| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
! $Header$ |
| 3 |
|
|
|
| 4 |
|
✗ |
SUBROUTINE conlmd(dtime, paprs, pplay, t, q, conv_q, d_t, d_q, rain, snow, & |
| 5 |
|
✗ |
ibas, itop) |
| 6 |
|
|
USE dimphy |
| 7 |
|
|
IMPLICIT NONE |
| 8 |
|
|
! ====================================================================== |
| 9 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
| 10 |
|
|
! Objet: Schema de convection utilis'e dans le modele du LMD |
| 11 |
|
|
! Ajustement humide (Manabe) + Ajustement convectif (Kuo) |
| 12 |
|
|
! ====================================================================== |
| 13 |
|
|
include "YOMCST.h" |
| 14 |
|
|
include "YOETHF.h" |
| 15 |
|
|
|
| 16 |
|
|
! Arguments: |
| 17 |
|
|
|
| 18 |
|
|
REAL dtime ! pas d'integration (s) |
| 19 |
|
|
REAL paprs(klon, klev+1) ! pression inter-couche (Pa) |
| 20 |
|
|
REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
| 21 |
|
|
REAL t(klon, klev) ! temperature (K) |
| 22 |
|
|
REAL q(klon, klev) ! humidite specifique (kg/kg) |
| 23 |
|
|
REAL conv_q(klon, klev) ! taux de convergence humidite (g/g/s) |
| 24 |
|
|
|
| 25 |
|
|
REAL d_t(klon, klev) ! incrementation temperature |
| 26 |
|
|
REAL d_q(klon, klev) ! incrementation humidite |
| 27 |
|
|
REAL rain(klon) ! pluies (mm/s) |
| 28 |
|
|
REAL snow(klon) ! neige (mm/s) |
| 29 |
|
|
INTEGER ibas(klon) ! niveau du bas |
| 30 |
|
|
INTEGER itop(klon) ! niveau du haut |
| 31 |
|
|
|
| 32 |
|
|
LOGICAL usekuo ! utiliser convection profonde (schema Kuo) |
| 33 |
|
|
PARAMETER (usekuo=.TRUE.) |
| 34 |
|
|
|
| 35 |
|
✗ |
REAL d_t_bis(klon, klev) |
| 36 |
|
✗ |
REAL d_q_bis(klon, klev) |
| 37 |
|
✗ |
REAL rain_bis(klon) |
| 38 |
|
✗ |
REAL snow_bis(klon) |
| 39 |
|
✗ |
INTEGER ibas_bis(klon) |
| 40 |
|
✗ |
INTEGER itop_bis(klon) |
| 41 |
|
✗ |
REAL d_ql(klon, klev), d_ql_bis(klon, klev) |
| 42 |
|
✗ |
REAL rneb(klon, klev), rneb_bis(klon, klev) |
| 43 |
|
|
|
| 44 |
|
|
INTEGER i, k |
| 45 |
|
|
REAL zlvdcp, zlsdcp, zdelta, zz, za, zb |
| 46 |
|
|
|
| 47 |
|
|
! cc CALL fiajh ! ancienne version de Convection Manabe |
| 48 |
|
|
CALL conman & ! nouvelle version de Convection |
| 49 |
|
|
! Manabe |
| 50 |
|
✗ |
(dtime, paprs, pplay, t, q, d_t, d_q, d_ql, rneb, rain, snow, ibas, itop) |
| 51 |
|
|
|
| 52 |
|
|
IF (usekuo) THEN |
| 53 |
|
|
! cc CALL fiajc ! ancienne version de Convection Kuo |
| 54 |
|
|
CALL conkuo & ! nouvelle version de Convection |
| 55 |
|
|
! Kuo |
| 56 |
|
|
(dtime, paprs, pplay, t, q, conv_q, d_t_bis, d_q_bis, d_ql_bis, & |
| 57 |
|
✗ |
rneb_bis, rain_bis, snow_bis, ibas_bis, itop_bis) |
| 58 |
|
✗ |
DO k = 1, klev |
| 59 |
|
✗ |
DO i = 1, klon |
| 60 |
|
✗ |
d_t(i, k) = d_t(i, k) + d_t_bis(i, k) |
| 61 |
|
✗ |
d_q(i, k) = d_q(i, k) + d_q_bis(i, k) |
| 62 |
|
✗ |
d_ql(i, k) = d_ql(i, k) + d_ql_bis(i, k) |
| 63 |
|
|
END DO |
| 64 |
|
|
END DO |
| 65 |
|
✗ |
DO i = 1, klon |
| 66 |
|
✗ |
rain(i) = rain(i) + rain_bis(i) |
| 67 |
|
✗ |
snow(i) = snow(i) + snow_bis(i) |
| 68 |
|
✗ |
ibas(i) = min(ibas(i), ibas_bis(i)) |
| 69 |
|
✗ |
itop(i) = max(itop(i), itop_bis(i)) |
| 70 |
|
|
END DO |
| 71 |
|
|
END IF |
| 72 |
|
|
|
| 73 |
|
|
! L'eau liquide convective est dispersee dans l'air: |
| 74 |
|
|
|
| 75 |
|
✗ |
DO k = 1, klev |
| 76 |
|
✗ |
DO i = 1, klon |
| 77 |
|
✗ |
zlvdcp = rlvtt/rcpd/(1.0+rvtmp2*q(i,k)) |
| 78 |
|
✗ |
zlsdcp = rlstt/rcpd/(1.0+rvtmp2*q(i,k)) |
| 79 |
|
✗ |
zdelta = max(0., sign(1.,rtt-t(i,k))) |
| 80 |
|
✗ |
zz = d_ql(i, k) ! re-evap. de l'eau liquide |
| 81 |
|
✗ |
zb = max(0.0, zz) |
| 82 |
|
✗ |
za = -max(0.0, zz)*(zlvdcp*(1.-zdelta)+zlsdcp*zdelta) |
| 83 |
|
✗ |
d_t(i, k) = d_t(i, k) + za |
| 84 |
|
✗ |
d_q(i, k) = d_q(i, k) + zb |
| 85 |
|
|
END DO |
| 86 |
|
|
END DO |
| 87 |
|
|
|
| 88 |
|
✗ |
RETURN |
| 89 |
|
|
END SUBROUTINE conlmd |
| 90 |
|
✗ |
SUBROUTINE conman(dtime, paprs, pplay, t, q, d_t, d_q, d_ql, rneb, rain, & |
| 91 |
|
✗ |
snow, ibas, itop) |
| 92 |
|
✗ |
USE dimphy |
| 93 |
|
|
IMPLICIT NONE |
| 94 |
|
|
! ====================================================================== |
| 95 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) date: 19970324 |
| 96 |
|
|
! Objet: ajustement humide convectif avec la possibilite de faire |
| 97 |
|
|
! l'ajustement sur une fraction de la maille. |
| 98 |
|
|
! Methode: On impose une distribution uniforme pour la vapeur d'eau |
| 99 |
|
|
! au sein d'une maille. On applique la procedure d'ajustement |
| 100 |
|
|
! successivement a la totalite, 75%, 50%, 25% et 5% de la maille |
| 101 |
|
|
! jusqu'a ce que l'ajustement a lieu. J'espere que ceci augmente |
| 102 |
|
|
! les activites convectives et corrige le biais "trop froid et sec" |
| 103 |
|
|
! du modele. |
| 104 |
|
|
! ====================================================================== |
| 105 |
|
|
include "YOMCST.h" |
| 106 |
|
|
|
| 107 |
|
|
REAL dtime ! pas d'integration (s) |
| 108 |
|
|
REAL t(klon, klev) ! temperature (K) |
| 109 |
|
|
REAL q(klon, klev) ! humidite specifique (kg/kg) |
| 110 |
|
|
REAL paprs(klon, klev+1) ! pression inter-couche (Pa) |
| 111 |
|
|
REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
| 112 |
|
|
|
| 113 |
|
|
REAL d_t(klon, klev) ! incrementation temperature |
| 114 |
|
|
REAL d_q(klon, klev) ! incrementation humidite |
| 115 |
|
|
REAL d_ql(klon, klev) ! incrementation eau liquide |
| 116 |
|
|
REAL rneb(klon, klev) ! nebulosite |
| 117 |
|
|
REAL rain(klon) ! pluies (mm/s) |
| 118 |
|
|
REAL snow(klon) ! neige (mm/s) |
| 119 |
|
|
INTEGER ibas(klon) ! niveau du bas |
| 120 |
|
|
INTEGER itop(klon) ! niveau du haut |
| 121 |
|
|
|
| 122 |
|
✗ |
LOGICAL afaire(klon) ! .TRUE. implique l'ajustement |
| 123 |
|
✗ |
LOGICAL accompli(klon) ! .TRUE. si l'ajustement est effectif |
| 124 |
|
|
|
| 125 |
|
|
INTEGER nb ! nombre de sous-fractions a considere |
| 126 |
|
|
PARAMETER (nb=1) |
| 127 |
|
|
! cc PARAMETER (nb=3) |
| 128 |
|
|
|
| 129 |
|
|
REAL ratqs ! largeur de la distribution pour vapeur d'eau |
| 130 |
|
|
PARAMETER (ratqs=0.05) |
| 131 |
|
|
|
| 132 |
|
✗ |
REAL w_q(klon, klev) |
| 133 |
|
✗ |
REAL w_d_t(klon, klev), w_d_q(klon, klev), w_d_ql(klon, klev) |
| 134 |
|
✗ |
REAL w_rneb(klon, klev) |
| 135 |
|
✗ |
REAL w_rain(klon), w_snow(klon) |
| 136 |
|
✗ |
INTEGER w_ibas(klon), w_itop(klon) |
| 137 |
|
|
REAL zq1, zq2 |
| 138 |
|
|
INTEGER i, k, n |
| 139 |
|
|
|
| 140 |
|
|
REAL t_coup |
| 141 |
|
|
PARAMETER (t_coup=234.0) |
| 142 |
|
|
REAL zdp1, zdp2 |
| 143 |
|
|
REAL zqs1, zqs2, zdqs1, zdqs2 |
| 144 |
|
|
REAL zgamdz |
| 145 |
|
|
REAL zflo ! flotabilite |
| 146 |
|
|
REAL zsat ! sur-saturation |
| 147 |
|
|
REAL zdelta, zcor, zcvm5 |
| 148 |
|
|
LOGICAL imprim |
| 149 |
|
|
|
| 150 |
|
|
INTEGER ncpt |
| 151 |
|
|
SAVE ncpt |
| 152 |
|
|
!$OMP THREADPRIVATE(ncpt) |
| 153 |
|
|
REAL frac(nb) ! valeur de la maille fractionnelle |
| 154 |
|
|
SAVE frac |
| 155 |
|
|
!$OMP THREADPRIVATE(frac) |
| 156 |
|
|
INTEGER opt_cld(nb) ! option pour le modele nuageux |
| 157 |
|
|
SAVE opt_cld |
| 158 |
|
|
!$OMP THREADPRIVATE(opt_cld) |
| 159 |
|
|
LOGICAL appel1er |
| 160 |
|
|
SAVE appel1er |
| 161 |
|
|
!$OMP THREADPRIVATE(appel1er) |
| 162 |
|
|
|
| 163 |
|
|
! Fonctions thermodynamiques: |
| 164 |
|
|
|
| 165 |
|
|
include "YOETHF.h" |
| 166 |
|
|
include "FCTTRE.h" |
| 167 |
|
|
|
| 168 |
|
|
DATA frac/1.0/ |
| 169 |
|
|
DATA opt_cld/4/ |
| 170 |
|
|
! cc DATA frac / 1.0, 0.50, 0.25/ |
| 171 |
|
|
! cc DATA opt_cld / 4, 4, 4/ |
| 172 |
|
|
|
| 173 |
|
|
DATA appel1er/.TRUE./ |
| 174 |
|
|
DATA ncpt/0/ |
| 175 |
|
|
|
| 176 |
|
✗ |
IF (appel1er) THEN |
| 177 |
|
✗ |
PRINT *, 'conman, nb:', nb |
| 178 |
|
✗ |
PRINT *, 'conman, frac:', frac |
| 179 |
|
✗ |
PRINT *, 'conman, opt_cld:', opt_cld |
| 180 |
|
✗ |
appel1er = .FALSE. |
| 181 |
|
|
END IF |
| 182 |
|
|
|
| 183 |
|
|
! Initialiser les sorties a zero: |
| 184 |
|
|
|
| 185 |
|
✗ |
DO k = 1, klev |
| 186 |
|
✗ |
DO i = 1, klon |
| 187 |
|
✗ |
d_t(i, k) = 0.0 |
| 188 |
|
✗ |
d_q(i, k) = 0.0 |
| 189 |
|
✗ |
d_ql(i, k) = 0.0 |
| 190 |
|
✗ |
rneb(i, k) = 0.0 |
| 191 |
|
|
END DO |
| 192 |
|
|
END DO |
| 193 |
|
✗ |
DO i = 1, klon |
| 194 |
|
✗ |
ibas(i) = klev |
| 195 |
|
✗ |
itop(i) = 1 |
| 196 |
|
✗ |
rain(i) = 0.0 |
| 197 |
|
✗ |
snow(i) = 0.0 |
| 198 |
|
|
END DO |
| 199 |
|
|
|
| 200 |
|
|
! S'il n'y a pas d'instabilite conditionnelle, |
| 201 |
|
|
! pas la penne de se fatiguer: |
| 202 |
|
|
|
| 203 |
|
✗ |
DO i = 1, klon |
| 204 |
|
✗ |
afaire(i) = .FALSE. |
| 205 |
|
|
END DO |
| 206 |
|
✗ |
DO k = 1, klev - 1 |
| 207 |
|
✗ |
DO i = 1, klon |
| 208 |
|
|
IF (thermcep) THEN |
| 209 |
|
✗ |
zdelta = max(0., sign(1.,rtt-t(i,k))) |
| 210 |
|
✗ |
zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
| 211 |
|
✗ |
zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*q(i,k)) |
| 212 |
|
✗ |
zqs1 = r2es*foeew(t(i,k), zdelta)/pplay(i, k) |
| 213 |
|
✗ |
zqs1 = min(0.5, zqs1) |
| 214 |
|
✗ |
zcor = 1./(1.-retv*zqs1) |
| 215 |
|
✗ |
zqs1 = zqs1*zcor |
| 216 |
|
✗ |
zdqs1 = foede(t(i,k), zdelta, zcvm5, zqs1, zcor) |
| 217 |
|
|
|
| 218 |
|
✗ |
zdelta = max(0., sign(1.,rtt-t(i,k+1))) |
| 219 |
|
✗ |
zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
| 220 |
|
✗ |
zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*q(i,k+1)) |
| 221 |
|
✗ |
zqs2 = r2es*foeew(t(i,k+1), zdelta)/pplay(i, k+1) |
| 222 |
|
✗ |
zqs2 = min(0.5, zqs2) |
| 223 |
|
✗ |
zcor = 1./(1.-retv*zqs2) |
| 224 |
|
✗ |
zqs2 = zqs2*zcor |
| 225 |
|
✗ |
zdqs2 = foede(t(i,k+1), zdelta, zcvm5, zqs2, zcor) |
| 226 |
|
|
ELSE |
| 227 |
|
|
IF (t(i,k)<t_coup) THEN |
| 228 |
|
|
zqs1 = qsats(t(i,k))/pplay(i, k) |
| 229 |
|
|
zdqs1 = dqsats(t(i,k), zqs1) |
| 230 |
|
|
|
| 231 |
|
|
zqs2 = qsats(t(i,k+1))/pplay(i, k+1) |
| 232 |
|
|
zdqs2 = dqsats(t(i,k+1), zqs2) |
| 233 |
|
|
ELSE |
| 234 |
|
|
zqs1 = qsatl(t(i,k))/pplay(i, k) |
| 235 |
|
|
zdqs1 = dqsatl(t(i,k), zqs1) |
| 236 |
|
|
|
| 237 |
|
|
zqs2 = qsatl(t(i,k+1))/pplay(i, k+1) |
| 238 |
|
|
zdqs2 = dqsatl(t(i,k+1), zqs2) |
| 239 |
|
|
END IF |
| 240 |
|
|
END IF |
| 241 |
|
✗ |
zdp1 = paprs(i, k) - paprs(i, k+1) |
| 242 |
|
✗ |
zdp2 = paprs(i, k+1) - paprs(i, k+2) |
| 243 |
|
|
zgamdz = -(pplay(i,k)-pplay(i,k+1))/paprs(i, k+1)/rcpd*(rd*(t(i, & |
| 244 |
|
|
k)*zdp1+t(i,k+1)*zdp2)/(zdp1+zdp2)+rlvtt*(zqs1*zdp1+zqs2*zdp2)/(zdp1+ & |
| 245 |
|
✗ |
zdp2))/(1.0+(zdqs1*zdp1+zdqs2*zdp2)/(zdp1+zdp2)) |
| 246 |
|
✗ |
zflo = t(i, k) + zgamdz - t(i, k+1) |
| 247 |
|
|
zsat = (q(i,k)-zqs1)*zdp1 + (q(i,k+1)-zqs2)*zdp2 |
| 248 |
|
✗ |
IF (zflo>0.0) afaire(i) = .TRUE. |
| 249 |
|
|
! erreur IF (zflo.GT.0.0 .AND. zsat.GT.0.0) afaire(i) = .TRUE. |
| 250 |
|
|
END DO |
| 251 |
|
|
END DO |
| 252 |
|
|
|
| 253 |
|
✗ |
imprim = mod(ncpt, 48) == 0 |
| 254 |
|
✗ |
DO n = 1, nb |
| 255 |
|
|
|
| 256 |
|
✗ |
DO k = 1, klev |
| 257 |
|
✗ |
DO i = 1, klon |
| 258 |
|
✗ |
IF (afaire(i)) THEN |
| 259 |
|
✗ |
zq1 = q(i, k)*(1.0-ratqs) |
| 260 |
|
✗ |
zq2 = q(i, k)*(1.0+ratqs) |
| 261 |
|
✗ |
w_q(i, k) = zq2 - frac(n)/2.0*(zq2-zq1) |
| 262 |
|
|
END IF |
| 263 |
|
|
END DO |
| 264 |
|
|
END DO |
| 265 |
|
|
|
| 266 |
|
|
CALL conmanv(dtime, paprs, pplay, t, w_q, afaire, opt_cld(n), w_d_t, & |
| 267 |
|
|
w_d_q, w_d_ql, w_rneb, w_rain, w_snow, w_ibas, w_itop, accompli, & |
| 268 |
|
✗ |
imprim) |
| 269 |
|
✗ |
DO k = 1, klev |
| 270 |
|
✗ |
DO i = 1, klon |
| 271 |
|
✗ |
