| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
! $Id: convect2.F90 2346 2015-08-21 15:13:46Z emillour $ |
| 3 |
|
|
|
| 4 |
|
✗ |
SUBROUTINE convect2(ncum, idcum, len, nd, ndp1, nl, minorig, nk1, icb1, t1, & |
| 5 |
|
|
q1, qs1, u1, v1, gz1, tv1, tp1, tvp1, clw1, h1, lv1, cpn1, p1, ph1, ft1, & |
| 6 |
|
✗ |
fq1, fu1, fv1, tnk1, qnk1, gznk1, plcl1, precip1, cbmf1, iflag1, delt, & |
| 7 |
|
|
cpd, cpv, cl, rv, rd, lv0, g, sigs, sigd, elcrit, tlcrit, omtsnow, dtmax, & |
| 8 |
|
|
damp, alpha, entp, coeffs, coeffr, omtrain, cu, ma) |
| 9 |
|
|
! .............................START PROLOGUE............................ |
| 10 |
|
|
|
| 11 |
|
|
! SCCS IDENTIFICATION: @(#)convect2.f 1.2 05/18/00 |
| 12 |
|
|
! 22:06:22 /h/cm/library/nogaps4/src/sub/fcst/convect2.f_v |
| 13 |
|
|
|
| 14 |
|
|
! CONFIGURATION IDENTIFICATION: None |
| 15 |
|
|
|
| 16 |
|
|
! MODULE NAME: convect2 |
| 17 |
|
|
|
| 18 |
|
|
! DESCRIPTION: |
| 19 |
|
|
|
| 20 |
|
|
! convect1 The Emanuel Cumulus Convection Scheme - compute tendencies |
| 21 |
|
|
|
| 22 |
|
|
! CONTRACT NUMBER AND TITLE: None |
| 23 |
|
|
|
| 24 |
|
|
! REFERENCES: Programmers K. Emanuel (MIT), Timothy F. Hogan, M. Peng |
| 25 |
|
|
! (NRL) |
| 26 |
|
|
|
| 27 |
|
|
! CLASSIFICATION: Unclassified |
| 28 |
|
|
|
| 29 |
|
|
! RESTRICTIONS: None |
| 30 |
|
|
|
| 31 |
|
|
! COMPILER DEPENDENCIES: FORTRAN 77, FORTRAN 90 |
| 32 |
|
|
|
| 33 |
|
|
! COMPILE OPTIONS: Fortran 77: -Zu -Wf"-ei -o aggress" |
| 34 |
|
|
! Fortran 90: -O vector3,scalar3,task1,aggress,overindex -ei -r 2 |
| 35 |
|
|
|
| 36 |
|
|
! LIBRARIES OF RESIDENCE: /a/ops/lib/libfcst159.a |
| 37 |
|
|
|
| 38 |
|
|
! USAGE: call convect2(ncum,idcum,len,nd,nl,minorig, |
| 39 |
|
|
! & nk1,icb1, |
| 40 |
|
|
! & t1,q1,qs1,u1,v1,gz1,tv1,tp1,tvp1,clw1,h1, |
| 41 |
|
|
! & lv1,cpn1,p1,ph1,ft1,fq1,fu1,fv1, |
| 42 |
|
|
! & tnk1,qnk1,gznk1,plcl1, |
| 43 |
|
|
! & precip1,cbmf1,iflag1, |
| 44 |
|
|
! & delt,cpd,cpv,cl,rv,rd,lv0,g, |
| 45 |
|
|
! & sigs,sigd,elcrit,tlcrit,omtsnow,dtmax,damp, |
| 46 |
|
|
! & alpha,entp,coeffs,coeffr,omtrain,cu) |
| 47 |
|
|
|
| 48 |
|
|
! PARAMETERS: |
| 49 |
|
|
! Name Type Usage Description |
| 50 |
|
|
! ---------- ---------- ------- ---------------------------- |
| 51 |
|
|
|
| 52 |
|
|
! ncum Integer Input number of cumulus points |
| 53 |
|
|
! idcum Integer Input index of cumulus point |
| 54 |
|
|
! len Integer Input first dimension |
| 55 |
|
|
! nd Integer Input total vertical dimension |
| 56 |
|
|
! ndp1 Integer Input nd + 1 |
| 57 |
|
|
! nl Integer Input vertical dimension for |
| 58 |
|
|
! convection |
| 59 |
|
|
! minorig Integer Input First level where convection is |
| 60 |
|
|
! allow to begin |
| 61 |
|
|
! nk1 Integer Input First level of convection |
| 62 |
