| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
! $Header$ |
| 3 |
|
|
|
| 4 |
|
✗ |
SUBROUTINE convect1(len, nd, ndp1, noff, minorig, t, q, qs, u, v, p, ph, & |
| 5 |
|
✗ |
iflag, ft, fq, fu, fv, precip, cbmf, delt, ma) |
| 6 |
|
|
! .............................START PROLOGUE............................ |
| 7 |
|
|
|
| 8 |
|
|
! SCCS IDENTIFICATION: @(#)convect1.f 1.1 04/21/00 |
| 9 |
|
|
! 19:40:52 /h/cm/library/nogaps4/src/sub/fcst/convect1.f_v |
| 10 |
|
|
|
| 11 |
|
|
! CONFIGURATION IDENTIFICATION: None |
| 12 |
|
|
|
| 13 |
|
|
! MODULE NAME: convect1 |
| 14 |
|
|
|
| 15 |
|
|
! DESCRIPTION: |
| 16 |
|
|
|
| 17 |
|
|
! convect1 The Emanuel Cumulus Convection Scheme |
| 18 |
|
|
|
| 19 |
|
|
! CONTRACT NUMBER AND TITLE: None |
| 20 |
|
|
|
| 21 |
|
|
! REFERENCES: Programmers K. Emanuel (MIT), Timothy F. Hogan, M. Peng |
| 22 |
|
|
! (NRL) |
| 23 |
|
|
|
| 24 |
|
|
! CLASSIFICATION: Unclassified |
| 25 |
|
|
|
| 26 |
|
|
! RESTRICTIONS: None |
| 27 |
|
|
|
| 28 |
|
|
! COMPILER DEPENDENCIES: FORTRAN 77, FORTRAN 90 |
| 29 |
|
|
|
| 30 |
|
|
! COMPILE OPTIONS: Fortran 77: -Zu -Wf"-ei -o aggress" |
| 31 |
|
|
! Fortran 90: -O vector3,scalar3,task1,aggress,overindex -ei -r 2 |
| 32 |
|
|
|
| 33 |
|
|
! LIBRARIES OF RESIDENCE: /a/ops/lib/libfcst159.a |
| 34 |
|
|
|
| 35 |
|
|
! USAGE: call convect1(len,nd,noff,minorig, |
| 36 |
|
|
! & t,q,qs,u,v, |
| 37 |
|
|
! & p,ph,iflag,ft, |
| 38 |
|
|
! & fq,fu,fv,precip,cbmf,delt) |
| 39 |
|
|
|
| 40 |
|
|
! PARAMETERS: |
| 41 |
|
|
! Name Type Usage Description |
| 42 |
|
|
! ---------- ---------- ------- ---------------------------- |
| 43 |
|
|
|
| 44 |
|
|
! len Integer Input first (i) dimension |
| 45 |
|
|
! nd Integer Input vertical (k) dimension |
| 46 |
|
|
! ndp1 Integer Input nd + 1 |
| 47 |
|
|
! noff Integer Input integer limit for convection |
| 48 |
|
|
! (nd-noff) |
| 49 |
|
|
! minorig Integer Input First level of convection |
| 50 |
|
|
! t Real Input temperature |
| 51 |
|
|
! q Real Input specific hum |
| 52 |
|
|
! qs Real Input sat specific hum |
| 53 |
|
|
! u Real Input u-wind |
| 54 |
|
|
! v Real Input v-wind |
| 55 |
|
|
! p Real Input full level pressure |
| 56 |
|
|
! ph Real Input half level pressure |
| 57 |
|
|
! iflag Integer Output iflag on latitude strip |
| 58 |
|
|
! ft Real Output temp tend |
| 59 |
|
|
! fq Real Output spec hum tend |
| 60 |
|
|
! fu Real Output u-wind tend |
| 61 |
|
|
! fv Real Output v-wind tend |
| 62 |
|
|
! cbmf Real In/Out cumulus mass flux |
| 63 |
|
|
! delt Real Input time step |
| 64 |
|
|
! iflag Integer Output integer flag for Emanuel |
| 65 |
|
|
! conditions |
| 66 |
|
|
|
| 67 |
|
|
! COMMON BLOCKS: |
| 68 |
|
|
! Block Name Type Usage Notes |
| 69 |
|
|
! -------- -------- ---- ------ ------------------------ |
| 70 |
|
|
|
| 71 |
|
|
! FILES: None |
| 72 |
|
|
|
| 73 |
|
|
! DATA BASES: None |
| 74 |
|
|
|
| 75 |
|
|
! NON-FILE INPUT/OUTPUT: None |
| 76 |
|
|
|
| 77 |
|
|
! ERROR CONDITIONS: None |
| 78 |
|
|
|
| 79 |
|
|
! ADDITIONAL COMMENTS: None |
| 80 |
|
|
|
| 81 |
|
|
! .................MAINTENANCE SECTION................................ |
| 82 |
|
|
|
| 83 |
|
|
! MODULES CALLED: |
| 84 |
|
|
! Name Description |
| 85 |
|
|
! convect2 Emanuel cumulus convection tendency calculations |
| 86 |
|
|
! ------- ---------------------- |
