd(klon, klev) |
| 1422 |
|
|
REAL pmfd(klon, klev), pmfds(klon, klev), pmfdq(klon, klev) |
| 1423 |
|
|
REAL pdmfdp(klon, klev) |
| 1424 |
|
|
REAL prfl(klon) |
| 1425 |
|
|
LOGICAL lddraf(klon) |
| 1426 |
|
|
|
| 1427 |
|
✗ |
REAL pen_d(klon, klev), pde_d(klon, klev), zcond(klon) |
| 1428 |
|
✗ |
LOGICAL llo2(klon), llo1 |
| 1429 |
|
|
INTEGER i, k, is, icall, itopde |
| 1430 |
|
|
REAL zentr, zseen, zqeen, zsdde, zqdde, zmfdsk, zmfdqk, zdmfdp |
| 1431 |
|
|
REAL zbuo |
| 1432 |
|
|
! ---------------------------------------------------------------------- |
| 1433 |
|
|
! CALCULATE MOIST DESCENT FOR CUMULUS DOWNDRAFT BY |
| 1434 |
|
|
! (A) CALCULATING ENTRAINMENT RATES, ASSUMING |
| 1435 |
|
|
! LINEAR DECREASE OF MASSFLUX IN PBL |
| 1436 |
|
|
! (B) DOING MOIST DESCENT - EVAPORATIVE COOLING |
| 1437 |
|
|
! AND MOISTENING IS CALCULATED IN *flxadjtq* |
| 1438 |
|
|
! (C) CHECKING FOR NEGATIVE BUOYANCY AND |
| 1439 |
|
|
! SPECIFYING FINAL T,Q,U,V AND DOWNWARD FLUXES |
| 1440 |
|
|
|
| 1441 |
|
✗ |
DO k = 3, klev |
| 1442 |
|
|
|
| 1443 |
|
|
is = 0 |
| 1444 |
|
✗ |
DO i = 1, klon |
| 1445 |
|
✗ |
llo2(i) = lddraf(i) .AND. pmfd(i, k-1) < 0. |
| 1446 |
|
✗ |
IF (llo2(i)) is = is + 1 |
| 1447 |
|
|
END DO |
| 1448 |
|
✗ |
IF (is==0) GO TO 180 |
| 1449 |
|
|
|
| 1450 |
|
✗ |
DO i = 1, klon |
| 1451 |
|
✗ |
IF (llo2(i)) THEN |
| 1452 |
|
|
zentr = entrdd*pmfd(i, k-1)*rd*ptenh(i, k-1)/(rg*paph(i,k-1))* & |
| 1453 |
|
✗ |
(paph(i,k)-paph(i,k-1)) |
| 1454 |
|
✗ |
pen_d(i, k) = zentr |
| 1455 |
|
✗ |
pde_d(i, k) = zentr |
| 1456 |
|
|
END IF |
| 1457 |
|
|
END DO |
| 1458 |
|
|
|
| 1459 |
|
✗ |
itopde = klev - 2 |
| 1460 |
|
✗ |
IF (k>itopde) THEN |
| 1461 |
|
✗ |
DO i = 1, klon |
| 1462 |
|
✗ |
IF (llo2(i)) THEN |
| 1463 |
|
✗ |
pen_d(i, k) = 0. |
| 1464 |
|
|
pde_d(i, k) = pmfd(i, itopde)*(paph(i,k)-paph(i,k-1))/ & |
| 1465 |
|
✗ |
(paph(i,klev+1)-paph(i,itopde)) |
| 1466 |
|
|
END IF |
| 1467 |
|
|
END DO |
| 1468 |
|
|
END IF |
| 1469 |
|
|
|
| 1470 |
|
✗ |
DO i = 1, klon |
| 1471 |
|
✗ |
IF (llo2(i)) THEN |
| 1472 |
|
✗ |
pmfd(i, k) = pmfd(i, k-1) + pen_d(i, k) - pde_d(i, k) |
| 1473 |
|
✗ |
zseen = (rcpd*ptenh(i,k-1)+pgeoh(i,k-1))*pen_d(i, k) |
| 1474 |
|
✗ |
zqeen = pqenh(i, k-1)*pen_d(i, k) |
| 1475 |
|
✗ |
zsdde = (rcpd*ptd(i,k-1)+pgeoh(i,k-1))*pde_d(i, k) |
| 1476 |
|
✗ |
zqdde = pqd(i, k-1)*pde_d(i, k) |
| 1477 |
|
✗ |
zmfdsk = pmfds(i, k-1) + zseen - zsdde |
| 1478 |
|
✗ |
zmfdqk = pmfdq(i, k-1) + zqeen - zqdde |
| 1479 |
|
✗ |
pqd(i, k) = zmfdqk*(1./min(-cmfcmin,pmfd(i,k))) |
| 1480 |
|
✗ |
ptd(i, k) = (zmfdsk*(1./min(-cmfcmin,pmfd(i,k)))-pgeoh(i,k))/rcpd |
| 1481 |
|
✗ |
ptd(i, k) = min(400., ptd(i,k)) |
| 1482 |
|
✗ |