|
|
! ncb1 Integer Input Level of free convection |
| 63 |
|
|
! t1 Real Input temperature |
| 64 |
|
|
! q1 Real Input specific hum |
| 65 |
|
|
! qs1 Real Input sat specific hum |
| 66 |
|
|
! u1 Real Input u-wind |
| 67 |
|
|
! v1 Real Input v-wind |
| 68 |
|
|
! gz1 Real Inout geop |
| 69 |
|
|
! tv1 Real Input virtual temp |
| 70 |
|
|
! tp1 Real Input |
| 71 |
|
|
! clw1 Real Inout cloud liquid water |
| 72 |
|
|
! h1 Real Inout |
| 73 |
|
|
! lv1 Real Inout |
| 74 |
|
|
! cpn1 Real Inout |
| 75 |
|
|
! p1 Real Input full level pressure |
| 76 |
|
|
! ph1 Real Input half level pressure |
| 77 |
|
|
! ft1 Real Output temp tend |
| 78 |
|
|
! fq1 Real Output spec hum tend |
| 79 |
|
|
! fu1 Real Output u-wind tend |
| 80 |
|
|
! fv1 Real Output v-wind tend |
| 81 |
|
|
! precip1 Real Output prec |
| 82 |
|
|
! cbmf1 Real In/Out cumulus mass flux |
| 83 |
|
|
! iflag1 Integer Output iflag on latitude strip |
| 84 |
|
|
! delt Real Input time step |
| 85 |
|
|
! cpd Integer Input See description below |
| 86 |
|
|
! cpv Integer Input See description below |
| 87 |
|
|
! cl Integer Input See description below |
| 88 |
|
|
! rv Integer Input See description below |
| 89 |
|
|
! rd Integer Input See description below |
| 90 |
|
|
! lv0 Integer Input See description below |
| 91 |
|
|
! g Integer Input See description below |
| 92 |
|
|
! sigs Integer Input See description below |
| 93 |
|
|
! sigd Integer Input See description below |
| 94 |
|
|
! elcrit Integer Input See description below |
| 95 |
|
|
! tlcrit Integer Input See description below |
| 96 |
|
|
! omtsnow Integer Input See description below |
| 97 |
|
|
! dtmax Integer Input See description below |
| 98 |
|
|
! damp Integer Input See description below |
| 99 |
|
|
! alpha Integer Input See description below |
| 100 |
|
|
! ent Integer Input See description below |
| 101 |
|
|
! coeffs Integer Input See description below |
| 102 |
|
|
! coeffr Integer Input See description below |
| 103 |
|
|
! omtrain Integer Input See description below |
| 104 |
|
|
! cu Integer Input See description below |
| 105 |
|
|
|
| 106 |
|
|
! COMMON BLOCKS: |
| 107 |
|
|
! Block Name Type Usage Notes |
| 108 |
|
|
! -------- -------- ---- ------ ------------------------ |
| 109 |
|
|
|
| 110 |
|
|
! FILES: None |
| 111 |
|
|
|
| 112 |
|
|
! DATA BASES: None |
| 113 |
|
|
|
| 114 |
|
|
! NON-FILE INPUT/OUTPUT: None |
| 115 |
|
|
|
| 116 |
|
|
! ERROR CONDITIONS: None |
| 117 |
|
|
|
| 118 |
|
|
! ADDITIONAL COMMENTS: None |
| 119 |
|
|
|
| 120 |
|
|
! .................MAINTENANCE SECTION................................ |
| 121 |
|
|
|
| 122 |
|
|
! MODULES CALLED: |
| 123 |
|
|
! Name Description |
| 124 |
|
|
! zilch Zero out an array |
| 125 |
|
|