| 87 |
|
|
! LOCAL VARIABLES AND |
| 88 |
|
|
! STRUCTURES: |
| 89 |
|
|
! Name Type Description |
| 90 |
|
|
! ------- ------ ----------- |
| 91 |
|
|
! See Comments Below |
| 92 |
|
|
|
| 93 |
|
|
! i Integer loop index |
| 94 |
|
|
! k Integer loop index |
| 95 |
|
|
|
| 96 |
|
|
! METHOD: |
| 97 |
|
|
|
| 98 |
|
|
! See Emanuel, K. and M. Zivkovic-Rothman, 2000: Development and evaluation |
| 99 |
|
|
! of a |
| 100 |
|
|
! convective scheme for use in climate models. |
| 101 |
|
|
|
| 102 |
|
|
! FILES: None |
| 103 |
|
|
|
| 104 |
|
|
! INCLUDE FILES: None |
| 105 |
|
|
|
| 106 |
|
|
! MAKEFILE: /a/ops/met/nogaps/src/sub/fcst/fcst159lib.mak |
| 107 |
|
|
|
| 108 |
|
|
! ..............................END PROLOGUE............................. |
| 109 |
|
|
|
| 110 |
|
|
|
| 111 |
|
|
USE dimphy |
| 112 |
|
|
IMPLICIT NONE |
| 113 |
|
|
|
| 114 |
|
|
INTEGER len |
| 115 |
|
|
INTEGER nd |
| 116 |
|
|
INTEGER ndp1 |
| 117 |
|
|
INTEGER noff |
| 118 |
|
|
REAL t(len, nd) |
| 119 |
|
|
REAL q(len, nd) |
| 120 |
|
|
REAL qs(len, nd) |
| 121 |
|
|
REAL u(len, nd) |
| 122 |
|
|
REAL v(len, nd) |
| 123 |
|
|
REAL p(len, nd) |
| 124 |
|
|
REAL ph(len, ndp1) |
| 125 |
|
|
INTEGER iflag(len) |
| 126 |
|
|
REAL ft(len, nd) |
| 127 |
|
|
REAL fq(len, nd) |
| 128 |
|
|
REAL fu(len, nd) |
| 129 |
|
|
REAL fv(len, nd) |
| 130 |
|
|
REAL precip(len) |
| 131 |
|
|
REAL cbmf(len) |
| 132 |
|
|
REAL ma(len, nd) |
| 133 |
|
|
INTEGER minorig |
| 134 |
|
|
REAL delt, cpd, cpv, cl, rv, rd, lv0, g |
| 135 |
|
|
REAL sigs, sigd, elcrit, tlcrit, omtsnow, dtmax, damp |
| 136 |
|
|
REAL alpha, entp, coeffs, coeffr, omtrain, cu |
| 137 |
|
|
|
| 138 |
|
|
! ------------------------------------------------------------------- |
| 139 |
|
|
! --- ARGUMENTS |
| 140 |
|
|
! ------------------------------------------------------------------- |
| 141 |
|
|
! --- On input: |
| 142 |
|
|
|
| 143 |
|
|
! t: Array of absolute temperature (K) of dimension ND, with first |
| 144 |
|
|
! index corresponding to lowest model level. Note that this array |
| 145 |
|
|
! will be altered by the subroutine if dry convective adjustment |
| 146 |
|
|
! occurs and if IPBL is not equal to 0. |
| 147 |
|
|
|
| 148 |
|
|
! q: Array of specific humidity (gm/gm) of dimension ND, with first |
| 149 |
|
|
! index corresponding to lowest model level. Must be defined |
| 150 |
|
|
! at same grid levels as T. Note that this array will be altered |
| 151 |
|
|
! if dry convective adjustment occurs and if IPBL is not equal to 0. |
| 152 |
|
|
|
| 153 |
|
|
! qs: Array of saturation specific humidity of dimension ND, with first |
| 154 |
|
|
! index corresponding to lowest model level. Must be defined |
| 155 |
|
|
! at same grid levels as T. Note that this array will be altered |
| 156 |
|
|
! if dry convective adjustment occurs and if IPBL is not equal to 0. |
| 157 |
|
|
|
| 158 |
|
|
! u: Array of zonal wind velocity (m/s) of dimension ND, witth first |
| 159 |
|
|
! index corresponding with the lowest model level. Defined at |
| 160 |
|
|
! same levels as T. Note that this array will be altered if |
| 161 |
|
|
! dry convective adjustment occurs and if IPBL is not equal to 0. |
| 162 |
|
|
|
| 163 |
|
|
! v: Same as u but for meridional velocity. |
| 164 |
|
|
|
| 165 |
|
|
! tra: Array of passive tracer mixing ratio, of dimensions (ND,NTRA), |