IF (afaire(i) .AND. accompli(i)) THEN |
| 272 |
|
✗ |
d_t(i, k) = w_d_t(i, k)*frac(n) |
| 273 |
|
✗ |
d_q(i, k) = w_d_q(i, k)*frac(n) |
| 274 |
|
✗ |
d_ql(i, k) = w_d_ql(i, k)*frac(n) |
| 275 |
|
✗ |
IF (nint(w_rneb(i,k))==1) rneb(i, k) = frac(n) |
| 276 |
|
|
END IF |
| 277 |
|
|
END DO |
| 278 |
|
|
END DO |
| 279 |
|
✗ |
DO i = 1, klon |
| 280 |
|
✗ |
IF (afaire(i) .AND. accompli(i)) THEN |
| 281 |
|
✗ |
rain(i) = w_rain(i)*frac(n) |
| 282 |
|
✗ |
snow(i) = w_snow(i)*frac(n) |
| 283 |
|
✗ |
ibas(i) = min(ibas(i), w_ibas(i)) |
| 284 |
|
✗ |
itop(i) = max(itop(i), w_itop(i)) |
| 285 |
|
|
END IF |
| 286 |
|
|
END DO |
| 287 |
|
✗ |
DO i = 1, klon |
| 288 |
|
✗ |
IF (afaire(i) .AND. accompli(i)) afaire(i) = .FALSE. |
| 289 |
|
|
END DO |
| 290 |
|
|
|
| 291 |
|
|
END DO |
| 292 |
|
|
|
| 293 |
|
✗ |
ncpt = ncpt + 1 |
| 294 |
|
|
|
| 295 |
|
✗ |
RETURN |
| 296 |
|
|
END SUBROUTINE conman |
| 297 |
|
✗ |
SUBROUTINE conmanv(dtime, paprs, pplay, t, q, afaire, opt_cld, d_t, d_q, & |
| 298 |
|
✗ |
d_ql, rneb, rain, snow, ibas, itop, accompli, imprim) |
| 299 |
|
|
USE dimphy |
| 300 |
|
|
IMPLICIT NONE |
| 301 |
|
|
! ====================================================================== |
| 302 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
| 303 |
|
|
! Objet: ajustement humide (convection proposee par Manabe). |
| 304 |
|
|
! Pour une colonne verticale, il peut avoir plusieurs blocs |
| 305 |
|
|
! necessitant l'ajustement. ibas est le bas du plus bas bloc |
| 306 |
|
|
! et itop est le haut du plus haut bloc |
| 307 |
|
|
! ====================================================================== |
| 308 |
|
|
include "YOMCST.h" |
| 309 |
|
|
|
| 310 |
|
|
! Arguments: |
| 311 |
|
|
|
| 312 |
|
|
REAL dtime ! pas d'integration (s) |
| 313 |
|
|
REAL t(klon, klev) ! temperature (K) |
| 314 |
|
|
REAL q(klon, klev) ! humidite specifique (kg/kg) |
| 315 |
|
|
REAL paprs(klon, klev+1) ! pression inter-couche (Pa) |
| 316 |
|
|
REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
| 317 |
|
|
INTEGER opt_cld ! comment traiter l'eau liquide |
| 318 |
|
|
LOGICAL afaire(klon) ! .TRUE. si le point est a faire (Input) |
| 319 |
|
|
LOGICAL imprim ! .T. pour imprimer quelques diagnostiques |
| 320 |
|
|
|
| 321 |
|
|
REAL d_t(klon, klev) ! incrementation temperature |
| 322 |
|
|
REAL d_q(klon, klev) ! incrementation humidite |
| 323 |
|
|
REAL d_ql(klon, klev) ! incrementation eau liquide |
| 324 |
|
|
REAL rneb(klon, klev) ! nebulosite |
| 325 |
|
|
REAL rain(klon) ! pluies (mm/s) |
| 326 |
|
|
REAL snow(klon) ! neige (mm/s) |
| 327 |
|
|
INTEGER ibas(klon) ! niveau du bas |
| 328 |
|
|
INTEGER itop(klon) ! niveau du haut |
| 329 |
|
|
LOGICAL accompli(klon) ! .TRUE. si l'ajustement a eu lieu (Output) |
| 330 |
|
|
|
| 331 |
|
|
! Quelques options: |
| 332 |
|
|
|
| 333 |
|
|
LOGICAL new_top ! re-calculer sommet quand re-ajustement est fait |
| 334 |
|
|
PARAMETER (new_top=.FALSE.) |
| 335 |
|
|
LOGICAL evap_prec ! evaporation de pluie au-dessous de convection |
| 336 |
|
|
PARAMETER (evap_prec=.TRUE.) |
| 337 |
|
|
REAL coef_eva |
| 338 |
|
|
PARAMETER (coef_eva=1.0E-05) |
| 339 |
|
|
REAL t_coup |
| 340 |
|
|
PARAMETER (t_coup=234.0) |
| 341 |
|
|
REAL seuil_vap |
| 342 |
|
|
PARAMETER (seuil_vap=1.0E-10) |
| 343 |
|
|
LOGICAL old_tau ! implique precip nulle, si vrai. |
| 344 |
|
|
PARAMETER (old_tau=.FALSE.) |
| 345 |
|
✗ |
REAL toliq(klon) ! rapport entre l'eau nuageuse et l'eau precipitante |
| 346 |
|
|
REAL dpmin, tomax !Epaisseur faible, rapport eau liquide plus grande |
| 347 |
|
|
PARAMETER (dpmin=0.15, tomax=0.97) |
| 348 |
|
|
REAL dpmax, tomin !Epaisseur grande, rapport eau liquide plus faible |
| 349 |
|
|
PARAMETER (dpmax=0.30, tomin=0.05) |
| 350 |
|
|
REAL deep_sig, deep_to ! au dela de deep_sig, utiliser deep_to |
| 351 |
|
|
PARAMETER (deep_sig=0.50, deep_to=0.05) |
| 352 |
|
|
LOGICAL exigent ! implique un calcul supplementaire pour Qs |
| 353 |
|
|
PARAMETER (exigent=.FALSE.) |
| 354 |
|
|
|
| 355 |
|
|
INTEGER kbase |
| 356 |
|
|
PARAMETER (kbase=0) |
| 357 |
|
|
|
| 358 |
|
|
! Variables locales: |
| 359 |
|
|
|
| 360 |
|
|
INTEGER nexpo |
| 361 |
|
|
INTEGER i, k, k1min, k1max, k2min, k2max, is |
| 362 |
|
✗ |
REAL zgamdz(klon, klev-1) |
| 363 |
|
✗ |
REAL zt(klon, klev), zq(klon, klev) |
| 364 |
|
✗ |
REAL zqs(klon, klev), zdqs(klon, klev) |
| 365 |
|
✗ |
REAL zqmqsdp(klon, klev) |
| 366 |
|
✗ |
REAL ztnew(klon, klev), zqnew(klon, klev) |
| 367 |
|
✗ |
REAL zcond(klon), zvapo(klon), zrapp(klon) |
| 368 |
|
✗ |
REAL zrfl(klon), zrfln, zqev, zqevt |
| 369 |
|
✗ |
REAL zsat(klon) ! sur-saturation |
| 370 |
|
✗ |
REAL zflo(klon) ! flotabilite |
| 371 |
|
✗ |
REAL za(klon), zb(klon), zc(klon) |
| 372 |
|
✗ |
INTEGER k1(klon), k2(klon) |
| 373 |
|
|
REAL zdelta, zcor, zcvm5 |
| 374 |
|
✗ |
REAL delp(klon, klev) |
| 375 |
|
✗ |
LOGICAL possible(klon), todo(klon), etendre(klon) |
| 376 |
|
✗ |
LOGICAL aller(klon), todobis(klon) |
| 377 |
|
|
REAL zalfa |
| 378 |
|
|
INTEGER nbtodo, nbdone |
| 379 |
|
|
|
| 380 |
|
|
! Fonctions thermodynamiques: |
| 381 |
|
|
|
| 382 |
|
|
include "YOETHF.h" |
| 383 |
|
|
include "FCTTRE.h" |
| 384 |
|
|
|
| 385 |
|
✗ |
DO k = 1, klev |
| 386 |
|
✗ |
DO i = 1, klon |
| 387 |
|
✗ |
delp(i, k) = paprs(i, k) - paprs(i, k+1) |
| 388 |
|
|
END DO |
| 389 |
|
|
END DO |
| 390 |
|
|
|
| 391 |
|
|
! Initialiser les sorties a zero |
| 392 |
|
|
|
| 393 |
|
✗ |
DO k = 1, klev |
| 394 |
|
✗ |
DO i = 1, klon |
| 395 |
|
✗ |
d_t(i, k) = 0.0 |
| 396 |
|
✗ |
d_q(i, k) = 0.0 |
| 397 |
|
✗ |
d_ql(i, k) = 0.0 |
| 398 |
|
✗ |
rneb(i, k) = 0.0 |
| 399 |
|
|
END DO |
| 400 |
|
|
END DO |
| 401 |
|
✗ |
DO i = 1, klon |
| 402 |
|
✗ |
ibas(i) = klev |
| 403 |
|
✗ |
itop(i) = 1 |
| 404 |
|
✗ |
rain(i) = 0.0 |
| 405 |
|
✗ |
snow(i) = 0.0 |
| 406 |
|
✗ |
accompli(i) = .FALSE. |
| 407 |
|
|
END DO |
| 408 |
|
|
|
| 409 |
|
|
! Preparations |
| 410 |
|
|
|
| 411 |
|
✗ |
DO k = 1, klev |
| 412 |
|
✗ |
DO i = 1, klon |
| 413 |
|
✗ |
IF (afaire(i)) THEN |
| 414 |
|
✗ |
zt(i, k) = t(i, k) |
| 415 |
|
✗ |
zq(i, k) = q(i, k) |
| 416 |
|
|
|
| 417 |
|
|
! Calculer Qs et L/Cp*dQs/dT |
| 418 |
|
|
|
| 419 |
|
|
IF (thermcep) THEN |
| 420 |
|
✗ |
zdelta = max(0., sign(1.,rtt-zt(i,k))) |
| 421 |
|
✗ |
zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
| 422 |
|
✗ |
zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*zq(i,k)) |
| 423 |
|
✗ |
zqs(i, k) = r2es*foeew(zt(i,k), zdelta)/pplay(i, k) |
| 424 |
|
✗ |
zqs(i, k) = min(0.5, zqs(i,k)) |
| 425 |
|
✗ |
zcor = 1./(1.-retv*zqs(i,k)) |
| 426 |
|
✗ |
zqs(i, k) = zqs(i, k)*zcor |
| 427 |
|
✗ |
zdqs(i, k) = foede(zt(i,k), zdelta, zcvm5, zqs(i,k), zcor) |
| 428 |
|
|
ELSE |
| 429 |
|
|
IF (zt(i,k)<t_coup) THEN |
| 430 |
|
|
zqs(i, k) = qsats(zt(i,k))/pplay(i, k) |
| 431 |
|
|
zdqs(i, k) = dqsats(zt(i,k), zqs(i,k)) |
| 432 |
|
|
ELSE |
| 433 |
|
|
zqs(i, k) = qsatl(zt(i,k))/pplay(i, k) |
| 434 |
|
|
zdqs(i, k) = dqsatl(zt(i,k), zqs(i,k)) |
| 435 |
|
|
END IF |
| 436 |
|
|
END IF |
| 437 |
|
|
|
| 438 |
|
|
! Calculer (q-qs)*dp |
| 439 |
|
✗ |
zqmqsdp(i, k) = (zq(i,k)-zqs(i,k))*delp(i, k) |
| 440 |
|
|
END IF |
| 441 |
|
|
END DO |
| 442 |
|
|
END DO |
| 443 |
|
|
|
| 444 |
|
|
! -----zgama is the moist convective lapse rate (-dT/dz). |
| 445 |
|
|
! -----zgamdz(*,k) est la difference minimale autorisee des temperatures |
| 446 |
|
|
! -----entre deux couches (k et k+1), c.a.d. si T(k+1)-T(k) est inferieur |
| 447 |
|
|
! -----a zgamdz(*,k), alors ces 2 couches sont instables conditionnellement |
| 448 |
|
|
|
| 449 |
|
✗ |
DO k = 1, klev - 1 |
| 450 |
|
✗ |
DO i = 1, klon |
| 451 |
|
✗ |
IF (afaire(i)) THEN |
| 452 |
|
|
zgamdz(i, k) = -(pplay(i,k)-pplay(i,k+1))/paprs(i, k+1)/rcpd*(rd*(zt( & |
| 453 |
|
|
i,k)*delp(i,k)+zt(i,k+1)*delp(i,k+1))/(delp(i,k)+delp(i, & |
| 454 |
|
|
k+1))+rlvtt*(zqs(i,k)*delp(i,k)+zqs(i,k+1)*delp(i,k+1))/(delp(i, & |
| 455 |
|
|
k)+delp(i,k+1)))/(1.0+(zdqs(i,k)*delp(i,k)+zdqs(i,k+1)*delp(i, & |
| 456 |
|
✗ |
k+1))/(delp(i,k)+delp(i,k+1))) |
| 457 |
|
|
END IF |
| 458 |
|
|
END DO |
| 459 |
|
|
END DO |
| 460 |
|
|
|
| 461 |
|
|
! On cherche la presence simultanee d'instabilite conditionnelle |
| 462 |
|
|
! et de sur-saturation. Sinon, pas la penne de se fatiguer: |
| 463 |
|
|
|
| 464 |
|
✗ |
DO i = 1, klon |
| 465 |
|
✗ |
possible(i) = .FALSE. |
| 466 |
|
|
END DO |
| 467 |
|
✗ |
DO k = 2, klev |
| 468 |
|
✗ |
DO i = 1, klon |
| 469 |
|
✗ |
IF (afaire(i)) THEN |
| 470 |
|
✗ |
zflo(i) = zt(i, k-1) + zgamdz(i, k-1) - zt(i, k) |
| 471 |
|
✗ |
zsat(i) = zqmqsdp(i, k) + zqmqsdp(i, k-1) |
| 472 |
|
✗ |
IF (zflo(i)>0.0 .AND. zsat(i)>0.0) possible(i) = .TRUE. |
| 473 |
|
|
END IF |
| 474 |
|
|
END DO |
| 475 |
|
|
END DO |
| 476 |
|
|
|
| 477 |
|
✗ |
DO i = 1, klon |
| 478 |
|
✗ |
IF (possible(i)) THEN |
| 479 |
|
✗ |
k1(i) = kbase |
| 480 |
|
✗ |
k2(i) = k1(i) + 1 |
| 481 |
|
|
END IF |
| 482 |
|
|
END DO |
| 483 |
|
|
|
| 484 |
|
|
810 CONTINUE ! chercher le bas de la colonne a ajuster |
| 485 |
|
|
|
| 486 |
|
|
k2min = klev |
| 487 |
|
✗ |
DO i = 1, klon |
| 488 |
|
✗ |
todo(i) = .FALSE. |
| 489 |
|
✗ |
aller(i) = .TRUE. |
| 490 |
|
✗ |
IF (possible(i)) k2min = min(k2min, k2(i)) |
| 491 |
|
|
END DO |
| 492 |
|
✗ |
IF (k2min==klev) GO TO 860 |
| 493 |
|
✗ |
DO k = k2min, klev - 1 |
| 494 |
|
✗ |
DO i = 1, klon |
| 495 |
|
✗ |
IF (possible(i) .AND. k>=k2(i) .AND. aller(i)) THEN |
| 496 |
|
✗ |
zflo(i) = zt(i, k) + zgamdz(i, k) - zt(i, k+1) |
| 497 |
|
✗ |
zsat(i) = zqmqsdp(i, k) + zqmqsdp(i, k+1) |
| 498 |
|
✗ |
IF (zflo(i)>0.0 .AND. zsat(i)>0.0) THEN |
| 499 |
|
✗ |
k1(i) = k |
| 500 |
|
✗ |
k2(i) = k + 1 |
| 501 |
|
✗ |
todo(i) = .TRUE. |
| 502 |
|
✗ |
aller(i) = .FALSE. |
| 503 |
|
|
END IF |
| 504 |
|
|
END IF |
| 505 |
|
|
END DO |
| 506 |
|
|
END DO |
| 507 |
|
✗ |
DO i = 1, klon |
| 508 |
|
✗ |
IF (possible(i) .AND. aller(i)) THEN |
| 509 |
|
✗ |
todo(i) = .FALSE. |
| 510 |
|
✗ |
k1(i) = klev |
| 511 |
|
✗ |
k2(i) = klev |
| 512 |
|
|
END IF |
| 513 |
|
|
END DO |
| 514 |
|
|
|
| 515 |
|
|
! CC DO i = 1, klon |
| 516 |
|
|
! CC IF (possible(i)) THEN |
| 517 |
|
|
! CC 811 k2(i) = k2(i) + 1 |
| 518 |
|
|
! CC IF (k2(i) .GT. klev) THEN |
| 519 |
|
|
! CC todo(i) = .FALSE. |
| 520 |
|
|
! CC GOTO 812 |
| 521 |
|
|
! CC ENDIF |
| 522 |
|
|
! CC k = k2(i) |
| 523 |
|
|
! CC zflo(i) = zt(i,k-1) + zgamdz(i,k-1) - zt(i,k) |
| 524 |
|
|
! CC zsat(i) = zqmqsdp(i,k) + zqmqsdp(i,k-1) |
| 525 |
|
|
! CC IF (zflo(i).LE.0.0 .OR. zsat(i).LE.0.0) GOTO 811 |
| 526 |
|
|
! CC k1(i) = k2(i) - 1 |
| 527 |
|
|
! CC todo(i) = .TRUE. |
| 528 |
|
|
! CC ENDIF |
| 529 |
|
|
! CC 812 CONTINUE |
| 530 |
|
|
! CC ENDDO |
| 531 |
|
|
|
| 532 |
|
|
820 CONTINUE ! chercher le haut de la colonne |
| 533 |
|
|
|
| 534 |
|
|
k2min = klev |
| 535 |
|
✗ |
DO i = 1, klon |
| 536 |
|
✗ |
aller(i) = .TRUE. |
| 537 |
|
✗ |
IF (todo(i)) k2min = min(k2min, k2(i)) |
| 538 |
|
|
END DO |
| 539 |
|
✗ |
IF (k2min<klev) THEN |
| 540 |
|
✗ |
DO k = k2min, klev |
| 541 |
|
✗ |
DO i = 1, klon |
| 542 |
|
✗ |
IF (todo(i) .AND. k>k2(i) .AND. aller(i)) THEN |
| 543 |
|
✗ |
zsat(i) = zsat(i) + zqmqsdp(i, k) |
| 544 |
|
✗ |
zflo(i) = zt(i, k-1) + zgamdz(i, k-1) - zt(i, k) |
| 545 |
|
✗ |
IF (zflo(i)<=0.0 .OR. zsat(i)<=0.0) THEN |
| 546 |
|
✗ |
aller(i) = .FALSE. |
| 547 |
|
|
ELSE |
| 548 |
|
✗ |
k2(i) = k |
| 549 |
|
|