ptd(i, k) = max(100., ptd(i,k)) |
| 1483 |
|
✗ |
zcond(i) = pqd(i, k) |
| 1484 |
|
|
END IF |
| 1485 |
|
|
END DO |
| 1486 |
|
|
|
| 1487 |
|
✗ |
icall = 2 |
| 1488 |
|
✗ |
CALL flxadjtq(paph(1,k), ptd(1,k), pqd(1,k), llo2, icall) |
| 1489 |
|
|
|
| 1490 |
|
✗ |
DO i = 1, klon |
| 1491 |
|
✗ |
IF (llo2(i)) THEN |
| 1492 |
|
✗ |
zcond(i) = zcond(i) - pqd(i, k) |
| 1493 |
|
|
zbuo = ptd(i, k)*(1.+retv*pqd(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
| 1494 |
|
✗ |
) |
| 1495 |
|
✗ |
llo1 = zbuo < 0. .AND. (prfl(i)-pmfd(i,k)*zcond(i)>0.) |
| 1496 |
|
✗ |
IF (.NOT. llo1) pmfd(i, k) = 0.0 |
| 1497 |
|
✗ |
pmfds(i, k) = (rcpd*ptd(i,k)+pgeoh(i,k))*pmfd(i, k) |
| 1498 |
|
✗ |
pmfdq(i, k) = pqd(i, k)*pmfd(i, k) |
| 1499 |
|
✗ |
zdmfdp = -pmfd(i, k)*zcond(i) |
| 1500 |
|
✗ |
pdmfdp(i, k-1) = zdmfdp |
| 1501 |
|
✗ |
prfl(i) = prfl(i) + zdmfdp |
| 1502 |
|
|
END IF |
| 1503 |
|
|
END DO |
| 1504 |
|
|
|
| 1505 |
|
✗ |
180 END DO |
| 1506 |
|
✗ |
RETURN |
| 1507 |
|
|
END SUBROUTINE flxddraf |
| 1508 |
|
✗ |
SUBROUTINE flxadjtq(pp, pt, pq, ldflag, kcall) |
| 1509 |
|
✗ |
USE dimphy |
| 1510 |
|
|
IMPLICIT NONE |
| 1511 |
|
|
! ====================================================================== |
| 1512 |
|
|
! Objet: ajustement entre T et Q |
| 1513 |
|
|
! ====================================================================== |
| 1514 |
|
|
! NOTE: INPUT PARAMETER kcall DEFINES CALCULATION AS |
| 1515 |
|
|
! kcall=0 ENV. T AND QS IN*CUINI* |
| 1516 |
|
|
! kcall=1 CONDENSATION IN UPDRAFTS (E.G. CUBASE, CUASC) |
| 1517 |
|
|
! kcall=2 EVAPORATION IN DOWNDRAFTS (E.G. CUDLFS,CUDDRAF) |
| 1518 |
|
|
|
| 1519 |
|
|
include "YOMCST.h" |
| 1520 |
|
|
|
| 1521 |
|
|
REAL pt(klon), pq(klon), pp(klon) |
| 1522 |
|
|
LOGICAL ldflag(klon) |
| 1523 |
|
|
INTEGER kcall |
| 1524 |
|
|
|
| 1525 |
|
✗ |
REAL zcond(klon), zcond1 |
| 1526 |
|
|
REAL z5alvcp, z5alscp, zalvdcp, zalsdcp |
| 1527 |
|
|
REAL zdelta, zcvm5, zldcp, zqsat, zcor |
| 1528 |
|
|
INTEGER is, i |
| 1529 |
|
|
include "YOETHF.h" |
| 1530 |
|
|
include "FCTTRE.h" |
| 1531 |
|
|
|
| 1532 |
|
✗ |
z5alvcp = r5les*rlvtt/rcpd |
| 1533 |
|
✗ |
z5alscp = r5ies*rlstt/rcpd |
| 1534 |
|
✗ |
zalvdcp = rlvtt/rcpd |
| 1535 |
|
✗ |
zalsdcp = rlstt/rcpd |
| 1536 |
|
|
|
| 1537 |
|
|
|
| 1538 |
|
✗ |
DO i = 1, klon |
| 1539 |
|
✗ |
zcond(i) = 0.0 |
| 1540 |
|
|
END DO |
| 1541 |
|
|
|
| 1542 |
|
✗ |
DO i = 1, klon |
| 1543 |
|
✗ |
IF (ldflag(i)) THEN |
| 1544 |
|
✗ |
zdelta = max(0., sign(1.,rtt-pt(i))) |
| 1545 |
|
✗ |
zcvm5 = z5alvcp*(1.-zdelta) + zdelta*z5alscp |
| 1546 |
|
✗ |
zldcp = zalvdcp*(1.-zdelta) + zdelta*zalsdcp |
| 1547 |
|
✗ |
zqsat = r2es*foeew(pt(i), zdelta)/pp(i) |
| 1548 |
|
✗ |