| 166 |
|
|
! where NTRA is the number of different tracers. If no |
| 167 |
|
|
! convective tracer transport is needed, define a dummy |
| 168 |
|
|
! input array of dimension (ND,1). Tracers are defined at |
| 169 |
|
|
! same vertical levels as T. Note that this array will be altered |
| 170 |
|
|
! if dry convective adjustment occurs and if IPBL is not equal to 0. |
| 171 |
|
|
|
| 172 |
|
|
! p: Array of pressure (mb) of dimension ND, with first |
| 173 |
|
|
! index corresponding to lowest model level. Must be defined |
| 174 |
|
|
! at same grid levels as T. |
| 175 |
|
|
|
| 176 |
|
|
! ph: Array of pressure (mb) of dimension ND+1, with first index |
| 177 |
|
|
! corresponding to lowest level. These pressures are defined at |
| 178 |
|
|
! levels intermediate between those of P, T, Q and QS. The first |
| 179 |
|
|
! value of PH should be greater than (i.e. at a lower level than) |
| 180 |
|
|
! the first value of the array P. |
| 181 |
|
|
|
| 182 |
|
|
! nl: The maximum number of levels to which convection can penetrate, plus |
| 183 |
|
|
! 1. |
| 184 |
|
|
! NL MUST be less than or equal to ND-1. |
| 185 |
|
|
|
| 186 |
|
|
! delt: The model time step (sec) between calls to CONVECT |
| 187 |
|
|
|
| 188 |
|
|
! ---------------------------------------------------------------------------- |
| 189 |
|
|
! --- On Output: |
| 190 |
|
|
|
| 191 |
|
|
! iflag: An output integer whose value denotes the following: |
| 192 |
|
|
! VALUE INTERPRETATION |
| 193 |
|
|
! ----- -------------- |
| 194 |
|
|
! 0 Moist convection occurs. |
| 195 |
|
|
! 1 Moist convection occurs, but a CFL condition |
| 196 |
|
|
! on the subsidence warming is violated. This |
| 197 |
|
|
! does not cause the scheme to terminate. |
| 198 |
|
|
! 2 Moist convection, but no precip because ep(inb) lt 0.0001 |
| 199 |
|
|
! 3 No moist convection because new cbmf is 0 and old cbmf is 0. |
| 200 |
|
|
! 4 No moist convection; atmosphere is not |
| 201 |
|
|
! unstable |
| 202 |
|
|
! 6 No moist convection because ihmin le minorig. |
| 203 |
|
|
! 7 No moist convection because unreasonable |
| 204 |
|
|
! parcel level temperature or specific humidity. |
| 205 |
|
|
! 8 No moist convection: lifted condensation |
| 206 |
|
|
! level is above the 200 mb level. |
| 207 |
|
|
! 9 No moist convection: cloud base is higher |
| 208 |
|
|
! then the level NL-1. |
| 209 |
|
|
|
| 210 |
|
|
! ft: Array of temperature tendency (K/s) of dimension ND, defined at |
| 211 |
|
|
! same |
| 212 |
|
|
! grid levels as T, Q, QS and P. |
| 213 |
|
|
|
| 214 |
|
|
! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension ND, |
| 215 |
|
|
! defined at same grid levels as T, Q, QS and P. |
| 216 |
|
|
|
| 217 |
|
|
! fu: Array of forcing of zonal velocity (m/s^2) of dimension ND, |
| 218 |
|
|
! defined at same grid levels as T. |
| 219 |
|
|
|
| 220 |
|
|
! fv: Same as FU, but for forcing of meridional velocity. |
| 221 |
|
|
|
| 222 |
|
|
! ftra: Array of forcing of tracer content, in tracer mixing ratio per |
| 223 |
|
|
! second, defined at same levels as T. Dimensioned (ND,NTRA). |
| 224 |
|
|
|
| 225 |
|
|
! precip: Scalar convective precipitation rate (mm/day). |
| 226 |
|
|
|
| 227 |
|
|
! wd: A convective downdraft velocity scale. For use in surface |
| 228 |
|
|