END IF |
| 550 |
|
|
END IF |
| 551 |
|
|
END DO |
| 552 |
|
|
END DO |
| 553 |
|
|
! error is = 0 |
| 554 |
|
|
! error DO i = 1, klon |
| 555 |
|
|
! error IF(todo(i).AND.aller(i)) THEN |
| 556 |
|
|
! error is = is + 1 |
| 557 |
|
|
! error todo(i) = .FALSE. |
| 558 |
|
|
! error k2(i) = klev |
| 559 |
|
|
! error ENDIF |
| 560 |
|
|
! error ENDDO |
| 561 |
|
|
! error IF (is.GT.0) THEN |
| 562 |
|
|
! error PRINT*, "Bizard. je pourrais continuer mais j arrete" |
| 563 |
|
|
! error CALL abort |
| 564 |
|
|
! error ENDIF |
| 565 |
|
|
END IF |
| 566 |
|
|
|
| 567 |
|
|
! CC DO i = 1, klon |
| 568 |
|
|
! CC IF (todo(i)) THEN |
| 569 |
|
|
! CC 821 CONTINUE |
| 570 |
|
|
! CC IF (k2(i) .EQ. klev) GOTO 822 |
| 571 |
|
|
! CC k = k2(i) + 1 |
| 572 |
|
|
! CC zsat(i) = zsat(i) + zqmqsdp(i,k) |
| 573 |
|
|
! CC zflo(i) = zt(i,k-1) + zgamdz(i,k-1) - zt(i,k) |
| 574 |
|
|
! CC IF (zflo(i).LE.0.0 .OR. zsat(i).LE.0.0) GOTO 822 |
| 575 |
|
|
! CC k2(i) = k |
| 576 |
|
|
! CC GOTO 821 |
| 577 |
|
|
! CC ENDIF |
| 578 |
|
|
! CC 822 CONTINUE |
| 579 |
|
|
! CC ENDDO |
| 580 |
|
|
|
| 581 |
|
|
830 CONTINUE ! faire l'ajustement en sachant k1 et k2 |
| 582 |
|
|
|
| 583 |
|
✗ |
is = 0 |
| 584 |
|
✗ |
DO i = 1, klon |
| 585 |
|
✗ |
IF (todo(i)) THEN |
| 586 |
|
✗ |
IF (k2(i)<=k1(i)) is = is + 1 |
| 587 |
|
|
END IF |
| 588 |
|
|
END DO |
| 589 |
|
✗ |
IF (is>0) THEN |
| 590 |
|
✗ |
PRINT *, 'Impossible: k1 trop grand ou k2 trop petit' |
| 591 |
|
✗ |
PRINT *, 'is=', is |
| 592 |
|
✗ |
CALL abort |
| 593 |
|
|
END IF |
| 594 |
|
|
|
| 595 |
|
|
k1min = klev |
| 596 |
|
|
k1max = 1 |
| 597 |
|
|
k2max = 1 |
| 598 |
|
✗ |
DO i = 1, klon |
| 599 |
|
✗ |
IF (todo(i)) THEN |
| 600 |
|
✗ |
k1min = min(k1min, k1(i)) |
| 601 |
|
✗ |
k1max = max(k1max, k1(i)) |
| 602 |
|
✗ |
k2max = max(k2max, k2(i)) |
| 603 |
|
|
END IF |
| 604 |
|
|
END DO |
| 605 |
|
|
|
| 606 |
|
✗ |
DO i = 1, klon |
| 607 |
|
✗ |
IF (todo(i)) THEN |
| 608 |
|
✗ |
k = k1(i) |
| 609 |
|
✗ |
za(i) = 0. |
| 610 |
|
|
zb(i) = (rcpd*(1.+zdqs(i,k))*(zt(i,k)-za(i))-rlvtt*(zqs(i,k)-zq(i, & |
| 611 |
|
✗ |
k)))*delp(i, k) |
| 612 |
|
✗ |
zc(i) = delp(i, k)*rcpd*(1.+zdqs(i,k)) |
| 613 |
|
|
END IF |
| 614 |
|
|
END DO |
| 615 |
|
|
|
| 616 |
|
✗ |
DO k = k1min, k2max |
| 617 |
|
✗ |
DO i = 1, klon |
| 618 |
|
✗ |
IF (todo(i) .AND. k>=(k1(i)+1) .AND. k<=k2(i)) THEN |
| 619 |
|
✗ |
za(i) = za(i) + zgamdz(i, k-1) |
| 620 |
|
|
zb(i) = zb(i) + (rcpd*(1.+zdqs(i,k))*(zt(i,k)-za(i))-rlvtt*(zqs(i, & |
| 621 |
|
✗ |
k)-zq(i,k)))*delp(i, k) |
| 622 |
|
✗ |
zc(i) = zc(i) + delp(i, k)*rcpd*(1.+zdqs(i,k)) |
| 623 |
|
|
END IF |
| 624 |
|
|
END DO |
| 625 |
|
|
END DO |
| 626 |
|
|
|
| 627 |
|
✗ |
DO i = 1, klon |
| 628 |
|
✗ |
IF (todo(i)) THEN |
| 629 |
|
✗ |
k = k1(i) |
| 630 |
|
✗ |
ztnew(i, k) = zb(i)/zc(i) |
| 631 |
|
✗ |
zqnew(i, k) = zqs(i, k) + (ztnew(i,k)-zt(i,k))*rcpd/rlvtt*zdqs(i, k) |
| 632 |
|
|
END IF |
| 633 |
|
|
END DO |
| 634 |
|
|
|
| 635 |
|
✗ |
DO k = k1min, k2max |
| 636 |
|
✗ |
DO i = 1, klon |
| 637 |
|
✗ |
IF (todo(i) .AND. k>=(k1(i)+1) .AND. k<=k2(i)) THEN |
| 638 |
|
✗ |
ztnew(i, k) = ztnew(i, k-1) + zgamdz(i, k-1) |
| 639 |
|
✗ |
zqnew(i, k) = zqs(i, k) + (ztnew(i,k)-zt(i,k))*rcpd/rlvtt*zdqs(i, k) |
| 640 |
|
|
END IF |
| 641 |
|
|
END DO |
| 642 |
|
|
END DO |
| 643 |
|
|
|
| 644 |
|
|
! Quantite de condensation produite pendant l'ajustement: |
| 645 |
|
|
|
| 646 |
|
✗ |
DO i = 1, klon |
| 647 |
|
✗ |
zcond(i) = 0.0 |
| 648 |
|
|
END DO |
| 649 |
|
✗ |
DO k = k1min, k2max |
| 650 |
|
✗ |
DO i = 1, klon |
| 651 |
|
✗ |
IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) THEN |
| 652 |
|
✗ |
rneb(i, k) = 1.0 |
| 653 |
|
✗ |
zcond(i) = zcond(i) + (zq(i,k)-zqnew(i,k))*delp(i, k)/rg |
| 654 |
|
|
END IF |
| 655 |
|
|
END DO |
| 656 |
|
|
END DO |
| 657 |
|
|
|
| 658 |
|
|
! Si condensation negative, effort completement perdu: |
| 659 |
|
|
|
| 660 |
|
✗ |
DO i = 1, klon |
| 661 |
|
✗ |
IF (todo(i) .AND. zcond(i)<=0.) todo(i) = .FALSE. |
| 662 |
|
|
END DO |
| 663 |
|
|
|
| 664 |
|
|
! L'ajustement a ete accompli, meme les calculs accessoires |
| 665 |
|
|
! ne sont pas encore faits: |
| 666 |
|
|
|
| 667 |
|
✗ |
DO i = 1, klon |
| 668 |
|
✗ |
IF (todo(i)) accompli(i) = .TRUE. |
| 669 |
|
|
END DO |
| 670 |
|
|
|
| 671 |
|
|
! ===== |
| 672 |
|
|
! Une fois que la condensation a lieu, on doit construire un |
| 673 |
|
|
! "modele nuageux" pour partager la condensation entre l'eau |
| 674 |
|
|
! liquide nuageuse et la precipitation (leur rapport toliq |
| 675 |
|
|
! est calcule selon l'epaisseur nuageuse). Je suppose que |
| 676 |
|
|
! toliq=tomax quand l'epaisseur nuageuse est inferieure a dpmin, |
| 677 |
|
|
! et que toliq=tomin quand l'epaisseur depasse dpmax (interpolation |
| 678 |
|
|
! lineaire entre dpmin et dpmax). |
| 679 |
|
|
! ===== |
| 680 |
|
✗ |
DO i = 1, klon |
| 681 |
|
✗ |
IF (todo(i)) THEN |
| 682 |
|
|
toliq(i) = tomax - ((paprs(i,k1(i))-paprs(i,k2(i)+1))/paprs(i,1)-dpmin) & |
| 683 |
|
✗ |
*(tomax-tomin)/(dpmax-dpmin) |
| 684 |
|
✗ |
toliq(i) = max(tomin, min(tomax,toliq(i))) |
| 685 |
|
✗ |
IF (pplay(i,k2(i))/paprs(i,1)<=deep_sig) toliq(i) = deep_to |
| 686 |
|
|
IF (old_tau) toliq(i) = 1.0 |
| 687 |
|
|
END IF |
| 688 |
|
|
END DO |
| 689 |
|
|
! ===== |
| 690 |
|
|
! On doit aussi determiner la distribution verticale de |
| 691 |
|
|
! l'eau nuageuse. Plusieurs options sont proposees: |
| 692 |
|
|
|
| 693 |
|
|
! (0) La condensation precipite integralement (toliq ne sera |
| 694 |
|
|
! pas utilise). |
| 695 |
|
|
! (1) L'eau liquide est distribuee entre k1 et k2 et proportionnelle |
| 696 |
|
|
! a la vapeur d'eau locale. |
| 697 |
|
|
! (2) Elle est distribuee entre k1 et k2 avec une valeur constante. |
| 698 |
|
|
! (3) Elle est seulement distribuee aux couches ou la vapeur d'eau |
| 699 |
|
|
! est effectivement diminuee pendant le processus d'ajustement. |
| 700 |
|
|
! (4) Elle est en fonction (lineaire ou exponentielle) de la |
| 701 |
|
|
! distance (epaisseur en pression) avec le niveau k1 (la couche |
| 702 |
|
|
! k1 n'aura donc pas d'eau liquide). |
| 703 |
|
|
! ===== |
| 704 |
|
|
|
| 705 |
|
✗ |
IF (opt_cld==0) THEN |
| 706 |
|
|
|
| 707 |
|
✗ |
DO i = 1, klon |
| 708 |
|
✗ |
IF (todo(i)) zrfl(i) = zcond(i)/dtime |
| 709 |
|
|
END DO |
| 710 |
|
|
|
| 711 |
|
✗ |
ELSE IF (opt_cld==1) THEN |
| 712 |
|
|
|
| 713 |
|
✗ |
DO i = 1, klon |
| 714 |
|
✗ |
IF (todo(i)) zvapo(i) = 0.0 ! quantite integrale de vapeur d'eau |
| 715 |
|
|
END DO |
| 716 |
|
✗ |
DO k = k1min, k2max |
| 717 |
|
✗ |
DO i = 1, klon |
| 718 |
|
✗ |
IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) zvapo(i) = zvapo(i) + & |
| 719 |
|
✗ |
zqnew(i, k)*delp(i, k)/rg |
| 720 |
|
|
END DO |
| 721 |
|
|
END DO |
| 722 |
|
✗ |
DO i = 1, klon |
| 723 |
|
✗ |
IF (todo(i)) THEN |
| 724 |
|
✗ |
zrapp(i) = toliq(i)*zcond(i)/zvapo(i) |
| 725 |
|
✗ |
zrapp(i) = max(0., min(1.,zrapp(i))) |
| 726 |
|
✗ |
zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
| 727 |
|
|
END IF |
| 728 |
|
|
END DO |
| 729 |
|
✗ |
DO k = k1min, k2max |
| 730 |
|
✗ |
DO i = 1, klon |
| 731 |
|
✗ |
IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) THEN |
| 732 |
|
✗ |
d_ql(i, k) = d_ql(i, k) + zrapp(i)*zqnew(i, k) |
| 733 |
|
|
END IF |
| 734 |
|
|
END DO |
| 735 |
|
|
END DO |
| 736 |
|
|
|
| 737 |
|
✗ |
ELSE IF (opt_cld==2) THEN |
| 738 |
|
|
|
| 739 |
|
✗ |
DO i = 1, klon |
| 740 |
|
✗ |
IF (todo(i)) zvapo(i) = 0.0 ! quantite integrale de masse |
| 741 |
|
|
END DO |
| 742 |
|
✗ |
DO k = k1min, k2max |
| 743 |
|
✗ |
DO i = 1, klon |
| 744 |
|
✗ |
IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) zvapo(i) = zvapo(i) + & |
| 745 |
|
✗ |
delp(i, k)/rg |
| 746 |
|
|
END DO |
| 747 |
|
|
END DO |
| 748 |
|
✗ |
DO k = k1min, k2max |
| 749 |
|
✗ |
DO i = 1, klon |
| 750 |
|
✗ |
IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) THEN |
| 751 |
|
✗ |
d_ql(i, k) = d_ql(i, k) + toliq(i)*zcond(i)/zvapo(i) |
| 752 |
|
|
END IF |
| 753 |
|
|
END DO |
| 754 |
|
|
END DO |
| 755 |
|
✗ |
DO i = 1, klon |
| 756 |
|
✗ |
IF (todo(i)) zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
| 757 |
|
|
END DO |
| 758 |
|
|
|
| 759 |
|
✗ |
ELSE IF (opt_cld==3) THEN |
| 760 |
|
|
|
| 761 |
|
✗ |
DO i = 1, klon |
| 762 |
|
✗ |
IF (todo(i)) zvapo(i) = 0.0 ! quantite de l'eau strictement condensee |
| 763 |
|
|
END DO |
| 764 |
|
✗ |
DO k = k1min, k2max |
| 765 |
|
✗ |
DO i = 1, klon |
| 766 |
|
✗ |
IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) zvapo(i) = zvapo(i) + & |
| 767 |
|
✗ |
max(0.0, zq(i,k)-zqnew(i,k))*delp(i, k)/rg |
| 768 |
|
|
END DO |
| 769 |
|
|
END DO |
| 770 |
|
✗ |
DO k = k1min, k2max |
| 771 |
|
✗ |
DO i = 1, klon |
| 772 |
|
✗ |
IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i) .AND. zvapo(i)>0.0) d_ql(i, & |
| 773 |
|
|
k) = d_ql(i, k) + toliq(i)*zcond(i)/zvapo(i)*max(0.0, zq(i,k)-zqnew & |
| 774 |
|
✗ |
(i,k)) |
| 775 |
|
|
END DO |
| 776 |
|
|
END DO |
| 777 |
|
✗ |
DO i = 1, klon |
| 778 |
|
✗ |
IF (todo(i)) zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
| 779 |
|
|
END DO |
| 780 |
|
|
|
| 781 |
|
✗ |
ELSE IF (opt_cld==4) THEN |
| 782 |
|
|
|
| 783 |
|
|
nexpo = 3 |
| 784 |
|
|
! cc nexpo = 1 ! distribution lineaire |
| 785 |
|
|
|
| 786 |
|
✗ |
DO i = 1, klon |
| 787 |
|
✗ |
IF (todo(i)) zvapo(i) = 0.0 ! quantite integrale de masse |
| 788 |
|
|
END DO ! (avec ponderation) |
| 789 |
|
✗ |
DO k = k1min, k2max |
| 790 |
|
✗ |
DO i = 1, klon |
| 791 |
|
✗ |
IF (todo(i) .AND. k>=(k1(i)+1) .AND. k<=k2(i)) zvapo(i) = zvapo(i) + & |
| 792 |
|
✗ |
delp(i, k)/rg*(pplay(i,k1(i))-pplay(i,k))**nexpo |
| 793 |
|
|
END DO |
| 794 |
|
|
END DO |
| 795 |
|
✗ |
DO k = k1min, k2max |
| 796 |
|
✗ |
DO i = 1, klon |
| 797 |
|
✗ |
IF (todo(i) .AND. k>=(k1(i)+1) .AND. k<=k2(i)) d_ql(i, k) = d_ql(i, & |
| 798 |
|
✗ |
k) + toliq(i)*zcond(i)/zvapo(i)*(pplay(i,k1(i))-pplay(i,k))**nexpo |
| 799 |
|
|
END DO |
| 800 |
|
|
END DO |
| 801 |
|
✗ |
DO i = 1, klon |
| 802 |
|
✗ |
IF (todo(i)) zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
| 803 |
|
|
END DO |
| 804 |
|
|
|
| 805 |
|
|
ELSE ! valeur non-prevue pour opt_cld |
| 806 |
|
|
|
| 807 |
|
✗ |
PRINT *, 'opt_cld est faux:', opt_cld |
| 808 |
|
✗ |
CALL abort |
| 809 |
|
|
|
| 810 |
|
|
END IF ! fin de opt_cld |
| 811 |
|
|
|
| 812 |
|
|
! L'eau precipitante peut etre evaporee: |
| 813 |
|
|
|
| 814 |
|
|
zalfa = 0.05 |
| 815 |
|
✗ |
IF (evap_prec .AND. (k1max>=2)) THEN |
| 816 |
|
✗ |
DO k = k1max - 1, 1, -1 |
| 817 |
|
✗ |
DO i = 1, klon |
| 818 |
|
✗ |
IF (todo(i) .AND. k<k1(i) .AND. zrfl(i)>0.0) THEN |
| 819 |
|
✗ |
zqev = max(0.0, (zqs(i,k)-zq(i,k))*zalfa) |
| 820 |
|
|
zqevt = coef_eva*(1.0-zq(i,k)/zqs(i,k))*sqrt(zrfl(i))*delp(i, k)/ & |
| 821 |
|
✗ |
pplay(i, k)*zt(i, k)*rd/rg |
| 822 |
|
✗ |
zqevt = max(0.0, min(zqevt,zrfl(i)))*rg*dtime/delp(i, k) |
| 823 |
|
✗ |
zqev = min(zqev, zqevt) |
| 824 |
|
✗ |
zrfln = zrfl(i) - zqev*(delp(i,k))/rg/dtime |
| 825 |
|
✗ |
zq(i, k) = zq(i, k) - (zrfln-zrfl(i))*(rg/(delp(i,k)))*dtime |
| 826 |
|
|
zt(i, k) = zt(i, k) + (zrfln-zrfl(i))*(rg/(delp(i, & |
| 827 |
|
✗ |
k)))*dtime*rlvtt/rcpd/(1.0+rvtmp2*zq(i,k)) |
| 828 |
|
✗ |
zrfl(i) = zrfln |
| 829 |
|
|
END IF |
| 830 |
|
|
END DO |
| 831 |
|
|
END DO |
| 832 |
|
|
END IF |
| 833 |
|
|
|
| 834 |
|
|
! La temperature de la premiere couche determine la pluie ou la neige: |