! ------- ---------------------- |
| 126 |
|
|
! LOCAL VARIABLES AND |
| 127 |
|
|
! STRUCTURES: |
| 128 |
|
|
! Name Type Description |
| 129 |
|
|
! ------- ------ ----------- |
| 130 |
|
|
! See Comments Below |
| 131 |
|
|
|
| 132 |
|
|
! i Integer loop index |
| 133 |
|
|
! k Integer loop index |
| 134 |
|
|
|
| 135 |
|
|
! METHOD: |
| 136 |
|
|
|
| 137 |
|
|
! See Emanuel, K. and M. Zivkovic-Rothman, 2000: Development and evaluation |
| 138 |
|
|
! of a |
| 139 |
|
|
! convective scheme for use in climate models. |
| 140 |
|
|
|
| 141 |
|
|
! FILES: None |
| 142 |
|
|
|
| 143 |
|
|
! INCLUDE FILES: None |
| 144 |
|
|
|
| 145 |
|
|
! MAKEFILE: /a/ops/met/nogaps/src/sub/fcst/fcst159lib.mak |
| 146 |
|
|
|
| 147 |
|
|
! ..............................END PROLOGUE............................. |
| 148 |
|
|
|
| 149 |
|
|
|
| 150 |
|
|
USE dimphy |
| 151 |
|
|
IMPLICIT NONE |
| 152 |
|
|
|
| 153 |
|
|
INTEGER kmax2, imax2, kmin2, imin2 |
| 154 |
|
|
REAL ftmax2, ftmin2 |
| 155 |
|
|
INTEGER kmax, imax, kmin, imin |
| 156 |
|
|
REAL ftmax, ftmin |
| 157 |
|
|
|
| 158 |
|
|
INTEGER ncum |
| 159 |
|
|
INTEGER len |
| 160 |
|
|
INTEGER idcum(len) |
| 161 |
|
|
INTEGER nd |
| 162 |
|
|
INTEGER ndp1 |
| 163 |
|
|
INTEGER nl |
| 164 |
|
|
INTEGER minorig |
| 165 |
|
|
INTEGER nk1(len) |
| 166 |
|
|
INTEGER icb1(len) |
| 167 |
|
|
REAL t1(len, nd) |
| 168 |
|
|
REAL q1(len, nd) |
| 169 |
|
|
REAL qs1(len, nd) |
| 170 |
|
|
REAL u1(len, nd) |
| 171 |
|
|
REAL v1(len, nd) |
| 172 |
|
|
REAL gz1(len, nd) |
| 173 |
|
|
REAL tv1(len, nd) |
| 174 |
|
|
REAL tp1(len, nd) |
| 175 |
|
|
REAL tvp1(len, nd) |
| 176 |
|
|
REAL clw1(len, nd) |
| 177 |
|
|
REAL h1(len, nd) |
| 178 |
|
|
REAL lv1(len, nd) |
| 179 |
|
|
REAL cpn1(len, nd) |
| 180 |
|
|
REAL p1(len, nd) |
| 181 |
|
|
REAL ph1(len, ndp1) |
| 182 |
|
|
REAL ft1(len, nd) |
| 183 |
|
|
REAL fq1(len, nd) |
| 184 |
|
|
REAL fu1(len, nd) |
| 185 |
|
|
REAL fv1(len, nd) |
| 186 |
|
|
REAL tnk1(len) |
| 187 |
|
|
REAL qnk1(len) |
| 188 |
|
|
REAL gznk1(len) |
| 189 |
|
|
REAL precip1(len) |
| 190 |
|
|
REAL cbmf1(len) |
| 191 |
|
|
REAL plcl1(len) |
| 192 |
|
|
INTEGER iflag1(len) |
| 193 |
|
|
REAL delt |
| 194 |
|
|
REAL cpd |
| 195 |
|
|
REAL cpv |
| 196 |
|
|
REAL cl |
| 197 |
|
|
REAL rv |
| 198 |
|
|
REAL rd |
| 199 |
|
|
REAL lv0 |
| 200 |
|
|
REAL g |
| 201 |
|
|
REAL sigs ! SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE |
| 202 |
|
|
REAL sigd ! SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT |
| 203 |
|
|
REAL elcrit ! ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) |
| 204 |
|
|
REAL tlcrit ! TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- |
| 205 |
|
|
! CONVERSION THRESHOLD IS ASSUMED TO BE ZERO |
| 206 |
|
|