! flux parameterizations. See convect.ps file for details. |
| 229 |
|
|
|
| 230 |
|
|
! tprime: A convective downdraft temperature perturbation scale (K). |
| 231 |
|
|
! For use in surface flux parameterizations. See convect.ps |
| 232 |
|
|
! file for details. |
| 233 |
|
|
|
| 234 |
|
|
! qprime: A convective downdraft specific humidity |
| 235 |
|
|
! perturbation scale (gm/gm). |
| 236 |
|
|
! For use in surface flux parameterizations. See convect.ps |
| 237 |
|
|
! file for details. |
| 238 |
|
|
|
| 239 |
|
|
! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST |
| 240 |
|
|
! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT |
| 241 |
|
|
! ITS NEXT CALL. That is, the value of CBMF must be "remembered" |
| 242 |
|
|
! by the calling program between calls to CONVECT. |
| 243 |
|
|
|
| 244 |
|
|
! det: Array of detrainment mass flux of dimension ND. |
| 245 |
|
|
|
| 246 |
|
|
! ------------------------------------------------------------------- |
| 247 |
|
|
|
| 248 |
|
|
! Local arrays |
| 249 |
|
|
|
| 250 |
|
|
INTEGER nl |
| 251 |
|
|
INTEGER nlp |
| 252 |
|
|
INTEGER nlm |
| 253 |
|
|
INTEGER i, k, n |
| 254 |
|
|
REAL delti |
| 255 |
|
|
REAL rowl |
| 256 |
|
|
REAL clmcpv |
| 257 |
|
|
REAL clmcpd |
| 258 |
|
|
REAL cpdmcp |
| 259 |
|
|
REAL cpvmcpd |
| 260 |
|
|
REAL eps |
| 261 |
|
|
REAL epsi |
| 262 |
|
|
REAL epsim1 |
| 263 |
|
|
REAL ginv |
| 264 |
|
|
REAL hrd |
| 265 |
|
|
REAL prccon1 |
| 266 |
|
|
INTEGER icbmax |
| 267 |
|
✗ |
REAL lv(klon, klev) |
| 268 |
|
✗ |
REAL cpn(klon, klev) |
| 269 |
|
✗ |
REAL cpx(klon, klev) |
| 270 |
|
✗ |
REAL tv(klon, klev) |
| 271 |
|
✗ |
REAL gz(klon, klev) |
| 272 |
|
✗ |
REAL hm(klon, klev) |
| 273 |
|
✗ |
REAL h(klon, klev) |
| 274 |
|
✗ |
REAL work(klon) |
| 275 |
|
✗ |
INTEGER ihmin(klon) |
| 276 |
|
✗ |
INTEGER nk(klon) |
| 277 |
|
✗ |
REAL rh(klon) |
| 278 |
|
✗ |
REAL chi(klon) |
| 279 |
|
✗ |
REAL plcl(klon) |
| 280 |
|
✗ |
INTEGER icb(klon) |
| 281 |
|
✗ |
REAL tnk(klon) |
| 282 |
|
✗ |
REAL qnk(klon) |
| 283 |
|
✗ |
REAL gznk(klon) |
| 284 |
|
✗ |
REAL pnk(klon) |
| 285 |
|
✗ |
REAL qsnk(klon) |
| 286 |
|
✗ |
REAL ticb(klon) |
| 287 |
|
✗ |
REAL gzicb(klon) |
| 288 |
|
✗ |
REAL tp(klon, klev) |
| 289 |
|
✗ |
REAL tvp(klon, klev) |
| 290 |
|
✗ |
REAL clw(klon, klev) |
| 291 |
|
|
|
| 292 |
|
✗ |
REAL ah0(klon), cpp(klon) |
| 293 |
|
|
REAL tg, qg, s, alv, tc, ahg, denom, es, rg |
| 294 |
|
|
|
| 295 |
|
|
INTEGER ncum |
| 296 |
|
✗ |
INTEGER idcum(klon) |
| 297 |
|
|
|
| 298 |
|
✗ |
cpd = 1005.7 |
| 299 |
|
✗ |
cpv = 1870.0 |
| 300 |
|
✗ |
cl = 4190.0 |
| 301 |
|
✗ |
rv = 461.5 |
| 302 |
|
✗ |
rd = 287.04 |
| 303 |
|
✗ |
lv0 = 2.501E6 |
| 304 |
|
✗ |
g = 9.8 |
| 305 |
|
|
|
| 306 |
|
|
! *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
| 307 |
|
|
! *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
| 308 |
|
|
! *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
| 309 |
|
|
! *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
| 310 |
|
|
! *** BETWEEN 0 C AND TLCRIT) *** |
| 311 |
|
|
! *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
| 312 |
|
|
! *** FORMULATION *** |
| 313 |
|
|
! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
| 314 |
|
|
! *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
| 315 |
|
|
! *** OF CLOUD *** |
| 316 |
|
|