| 835 |
|
|
|
| 836 |
|
✗ |
DO i = 1, klon |
| 837 |
|
✗ |
IF (todo(i)) THEN |
| 838 |
|
✗ |
IF (zt(i,1)>rtt) THEN |
| 839 |
|
✗ |
rain(i) = rain(i) + zrfl(i) |
| 840 |
|
|
ELSE |
| 841 |
|
✗ |
snow(i) = snow(i) + zrfl(i) |
| 842 |
|
|
END IF |
| 843 |
|
|
END IF |
| 844 |
|
|
END DO |
| 845 |
|
|
|
| 846 |
|
|
! Mise a jour de la temperature et de l'humidite |
| 847 |
|
|
|
| 848 |
|
✗ |
DO k = k1min, k2max |
| 849 |
|
✗ |
DO i = 1, klon |
| 850 |
|
✗ |
IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) THEN |
| 851 |
|
✗ |
zt(i, k) = ztnew(i, k) |
| 852 |
|
✗ |
zq(i, k) = zqnew(i, k) |
| 853 |
|
|
END IF |
| 854 |
|
|
END DO |
| 855 |
|
|
END DO |
| 856 |
|
|
|
| 857 |
|
|
! Re-calculer certaines variables pour etendre et re-ajuster la colonne |
| 858 |
|
|
|
| 859 |
|
|
IF (exigent) THEN |
| 860 |
|
|
DO k = 1, klev |
| 861 |
|
|
DO i = 1, klon |
| 862 |
|
|
IF (todo(i)) THEN |
| 863 |
|
|
IF (thermcep) THEN |
| 864 |
|
|
zdelta = max(0., sign(1.,rtt-zt(i,k))) |
| 865 |
|
|
zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
| 866 |
|
|
zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*zq(i,k)) |
| 867 |
|
|
zqs(i, k) = r2es*foeew(zt(i,k), zdelta)/pplay(i, k) |
| 868 |
|
|
zqs(i, k) = min(0.5, zqs(i,k)) |
| 869 |
|
|
zcor = 1./(1.-retv*zqs(i,k)) |
| 870 |
|
|
zqs(i, k) = zqs(i, k)*zcor |
| 871 |
|
|
zdqs(i, k) = foede(zt(i,k), zdelta, zcvm5, zqs(i,k), zcor) |
| 872 |
|
|
ELSE |
| 873 |
|
|
IF (zt(i,k)<t_coup) THEN |
| 874 |
|
|
zqs(i, k) = qsats(zt(i,k))/pplay(i, k) |
| 875 |
|
|
zdqs(i, k) = dqsats(zt(i,k), zqs(i,k)) |
| 876 |
|
|
ELSE |
| 877 |
|
|
zqs(i, k) = qsatl(zt(i,k))/pplay(i, k) |
| 878 |
|
|
zdqs(i, k) = dqsatl(zt(i,k), zqs(i,k)) |
| 879 |
|
|
END IF |
| 880 |
|
|
END IF |
| 881 |
|
|
END IF |
| 882 |
|
|
END DO |
| 883 |
|
|
END DO |
| 884 |
|
|
END IF |
| 885 |
|
|
|
| 886 |
|
|
IF (exigent) THEN |
| 887 |
|
|
DO k = 1, klev - 1 |
| 888 |
|
|
DO i = 1, klon |
| 889 |
|
|
IF (todo(i)) THEN |
| 890 |
|
|
zgamdz(i, k) = -(pplay(i,k)-pplay(i,k+1))/paprs(i, k+1)/rcpd*(rd*( & |
| 891 |
|
|
zt(i,k)*delp(i,k)+zt(i,k+1)*delp(i,k+1))/(delp(i,k)+delp(i, & |
| 892 |
|
|
k+1))+rlvtt*(zqs(i,k)*delp(i,k)+zqs(i,k+1)*delp(i,k+1))/(delp(i, & |
| 893 |
|
|
k)+delp(i,k+1)))/(1.0+(zdqs(i,k)*delp(i,k)+zdqs(i,k+1)*delp(i, & |
| 894 |
|
|
k+1))/(delp(i,k)+delp(i,k+1))) |
| 895 |
|
|
END IF |
| 896 |
|
|
END DO |
| 897 |
|
|
END DO |
| 898 |
|
|
END IF |
| 899 |
|
|
|
| 900 |
|
|
! Puisque l'humidite a ete modifiee, on re-fait (q-qs)*dp |
| 901 |
|
|
|
| 902 |
|
✗ |
DO k = 1, klev |
| 903 |
|
✗ |
DO i = 1, klon |
| 904 |
|
✗ |
IF (todo(i)) THEN |
| 905 |
|
✗ |
zqmqsdp(i, k) = (zq(i,k)-zqs(i,k))*delp(i, k) |
| 906 |
|
|
END IF |
| 907 |
|
|
END DO |
| 908 |
|
|
END DO |
| 909 |
|
|
|
| 910 |
|
|
! Verifier si l'on peut etendre le bas de la colonne |
| 911 |
|
|
|
| 912 |
|
✗ |
DO i = 1, klon |
| 913 |
|
✗ |
etendre(i) = .FALSE. |
| 914 |
|
|
END DO |
| 915 |
|
|
|
| 916 |
|
|
k1max = 1 |
| 917 |
|
✗ |
DO i = 1, klon |
| 918 |
|
✗ |
IF (todo(i) .AND. k1(i)>(kbase+1)) THEN |
| 919 |
|
|
k = k1(i) |
| 920 |
|
✗ |
zflo(i) = zt(i, k-1) + zgamdz(i, k-1) - zt(i, k) |
| 921 |
|
✗ |
zsat(i) = zqmqsdp(i, k) + zqmqsdp(i, k-1) |
| 922 |
|
|
! sc voici l'ancienne ligne: |
| 923 |
|
|
! sc IF (zflo(i).LE.0.0 .OR. zsat(i).LE.0.0) THEN |
| 924 |
|
|
! sc sylvain: il faut RESPECTER les 2 criteres: |
| 925 |
|
✗ |
IF (zflo(i)>0.0 .AND. zsat(i)>0.0) THEN |
| 926 |
|
✗ |
etendre(i) = .TRUE. |
| 927 |
|
✗ |
k1(i) = k1(i) - 1 |
| 928 |
|
✗ |
k1max = max(k1max, k1(i)) |
| 929 |
|
✗ |
aller(i) = .TRUE. |
| 930 |
|
|
END IF |
| 931 |
|
|
END IF |
| 932 |
|
|
END DO |
| 933 |
|
|
|
| 934 |
|
✗ |
IF (k1max>(kbase+1)) THEN |
| 935 |
|
✗ |
DO k = k1max, kbase + 1, -1 |
| 936 |
|
✗ |
DO i = 1, klon |
| 937 |
|
✗ |
IF (etendre(i) .AND. k<k1(i) .AND. aller(i)) THEN |
| 938 |
|
✗ |
zsat(i) = zsat(i) + zqmqsdp(i, k) |
| 939 |
|
✗ |
zflo(i) = zt(i, k) + zgamdz(i, k) - zt(i, k+1) |
| 940 |
|
✗ |
IF (zsat(i)<=0.0 .OR. zflo(i)<=0.0) THEN |
| 941 |
|
✗ |
aller(i) = .FALSE. |
| 942 |
|
|
ELSE |
| 943 |
|
✗ |
k1(i) = k |
| 944 |
|
|
END IF |
| 945 |
|
|
END IF |
| 946 |
|
|
END DO |
| 947 |
|
|
END DO |
| 948 |
|
✗ |
DO i = 1, klon |
| 949 |
|
✗ |
IF (etendre(i) .AND. aller(i)) THEN |
| 950 |
|
✗ |
k1(i) = 1 |
| 951 |
|
|
END IF |
| 952 |
|
|
END DO |
| 953 |
|
|
END IF |
| 954 |
|
|
|
| 955 |
|
|
! CC DO i = 1, klon |
| 956 |
|
|
! CC IF (etendre(i)) THEN |
| 957 |
|
|
! CC 840 k = k1(i) |
| 958 |
|
|
! CC IF (k.GT.1) THEN |
| 959 |
|
|
! CC zsat(i) = zsat(i) + zqmqsdp(i,k-1) |
| 960 |
|
|
! CC zflo(i) = zt(i,k-1) + zgamdz(i,k-1) - zt(i,k) |
| 961 |
|
|
! CC IF (zflo(i).GT.0.0 .AND. zsat(i).GT.0.0) THEN |
| 962 |
|
|
! CC k1(i) = k - 1 |
| 963 |
|
|
! CC GOTO 840 |
| 964 |
|
|
! CC ENDIF |
| 965 |
|
|
! CC ENDIF |
| 966 |
|
|
! CC ENDIF |
| 967 |
|
|
! CC ENDDO |
| 968 |
|
|
|
| 969 |
|
✗ |
DO i = 1, klon |
| 970 |
|
✗ |
todobis(i) = todo(i) |
| 971 |
|
✗ |
todo(i) = .FALSE. |
| 972 |
|
|
END DO |
| 973 |
|
✗ |
is = 0 |
| 974 |
|
✗ |
DO i = 1, klon |
| 975 |
|
✗ |
IF (etendre(i)) THEN |
| 976 |
|
✗ |
todo(i) = .TRUE. |
| 977 |
|
✗ |
is = is + 1 |
| 978 |
|
|
END IF |
| 979 |
|
|
END DO |
| 980 |
|
✗ |
IF (is>0) THEN |
| 981 |
|
|
IF (new_top) THEN |
| 982 |
|
|
GO TO 820 ! chercher de nouveau le sommet k2 |
| 983 |
|
|
ELSE |
| 984 |
|
|
GO TO 830 ! supposer que le sommet est celui deja trouve |
| 985 |
|
|
END IF |
| 986 |
|
|
END IF |
| 987 |
|
|
|
| 988 |
|
✗ |
DO i = 1, klon |
| 989 |
|
✗ |
possible(i) = .FALSE. |
| 990 |
|
|
END DO |
| 991 |
|
✗ |
is = 0 |
| 992 |
|
✗ |
DO i = 1, klon |
| 993 |
|
✗ |
IF (todobis(i) .AND. k2(i)<klev) THEN |
| 994 |
|
✗ |
is = is + 1 |
| 995 |
|
✗ |
possible(i) = .TRUE. |
| 996 |
|
|
END IF |
| 997 |
|
|
END DO |
| 998 |
|
✗ |
IF (is>0) GO TO 810 !on cherche en haut d'autres blocks |
| 999 |
|
|
! a ajuster a partir du sommet de la colonne precedente |
| 1000 |
|
|
|
| 1001 |
|
|
860 CONTINUE ! Calculer les tendances et diagnostiques |
| 1002 |
|
|
! cc print*, "Apres 860" |
| 1003 |
|
|
|
| 1004 |
|
✗ |
DO k = 1, klev |
| 1005 |
|
✗ |
DO i = 1, klon |
| 1006 |
|
✗ |
IF (accompli(i)) THEN |
| 1007 |
|
✗ |
d_t(i, k) = zt(i, k) - t(i, k) |
| 1008 |
|
✗ |
zq(i, k) = max(zq(i,k), seuil_vap) |
| 1009 |
|
✗ |
d_q(i, k) = zq(i, k) - q(i, k) |
| 1010 |
|
|
END IF |
| 1011 |
|
|
END DO |
| 1012 |
|
|
END DO |
| 1013 |
|
|
|
| 1014 |
|
✗ |
DO i = 1, klon |
| 1015 |
|
✗ |
IF (accompli(i)) THEN |
| 1016 |
|
✗ |
DO k = 1, klev |
| 1017 |
|
✗ |
IF (rneb(i,k)>0.0) THEN |
| 1018 |
|
✗ |
ibas(i) = k |
| 1019 |
|
✗ |
GO TO 807 |
| 1020 |
|
|
END IF |
| 1021 |
|
|
END DO |
| 1022 |
|
|
807 CONTINUE |
| 1023 |
|
✗ |
DO k = klev, 1, -1 |
| 1024 |
|
✗ |
IF (rneb(i,k)>0.0) THEN |
| 1025 |
|
✗ |
itop(i) = k |
| 1026 |
|
✗ |
GO TO 808 |
| 1027 |
|
|
END IF |
| 1028 |
|
|
END DO |
| 1029 |
|
|
808 CONTINUE |
| 1030 |
|
|
END IF |
| 1031 |
|
|
END DO |
| 1032 |
|
|
|
| 1033 |
|
✗ |
IF (imprim) THEN |
| 1034 |
|
✗ |
nbtodo = 0 |
| 1035 |
|
✗ |
nbdone = 0 |
| 1036 |
|
✗ |
DO i = 1, klon |
| 1037 |
|
✗ |
IF (afaire(i)) nbtodo = nbtodo + 1 |
| 1038 |
|
✗ |
IF (accompli(i)) nbdone = nbdone + 1 |
| 1039 |
|
|
END DO |
| 1040 |
|
✗ |
PRINT *, 'nbTodo, nbDone=', nbtodo, nbdone |
| 1041 |
|
|
END IF |
| 1042 |
|
|
|
| 1043 |
|
✗ |
RETURN |
| 1044 |
|
|
END SUBROUTINE conmanv |
| 1045 |
|
✗ |
SUBROUTINE conkuo(dtime, paprs, pplay, t, q, conv_q, d_t, d_q, d_ql, rneb, & |
| 1046 |
|
✗ |
rain, snow, ibas, itop) |
| 1047 |
|
✗ |
USE dimphy |
| 1048 |
|
|
IMPLICIT NONE |
| 1049 |
|
|
! ====================================================================== |
| 1050 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
| 1051 |
|
|
! Objet: Schema de convection de type Kuo (1965). |
| 1052 |
|
|
! Cette version du code peut calculer le niveau de depart |
| 1053 |
|
|
! N.B. version vectorielle (le 6 oct. 1997) |
| 1054 |
|
|
! ====================================================================== |
| 1055 |
|
|
include "YOMCST.h" |
| 1056 |
|
|
|
| 1057 |
|
|
! Arguments: |
| 1058 |
|
|
|
| 1059 |
|
|
REAL dtime ! intervalle du temps (s) |
| 1060 |
|
|
REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) |
| 1061 |
|
|
REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
| 1062 |
|
|
REAL t(klon, klev) ! temperature (K) |
| 1063 |
|
|
REAL q(klon, klev) ! humidite specifique |
| 1064 |
|
|
REAL conv_q(klon, klev) ! taux de convergence humidite (g/g/s) |
| 1065 |
|
|
|
| 1066 |
|
|
REAL d_t(klon, klev) ! incrementation temperature |
| 1067 |
|
|
REAL d_q(klon, klev) ! incrementation humidite |
| 1068 |
|
|
REAL d_ql(klon, klev) ! incrementation eau liquide |
| 1069 |
|
|
REAL rneb(klon, klev) ! nebulosite |
| 1070 |
|
|
REAL rain(klon) ! pluies (mm/s) |
| 1071 |
|
|
REAL snow(klon) ! neige (mm/s) |
| 1072 |
|
|
INTEGER itop(klon) ! niveau du sommet |
| 1073 |
|
|
INTEGER ibas(klon) ! niveau du bas |
| 1074 |
|
|
|
| 1075 |
|
✗ |
LOGICAL ldcum(klon) ! convection existe |
| 1076 |
|
✗ |
LOGICAL todo(klon) |
| 1077 |
|
|
|
| 1078 |
|
|
! Quelsques options: |
| 1079 |
|
|
|
| 1080 |
|
|
LOGICAL calcfcl ! calculer le niveau de convection libre |
| 1081 |
|
|
PARAMETER (calcfcl=.TRUE.) |
| 1082 |
|
|
INTEGER ldepar ! niveau fixe de convection libre |
| 1083 |
|
|
PARAMETER (ldepar=4) |
| 1084 |
|
|
INTEGER opt_cld ! comment traiter l'eau liquide |
| 1085 |
|
|
PARAMETER (opt_cld=4) ! valeur possible: 0, 1, 2, 3 ou 4 |
| 1086 |
|
|
LOGICAL evap_prec ! evaporation de pluie au-dessous de convection |
| 1087 |
|
|
PARAMETER (evap_prec=.TRUE.) |
| 1088 |
|
|
REAL coef_eva |
| 1089 |
|
|
PARAMETER (coef_eva=1.0E-05) |
| 1090 |
|
|
LOGICAL new_deh ! nouvelle facon de calculer dH |
| 1091 |
|
|
PARAMETER (new_deh=.FALSE.) |
| 1092 |
|
|
REAL t_coup |
| 1093 |
|
|
PARAMETER (t_coup=234.0) |
| 1094 |
|
|
LOGICAL old_tau ! implique precipitation nulle |
| 1095 |
|
|
PARAMETER (old_tau=.FALSE.) |
| 1096 |
|
✗ |
REAL toliq(klon) ! rapport entre l'eau nuageuse et l'eau precipitante |
| 1097 |
|
|
REAL dpmin, tomax !Epaisseur faible, rapport eau liquide plus grande |
| 1098 |
|
|
PARAMETER (dpmin=0.15, tomax=0.97) |
| 1099 |
|
|
REAL dpmax, tomin !Epaisseur grande, rapport eau liquide plus faible |
| 1100 |
|
|
PARAMETER (dpmax=0.30, tomin=0.05) |
| 1101 |
|
|
REAL deep_sig, deep_to ! au dela de deep_sig, utiliser deep_to |
| 1102 |
|
|
PARAMETER (deep_sig=0.50, deep_to=0.05) |
| 1103 |
|
|
|
| 1104 |
|
|
! Variables locales: |
| 1105 |
|
|
|
| 1106 |
|
|
INTEGER nexpo |
| 1107 |
|
✗ |
LOGICAL nuage(klon) |
| 1108 |
|
|
INTEGER i, k, kbmin, kbmax, khmax |
| 1109 |
|
✗ |
REAL ztotal(klon, klev), zdeh(klon, klev) |
| 1110 |
|
✗ |
REAL zgz(klon, klev) |
| 1111 |
|
✗ |
REAL zqs(klon, klev) |
| 1112 |
|
✗ |
REAL zdqs(klon, klev) |
| 1113 |
|
✗ |
REAL ztemp(klon, klev) |
| 1114 |
|
✗ |
REAL zpres(klon, klev) |
| 1115 |
|
✗ |
REAL zconv(klon) ! convergence d'humidite |
| 1116 |
|
✗ |
REAL zvirt(klon) ! convergence virtuelle d'humidite |
| 1117 |
|
✗ |
REAL zfrac(klon) ! fraction convective |
| 1118 |
|
✗ |
INTEGER kb(klon), kh(klon) |
| 1119 |
|
|
|
| 1120 |
|
✗ |
REAL zcond(klon), zvapo(klon), zrapp(klon) |
| 1121 |
|
✗ |
REAL zrfl(klon), zrfln, zqev, zqevt |
| 1122 |
|
|
REAL zdelta, zcvm5, zcor |
| 1123 |
|
|
REAL zvar |
| 1124 |
|
|
|
| 1125 |
|
|
LOGICAL appel1er |
| 1126 |
|
|
SAVE appel1er |