zqsat = min(0.5, zqsat) |
| 1549 |
|
✗ |
zcor = 1./(1.-retv*zqsat) |
| 1550 |
|
✗ |
zqsat = zqsat*zcor |
| 1551 |
|
✗ |
zcond(i) = (pq(i)-zqsat)/(1.+foede(pt(i),zdelta,zcvm5,zqsat,zcor)) |
| 1552 |
|
✗ |
IF (kcall==1) zcond(i) = max(zcond(i), 0.) |
| 1553 |
|
✗ |
IF (kcall==2) zcond(i) = min(zcond(i), 0.) |
| 1554 |
|
✗ |
pt(i) = pt(i) + zldcp*zcond(i) |
| 1555 |
|
✗ |
pq(i) = pq(i) - zcond(i) |
| 1556 |
|
|
END IF |
| 1557 |
|
|
END DO |
| 1558 |
|
|
|
| 1559 |
|
|
is = 0 |
| 1560 |
|
✗ |
DO i = 1, klon |
| 1561 |
|
✗ |
IF (zcond(i)/=0.) is = is + 1 |
| 1562 |
|
|
END DO |
| 1563 |
|
✗ |
IF (is==0) GO TO 230 |
| 1564 |
|
|
|
| 1565 |
|
✗ |
DO i = 1, klon |
| 1566 |
|
✗ |
IF (ldflag(i) .AND. zcond(i)/=0.) THEN |
| 1567 |
|
✗ |
zdelta = max(0., sign(1.,rtt-pt(i))) |
| 1568 |
|
✗ |
zcvm5 = z5alvcp*(1.-zdelta) + zdelta*z5alscp |
| 1569 |
|
✗ |
zldcp = zalvdcp*(1.-zdelta) + zdelta*zalsdcp |
| 1570 |
|
✗ |
zqsat = r2es*foeew(pt(i), zdelta)/pp(i) |
| 1571 |
|
✗ |
zqsat = min(0.5, zqsat) |
| 1572 |
|
✗ |
zcor = 1./(1.-retv*zqsat) |
| 1573 |
|
✗ |
zqsat = zqsat*zcor |
| 1574 |
|
✗ |
zcond1 = (pq(i)-zqsat)/(1.+foede(pt(i),zdelta,zcvm5,zqsat,zcor)) |
| 1575 |
|
✗ |
pt(i) = pt(i) + zldcp*zcond1 |
| 1576 |
|
✗ |
pq(i) = pq(i) - zcond1 |
| 1577 |
|
|
END IF |
| 1578 |
|
|
END DO |
| 1579 |
|
|
|
| 1580 |
|
|
230 CONTINUE |
| 1581 |
|
✗ |
RETURN |
| 1582 |
|
|
END SUBROUTINE flxadjtq |
| 1583 |
|
✗ |
SUBROUTINE flxsetup |
| 1584 |
|
|
IMPLICIT NONE |
| 1585 |
|
|
|
| 1586 |
|
|
! THIS ROUTINE DEFINES DISPOSABLE PARAMETERS FOR MASSFLUX SCHEME |
| 1587 |
|
|
|
| 1588 |
|
|
include "YOECUMF.h" |
| 1589 |
|
|
|
| 1590 |
|
✗ |
entrpen = 1.0E-4 ! ENTRAINMENT RATE FOR PENETRATIVE CONVECTION |
| 1591 |
|
✗ |
entrscv = 3.0E-4 ! ENTRAINMENT RATE FOR SHALLOW CONVECTION |
| 1592 |
|
✗ |
entrmid = 1.0E-4 ! ENTRAINMENT RATE FOR MIDLEVEL CONVECTION |
| 1593 |
|
✗ |
entrdd = 2.0E-4 ! ENTRAINMENT RATE FOR DOWNDRAFTS |
| 1594 |
|
✗ |
cmfctop = 0.33 ! RELATIVE CLOUD MASSFLUX AT LEVEL ABOVE NONBUO LEVEL |
| 1595 |
|
✗ |
cmfcmax = 1.0 ! MAXIMUM MASSFLUX VALUE ALLOWED FOR UPDRAFTS ETC |
| 1596 |
|
✗ |
cmfcmin = 1.E-10 ! MINIMUM MASSFLUX VALUE (FOR SAFETY) |
| 1597 |
|
✗ |
cmfdeps = 0.3 ! FRACTIONAL MASSFLUX FOR DOWNDRAFTS AT LFS |
| 1598 |
|
✗ |
cprcon = 2.0E-4 ! CONVERSION FROM CLOUD WATER TO RAIN |
| 1599 |
|
✗ |
rhcdd = 1. ! RELATIVE SATURATION IN DOWNDRAFRS (NO LONGER USED) |
| 1600 |
|
|
! (FORMULATION IMPLIES SATURATION) |
| 1601 |
|
✗ |
lmfpen = .TRUE. |
| 1602 |
|
✗ |
lmfscv = .TRUE. |
| 1603 |
|
✗ |
lmfmid = .TRUE. |
| 1604 |
|
✗ |
lmfdd = .TRUE. |
| 1605 |
|
✗ |
lmfdudv = .TRUE. |
| 1606 |
|
|
|
| 1607 |
|
✗ |
RETURN |
| 1608 |
|
|
END SUBROUTINE flxsetup |
| 1609 |
|
|
|