! *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
| 317 |
|
|
! *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
| 318 |
|
|
! *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
| 319 |
|
|
! *** OF RAIN *** |
| 320 |
|
|
! *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
| 321 |
|
|
! *** OF SNOW *** |
| 322 |
|
|
! *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
| 323 |
|
|
! *** TRANSPORT *** |
| 324 |
|
|
! *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
| 325 |
|
|
! *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
| 326 |
|
|
! *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
| 327 |
|
|
! *** APPROACH TO QUASI-EQUILIBRIUM *** |
| 328 |
|
|
! *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
| 329 |
|
|
! *** (DAMP MUST BE LESS THAN 1) *** |
| 330 |
|
|
|
| 331 |
|
✗ |
sigs = 0.12 |
| 332 |
|
✗ |
sigd = 0.05 |
| 333 |
|
✗ |
elcrit = 0.0011 |
| 334 |
|
✗ |
tlcrit = -55.0 |
| 335 |
|
✗ |
omtsnow = 5.5 |
| 336 |
|
✗ |
dtmax = 0.9 |
| 337 |
|
✗ |
damp = 0.1 |
| 338 |
|
✗ |
alpha = 0.2 |
| 339 |
|
✗ |
entp = 1.5 |
| 340 |
|
✗ |
coeffs = 0.8 |
| 341 |
|
✗ |
coeffr = 1.0 |
| 342 |
|
✗ |
omtrain = 50.0 |
| 343 |
|
|
|
| 344 |
|
✗ |
cu = 0.70 |
| 345 |
|
|
damp = 0.1 |
| 346 |
|
|
|
| 347 |
|
|
|
| 348 |
|
|
! Define nl, nlp, nlm, and delti |
| 349 |
|
|
|
| 350 |
|
✗ |
nl = nd - noff |
| 351 |
|
✗ |
nlp = nl + 1 |
| 352 |
|
✗ |
nlm = nl - 1 |
| 353 |
|
|
delti = 1.0/delt |
| 354 |
|
|
|
| 355 |
|
|
! ------------------------------------------------------------------- |
| 356 |
|
|
! --- SET CONSTANTS |
| 357 |
|
|
! ------------------------------------------------------------------- |
| 358 |
|
|
|
| 359 |
|
|
rowl = 1000.0 |
| 360 |
|
|
clmcpv = cl - cpv |
| 361 |
|
|
clmcpd = cl - cpd |
| 362 |
|
|
cpdmcp = cpd - cpv |
| 363 |
|
|
cpvmcpd = cpv - cpd |
| 364 |
|
|
eps = rd/rv |
| 365 |
|
|
epsi = 1.0/eps |
| 366 |
|
|
epsim1 = epsi - 1.0 |
| 367 |
|
|
ginv = 1.0/g |
| 368 |
|
|
hrd = 0.5*rd |
| 369 |
|
|
prccon1 = 86400.0*1000.0/(rowl*g) |
| 370 |
|
|
|
| 371 |
|
|
! dtmax is the maximum negative temperature perturbation. |
| 372 |
|
|
|
| 373 |
|
|
! ===================================================================== |
| 374 |
|
|
! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS |
| 375 |
|
|
! ===================================================================== |
| 376 |
|
|
|
| 377 |
|
✗ |
DO k = 1, nd |
| 378 |
|
✗ |
DO i = 1, len |
| 379 |
|
✗ |
ft(i, k) = 0.0 |
| 380 |
|
✗ |
fq(i, k) = 0.0 |
| 381 |
|
✗ |
fu(i, k) = 0.0 |
| 382 |
|
✗ |
fv(i, k) = 0.0 |
| 383 |
|
✗ |
tvp(i, k) = 0.0 |
| 384 |
|
✗ |
tp(i, k) = 0.0 |
| 385 |
|
✗ |
clw(i, k) = 0.0 |
| 386 |
|
✗ |
gz(i, k) = 0. |
| 387 |
|
|
END DO |
| 388 |
|
|
END DO |
| 389 |
|
✗ |
DO i = 1, len |
| 390 |
|
✗ |
precip(i) = 0.0 |
| 391 |
|
✗ |
iflag(i) = 0 |
| 392 |
|
|
END DO |
| 393 |
|
|
|
| 394 |
|
|
! ===================================================================== |
| 395 |
|
|
! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
| 396 |
|
|
! ===================================================================== |
| 397 |
|
✗ |
DO k = 1, nl + 1 |
| 398 |
|
✗ |
DO i = 1, len |
| 399 |
|
✗ |
lv(i, k) = lv0 - clmcpv*(t(i,k)-273.15) |
| 400 |
|
✗ |
cpn(i, k) = cpd*(1.0-q(i,k)) + cpv*q(i, k) |
| 401 |
|
✗ |
cpx(i, k) = cpd*(1.0-q(i,k)) + cl*q(i, k) |