| 1127 |
|
|
!$OMP THREADPRIVATE(appel1er) |
| 1128 |
|
|
|
| 1129 |
|
|
! Fonctions thermodynamiques |
| 1130 |
|
|
|
| 1131 |
|
|
include "YOETHF.h" |
| 1132 |
|
|
include "FCTTRE.h" |
| 1133 |
|
|
|
| 1134 |
|
|
DATA appel1er/.TRUE./ |
| 1135 |
|
|
|
| 1136 |
|
✗ |
IF (appel1er) THEN |
| 1137 |
|
✗ |
PRINT *, 'conkuo, calcfcl:', calcfcl |
| 1138 |
|
|
IF (.NOT. calcfcl) PRINT *, 'conkuo, ldepar:', ldepar |
| 1139 |
|
✗ |
PRINT *, 'conkuo, opt_cld:', opt_cld |
| 1140 |
|
✗ |
PRINT *, 'conkuo, evap_prec:', evap_prec |
| 1141 |
|
✗ |
PRINT *, 'conkuo, new_deh:', new_deh |
| 1142 |
|
✗ |
appel1er = .FALSE. |
| 1143 |
|
|
END IF |
| 1144 |
|
|
|
| 1145 |
|
|
! Initialiser les sorties a zero |
| 1146 |
|
|
|
| 1147 |
|
✗ |
DO k = 1, klev |
| 1148 |
|
✗ |
DO i = 1, klon |
| 1149 |
|
✗ |
d_q(i, k) = 0.0 |
| 1150 |
|
✗ |
d_t(i, k) = 0.0 |
| 1151 |
|
✗ |
d_ql(i, k) = 0.0 |
| 1152 |
|
✗ |
rneb(i, k) = 0.0 |
| 1153 |
|
|
END DO |
| 1154 |
|
|
END DO |
| 1155 |
|
✗ |
DO i = 1, klon |
| 1156 |
|
✗ |
rain(i) = 0.0 |
| 1157 |
|
✗ |
snow(i) = 0.0 |
| 1158 |
|
✗ |
ibas(i) = 0 |
| 1159 |
|
✗ |
itop(i) = 0 |
| 1160 |
|
|
END DO |
| 1161 |
|
|
|
| 1162 |
|
|
! Calculer la vapeur d'eau saturante Qs et sa derive L/Cp * dQs/dT |
| 1163 |
|
|
|
| 1164 |
|
✗ |
DO k = 1, klev |
| 1165 |
|
✗ |
DO i = 1, klon |
| 1166 |
|
✗ |
IF (thermcep) THEN |
| 1167 |
|
✗ |
zdelta = max(0., sign(1.,rtt-t(i,k))) |
| 1168 |
|
✗ |
zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
| 1169 |
|
✗ |
zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*q(i,k)) |
| 1170 |
|
✗ |
zqs(i, k) = r2es*foeew(t(i,k), zdelta)/pplay(i, k) |
| 1171 |
|
✗ |
zqs(i, k) = min(0.5, zqs(i,k)) |
| 1172 |
|
✗ |
zcor = 1./(1.-retv*zqs(i,k)) |
| 1173 |
|
✗ |
zqs(i, k) = zqs(i, k)*zcor |
| 1174 |
|
✗ |
zdqs(i, k) = foede(t(i,k), zdelta, zcvm5, zqs(i,k), zcor) |
| 1175 |
|
|
ELSE |
| 1176 |
|
|
IF (t(i,k)<t_coup) THEN |
| 1177 |
|
|
zqs(i, k) = qsats(t(i,k))/pplay(i, k) |
| 1178 |
|
|
zdqs(i, k) = dqsats(t(i,k), zqs(i,k)) |
| 1179 |
|
|
ELSE |
| 1180 |
|
|
zqs(i, k) = qsatl(t(i,k))/pplay(i, k) |
| 1181 |
|
|
zdqs(i, k) = dqsatl(t(i,k), zqs(i,k)) |
| 1182 |
|
|
END IF |
| 1183 |
|
|
END IF |
| 1184 |
|
|
END DO |
| 1185 |
|
|
END DO |
| 1186 |
|
|
|
| 1187 |
|
|
! Calculer gz (energie potentielle) |
| 1188 |
|
|
|
| 1189 |
|
✗ |
DO i = 1, klon |
| 1190 |
|
|
zgz(i, 1) = rd*t(i, 1)/(0.5*(paprs(i,1)+pplay(i, & |
| 1191 |
|
✗ |
1)))*(paprs(i,1)-pplay(i,1)) |
| 1192 |
|
|
END DO |
| 1193 |
|
✗ |
DO k = 2, klev |
| 1194 |
|
✗ |
DO i = 1, klon |
| 1195 |
|
|
zgz(i, k) = zgz(i, k-1) + rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)*(pplay(i & |
| 1196 |
|
✗ |
,k-1)-pplay(i,k)) |
| 1197 |
|
|
END DO |
| 1198 |
|
|
END DO |
| 1199 |
|
|
|
| 1200 |
|
|
! Calculer l'energie statique humide saturee (Cp*T + gz + L*Qs) |
| 1201 |
|
|
|
| 1202 |
|
✗ |
DO k = 1, klev |
| 1203 |
|
✗ |
DO i = 1, klon |
| 1204 |
|
✗ |
ztotal(i, k) = rcpd*t(i, k) + rlvtt*zqs(i, k) + zgz(i, k) |
| 1205 |
|
|
END DO |
| 1206 |
|
|
END DO |
| 1207 |
|
|
|
| 1208 |
|
|
! Determiner le niveau de depart et calculer la difference de |
| 1209 |
|
|
! l'energie statique humide saturee (ztotal) entre la couche |
| 1210 |
|
|
! de depart et chaque couche au-dessus. |
| 1211 |
|
|
|
| 1212 |
|
|
IF (calcfcl) THEN |
| 1213 |
|
✗ |
DO k = 1, klev |
| 1214 |
|
✗ |
DO i = 1, klon |
| 1215 |
|
✗ |
zpres(i, k) = pplay(i, k) |
| 1216 |
|
✗ |
ztemp(i, k) = t(i, k) |
| 1217 |
|
|
END DO |
| 1218 |
|
|
END DO |
| 1219 |
|
✗ |
CALL kuofcl(ztemp, q, zgz, zpres, ldcum, kb) |
| 1220 |
|
✗ |
DO i = 1, klon |
| 1221 |
|
✗ |
IF (ldcum(i)) THEN |
| 1222 |
|
✗ |
k = kb(i) |
| 1223 |
|
|
IF (new_deh) THEN |
| 1224 |
|
|
zdeh(i, k) = ztotal(i, k-1) - ztotal(i, k) |
| 1225 |
|
|
ELSE |
| 1226 |
|
|
zdeh(i, k) = rcpd*(t(i,k-1)-t(i,k)) - rd*0.5*(t(i,k-1)+t(i,k))/ & |
| 1227 |
|
|
paprs(i, k)*(pplay(i,k-1)-pplay(i,k)) + & |
| 1228 |
|
✗ |
rlvtt*(zqs(i,k-1)-zqs(i,k)) |
| 1229 |
|
|
END IF |
| 1230 |
|
✗ |
zdeh(i, k) = zdeh(i, k)*0.5 |
| 1231 |
|
|
END IF |
| 1232 |
|
|
END DO |
| 1233 |
|
✗ |
DO k = 1, klev |
| 1234 |
|
✗ |
DO i = 1, klon |
| 1235 |
|
✗ |
IF (ldcum(i) .AND. k>=(kb(i)+1)) THEN |
| 1236 |
|
✗ |
IF (new_deh) THEN |
| 1237 |
|
|
zdeh(i, k) = zdeh(i, k-1) + (ztotal(i,k-1)-ztotal(i,k)) |
| 1238 |
|
|
ELSE |
| 1239 |
|
|
zdeh(i, k) = zdeh(i, k-1) + rcpd*(t(i,k-1)-t(i,k)) - & |
| 1240 |
|
|
rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)* & |
| 1241 |
|
✗ |
(pplay(i,k-1)-pplay(i,k)) + rlvtt*(zqs(i,k-1)-zqs(i,k)) |
| 1242 |
|
|
END IF |
| 1243 |
|
|
END IF |
| 1244 |
|
|
END DO |
| 1245 |
|
|
END DO |
| 1246 |
|
|
ELSE |
| 1247 |
|
|
DO i = 1, klon |
| 1248 |
|
|
k = ldepar |
| 1249 |
|
|
kb(i) = ldepar |
| 1250 |
|
|
ldcum(i) = .TRUE. |
| 1251 |
|
|
IF (new_deh) THEN |
| 1252 |
|
|
zdeh(i, k) = ztotal(i, k-1) - ztotal(i, k) |
| 1253 |
|
|
ELSE |
| 1254 |
|
|
zdeh(i, k) = rcpd*(t(i,k-1)-t(i,k)) - rd*0.5*(t(i,k-1)+t(i,k))/paprs( & |
| 1255 |
|
|
i, k)*(pplay(i,k-1)-pplay(i,k)) + rlvtt*(zqs(i,k-1)-zqs(i,k)) |
| 1256 |
|
|
END IF |
| 1257 |
|
|
zdeh(i, k) = zdeh(i, k)*0.5 |
| 1258 |
|
|
END DO |
| 1259 |
|
|
DO k = ldepar + 1, klev |
| 1260 |
|
|
DO i = 1, klon |
| 1261 |
|
|
IF (new_deh) THEN |
| 1262 |
|
|
zdeh(i, k) = zdeh(i, k-1) + (ztotal(i,k-1)-ztotal(i,k)) |
| 1263 |
|
|
ELSE |
| 1264 |
|
|
zdeh(i, k) = zdeh(i, k-1) + rcpd*(t(i,k-1)-t(i,k)) - & |
| 1265 |
|
|
rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)*(pplay(i,k-1)-pplay(i,k)) + & |
| 1266 |
|
|
rlvtt*(zqs(i,k-1)-zqs(i,k)) |
| 1267 |
|
|
END IF |
| 1268 |
|
|
END DO |
| 1269 |
|
|
END DO |
| 1270 |
|
|
END IF |
| 1271 |
|
|
|
| 1272 |
|
|
! -----Chercher le sommet du nuage |
| 1273 |
|
|
! -----Calculer la convergence de l'humidite (en kg/m**2 a un facteur |
| 1274 |
|
|
! -----psolpa/RG pres) du bas jusqu'au sommet du nuage. |
| 1275 |
|
|
! -----Calculer la convergence virtuelle pour que toute la maille |
| 1276 |
|
|
! -----deviennt nuageuse (du bas jusqu'au sommet du nuage) |
| 1277 |
|
|
|
| 1278 |
|
✗ |
DO i = 1, klon |
| 1279 |
|
✗ |
nuage(i) = .TRUE. |
| 1280 |
|
✗ |
zconv(i) = 0.0 |
| 1281 |
|
✗ |
zvirt(i) = 0.0 |
| 1282 |
|
✗ |
kh(i) = -999 |
| 1283 |
|
|
END DO |
| 1284 |
|
✗ |
DO k = 1, klev |
| 1285 |
|
✗ |
DO i = 1, klon |
| 1286 |
|
✗ |
IF (k>=kb(i) .AND. ldcum(i)) THEN |
| 1287 |
|
✗ |
nuage(i) = nuage(i) .AND. zdeh(i, k) > 0.0 |
| 1288 |
|
✗ |
IF (nuage(i)) THEN |
| 1289 |
|
✗ |
kh(i) = k |
| 1290 |
|
✗ |
zconv(i) = zconv(i) + conv_q(i, k)*dtime*(paprs(i,k)-paprs(i,k+1)) |
| 1291 |
|
|
zvirt(i) = zvirt(i) + (zdeh(i,k)/rlvtt+zqs(i,k)-q(i,k))*(paprs(i,k) & |
| 1292 |
|
✗ |
-paprs(i,k+1)) |
| 1293 |
|
|
END IF |
| 1294 |
|
|
END IF |
| 1295 |
|
|
END DO |
| 1296 |
|
|
END DO |
| 1297 |
|
|
|
| 1298 |
|
✗ |
DO i = 1, klon |
| 1299 |
|
✗ |
todo(i) = ldcum(i) .AND. kh(i) > kb(i) .AND. zconv(i) > 0.0 |
| 1300 |
|
|
END DO |
| 1301 |
|
|
|
| 1302 |
|
|
kbmin = klev |
| 1303 |
|
|
kbmax = 0 |
| 1304 |
|
|
khmax = 0 |
| 1305 |
|
✗ |
DO i = 1, klon |
| 1306 |
|
✗ |
IF (todo(i)) THEN |
| 1307 |
|
✗ |
kbmin = min(kbmin, kb(i)) |
| 1308 |
|
✗ |
kbmax = max(kbmax, kb(i)) |
| 1309 |
|
✗ |
khmax = max(khmax, kh(i)) |
| 1310 |
|
|
END IF |
| 1311 |
|
|
END DO |
| 1312 |
|
|
|
| 1313 |
|
|
! -----Calculer la surface couverte par le nuage |
| 1314 |
|
|
|
| 1315 |
|
✗ |
DO i = 1, klon |
| 1316 |
|
✗ |
IF (todo(i)) THEN |
| 1317 |
|
✗ |
zfrac(i) = max(0.0, min(zconv(i)/zvirt(i),1.0)) |
| 1318 |
|
|
END IF |
| 1319 |
|
|
END DO |
| 1320 |
|
|
|
| 1321 |
|
|
! -----Calculs essentiels: |
| 1322 |
|
|
|
| 1323 |
|
✗ |
DO i = 1, klon |
| 1324 |
|
✗ |
IF (todo(i)) THEN |
| 1325 |
|
✗ |
zcond(i) = 0.0 |
| 1326 |
|
|
END IF |
| 1327 |
|
|
END DO |
| 1328 |
|
✗ |
DO k = kbmin, khmax |
| 1329 |
|
✗ |
DO i = 1, klon |
| 1330 |
|
✗ |
IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i)) THEN |
| 1331 |
|
✗ |
zvar = zdeh(i, k)/(1.+zdqs(i,k)) |
| 1332 |
|
✗ |
d_t(i, k) = zvar*zfrac(i)/rcpd |
| 1333 |
|
|
d_q(i, k) = (zvar*zdqs(i,k)/rlvtt+zqs(i,k)-q(i,k))*zfrac(i) - & |
| 1334 |
|
✗ |
conv_q(i, k)*dtime |
| 1335 |
|
✗ |
zcond(i) = zcond(i) - d_q(i, k)*(paprs(i,k)-paprs(i,k+1))/rg |
| 1336 |
|
✗ |
rneb(i, k) = zfrac(i) |
| 1337 |
|
|
END IF |
| 1338 |
|
|
END DO |
| 1339 |
|
|
END DO |
| 1340 |
|
|
|
| 1341 |
|
✗ |
DO i = 1, klon |
| 1342 |
|
✗ |
IF (todo(i) .AND. zcond(i)<0.0) THEN |
| 1343 |
|
✗ |
PRINT *, 'WARNING: cond. negative (Kuo) ', i, kb(i), kh(i), zcond(i) |
| 1344 |
|
✗ |
zcond(i) = 0.0 |
| 1345 |
|
✗ |
DO k = kb(i), kh(i) |
| 1346 |
|
✗ |
d_t(i, k) = 0.0 |
| 1347 |
|
✗ |
d_q(i, k) = 0.0 |
| 1348 |
|
|
END DO |
| 1349 |
|
✗ |
todo(i) = .FALSE. ! effort totalement perdu |
| 1350 |
|
|
END IF |
| 1351 |
|
|
END DO |
| 1352 |
|
|
|
| 1353 |
|
|
! ===== |
| 1354 |
|
|
! Une fois que la condensation a lieu, on doit construire un |
| 1355 |
|
|
! "modele nuageux" pour partager la condensation entre l'eau |
| 1356 |
|
|
! liquide nuageuse et la precipitation (leur rapport toliq |
| 1357 |
|
|
! est calcule selon l'epaisseur nuageuse). Je suppose que |
| 1358 |
|
|
! toliq=tomax quand l'epaisseur nuageuse est inferieure a dpmin, |
| 1359 |
|
|
! et que toliq=tomin quand l'epaisseur depasse dpmax (interpolation |
| 1360 |
|
|
! lineaire entre dpmin et dpmax). |
| 1361 |
|
|
! ===== |
| 1362 |
|
✗ |
DO i = 1, klon |
| 1363 |
|
✗ |
IF (todo(i)) THEN |
| 1364 |
|
|
toliq(i) = tomax - ((paprs(i,kb(i))-paprs(i,kh(i)+1))/paprs(i,1)-dpmin) & |
| 1365 |
|
✗ |
*(tomax-tomin)/(dpmax-dpmin) |
| 1366 |
|
✗ |
toliq(i) = max(tomin, min(tomax,toliq(i))) |
| 1367 |
|
✗ |
IF (pplay(i,kh(i))/paprs(i,1)<=deep_sig) toliq(i) = deep_to |
| 1368 |
|
|
IF (old_tau) toliq(i) = 1.0 |
| 1369 |
|
|
END IF |
| 1370 |
|
|
END DO |
| 1371 |
|
|
! ===== |
| 1372 |
|
|
! On doit aussi determiner la distribution verticale de |
| 1373 |
|
|
! l'eau nuageuse. Plusieurs options sont proposees: |
| 1374 |
|
|
|
| 1375 |
|
|
! (0) La condensation precipite integralement (toliq ne sera |
| 1376 |
|
|
! pas utilise). |
| 1377 |
|
|
! (1) L'eau liquide est distribuee entre k1 et k2 et proportionnelle |
| 1378 |
|
|
! a la vapeur d'eau locale. |
| 1379 |
|
|
! (2) Elle est distribuee entre k1 et k2 avec une valeur constante. |
| 1380 |
|
|
! (3) Elle est seulement distribuee aux couches ou la vapeur d'eau |
| 1381 |
|
|
! est effectivement diminuee pendant le processus d'ajustement. |
| 1382 |
|
|
! (4) Elle est en fonction (lineaire ou exponentielle) de la |
| 1383 |
|
|
! distance (epaisseur en pression) avec le niveau k1 (la couche |
| 1384 |
|
|
! k1 n'aura donc pas d'eau liquide). |
| 1385 |
|
|
! ===== |
| 1386 |
|
|
|
| 1387 |
|
|
IF (opt_cld==0) THEN |
| 1388 |
|
|
|
| 1389 |
|
|
DO i = 1, klon |
| 1390 |
|
|
IF (todo(i)) zrfl(i) = zcond(i)/dtime |
| 1391 |
|
|
END DO |
| 1392 |
|
|
|
| 1393 |
|
|
ELSE IF (opt_cld==1) THEN |
| 1394 |
|
|
|
| 1395 |
|
|
DO i = 1, klon |
| 1396 |
|
|
IF (todo(i)) zvapo(i) = 0.0 ! quantite integrale de vapeur d'eau |
| 1397 |
|
|
END DO |
| 1398 |
|
|
DO k = kbmin, khmax |
| 1399 |
|
|
DO i = 1, klon |
| 1400 |
|
|
IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i)) THEN |
| 1401 |
|
|
zvapo(i) = zvapo(i) + (q(i,k)+d_q(i,k))*(paprs(i,k)-paprs(i,k+1))/ & |
| 1402 |
|
|
rg |
| 1403 |
|
|
END IF |
| 1404 |
|
|
END DO |
| 1405 |
|
|
END DO |
| 1406 |
|
|
DO i = 1, klon |
| 1407 |
|
|
IF (todo(i)) THEN |
| 1408 |
|
|