REAL omtsnow ! OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW |
| 207 |
|
|
REAL dtmax ! DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION |
| 208 |
|
|
! A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC. |
| 209 |
|
|
REAL damp |
| 210 |
|
|
REAL alpha |
| 211 |
|
|
REAL entp ! ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT FORMULATION |
| 212 |
|
|
REAL coeffs ! COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION OF |
| 213 |
|
|
! SNOW |
| 214 |
|
|
REAL coeffr ! COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION OF |
| 215 |
|
|
! RAIN |
| 216 |
|
|
REAL omtrain ! OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN |
| 217 |
|
|
REAL cu ! CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM TRANSPORT |
| 218 |
|
|
|
| 219 |
|
|
REAL ma(len, nd) |
| 220 |
|
|
|
| 221 |
|
|
|
| 222 |
|
|
! *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
| 223 |
|
|
! *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
| 224 |
|
|
! *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
| 225 |
|
|
! *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
| 226 |
|
|
! *** BETWEEN 0 C AND TLCRIT) *** |
| 227 |
|
|
! *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
| 228 |
|
|
! *** FORMULATION *** |
| 229 |
|
|
! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
| 230 |
|
|
! *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
| 231 |
|
|
! *** OF CLOUD *** |
| 232 |
|
|
! *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
| 233 |
|
|
! *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
| 234 |
|
|
! *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
| 235 |
|
|
! *** OF RAIN *** |
| 236 |
|
|
! *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
| 237 |
|
|
! *** OF SNOW *** |
| 238 |
|
|
! *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
| 239 |
|
|
! *** TRANSPORT *** |
| 240 |
|
|
! *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
| 241 |
|
|
! *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
| 242 |
|
|
! *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
| 243 |
|
|
! *** APPROACH TO QUASI-EQUILIBRIUM *** |
| 244 |
|
|
! *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
| 245 |
|
|
! *** (DAMP MUST BE LESS THAN 1) *** |
| 246 |
|
|
|
| 247 |
|
|
! Local arrays. |
| 248 |
|
|
|
| 249 |
|
✗ |
REAL work(ncum) |
| 250 |
|
✗ |
REAL t(ncum, klev) |
| 251 |
|
✗ |
REAL q(ncum, klev) |
| 252 |
|
✗ |
REAL qs(ncum, klev) |
| 253 |
|
✗ |
REAL u(ncum, klev) |
| 254 |
|
✗ |
REAL v(ncum, klev) |
| 255 |
|
✗ |
REAL gz(ncum, klev) |
| 256 |
|
✗ |
REAL h(ncum, klev) |
| 257 |
|
✗ |
REAL lv(ncum, klev) |
| 258 |
|
✗ |
REAL cpn(ncum, klev) |
| 259 |
|
✗ |
REAL p(ncum, klev) |
| 260 |
|
✗ |
REAL ph(ncum, klev) |
| 261 |
|
✗ |
REAL ft(ncum, klev) |