| 402 |
|
✗ |
tv(i, k) = t(i, k)*(1.0+q(i,k)*epsim1) |
| 403 |
|
|
END DO |
| 404 |
|
|
END DO |
| 405 |
|
|
|
| 406 |
|
|
! gz = phi at the full levels (same as p). |
| 407 |
|
|
|
| 408 |
|
✗ |
DO i = 1, len |
| 409 |
|
✗ |
gz(i, 1) = 0.0 |
| 410 |
|
|
END DO |
| 411 |
|
✗ |
DO k = 2, nlp |
| 412 |
|
✗ |
DO i = 1, len |
| 413 |
|
|
gz(i, k) = gz(i, k-1) + hrd*(tv(i,k-1)+tv(i,k))*(p(i,k-1)-p(i,k))/ph(i, & |
| 414 |
|
✗ |
k) |
| 415 |
|
|
END DO |
| 416 |
|
|
END DO |
| 417 |
|
|
|
| 418 |
|
|
! h = phi + cpT (dry static energy). |
| 419 |
|
|
! hm = phi + cp(T-Tbase)+Lq |
| 420 |
|
|
|
| 421 |
|
✗ |
DO k = 1, nlp |
| 422 |
|
✗ |
DO i = 1, len |
| 423 |
|
✗ |
h(i, k) = gz(i, k) + cpn(i, k)*t(i, k) |
| 424 |
|
✗ |
hm(i, k) = gz(i, k) + cpx(i, k)*(t(i,k)-t(i,1)) + lv(i, k)*q(i, k) |
| 425 |
|
|
END DO |
| 426 |
|
|
END DO |
| 427 |
|
|
|
| 428 |
|
|
! ------------------------------------------------------------------- |
| 429 |
|
|
! --- Find level of minimum moist static energy |
| 430 |
|
|
! --- If level of minimum moist static energy coincides with |
| 431 |
|
|
! --- or is lower than minimum allowable parcel origin level, |
| 432 |
|
|
! --- set iflag to 6. |
| 433 |
|
|
! ------------------------------------------------------------------- |
| 434 |
|
✗ |
DO i = 1, len |
| 435 |
|
✗ |
work(i) = 1.0E12 |
| 436 |
|
✗ |
ihmin(i) = nl |
| 437 |
|
|
END DO |
| 438 |
|
✗ |
DO k = 2, nlp |
| 439 |
|
✗ |
DO i = 1, len |
| 440 |
|
✗ |
IF ((hm(i,k)<work(i)) .AND. (hm(i,k)<hm(i,k-1))) THEN |
| 441 |
|
✗ |
work(i) = hm(i, k) |
| 442 |
|
✗ |
ihmin(i) = k |
| 443 |
|
|
END IF |
| 444 |
|
|
END DO |
| 445 |
|
|
END DO |
| 446 |
|
✗ |
DO i = 1, len |
| 447 |
|
✗ |
ihmin(i) = min(ihmin(i), nlm) |
| 448 |
|
✗ |
IF (ihmin(i)<=minorig) THEN |
| 449 |
|
✗ |
iflag(i) = 6 |
| 450 |
|
|
END IF |
| 451 |
|
|
END DO |
| 452 |
|
|
|
| 453 |
|
|
! ------------------------------------------------------------------- |
| 454 |
|
|
! --- Find that model level below the level of minimum moist static |
| 455 |
|
|
! --- energy that has the maximum value of moist static energy |
| 456 |
|
|
! ------------------------------------------------------------------- |
| 457 |
|
|
|
| 458 |
|
✗ |
DO i = 1, len |
| 459 |
|
✗ |
work(i) = hm(i, minorig) |
| 460 |
|
✗ |
nk(i) = minorig |
| 461 |
|
|
END DO |
| 462 |
|
✗ |
DO k = minorig + 1, nl |
| 463 |
|
✗ |
DO i = 1, len |
| 464 |
|
✗ |
IF ((hm(i,k)>work(i)) .AND. (k<=ihmin(i))) THEN |
| 465 |
|
✗ |
work(i) = hm(i, k) |
| 466 |
|
✗ |
nk(i) = k |
| 467 |
|
|
END IF |
| 468 |
|
|
END DO |
| 469 |
|
|
END DO |
| 470 |
|
|
! ------------------------------------------------------------------- |
| 471 |
|
|
! --- Check whether parcel level temperature and specific humidity |
| 472 |
|
|
! --- are reasonable |
| 473 |
|
|
! ------------------------------------------------------------------- |
| 474 |
|
✗ |
DO i = 1, len |
| 475 |
|
|
IF (((t(i,nk(i))<250.0) .OR. (q(i,nk(i))<=0.0) .OR. (p(i,ihmin(i))< & |
| 476 |
|
✗ |
400.0)) .AND. (iflag(i)==0)) iflag(i) = 7 |
| 477 |
|
|
END DO |
| 478 |
|
|
! ------------------------------------------------------------------- |
| 479 |
|
|
! --- Calculate lifted condensation level of air at parcel origin level |
| 480 |
|
|
! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
| 481 |
|
|