zrapp(i) = toliq(i)*zcond(i)/zvapo(i) |
| 1409 |
|
|
zrapp(i) = max(0., min(1.,zrapp(i))) |
| 1410 |
|
|
END IF |
| 1411 |
|
|
END DO |
| 1412 |
|
|
DO k = kbmin, khmax |
| 1413 |
|
|
DO i = 1, klon |
| 1414 |
|
|
IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i)) THEN |
| 1415 |
|
|
d_ql(i, k) = zrapp(i)*(q(i,k)+d_q(i,k)) |
| 1416 |
|
|
END IF |
| 1417 |
|
|
END DO |
| 1418 |
|
|
END DO |
| 1419 |
|
|
DO i = 1, klon |
| 1420 |
|
|
IF (todo(i)) THEN |
| 1421 |
|
|
zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
| 1422 |
|
|
END IF |
| 1423 |
|
|
END DO |
| 1424 |
|
|
|
| 1425 |
|
|
ELSE IF (opt_cld==2) THEN |
| 1426 |
|
|
|
| 1427 |
|
|
DO i = 1, klon |
| 1428 |
|
|
IF (todo(i)) zvapo(i) = 0.0 ! quantite integrale de masse |
| 1429 |
|
|
END DO |
| 1430 |
|
|
DO k = kbmin, khmax |
| 1431 |
|
|
DO i = 1, klon |
| 1432 |
|
|
IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i)) THEN |
| 1433 |
|
|
zvapo(i) = zvapo(i) + (paprs(i,k)-paprs(i,k+1))/rg |
| 1434 |
|
|
END IF |
| 1435 |
|
|
END DO |
| 1436 |
|
|
END DO |
| 1437 |
|
|
DO k = kbmin, khmax |
| 1438 |
|
|
DO i = 1, klon |
| 1439 |
|
|
IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i)) THEN |
| 1440 |
|
|
d_ql(i, k) = toliq(i)*zcond(i)/zvapo(i) |
| 1441 |
|
|
END IF |
| 1442 |
|
|
END DO |
| 1443 |
|
|
END DO |
| 1444 |
|
|
DO i = 1, klon |
| 1445 |
|
|
IF (todo(i)) THEN |
| 1446 |
|
|
zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
| 1447 |
|
|
END IF |
| 1448 |
|
|
END DO |
| 1449 |
|
|
|
| 1450 |
|
|
ELSE IF (opt_cld==3) THEN |
| 1451 |
|
|
|
| 1452 |
|
|
DO i = 1, klon |
| 1453 |
|
|
IF (todo(i)) THEN |
| 1454 |
|
|
zvapo(i) = 0.0 ! quantite de l'eau strictement condensee |
| 1455 |
|
|
END IF |
| 1456 |
|
|
END DO |
| 1457 |
|
|
DO k = kbmin, khmax |
| 1458 |
|
|
DO i = 1, klon |
| 1459 |
|
|
IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i)) THEN |
| 1460 |
|
|
zvapo(i) = zvapo(i) + max(0.0, -d_q(i,k))*(paprs(i,k)-paprs(i,k+1)) & |
| 1461 |
|
|
/rg |
| 1462 |
|
|
END IF |
| 1463 |
|
|
END DO |
| 1464 |
|
|
END DO |
| 1465 |
|
|
DO k = kbmin, khmax |
| 1466 |
|
|
DO i = 1, klon |
| 1467 |
|
|
IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i) .AND. zvapo(i)>0.0) THEN |
| 1468 |
|
|
d_ql(i, k) = d_ql(i, k) + toliq(i)*zcond(i)/zvapo(i)*max(0.0, -d_q( & |
| 1469 |
|
|
i,k)) |
| 1470 |
|
|
END IF |
| 1471 |
|
|
END DO |
| 1472 |
|
|
END DO |
| 1473 |
|
|
DO i = 1, klon |
| 1474 |
|
|
IF (todo(i)) THEN |
| 1475 |
|
|
zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
| 1476 |
|
|
END IF |
| 1477 |
|
|
END DO |
| 1478 |
|
|
|
| 1479 |
|
|
ELSE IF (opt_cld==4) THEN |
| 1480 |
|
|
|
| 1481 |
|
|
nexpo = 3 |
| 1482 |
|
|
! cc nexpo = 1 ! distribution lineaire |
| 1483 |
|
|
|
| 1484 |
|
✗ |
DO i = 1, klon |
| 1485 |
|
✗ |
IF (todo(i)) THEN |
| 1486 |
|
✗ |
zvapo(i) = 0.0 ! quantite integrale de masse (avec ponderation) |
| 1487 |
|
|
END IF |
| 1488 |
|
|
END DO |
| 1489 |
|
✗ |
DO k = kbmin, khmax |
| 1490 |
|
✗ |
DO i = 1, klon |
| 1491 |
|
✗ |
IF (todo(i) .AND. k>=(kb(i)+1) .AND. k<=kh(i)) THEN |
| 1492 |
|
|
zvapo(i) = zvapo(i) + (paprs(i,k)-paprs(i,k+1))/rg*(pplay(i,kb(i))- & |
| 1493 |
|
✗ |
pplay(i,k))**nexpo |
| 1494 |
|
|
END IF |
| 1495 |
|
|
END DO |
| 1496 |
|
|
END DO |
| 1497 |
|
✗ |
DO k = kbmin, khmax |
| 1498 |
|
✗ |
DO i = 1, klon |
| 1499 |
|
✗ |
IF (todo(i) .AND. k>=(kb(i)+1) .AND. k<=kh(i)) THEN |
| 1500 |
|
|
d_ql(i, k) = d_ql(i, k) + toliq(i)*zcond(i)/zvapo(i)*(pplay(i,kb(i) & |
| 1501 |
|
✗ |
)-pplay(i,k))**nexpo |
| 1502 |
|
|
END IF |
| 1503 |
|
|
END DO |
| 1504 |
|
|
END DO |
| 1505 |
|
✗ |
DO i = 1, klon |
| 1506 |
|
✗ |
IF (todo(i)) THEN |
| 1507 |
|
✗ |
zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
| 1508 |
|
|
END IF |
| 1509 |
|
|
END DO |
| 1510 |
|
|
|
| 1511 |
|
|
ELSE ! valeur non-prevue pour opt_cld |
| 1512 |
|
|
|
| 1513 |
|
|
PRINT *, 'opt_cld est faux:', opt_cld |
| 1514 |
|
|
CALL abort |
| 1515 |
|
|
|
| 1516 |
|
|
END IF ! fin de opt_cld |
| 1517 |
|
|
|
| 1518 |
|
|
! L'eau precipitante peut etre re-evaporee: |
| 1519 |
|
|
|
| 1520 |
|
✗ |
IF (evap_prec .AND. kbmax>=2) THEN |
| 1521 |
|
✗ |
DO k = kbmax, 1, -1 |
| 1522 |
|
✗ |
DO i = 1, klon |
| 1523 |
|
✗ |
IF (todo(i) .AND. k<=(kb(i)-1) .AND. zrfl(i)>0.0) THEN |
| 1524 |
|
✗ |
zqev = max(0.0, (zqs(i,k)-q(i,k))*zfrac(i)) |
| 1525 |
|
|
zqevt = coef_eva*(1.0-q(i,k)/zqs(i,k))*sqrt(zrfl(i))* & |
| 1526 |
|
✗ |
(paprs(i,k)-paprs(i,k+1))/pplay(i, k)*t(i, k)*rd/rg |
| 1527 |
|
|
zqevt = max(0.0, min(zqevt,zrfl(i)))*rg*dtime/ & |
| 1528 |
|
✗ |
(paprs(i,k)-paprs(i,k+1)) |
| 1529 |
|
✗ |
zqev = min(zqev, zqevt) |
| 1530 |
|
✗ |
zrfln = zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1))/rg/dtime |
| 1531 |
|
✗ |
d_q(i, k) = -(zrfln-zrfl(i))*(rg/(paprs(i,k)-paprs(i,k+1)))*dtime |
| 1532 |
|
|
d_t(i, k) = (zrfln-zrfl(i))*(rg/(paprs(i,k)-paprs(i, & |
| 1533 |
|
✗ |
k+1)))*dtime*rlvtt/rcpd |
| 1534 |
|
✗ |
zrfl(i) = zrfln |
| 1535 |
|
|
END IF |
| 1536 |
|
|
END DO |
| 1537 |
|
|
END DO |
| 1538 |
|
|
END IF |
| 1539 |
|
|
|
| 1540 |
|
|
! La temperature de la premiere couche determine la pluie ou la neige: |
| 1541 |
|
|
|
| 1542 |
|
✗ |
DO i = 1, klon |
| 1543 |
|
✗ |
IF (todo(i)) THEN |
| 1544 |
|
✗ |
IF (t(i,1)>rtt) THEN |
| 1545 |
|
✗ |
rain(i) = rain(i) + zrfl(i) |
| 1546 |
|
|
ELSE |
| 1547 |
|
✗ |
snow(i) = snow(i) + zrfl(i) |
| 1548 |
|
|
END IF |
| 1549 |
|
|
END IF |
| 1550 |
|
|
END DO |
| 1551 |
|
|
|
| 1552 |
|
✗ |
RETURN |
| 1553 |
|
|
END SUBROUTINE conkuo |
| 1554 |
|
✗ |
SUBROUTINE kuofcl(pt, pq, pg, pp, ldcum, kcbot) |
| 1555 |
|
✗ |
USE dimphy |
| 1556 |
|
|
IMPLICIT NONE |
| 1557 |
|
|
! ====================================================================== |
| 1558 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) date: 19940927 |
| 1559 |
|
|
! adaptation du code de Tiedtke du ECMWF |
| 1560 |
|
|
! Objet: calculer le niveau de convection libre |
| 1561 |
|
|
! (FCL: Free Convection Level) |
| 1562 |
|
|
! ====================================================================== |
| 1563 |
|
|
! Arguments: |
| 1564 |
|
|
! pt---input-R- temperature (K) |
| 1565 |
|
|
! pq---input-R- vapeur d'eau (kg/kg) |
| 1566 |
|
|
! pg---input-R- geopotentiel (g*z ou z est en metre) |
| 1567 |
|
|
! pp---input-R- pression (Pa) |
| 1568 |
|
|
|
| 1569 |
|
|
! LDCUM---output-L- Y-t-il la convection |
| 1570 |
|
|
! kcbot---output-I- Niveau du bas de la convection |
| 1571 |
|
|
! ====================================================================== |
| 1572 |
|
|
include "YOMCST.h" |
| 1573 |
|
|
include "YOETHF.h" |
| 1574 |
|
|
|
| 1575 |
|
|
REAL pt(klon, klev), pq(klon, klev), pg(klon, klev), pp(klon, klev) |
| 1576 |
|
|
INTEGER kcbot(klon) |
| 1577 |
|
|
LOGICAL ldcum(klon) |
| 1578 |
|
|
|
| 1579 |
|
✗ |
REAL ztu(klon, klev), zqu(klon, klev), zlu(klon, klev) |
| 1580 |
|
✗ |
REAL zqold(klon), zbuo |
| 1581 |
|
|
INTEGER is, i, k |
| 1582 |
|
|
|
| 1583 |
|
|
! klab=1: on est sous le nuage convectif |
| 1584 |
|
|
! klab=2: le bas du nuage convectif |
| 1585 |
|
|
! klab=0: autres couches |
| 1586 |
|
✗ |
INTEGER klab(klon, klev) |
| 1587 |
|
|
|
| 1588 |
|
|
! quand lflag=.true., on est sous le nuage, il faut donc appliquer |
| 1589 |
|
|
! le processus d'elevation. |
| 1590 |
|
✗ |
LOGICAL lflag(klon) |
| 1591 |
|
|
|
| 1592 |
|
✗ |
DO k = 1, klev |
| 1593 |
|
✗ |
DO i = 1, klon |
| 1594 |
|
✗ |
ztu(i, k) = pt(i, k) |
| 1595 |
|
✗ |
zqu(i, k) = pq(i, k) |
| 1596 |
|
✗ |
zlu(i, k) = 0.0 |
| 1597 |
|
✗ |
klab(i, k) = 0 |
| 1598 |
|
|
END DO |
| 1599 |
|
|
END DO |
| 1600 |
|
|
! ---------------------------------------------------------------------- |
| 1601 |
|
✗ |
DO i = 1, klon |
| 1602 |
|
✗ |
klab(i, 1) = 1 |
| 1603 |
|
✗ |
kcbot(i) = 2 |
| 1604 |
|
✗ |
ldcum(i) = .FALSE. |
| 1605 |
|
|
END DO |
| 1606 |
|
|
|
| 1607 |
|
✗ |
DO k = 2, klev - 1 |
| 1608 |
|
|
|
| 1609 |
|
|
is = 0 |
| 1610 |
|
✗ |
DO i = 1, klon |
| 1611 |
|
✗ |
IF (klab(i,k-1)==1) is = is + 1 |
| 1612 |
|
✗ |
lflag(i) = .FALSE. |
| 1613 |
|
✗ |
IF (klab(i,k-1)==1) lflag(i) = .TRUE. |
| 1614 |
|
|
END DO |
| 1615 |
|
✗ |
IF (is==0) GO TO 290 |
| 1616 |
|
|
|
| 1617 |
|
|
! on eleve le parcel d'air selon l'adiabatique sec |
| 1618 |
|
|
|
| 1619 |
|
✗ |
DO i = 1, klon |
| 1620 |
|
✗ |
IF (lflag(i)) THEN |
| 1621 |
|
✗ |
zqu(i, k) = zqu(i, k-1) |
| 1622 |
|
✗ |
ztu(i, k) = ztu(i, k-1) + (pg(i,k-1)-pg(i,k))/rcpd |
| 1623 |
|
|
zbuo = ztu(i, k)*(1.+retv*zqu(i,k)) - pt(i, k)*(1.+retv*pq(i,k)) + & |
| 1624 |
|
✗ |
0.5 |
| 1625 |
|
✗ |
IF (zbuo>0.) klab(i, k) = 1 |
| 1626 |
|
✗ |
zqold(i) = zqu(i, k) |
| 1627 |
|
|
END IF |
| 1628 |
|
|
END DO |
| 1629 |
|
|
|
| 1630 |
|
|
! on calcule la condensation eventuelle |
| 1631 |
|
|
|
| 1632 |
|
✗ |
CALL adjtq(pp(1,k), ztu(1,k), zqu(1,k), lflag, 1) |
| 1633 |
|
|
|
| 1634 |
|
|
! s'il y a la condensation et la "buoyancy" force est positive |
| 1635 |
|
|
! c'est bien le bas de la tour de convection |
| 1636 |
|
|
|
| 1637 |
|
✗ |
DO i = 1, klon |
| 1638 |
|
✗ |
IF (lflag(i) .AND. zqu(i,k)/=zqold(i)) THEN |
| 1639 |
|
✗ |
klab(i, k) = 2 |
| 1640 |
|
✗ |
zlu(i, k) = zlu(i, k) + zqold(i) - zqu(i, k) |
| 1641 |
|
|
zbuo = ztu(i, k)*(1.+retv*zqu(i,k)) - pt(i, k)*(1.+retv*pq(i,k)) + & |
| 1642 |
|
✗ |
0.5 |
| 1643 |
|
✗ |
IF (zbuo>0.) THEN |
| 1644 |
|
✗ |
kcbot(i) = k |
| 1645 |
|
✗ |
ldcum(i) = .TRUE. |
| 1646 |
|
|
END IF |
| 1647 |
|
|
END IF |
| 1648 |
|
|
END DO |
| 1649 |
|
|
|
| 1650 |
|
✗ |
290 END DO |
| 1651 |
|
|
|
| 1652 |
|
✗ |
RETURN |
| 1653 |
|
|
END SUBROUTINE kuofcl |
| 1654 |
|
✗ |
SUBROUTINE adjtq(pp, pt, pq, ldflag, kcall) |
| 1655 |
|
|
USE dimphy |
| 1656 |
|
|
IMPLICIT NONE |
| 1657 |
|
|
! ====================================================================== |
| 1658 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) date: 19940927 |
| 1659 |
|
|
! adaptation du code de Tiedtke du ECMWF |
| 1660 |
|
|
! Objet: ajustement entre T et Q |
| 1661 |
|
|
! ====================================================================== |
| 1662 |
|
|
! Arguments: |
| 1663 |
|
|
! pp---input-R- pression (Pa) |
| 1664 |
|
|
! pt---input/output-R- temperature (K) |
| 1665 |
|
|
! pq---input/output-R- vapeur d'eau (kg/kg) |
| 1666 |
|
|
! ====================================================================== |
| 1667 |
|
|
! TO PRODUCE T,Q AND L VALUES FOR CLOUD ASCENT |
| 1668 |
|
|
|
| 1669 |
|
|
! NOTE: INPUT PARAMETER KCALL DEFINES CALCULATION AS |
| 1670 |
|
|
! KCALL=0 ENV. T AND QS IN*CUINI* |
| 1671 |
|
|
! KCALL=1 CONDENSATION IN UPDRAFTS (E.G. CUBASE, CUASC) |
| 1672 |
|
|
! KCALL=2 EVAPORATION IN DOWNDRAFTS (E.G. CUDLFS,CUDDRAF) |
| 1673 |
|
|
|
| 1674 |
|
|
include "YOMCST.h" |
| 1675 |
|
|
|
| 1676 |
|
|
REAL pt(klon), pq(klon), pp(klon) |
| 1677 |
|
|
LOGICAL ldflag(klon) |
| 1678 |
|
|
INTEGER kcall |
| 1679 |
|
|
|
| 1680 |
|
|
REAL t_coup |
| 1681 |
|
|
PARAMETER (t_coup=234.0) |
| 1682 |
|
|
|
| 1683 |
|
✗ |
REAL zcond(klon), zcond1 |
| 1684 |
|
|
REAL zdelta, zcvm5, zldcp, zqsat, zcor, zdqsat |
| 1685 |
|
|
INTEGER is, i |
| 1686 |
|
|
include "YOETHF.h" |
| 1687 |
|
|
include "FCTTRE.h" |
| 1688 |
|
|
|
| 1689 |
|
✗ |
DO i = 1, klon |
| 1690 |
|
✗ |
zcond(i) = 0.0 |
| 1691 |
|
|
END DO |
| 1692 |
|
|
|
| 1693 |
|
✗ |
DO i = 1, klon |
| 1694 |
|
✗ |
IF (ldflag(i)) THEN |
| 1695 |
|
✗ |
zdelta = max(0., sign(1.,rtt-pt(i))) |