| 262 |
|
✗ |
REAL fq(ncum, klev) |
| 263 |
|
✗ |
REAL fu(ncum, klev) |
| 264 |
|
✗ |
REAL fv(ncum, klev) |
| 265 |
|
✗ |
REAL precip(ncum) |
| 266 |
|
✗ |
REAL cbmf(ncum) |
| 267 |
|
✗ |
REAL plcl(ncum) |
| 268 |
|
✗ |
REAL tnk(ncum) |
| 269 |
|
✗ |
REAL qnk(ncum) |
| 270 |
|
✗ |
REAL gznk(ncum) |
| 271 |
|
✗ |
REAL tv(ncum, klev) |
| 272 |
|
✗ |
REAL tp(ncum, klev) |
| 273 |
|
✗ |
REAL tvp(ncum, klev) |
| 274 |
|
✗ |
REAL clw(ncum, klev) |
| 275 |
|
|
! real det(ncum,klev) |
| 276 |
|
✗ |
REAL dph(ncum, klev) |
| 277 |
|
|
! real wd(ncum) |
| 278 |
|
|
! real tprime(ncum) |
| 279 |
|
|
! real qprime(ncum) |
| 280 |
|
✗ |
REAL ah0(ncum) |
| 281 |
|
✗ |
REAL ep(ncum, klev) |
| 282 |
|
✗ |
REAL sigp(ncum, klev) |
| 283 |
|
✗ |
INTEGER nent(ncum, klev) |
| 284 |
|
✗ |
REAL water(ncum, klev) |
| 285 |
|
✗ |
REAL evap(ncum, klev) |
| 286 |
|
✗ |
REAL mp(ncum, klev) |
| 287 |
|
✗ |
REAL m(ncum, klev) |
| 288 |
|
|
REAL qti |
| 289 |
|
✗ |
REAL wt(ncum, klev) |
| 290 |
|
✗ |
REAL hp(ncum, klev) |
| 291 |
|
✗ |
REAL lvcp(ncum, klev) |
| 292 |
|
✗ |
REAL elij(ncum, klev, klev) |
| 293 |
|
✗ |
REAL ment(ncum, klev, klev) |
| 294 |
|
✗ |
REAL sij(ncum, klev, klev) |
| 295 |
|
✗ |
REAL qent(ncum, klev, klev) |
| 296 |
|
✗ |
REAL uent(ncum, klev, klev) |
| 297 |
|
✗ |
REAL vent(ncum, klev, klev) |
| 298 |
|
✗ |
REAL qp(ncum, klev) |
| 299 |
|
✗ |
REAL up(ncum, klev) |
| 300 |
|
✗ |
REAL vp(ncum, klev) |
| 301 |
|
✗ |
REAL cape(ncum) |
| 302 |
|
✗ |
REAL capem(ncum) |
| 303 |
|
✗ |
REAL frac(ncum) |
| 304 |
|
✗ |
REAL dtpbl(ncum) |
| 305 |
|
✗ |
REAL tvpplcl(ncum) |
| 306 |
|
✗ |
REAL tvaplcl(ncum) |
| 307 |
|
✗ |
REAL dtmin(ncum) |
| 308 |
|
|
REAL w3d(ncum, klev) |
| 309 |
|
✗ |
REAL am(ncum) |
| 310 |
|
✗ |
REAL ents(ncum) |
| 311 |
|
✗ |
REAL uav(ncum) |
| 312 |
|
✗ |
REAL vav(ncum) |
| 313 |
|
|
|
| 314 |
|
✗ |
INTEGER iflag(ncum) |
| 315 |
|
✗ |
INTEGER nk(ncum) |
| 316 |
|
✗ |
INTEGER icb(ncum) |
| 317 |
|
✗ |
INTEGER inb(ncum) |
| 318 |
|
✗ |
INTEGER inb1(ncum) |
| 319 |
|
✗ |
INTEGER jtt(ncum) |
| 320 |
|
|
|
| 321 |
|
|
INTEGER nn, i, k, n, icbmax, nlp, j |
| 322 |
|
|
INTEGER ij |
| 323 |
|
|
INTEGER nn2, nn3 |
| 324 |
|
|
REAL clmcpv |
| 325 |
|
|
REAL clmcpd |
| 326 |
|
|
REAL cpdmcp |
| 327 |
|
|
REAL cpvmcpd |
| 328 |
|
|
REAL eps |
| 329 |
|
|
REAL epsi |
| 330 |
|
|
REAL epsim1 |
| 331 |
|
|
REAL tg, qg, s, alv, tc, ahg, denom, es, rg, ginv, rowl |
| 332 |
|
|
REAL delti |
| 333 |
|
|
REAL tca, elacrit |
| 334 |
|
|
REAL by, defrac |
| 335 |
|
|
! real byp |
| 336 |
|
✗ |
REAL byp(ncum) |
| 337 |
|
✗ |
LOGICAL lcape(ncum) |
| 338 |
|
|
REAL dbo |
| 339 |
|
|
REAL bf2, anum, dei, altem, cwat, stemp |
| 340 |
|
|
REAL alt, qp1, smid, sjmax, sjmin |
| 341 |
|
|
REAL delp, delm |
| 342 |
|
|