! ------------------------------------------------------------------- |
| 482 |
|
✗ |
DO i = 1, len |
| 483 |
|
✗ |
tnk(i) = t(i, nk(i)) |
| 484 |
|
✗ |
qnk(i) = q(i, nk(i)) |
| 485 |
|
✗ |
gznk(i) = gz(i, nk(i)) |
| 486 |
|
✗ |
pnk(i) = p(i, nk(i)) |
| 487 |
|
✗ |
qsnk(i) = qs(i, nk(i)) |
| 488 |
|
|
|
| 489 |
|
✗ |
rh(i) = qnk(i)/qsnk(i) |
| 490 |
|
✗ |
rh(i) = min(1.0, rh(i)) |
| 491 |
|
✗ |
chi(i) = tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
| 492 |
|
✗ |
plcl(i) = pnk(i)*(rh(i)**chi(i)) |
| 493 |
|
✗ |
IF (((plcl(i)<200.0) .OR. (plcl(i)>=2000.0)) .AND. (iflag(i)==0)) iflag(i & |
| 494 |
|
✗ |
) = 8 |
| 495 |
|
|
END DO |
| 496 |
|
|
! ------------------------------------------------------------------- |
| 497 |
|
|
! --- Calculate first level above lcl (=icb) |
| 498 |
|
|
! ------------------------------------------------------------------- |
| 499 |
|
✗ |
DO i = 1, len |
| 500 |
|
✗ |
icb(i) = nlm |
| 501 |
|
|
END DO |
| 502 |
|
|
|
| 503 |
|
✗ |
DO k = minorig, nl |
| 504 |
|
✗ |
DO i = 1, len |
| 505 |
|
✗ |
IF ((k>=(nk(i)+1)) .AND. (p(i,k)<plcl(i))) icb(i) = min(icb(i), k) |
| 506 |
|
|
END DO |
| 507 |
|
|
END DO |
| 508 |
|
|
|
| 509 |
|
✗ |
DO i = 1, len |
| 510 |
|
✗ |
IF ((icb(i)>=nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
| 511 |
|
|
END DO |
| 512 |
|
|
|
| 513 |
|
|
! Compute icbmax. |
| 514 |
|
|
|
| 515 |
|
|
icbmax = 2 |
| 516 |
|
✗ |
DO i = 1, len |
| 517 |
|
✗ |
icbmax = max(icbmax, icb(i)) |
| 518 |
|
|
END DO |
| 519 |
|
|
|
| 520 |
|
|
! ------------------------------------------------------------------- |
| 521 |
|
|
! --- Calculates the lifted parcel virtual temperature at nk, |
| 522 |
|
|
! --- the actual temperature, and the adiabatic |
| 523 |
|
|
! --- liquid water content. The procedure is to solve the equation. |
| 524 |
|
|
! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
| 525 |
|
|
! ------------------------------------------------------------------- |
| 526 |
|
|
|
| 527 |
|
✗ |
DO i = 1, len |
| 528 |
|
✗ |
tnk(i) = t(i, nk(i)) |
| 529 |
|
✗ |
qnk(i) = q(i, nk(i)) |
| 530 |
|
✗ |
gznk(i) = gz(i, nk(i)) |
| 531 |
|
✗ |
ticb(i) = t(i, icb(i)) |
| 532 |
|
✗ |
gzicb(i) = gz(i, icb(i)) |
| 533 |
|
|
END DO |
| 534 |
|
|
|
| 535 |
|
|
! *** Calculate certain parcel quantities, including static energy *** |
| 536 |
|
|
|
| 537 |
|
✗ |
DO i = 1, len |
| 538 |
|
|
ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
| 539 |
|
✗ |
273.15)) + gznk(i) |
| 540 |
|
✗ |
cpp(i) = cpd*(1.-qnk(i)) + qnk(i)*cpv |
| 541 |
|
|
END DO |
| 542 |
|
|
|
| 543 |
|
|
! *** Calculate lifted parcel quantities below cloud base *** |
| 544 |
|
|
|
| 545 |
|
✗ |
DO k = minorig, icbmax - 1 |
| 546 |
|
✗ |
DO i = 1, len |
| 547 |
|
✗ |
tp(i, k) = tnk(i) - (gz(i,k)-gznk(i))/cpp(i) |
| 548 |
|
✗ |
tvp(i, k) = tp(i, k)*(1.+qnk(i)*epsi) |
| 549 |
|
|
END DO |
| 550 |
|
|
END DO |
| 551 |
|
|
|
| 552 |
|
|
! *** Find lifted parcel quantities above cloud base *** |
| 553 |
|
|
|
| 554 |
|
✗ |
DO i = 1, len |
| 555 |
|
✗ |
tg = ticb(i) |
| 556 |
|
✗ |
qg = qs(i, icb(i)) |
| 557 |
|
✗ |
alv = lv0 - clmcpv*(ticb(i)-273.15) |
| 558 |
|
|
|
| 559 |
|
|
! First iteration. |
| 560 |
|
|
|
| 561 |
|
✗ |
s = cpd + alv*alv*qg/(rv*ticb(i)*ticb(i)) |
| 562 |
|
✗ |
s = 1./s |
| 563 |
|
✗ |
ahg = cpd*tg + (cl-cpd)*qnk(i)*ticb(i) + alv*qg + gzicb(i) |
| 564 |
|
✗ |