| 1696 |
|
✗ |
zldcp = rlvtt*(1.-zdelta) + zdelta*rlstt |
| 1697 |
|
✗ |
zldcp = zldcp/rcpd/(1.0+rvtmp2*pq(i)) |
| 1698 |
|
|
IF (thermcep) THEN |
| 1699 |
|
✗ |
zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
| 1700 |
|
✗ |
zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*pq(i)) |
| 1701 |
|
✗ |
zqsat = r2es*foeew(pt(i), zdelta)/pp(i) |
| 1702 |
|
✗ |
zqsat = min(0.5, zqsat) |
| 1703 |
|
✗ |
zcor = 1./(1.-retv*zqsat) |
| 1704 |
|
✗ |
zqsat = zqsat*zcor |
| 1705 |
|
✗ |
zdqsat = foede(pt(i), zdelta, zcvm5, zqsat, zcor) |
| 1706 |
|
|
ELSE |
| 1707 |
|
|
IF (pt(i)<t_coup) THEN |
| 1708 |
|
|
zqsat = qsats(pt(i))/pp(i) |
| 1709 |
|
|
zdqsat = dqsats(pt(i), zqsat) |
| 1710 |
|
|
ELSE |
| 1711 |
|
|
zqsat = qsatl(pt(i))/pp(i) |
| 1712 |
|
|
zdqsat = dqsatl(pt(i), zqsat) |
| 1713 |
|
|
END IF |
| 1714 |
|
|
END IF |
| 1715 |
|
✗ |
zcond(i) = (pq(i)-zqsat)/(1.+zdqsat) |
| 1716 |
|
✗ |
IF (kcall==1) zcond(i) = max(zcond(i), 0.) |
| 1717 |
|
✗ |
IF (kcall==2) zcond(i) = min(zcond(i), 0.) |
| 1718 |
|
✗ |
pt(i) = pt(i) + zldcp*zcond(i) |
| 1719 |
|
✗ |
pq(i) = pq(i) - zcond(i) |
| 1720 |
|
|
END IF |
| 1721 |
|
|
END DO |
| 1722 |
|
|
|
| 1723 |
|
|
is = 0 |
| 1724 |
|
✗ |
DO i = 1, klon |
| 1725 |
|
✗ |
IF (zcond(i)/=0.) is = is + 1 |
| 1726 |
|
|
END DO |
| 1727 |
|
✗ |
IF (is==0) GO TO 230 |
| 1728 |
|
|
|
| 1729 |
|
✗ |
DO i = 1, klon |
| 1730 |
|
✗ |
IF (ldflag(i) .AND. zcond(i)/=0.) THEN |
| 1731 |
|
✗ |
zdelta = max(0., sign(1.,rtt-pt(i))) |
| 1732 |
|
✗ |
zldcp = rlvtt*(1.-zdelta) + zdelta*rlstt |
| 1733 |
|
✗ |
zldcp = zldcp/rcpd/(1.0+rvtmp2*pq(i)) |
| 1734 |
|
|
IF (thermcep) THEN |
| 1735 |
|
✗ |
zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
| 1736 |
|
✗ |
zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*pq(i)) |
| 1737 |
|
✗ |
zqsat = r2es*foeew(pt(i), zdelta)/pp(i) |
| 1738 |
|
✗ |
zqsat = min(0.5, zqsat) |
| 1739 |
|
✗ |
zcor = 1./(1.-retv*zqsat) |
| 1740 |
|
✗ |
zqsat = zqsat*zcor |
| 1741 |
|
✗ |
zdqsat = foede(pt(i), zdelta, zcvm5, zqsat, zcor) |
| 1742 |
|
|
ELSE |
| 1743 |
|
|
IF (pt(i)<t_coup) THEN |
| 1744 |
|
|
zqsat = qsats(pt(i))/pp(i) |
| 1745 |
|
|
zdqsat = dqsats(pt(i), zqsat) |
| 1746 |
|
|
ELSE |
| 1747 |
|
|
zqsat = qsatl(pt(i))/pp(i) |
| 1748 |
|
|
zdqsat = dqsatl(pt(i), zqsat) |
| 1749 |
|
|
END IF |
| 1750 |
|
|
END IF |
| 1751 |
|
✗ |
zcond1 = (pq(i)-zqsat)/(1.+zdqsat) |
| 1752 |
|
✗ |
pt(i) = pt(i) + zldcp*zcond1 |
| 1753 |
|
✗ |
pq(i) = pq(i) - zcond1 |
| 1754 |
|
|
END IF |
| 1755 |
|
|
END DO |
| 1756 |
|
|
|
| 1757 |
|
|
230 CONTINUE |
| 1758 |
|
✗ |
RETURN |
| 1759 |
|
|
END SUBROUTINE adjtq |
| 1760 |
|
✗ |
SUBROUTINE fiajh(dtime, paprs, pplay, t, q, d_t, d_q, d_ql, rneb, rain, snow, & |
| 1761 |
|
✗ |
ibas, itop) |
| 1762 |
|
|
USE dimphy |
| 1763 |
|
|
IMPLICIT NONE |
| 1764 |
|
|
|
| 1765 |
|
|
! Ajustement humide (Schema de convection de Manabe) |
| 1766 |
|
|
! . |
| 1767 |
|
|
include "YOMCST.h" |
| 1768 |
|
|
|
| 1769 |
|
|
! Arguments: |
| 1770 |
|
|
|
| 1771 |
|
|
REAL dtime ! intervalle du temps (s) |
| 1772 |
|
|
REAL t(klon, klev) ! temperature (K) |
| 1773 |
|
|
REAL q(klon, klev) ! humidite specifique (kg/kg) |
| 1774 |
|
|
REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) |
| 1775 |
|
|
REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
| 1776 |
|
|
|
| 1777 |
|
|
REAL d_t(klon, klev) ! incrementation pour la temperature |
| 1778 |
|
|
REAL d_q(klon, klev) ! incrementation pour vapeur d'eau |
| 1779 |
|
|
REAL d_ql(klon, klev) ! incrementation pour l'eau liquide |
| 1780 |
|
|
REAL rneb(klon, klev) ! fraction nuageuse |
| 1781 |
|
|
|
| 1782 |
|
|
REAL rain(klon) ! variable non utilisee |
| 1783 |
|
|
REAL snow(klon) ! variable non utilisee |
| 1784 |
|
|
INTEGER ibas(klon) ! variable non utilisee |
| 1785 |
|
|
INTEGER itop(klon) ! variable non utilisee |
| 1786 |
|
|
|
| 1787 |
|
|
REAL t_coup |
| 1788 |
|
|
PARAMETER (t_coup=234.0) |
| 1789 |
|
|
REAL seuil_vap |
| 1790 |
|
|
PARAMETER (seuil_vap=1.0E-10) |
| 1791 |
|
|
|
| 1792 |
|
|
! Variables locales: |
| 1793 |
|
|
|
| 1794 |
|
|
INTEGER i, k |
| 1795 |
|
|
INTEGER k1, k1p, k2, k2p |
| 1796 |
|
✗ |
LOGICAL itest(klon) |
| 1797 |
|
✗ |
REAL delta_q(klon, klev) |
| 1798 |
|
✗ |
REAL cp_new_t(klev) |
| 1799 |
|
✗ |
REAL cp_delta_t(klev) |
| 1800 |
|
✗ |
REAL new_qb(klev) |
| 1801 |
|
✗ |
REAL v_cptj(klev), v_cptjk1, v_ssig |
| 1802 |
|
✗ |
REAL v_cptt(klon, klev), v_p, v_t |
| 1803 |
|
✗ |
REAL v_qs(klon, klev), v_qsd(klon, klev) |
| 1804 |
|
✗ |
REAL zq1(klon), zq2(klon) |
| 1805 |
|
✗ |
REAL gamcpdz(klon, 2:klev) |
| 1806 |
|
|
REAL zdp, zdpm |
| 1807 |
|
|
|
| 1808 |
|
|
REAL zsat ! sur-saturation |
| 1809 |
|
|
REAL zflo ! flotabilite |
| 1810 |
|
|
|
| 1811 |
|
✗ |
REAL local_q(klon, klev), local_t(klon, klev) |
| 1812 |
|
|
|
| 1813 |
|
|
REAL zdelta, zcor, zcvm5 |
| 1814 |
|
|
|
| 1815 |
|
|
include "YOETHF.h" |
| 1816 |
|
|
include "FCTTRE.h" |
| 1817 |
|
|
|
| 1818 |
|
✗ |
DO k = 1, klev |
| 1819 |
|
✗ |
DO i = 1, klon |
| 1820 |
|
✗ |
local_q(i, k) = q(i, k) |
| 1821 |
|
✗ |
local_t(i, k) = t(i, k) |
| 1822 |
|
✗ |
rneb(i, k) = 0.0 |
| 1823 |
|
✗ |
d_ql(i, k) = 0.0 |
| 1824 |
|
✗ |
d_t(i, k) = 0.0 |
| 1825 |
|
✗ |
d_q(i, k) = 0.0 |
| 1826 |
|
|
END DO |
| 1827 |
|
|
END DO |
| 1828 |
|
✗ |
DO i = 1, klon |
| 1829 |
|
✗ |
rain(i) = 0.0 |
| 1830 |
|
✗ |
snow(i) = 0.0 |
| 1831 |
|
✗ |
ibas(i) = 0 |
| 1832 |
|
✗ |
itop(i) = 0 |
| 1833 |
|
|
END DO |
| 1834 |
|
|
|
| 1835 |
|
|
! Calculer v_qs et v_qsd: |
| 1836 |
|
|
|
| 1837 |
|
✗ |
DO k = 1, klev |
| 1838 |
|
✗ |
DO i = 1, klon |
| 1839 |
|
✗ |
v_cptt(i, k) = rcpd*local_t(i, k) |
| 1840 |
|
|
v_t = local_t(i, k) |
| 1841 |
|
✗ |
v_p = pplay(i, k) |
| 1842 |
|
|
|
| 1843 |
|
✗ |
IF (thermcep) THEN |
| 1844 |
|
✗ |
zdelta = max(0., sign(1.,rtt-v_t)) |
| 1845 |
|
✗ |
zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
| 1846 |
|
✗ |
zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*local_q(i,k)) |
| 1847 |
|
✗ |
v_qs(i, k) = r2es*foeew(v_t, zdelta)/v_p |
| 1848 |
|
✗ |
v_qs(i, k) = min(0.5, v_qs(i,k)) |
| 1849 |
|
✗ |
zcor = 1./(1.-retv*v_qs(i,k)) |
| 1850 |
|
✗ |
v_qs(i, k) = v_qs(i, k)*zcor |
| 1851 |
|
✗ |
v_qsd(i, k) = foede(v_t, zdelta, zcvm5, v_qs(i,k), zcor) |
| 1852 |
|
|
ELSE |
| 1853 |
|
|
IF (v_t<t_coup) THEN |
| 1854 |
|
|
v_qs(i, k) = qsats(v_t)/v_p |
| 1855 |
|
|
v_qsd(i, k) = dqsats(v_t, v_qs(i,k)) |
| 1856 |
|
|
ELSE |
| 1857 |
|
|
v_qs(i, k) = qsatl(v_t)/v_p |
| 1858 |
|
|
v_qsd(i, k) = dqsatl(v_t, v_qs(i,k)) |
| 1859 |
|
|
END IF |
| 1860 |
|
|
END IF |
| 1861 |
|
|
END DO |
| 1862 |
|
|
END DO |
| 1863 |
|
|
|
| 1864 |
|
|
! Calculer Gamma * Cp * dz: (gamm est le gradient critique) |
| 1865 |
|
|
|
| 1866 |
|
✗ |
DO k = 2, klev |
| 1867 |
|
✗ |
DO i = 1, klon |
| 1868 |
|
✗ |
zdp = paprs(i, k) - paprs(i, k+1) |
| 1869 |
|
✗ |
zdpm = paprs(i, k-1) - paprs(i, k) |
| 1870 |
|
|
gamcpdz(i, k) = ((rd/rcpd/(zdpm+zdp)*(v_cptt(i,k-1)*zdpm+ & |
| 1871 |
|
|
v_cptt(i,k)*zdp)+rlvtt/(zdpm+zdp)*(v_qs(i,k-1)*zdpm+ & |
| 1872 |
|
|
v_qs(i,k)*zdp))*(pplay(i,k-1)-pplay(i,k))/paprs(i,k))/(1.0+(v_qsd(i, & |
| 1873 |
|
✗ |
k-1)*zdpm+v_qsd(i,k)*zdp)/(zdpm+zdp)) |
| 1874 |
|
|
END DO |
| 1875 |
|
|
END DO |
| 1876 |
|
|
|
| 1877 |
|
|
! ------------------------------------ modification des profils instables |
| 1878 |
|
✗ |
DO i = 1, klon |
| 1879 |
|
✗ |
itest(i) = .FALSE. |
| 1880 |
|
|
|
| 1881 |
|
|
k1 = 0 |
| 1882 |
|
✗ |
k2 = 1 |
| 1883 |
|
|
|
| 1884 |
|
|
810 CONTINUE ! chercher k1, le bas de la colonne |
| 1885 |
|
✗ |
k2 = k2 + 1 |
| 1886 |
|
✗ |
IF (k2>klev) GO TO 9999 |
| 1887 |
|
✗ |
zflo = v_cptt(i, k2-1) - v_cptt(i, k2) - gamcpdz(i, k2) |
| 1888 |
|
|
zsat = (local_q(i,k2-1)-v_qs(i,k2-1))*(paprs(i,k2-1)-paprs(i,k2)) + & |
| 1889 |
|
✗ |
(local_q(i,k2)-v_qs(i,k2))*(paprs(i,k2)-paprs(i,k2+1)) |
| 1890 |
|
✗ |
IF (zflo<=0.0 .OR. zsat<=0.0) GO TO 810 |
| 1891 |
|
|
k1 = k2 - 1 |
| 1892 |
|
✗ |
itest(i) = .TRUE. |
| 1893 |
|
|
|
| 1894 |
|
|
820 CONTINUE ! chercher k2, le haut de la colonne |
| 1895 |
|
✗ |
IF (k2==klev) GO TO 821 |
| 1896 |
|
✗ |
k2p = k2 + 1 |
| 1897 |
|
✗ |
zsat = zsat + (paprs(i,k2p)-paprs(i,k2p+1))*(local_q(i,k2p)-v_qs(i,k2p)) |
| 1898 |
|
✗ |
zflo = v_cptt(i, k2p-1) - v_cptt(i, k2p) - gamcpdz(i, k2p) |
| 1899 |
|
✗ |
IF (zflo<=0.0 .OR. zsat<=0.0) GO TO 821 |
| 1900 |
|
|
k2 = k2p |
| 1901 |
|
✗ |
GO TO 820 |
| 1902 |
|
|
821 CONTINUE |
| 1903 |
|
|
|
| 1904 |
|
|
! ------------------------------------------------------ ajustement local |
| 1905 |
|
|
830 CONTINUE ! ajustement proprement dit |
| 1906 |
|
✗ |
v_cptj(k1) = 0.0 |
| 1907 |
|
✗ |
zdp = paprs(i, k1) - paprs(i, k1+1) |
| 1908 |
|
|
v_cptjk1 = ((1.0+v_qsd(i,k1))*(v_cptt(i,k1)+v_cptj(k1))+rlvtt*(local_q(i, & |
| 1909 |
|
✗ |
k1)-v_qs(i,k1)))*zdp |
| 1910 |
|
✗ |
v_ssig = zdp*(1.0+v_qsd(i,k1)) |
| 1911 |
|
|
|
| 1912 |
|
|
k1p = k1 + 1 |
| 1913 |
|
✗ |
DO k = k1p, k2 |
| 1914 |
|
✗ |
zdp = paprs(i, k) - paprs(i, k+1) |
| 1915 |
|
✗ |
v_cptj(k) = v_cptj(k-1) + gamcpdz(i, k) |
| 1916 |
|
|
v_cptjk1 = v_cptjk1 + zdp*((1.0+v_qsd(i,k))*(v_cptt(i, & |
| 1917 |
|
✗ |
k)+v_cptj(k))+rlvtt*(local_q(i,k)-v_qs(i,k))) |
| 1918 |
|
✗ |
v_ssig = v_ssig + zdp*(1.0+v_qsd(i,k)) |
| 1919 |
|
|
END DO |
| 1920 |
|
|
|
| 1921 |
|
✗ |
DO k = k1, k2 |
| 1922 |
|
✗ |
cp_new_t(k) = v_cptjk1/v_ssig - v_cptj(k) |
| 1923 |
|
✗ |
cp_delta_t(k) = cp_new_t(k) - v_cptt(i, k) |
| 1924 |
|
✗ |
new_qb(k) = v_qs(i, k) + v_qsd(i, k)*cp_delta_t(k)/rlvtt |
| 1925 |
|
✗ |
local_q(i, k) = new_qb(k) |
| 1926 |
|
✗ |
local_t(i, k) = cp_new_t(k)/rcpd |
| 1927 |
|
|
END DO |
| 1928 |
|
|
|
| 1929 |
|
|
! --------------------------------------------------- sondage vers le bas |
| 1930 |
|
|
! -- on redefinit les variables prognostiques dans |
| 1931 |
|
|
! -- la colonne qui vient d'etre ajustee |
| 1932 |
|
|
|
| 1933 |
|
✗ |
DO k = k1, k2 |
| 1934 |
|
✗ |
v_cptt(i, k) = rcpd*local_t(i, k) |
| 1935 |
|
|
v_t = local_t(i, k) |
| 1936 |
|
✗ |
v_p = pplay(i, k) |
| 1937 |
|
|
|
| 1938 |
|
✗ |
IF (thermcep) THEN |
| 1939 |
|
✗ |
zdelta = max(0., sign(1.,rtt-v_t)) |
| 1940 |
|
✗ |
zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
| 1941 |
|
✗ |
zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*local_q(i,k)) |
| 1942 |
|
✗ |
v_qs(i, k) = r2es*foeew(v_t, zdelta)/v_p |
| 1943 |
|
✗ |
v_qs(i, k) = min(0.5, v_qs(i,k)) |
| 1944 |
|
✗ |
zcor = 1./(1.-retv*v_qs(i,k)) |
| 1945 |
|
✗ |
v_qs(i, k) = v_qs(i, k)*zcor |
| 1946 |
|
✗ |
v_qsd(i, k) = foede(v_t, zdelta, zcvm5, v_qs(i,k), zcor) |
| 1947 |
|
|
ELSE |
| 1948 |
|
|
IF (v_t<t_coup) THEN |
| 1949 |
|
|
v_qs(i, k) = qsats(v_t)/v_p |
| 1950 |
|
|
v_qsd(i, k) = dqsats(v_t, v_qs(i,k)) |
| 1951 |
|
|
ELSE |
| 1952 |
|
|
v_qs(i, k) = qsatl(v_t)/v_p |
| 1953 |
|
|
v_qsd(i, k) = dqsatl(v_t, v_qs(i,k)) |
| 1954 |
|
|
END IF |
| 1955 |
|
|
END IF |
| 1956 |
|
|
END DO |
| 1957 |
|
✗ |
DO k = 2, klev |
| 1958 |
|
✗ |
zdpm = paprs(i, k-1) - paprs(i, k) |
| 1959 |
|
✗ |
zdp = paprs(i, k) - paprs(i, k+1) |
| 1960 |
|
|
gamcpdz(i, k) = ((rd/rcpd/(zdpm+zdp)*(v_cptt(i,k-1)*zdpm+ & |
| 1961 |
|
|
v_cptt(i,k)*zdp)+rlvtt/(zdpm+zdp)*(v_qs(i,k-1)*zdpm+ & |
| 1962 |
|
|
v_qs(i,k)*zdp))*(pplay(i,k-1)-pplay(i,k))/paprs(i,k))/(1.0+(v_qsd(i, & |
| 1963 |
|
✗ |
k-1)*zdpm+v_qsd(i,k)*zdp)/(zdpm+zdp)) |
| 1964 |
|
|
END DO |
| 1965 |
|
|
|
| 1966 |
|
|