tg = tg + s*(ah0(i)-ahg) |
| 565 |
|
✗ |
tg = max(tg, 35.0) |
| 566 |
|
✗ |
tc = tg - 273.15 |
| 567 |
|
✗ |
denom = 243.5 + tc |
| 568 |
|
✗ |
IF (tc>=0.0) THEN |
| 569 |
|
✗ |
es = 6.112*exp(17.67*tc/denom) |
| 570 |
|
|
ELSE |
| 571 |
|
✗ |
es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
| 572 |
|
|
END IF |
| 573 |
|
✗ |
qg = eps*es/(p(i,icb(i))-es*(1.-eps)) |
| 574 |
|
|
|
| 575 |
|
|
! Second iteration. |
| 576 |
|
|
|
| 577 |
|
✗ |
s = cpd + alv*alv*qg/(rv*ticb(i)*ticb(i)) |
| 578 |
|
✗ |
s = 1./s |
| 579 |
|
✗ |
ahg = cpd*tg + (cl-cpd)*qnk(i)*ticb(i) + alv*qg + gzicb(i) |
| 580 |
|
✗ |
tg = tg + s*(ah0(i)-ahg) |
| 581 |
|
✗ |
tg = max(tg, 35.0) |
| 582 |
|
✗ |
tc = tg - 273.15 |
| 583 |
|
✗ |
denom = 243.5 + tc |
| 584 |
|
✗ |
IF (tc>=0.0) THEN |
| 585 |
|
✗ |
es = 6.112*exp(17.67*tc/denom) |
| 586 |
|
|
ELSE |
| 587 |
|
✗ |
es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
| 588 |
|
|
END IF |
| 589 |
|
✗ |
qg = eps*es/(p(i,icb(i))-es*(1.-eps)) |
| 590 |
|
|
|
| 591 |
|
|
alv = lv0 - clmcpv*(ticb(i)-273.15) |
| 592 |
|
✗ |
tp(i, icb(i)) = (ah0(i)-(cl-cpd)*qnk(i)*ticb(i)-gz(i,icb(i))-alv*qg)/cpd |
| 593 |
|
✗ |
clw(i, icb(i)) = qnk(i) - qg |
| 594 |
|
✗ |
clw(i, icb(i)) = max(0.0, clw(i,icb(i))) |
| 595 |
|
✗ |
rg = qg/(1.-qnk(i)) |
| 596 |
|
✗ |
tvp(i, icb(i)) = tp(i, icb(i))*(1.+rg*epsi) |
| 597 |
|
|
END DO |
| 598 |
|
|
|
| 599 |
|
✗ |
DO k = minorig, icbmax |
| 600 |
|
✗ |
DO i = 1, len |
| 601 |
|
✗ |
tvp(i, k) = tvp(i, k) - tp(i, k)*qnk(i) |
| 602 |
|
|
END DO |
| 603 |
|
|
END DO |
| 604 |
|
|
|
| 605 |
|
|
! ------------------------------------------------------------------- |
| 606 |
|
|
! --- Test for instability. |
| 607 |
|
|
! --- If there was no convection at last time step and parcel |
| 608 |
|
|
! --- is stable at icb, then set iflag to 4. |
| 609 |
|
|
! ------------------------------------------------------------------- |
| 610 |
|
|
|
| 611 |
|
✗ |
DO i = 1, len |
| 612 |
|
✗ |
IF ((cbmf(i)==0.0) .AND. (iflag(i)==0) .AND. (tvp(i, & |
| 613 |
|
✗ |
icb(i))<=(tv(i,icb(i))-dtmax))) iflag(i) = 4 |
| 614 |
|
|
END DO |
| 615 |
|
|
|
| 616 |
|
|
! ===================================================================== |
| 617 |
|
|
! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY |
| 618 |
|
|
! ===================================================================== |
| 619 |
|
|
|
| 620 |
|
✗ |
ncum = 0 |
| 621 |
|
✗ |
DO i = 1, len |
| 622 |
|
✗ |
IF (iflag(i)==0) THEN |
| 623 |
|
✗ |
ncum = ncum + 1 |
| 624 |
|
✗ |
idcum(ncum) = i |
| 625 |
|
|
END IF |
| 626 |
|
|
END DO |
| 627 |
|
|
|
| 628 |
|
|
! Call convect2, which compresses the points and computes the heating, |
| 629 |
|
|
! moistening, velocity mixing, and precipiation. |
| 630 |
|
|
|
| 631 |
|
|
! print*,'cpd avant convect2 ',cpd |
| 632 |
|
✗ |
IF (ncum>0) THEN |
| 633 |
|
|
CALL convect2(ncum, idcum, len, nd, ndp1, nl, minorig, nk, icb, t, q, qs, & |
| 634 |
|
|
u, v, gz, tv, tp, tvp, clw, h, lv, cpn, p, ph, ft, fq, fu, fv, tnk, & |
| 635 |
|
|
qnk, gznk, plcl, precip, cbmf, iflag, delt, cpd, cpv, cl, rv, rd, lv0, & |
| 636 |
|
|
g, sigs, sigd, elcrit, tlcrit, omtsnow, dtmax, damp, alpha, entp, & |
| 637 |
|
✗ |
coeffs, coeffr, omtrain, cu, ma) |
| 638 |
|
|
END IF |
| 639 |
|
|
|
| 640 |
|
✗ |
RETURN |
| 641 |
|
|
END SUBROUTINE convect1 |
| 642 |
|
|
|