! Verifier si l'on peut etendre la colonne vers le bas |
| 1967 |
|
|
|
| 1968 |
|
✗ |
IF (k1==1) GO TO 841 ! extension echouee |
| 1969 |
|
✗ |
zflo = v_cptt(i, k1-1) - v_cptt(i, k1) - gamcpdz(i, k1) |
| 1970 |
|
|
zsat = (local_q(i,k1-1)-v_qs(i,k1-1))*(paprs(i,k1-1)-paprs(i,k1)) + & |
| 1971 |
|
✗ |
(local_q(i,k1)-v_qs(i,k1))*(paprs(i,k1)-paprs(i,k1+1)) |
| 1972 |
|
✗ |
IF (zflo<=0.0 .OR. zsat<=0.0) GO TO 841 ! extension echouee |
| 1973 |
|
|
|
| 1974 |
|
|
840 CONTINUE |
| 1975 |
|
✗ |
k1 = k1 - 1 |
| 1976 |
|
✗ |
IF (k1==1) GO TO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
| 1977 |
|
✗ |
zsat = zsat + (local_q(i,k1-1)-v_qs(i,k1-1))*(paprs(i,k1-1)-paprs(i,k1)) |
| 1978 |
|
✗ |
zflo = v_cptt(i, k1-1) - v_cptt(i, k1) - gamcpdz(i, k1) |
| 1979 |
|
✗ |
IF (zflo>0.0 .AND. zsat>0.0) THEN |
| 1980 |
|
|
GO TO 840 |
| 1981 |
|
|
ELSE |
| 1982 |
|
✗ |
GO TO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
| 1983 |
|
|
END IF |
| 1984 |
|
|
841 CONTINUE |
| 1985 |
|
|
|
| 1986 |
|
✗ |
GO TO 810 ! chercher d'autres blocks en haut |
| 1987 |
|
|
|
| 1988 |
|
✗ |
9999 END DO ! boucle sur tous les points |
| 1989 |
|
|
! ----------------------------------------------------------------------- |
| 1990 |
|
|
|
| 1991 |
|
|
! Determiner la fraction nuageuse (hypothese: la nebulosite a lieu |
| 1992 |
|
|
! a l'endroit ou la vapeur d'eau est diminuee par l'ajustement): |
| 1993 |
|
|
|
| 1994 |
|
✗ |
DO k = 1, klev |
| 1995 |
|
✗ |
DO i = 1, klon |
| 1996 |
|
✗ |
IF (itest(i)) THEN |
| 1997 |
|
✗ |
delta_q(i, k) = local_q(i, k) - q(i, k) |
| 1998 |
|
✗ |
IF (delta_q(i,k)<0.) rneb(i, k) = 1.0 |
| 1999 |
|
|
END IF |
| 2000 |
|
|
END DO |
| 2001 |
|
|
END DO |
| 2002 |
|
|
|
| 2003 |
|
|
! Distribuer l'eau condensee en eau liquide nuageuse (hypothese: |
| 2004 |
|
|
! l'eau liquide est distribuee aux endroits ou la vapeur d'eau |
| 2005 |
|
|
! diminue et d'une maniere proportionnelle a cet diminution): |
| 2006 |
|
|
|
| 2007 |
|
✗ |
DO i = 1, klon |
| 2008 |
|
✗ |
IF (itest(i)) THEN |
| 2009 |
|
✗ |
zq1(i) = 0.0 |
| 2010 |
|
✗ |
zq2(i) = 0.0 |
| 2011 |
|
|
END IF |
| 2012 |
|
|
END DO |
| 2013 |
|
✗ |
DO k = 1, klev |
| 2014 |
|
✗ |
DO i = 1, klon |
| 2015 |
|
✗ |
IF (itest(i)) THEN |
| 2016 |
|
✗ |
zdp = paprs(i, k) - paprs(i, k+1) |
| 2017 |
|
✗ |
zq1(i) = zq1(i) - delta_q(i, k)*zdp |
| 2018 |
|
✗ |
zq2(i) = zq2(i) - min(0.0, delta_q(i,k))*zdp |
| 2019 |
|
|
END IF |
| 2020 |
|
|
END DO |
| 2021 |
|
|
END DO |
| 2022 |
|
✗ |
DO k = 1, klev |
| 2023 |
|
✗ |
DO i = 1, klon |
| 2024 |
|
✗ |
IF (itest(i)) THEN |
| 2025 |
|
✗ |
IF (zq2(i)/=0.0) d_ql(i, k) = -min(0.0, delta_q(i,k))*zq1(i)/zq2(i) |
| 2026 |
|
|
END IF |
| 2027 |
|
|
END DO |
| 2028 |
|
|
END DO |
| 2029 |
|
|
|
| 2030 |
|
✗ |
DO k = 1, klev |
| 2031 |
|
✗ |
DO i = 1, klon |
| 2032 |
|
✗ |
local_q(i, k) = max(local_q(i,k), seuil_vap) |
| 2033 |
|
|
END DO |
| 2034 |
|
|
END DO |
| 2035 |
|
|
|
| 2036 |
|
✗ |
DO k = 1, klev |
| 2037 |
|
✗ |
DO i = 1, klon |
| 2038 |
|
✗ |
d_t(i, k) = local_t(i, k) - t(i, k) |
| 2039 |
|
✗ |
d_q(i, k) = local_q(i, k) - q(i, k) |
| 2040 |
|
|
END DO |
| 2041 |
|
|
END DO |
| 2042 |
|
|
|
| 2043 |
|
✗ |
RETURN |
| 2044 |
|
|
END SUBROUTINE fiajh |
| 2045 |
|
✗ |
SUBROUTINE fiajc(dtime, paprs, pplay, t, q, conv_q, d_t, d_q, d_ql, rneb, & |
| 2046 |
|
✗ |
rain, snow, ibas, itop) |
| 2047 |
|
|
USE dimphy |
| 2048 |
|
|
IMPLICIT NONE |
| 2049 |
|
|
|
| 2050 |
|
|
include "YOMCST.h" |
| 2051 |
|
|
|
| 2052 |
|
|
! Options: |
| 2053 |
|
|
|
| 2054 |
|
|
INTEGER plb ! niveau de depart pour la convection |
| 2055 |
|
|
PARAMETER (plb=4) |
| 2056 |
|
|
|
| 2057 |
|
|
! Mystere: cette option n'est pas innocente pour les resultats ! |
| 2058 |
|
|
! Qui peut resoudre ce mystere ? (Z.X.Li mars 1995) |
| 2059 |
|
|
LOGICAL vector ! calcul vectorise |
| 2060 |
|
|
PARAMETER (vector=.FALSE.) |
| 2061 |
|
|
|
| 2062 |
|
|
REAL t_coup |
| 2063 |
|
|
PARAMETER (t_coup=234.0) |
| 2064 |
|
|
|
| 2065 |
|
|
! Arguments: |
| 2066 |
|
|
|
| 2067 |
|
|
REAL q(klon, klev) ! humidite specifique (kg/kg) |
| 2068 |
|
|
REAL t(klon, klev) ! temperature (K) |
| 2069 |
|
|
REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) |
| 2070 |
|
|
REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
| 2071 |
|
|
REAL dtime ! intervalle du temps (s) |
| 2072 |
|
|
REAL conv_q(klon, klev) ! taux de convergence de l'humidite |
| 2073 |
|
|
REAL rneb(klon, klev) ! fraction nuageuse |
| 2074 |
|
|
REAL d_q(klon, klev) ! incrementaion pour la vapeur d'eau |
| 2075 |
|
|
REAL d_ql(klon, klev) ! incrementation pour l'eau liquide |
| 2076 |
|
|
REAL d_t(klon, klev) ! incrementation pour la temperature |
| 2077 |
|
|
REAL rain(klon) ! variable non-utilisee |
| 2078 |
|
|
REAL snow(klon) ! variable non-utilisee |
| 2079 |
|
|
INTEGER itop(klon) ! variable non-utilisee |
| 2080 |
|
|
INTEGER ibas(klon) ! variable non-utilisee |
| 2081 |
|
|
|
| 2082 |
|
✗ |
INTEGER kh(klon), i, k |
| 2083 |
|
✗ |
LOGICAL nuage(klon), test(klon, klev) |
| 2084 |
|
✗ |
REAL zconv(klon), zdeh(klon, klev), zvirt(klon) |
| 2085 |
|
✗ |
REAL zdqs(klon, klev), zqs(klon, klev) |
| 2086 |
|
✗ |
REAL ztt, zvar, zfrac(klon) |
| 2087 |
|
✗ |
REAL zq1(klon), zq2(klon) |
| 2088 |
|
|
REAL zdelta, zcor, zcvm5 |
| 2089 |
|
|
|
| 2090 |
|
|
include "YOETHF.h" |
| 2091 |
|
|
include "FCTTRE.h" |
| 2092 |
|
|
|
| 2093 |
|
|
! Initialiser les sorties: |
| 2094 |
|
|
|
| 2095 |
|
✗ |
DO k = 1, klev |
| 2096 |
|
✗ |
DO i = 1, klon |
| 2097 |
|
✗ |
rneb(i, k) = 0.0 |
| 2098 |
|
✗ |
d_ql(i, k) = 0.0 |
| 2099 |
|
✗ |
d_t(i, k) = 0.0 |
| 2100 |
|
✗ |
d_q(i, k) = 0.0 |
| 2101 |
|
|
END DO |
| 2102 |
|
|
END DO |
| 2103 |
|
✗ |
DO i = 1, klon |
| 2104 |
|
✗ |
itop(i) = 0 |
| 2105 |
|
✗ |
ibas(i) = 0 |
| 2106 |
|
✗ |
rain(i) = 0.0 |
| 2107 |
|
✗ |
snow(i) = 0.0 |
| 2108 |
|
|
END DO |
| 2109 |
|
|
|
| 2110 |
|
|
! Calculer Qs et L/Cp * dQs/dT: |
| 2111 |
|
|
|
| 2112 |
|
✗ |
DO k = 1, klev |
| 2113 |
|
✗ |
DO i = 1, klon |
| 2114 |
|
✗ |
ztt = t(i, k) |
| 2115 |
|
✗ |
IF (thermcep) THEN |
| 2116 |
|
✗ |
zdelta = max(0., sign(1.,rtt-ztt)) |
| 2117 |
|
✗ |
zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
| 2118 |
|
✗ |
zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*q(i,k)) |
| 2119 |
|
✗ |
zqs(i, k) = r2es*foeew(ztt, zdelta)/pplay(i, k) |
| 2120 |
|
✗ |
zqs(i, k) = min(0.5, zqs(i,k)) |
| 2121 |
|
✗ |
zcor = 1./(1.-retv*zqs(i,k)) |
| 2122 |
|
✗ |
zqs(i, k) = zqs(i, k)*zcor |
| 2123 |
|
✗ |
zdqs(i, k) = foede(ztt, zdelta, zcvm5, zqs(i,k), zcor) |
| 2124 |
|
|
ELSE |
| 2125 |
|
|
IF (ztt<t_coup) THEN |
| 2126 |
|
|
zqs(i, k) = qsats(ztt)/pplay(i, k) |
| 2127 |
|
|
zdqs(i, k) = dqsats(ztt, zqs(i,k)) |
| 2128 |
|
|
ELSE |
| 2129 |
|
|
zqs(i, k) = qsatl(ztt)/pplay(i, k) |
| 2130 |
|
|
zdqs(i, k) = dqsatl(ztt, zqs(i,k)) |
| 2131 |
|
|
END IF |
| 2132 |
|
|
END IF |
| 2133 |
|
|
END DO |
| 2134 |
|
|
END DO |
| 2135 |
|
|
|
| 2136 |
|
|
! Determiner la difference de l'energie totale saturee: |
| 2137 |
|
|
|
| 2138 |
|
✗ |
DO i = 1, klon |
| 2139 |
|
|
k = plb |
| 2140 |
|
|
zdeh(i, k) = rcpd*(t(i,k-1)-t(i,k)) - rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k & |
| 2141 |
|
✗ |
)*(pplay(i,k-1)-pplay(i,k)) + rlvtt*(zqs(i,k-1)-zqs(i,k)) |
| 2142 |
|
✗ |
zdeh(i, k) = zdeh(i, k)*0.5 ! on prend la moitie |
| 2143 |
|
|
END DO |
| 2144 |
|
✗ |
DO k = plb + 1, klev |
| 2145 |
|
✗ |
DO i = 1, klon |
| 2146 |
|
|
zdeh(i, k) = zdeh(i, k-1) + rcpd*(t(i,k-1)-t(i,k)) - & |
| 2147 |
|
|
rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)*(pplay(i,k-1)-pplay(i,k)) + & |
| 2148 |
|
✗ |
rlvtt*(zqs(i,k-1)-zqs(i,k)) |
| 2149 |
|
|
END DO |
| 2150 |
|
|
END DO |
| 2151 |
|
|
|
| 2152 |
|
|
! Determiner le sommet du nuage selon l'instabilite |
| 2153 |
|
|
! Calculer les convergences d'humidite (reelle et virtuelle) |
| 2154 |
|
|
|
| 2155 |
|
✗ |
DO i = 1, klon |
| 2156 |
|
✗ |
nuage(i) = .TRUE. |
| 2157 |
|
✗ |
zconv(i) = 0.0 |
| 2158 |
|
✗ |
zvirt(i) = 0.0 |
| 2159 |
|
✗ |
kh(i) = -999 |
| 2160 |
|
|
END DO |
| 2161 |
|
✗ |
DO k = plb, klev |
| 2162 |
|
✗ |
DO i = 1, klon |
| 2163 |
|
✗ |
nuage(i) = nuage(i) .AND. zdeh(i, k) > 0.0 |
| 2164 |
|
✗ |
IF (nuage(i)) THEN |
| 2165 |
|
✗ |
kh(i) = k |
| 2166 |
|
✗ |
zconv(i) = zconv(i) + conv_q(i, k)*dtime*(paprs(i,k)-paprs(i,k+1)) |
| 2167 |
|
|
zvirt(i) = zvirt(i) + (zdeh(i,k)/rlvtt+zqs(i,k)-q(i,k))*(paprs(i,k)- & |
| 2168 |
|
✗ |
paprs(i,k+1)) |
| 2169 |
|
|
END IF |
| 2170 |
|
|
END DO |
| 2171 |
|
|
END DO |
| 2172 |
|
|
|
| 2173 |
|
|
IF (vector) THEN |
| 2174 |
|
|
|
| 2175 |
|
|
|
| 2176 |
|
|
DO k = plb, klev |
| 2177 |
|
|
DO i = 1, klon |
| 2178 |
|
|
IF (k<=kh(i) .AND. kh(i)>plb .AND. zconv(i)>0.0) THEN |
| 2179 |
|
|
test(i, k) = .TRUE. |
| 2180 |
|
|
zfrac(i) = max(0.0, min(zconv(i)/zvirt(i),1.0)) |
| 2181 |
|
|
ELSE |
| 2182 |
|
|
test(i, k) = .FALSE. |
| 2183 |
|
|
END IF |
| 2184 |
|
|
END DO |
| 2185 |
|
|
END DO |
| 2186 |
|
|
|
| 2187 |
|
|
DO k = plb, klev |
| 2188 |
|
|
DO i = 1, klon |
| 2189 |
|
|
IF (test(i,k)) THEN |
| 2190 |
|
|
zvar = zdeh(i, k)/(1.0+zdqs(i,k)) |
| 2191 |
|
|
d_q(i, k) = (zvar*zdqs(i,k)/rlvtt+zqs(i,k)-q(i,k))*zfrac(i) - & |
| 2192 |
|
|
conv_q(i, k)*dtime |
| 2193 |
|
|
d_t(i, k) = zvar*zfrac(i)/rcpd |
| 2194 |
|
|
END IF |
| 2195 |
|
|
END DO |
| 2196 |
|
|
END DO |
| 2197 |
|
|
|
| 2198 |
|
|
DO i = 1, klon |
| 2199 |
|
|
zq1(i) = 0.0 |
| 2200 |
|
|
zq2(i) = 0.0 |
| 2201 |
|
|
END DO |
| 2202 |
|
|
DO k = plb, klev |
| 2203 |
|
|
DO i = 1, klon |
| 2204 |
|
|
IF (test(i,k)) THEN |
| 2205 |
|
|
IF (d_q(i,k)<0.0) rneb(i, k) = zfrac(i) |
| 2206 |
|
|
zq1(i) = zq1(i) - d_q(i, k)*(paprs(i,k)-paprs(i,k+1)) |
| 2207 |
|
|
zq2(i) = zq2(i) - min(0.0, d_q(i,k))*(paprs(i,k)-paprs(i,k+1)) |
| 2208 |
|
|
END IF |
| 2209 |
|
|
END DO |
| 2210 |
|
|
END DO |
| 2211 |
|
|
|
| 2212 |
|
|
DO k = plb, klev |
| 2213 |
|
|
DO i = 1, klon |
| 2214 |
|
|
IF (test(i,k)) THEN |
| 2215 |
|
|
IF (zq2(i)/=0.) d_ql(i, k) = -min(0.0, d_q(i,k))*zq1(i)/zq2(i) |
| 2216 |
|
|
END IF |
| 2217 |
|
|
END DO |
| 2218 |
|
|
END DO |
| 2219 |
|
|
|
| 2220 |
|
|
ELSE ! (.NOT. vector) |
| 2221 |
|
|
|
| 2222 |
|
✗ |
DO i = 1, klon |
| 2223 |
|
✗ |
IF (kh(i)>plb .AND. zconv(i)>0.0) THEN |
| 2224 |
|
|
! cc IF (kh(i).LE.plb) GOTO 999 ! il n'y a pas d'instabilite |
| 2225 |
|
|
! cc IF (zconv(i).LE.0.0) GOTO 999 ! convergence insuffisante |
| 2226 |
|
✗ |
zfrac(i) = max(0.0, min(zconv(i)/zvirt(i),1.0)) |
| 2227 |
|
✗ |
DO k = plb, kh(i) |
| 2228 |
|
✗ |
zvar = zdeh(i, k)/(1.0+zdqs(i,k)) |
| 2229 |
|
|
d_q(i, k) = (zvar*zdqs(i,k)/rlvtt+zqs(i,k)-q(i,k))*zfrac(i) - & |
| 2230 |
|
✗ |
conv_q(i, k)*dtime |
| 2231 |
|
✗ |
d_t(i, k) = zvar*zfrac(i)/rcpd |
| 2232 |
|
|
END DO |
| 2233 |
|
|
|
| 2234 |
|
✗ |
zq1(i) = 0.0 |
| 2235 |
|
✗ |
zq2(i) = 0.0 |
| 2236 |
|
✗ |
DO k = plb, kh(i) |
| 2237 |
|
✗ |
IF (d_q(i,k)<0.0) rneb(i, k) = zfrac(i) |
| 2238 |
|
✗ |
zq1(i) = zq1(i) - d_q(i, k)*(paprs(i,k)-paprs(i,k+1)) |
| 2239 |
|
✗ |
zq2(i) = zq2(i) - min(0.0, d_q(i,k))*(paprs(i,k)-paprs(i,k+1)) |
| 2240 |
|
|
END DO |
| 2241 |
|
✗ |
DO k = plb, kh(i) |
| 2242 |
|
✗ |
IF (zq2(i)/=0.) d_ql(i, k) = -min(0.0, d_q(i,k))*zq1(i)/zq2(i) |
| 2243 |
|
|
END DO |
| 2244 |
|
|
END IF |
| 2245 |
|
|
END DO |
| 2246 |
|
|
|
| 2247 |
|
|
END IF ! fin de teste sur vector |
| 2248 |
|
|
|
| 2249 |
|
✗ |
RETURN |
| 2250 |
|
|
END SUBROUTINE fiajc |
| 2251 |
|
|
|