REAL awat, coeff, afac, revap, dhdp, fac, qstm, rat |
| 343 |
|
|
REAL qsm, sigt, b6, c6 |
| 344 |
|
|
REAL dpinv, cpinv |
| 345 |
|
|
REAL fqold, ftold, fuold, fvold |
| 346 |
|
✗ |
REAL wdtrain(ncum), xxx |
| 347 |
|
✗ |
REAL bsum(ncum, klev) |
| 348 |
|
✗ |
REAL asij(ncum) |
| 349 |
|
✗ |
REAL smin(ncum) |
| 350 |
|
✗ |
REAL scrit(ncum) |
| 351 |
|
|
! real amp1,ad |
| 352 |
|
✗ |
REAL amp1(ncum), ad(ncum) |
| 353 |
|
✗ |
LOGICAL lwork(ncum) |
| 354 |
|
|
INTEGER num1, num2 |
| 355 |
|
|
|
| 356 |
|
|
! print*,'cpd en entree de convect2 ',cpd |
| 357 |
|
✗ |
nlp = nl + 1 |
| 358 |
|
|
|
| 359 |
|
|
rowl = 1000.0 |
| 360 |
|
✗ |
ginv = 1.0/g |
| 361 |
|
✗ |
delti = 1.0/delt |
| 362 |
|
|
|
| 363 |
|
|
! Define some thermodynamic variables. |
| 364 |
|
|
|
| 365 |
|
✗ |
clmcpv = cl - cpv |
| 366 |
|
✗ |
clmcpd = cl - cpd |
| 367 |
|
|
cpdmcp = cpd - cpv |
| 368 |
|
|
cpvmcpd = cpv - cpd |
| 369 |
|
✗ |
eps = rd/rv |
| 370 |
|
✗ |
epsi = 1.0/eps |
| 371 |
|
|
epsim1 = epsi - 1.0 |
| 372 |
|
|
|
| 373 |
|
|
! Compress the fields. |
| 374 |
|
|
|
| 375 |
|
✗ |
DO k = 1, nl + 1 |
| 376 |
|
|
nn = 0 |
| 377 |
|
✗ |
DO i = 1, len |
| 378 |
|
✗ |
IF (iflag1(i)==0) THEN |
| 379 |
|
✗ |
nn = nn + 1 |
| 380 |
|
✗ |
t(nn, k) = t1(i, k) |
| 381 |
|
✗ |
q(nn, k) = q1(i, k) |
| 382 |
|
✗ |
qs(nn, k) = qs1(i, k) |
| 383 |
|
✗ |
u(nn, k) = u1(i, k) |
| 384 |
|
✗ |
v(nn, k) = v1(i, k) |
| 385 |
|
✗ |
gz(nn, k) = gz1(i, k) |
| 386 |
|
✗ |
h(nn, k) = h1(i, k) |
| 387 |
|
✗ |
lv(nn, k) = lv1(i, k) |
| 388 |
|
✗ |
cpn(nn, k) = cpn1(i, k) |
| 389 |
|
✗ |
p(nn, k) = p1(i, k) |
| 390 |
|
✗ |
ph(nn, k) = ph1(i, k) |
| 391 |
|
✗ |
tv(nn, k) = tv1(i, k) |
| 392 |
|
✗ |
tp(nn, k) = tp1(i, k) |
| 393 |
|
✗ |
tvp(nn, k) = tvp1(i, k) |
| 394 |
|
✗ |
clw(nn, k) = clw1(i, k) |
| 395 |
|
|
END IF |
| 396 |
|
|
END DO |
| 397 |
|
|
! print*,'100 ncum,nn',ncum,nn |
| 398 |
|
|
END DO |
| 399 |
|
|
nn = 0 |
| 400 |
|
✗ |
DO i = 1, len |
| 401 |
|
✗ |
IF (iflag1(i)==0) THEN |
| 402 |
|
✗ |
nn = nn + 1 |
| 403 |
|
✗ |
cbmf(nn) = cbmf1(i) |
| 404 |
|
✗ |
plcl(nn) = plcl1(i) |
| 405 |
|
✗ |
tnk(nn) = tnk1(i) |
| 406 |
|
✗ |
qnk(nn) = qnk1(i) |
| 407 |
|
✗ |
gznk(nn) = gznk1(i) |
| 408 |
|
✗ |
nk(nn) = nk1(i) |
| 409 |
|
✗ |
icb(nn) = icb1(i) |
| 410 |
|
✗ |
iflag(nn) = iflag1(i) |
| 411 |
|
|
END IF |
| 412 |
|
|
END DO |
| 413 |
|
|
! print*,'150 ncum,nn',ncum,nn |
| 414 |
|
|
|
| 415 |
|
|
! Initialize the tendencies, det, wd, tprime, qprime. |
| 416 |
|
|
|
| 417 |
|
✗ |
DO k = 1, nl |
| 418 |
|
✗ |
DO i = 1, ncum |
| 419 |
|
|
! det(i,k)=0.0 |
| 420 |
|
✗ |
ft(i, k) = 0.0 |
| 421 |
|
✗ |
fu(i, k) = 0.0 |
| 422 |
|
✗ |
fv(i, k) = 0.0 |
| 423 |
|
✗ |
fq(i, k) = 0.0 |
| 424 |
|
✗ |
dph(i, k) = ph(i, k) - ph(i, k+1) |
| 425 |
|
✗ |
ep(i, k) = 0.0 |
| 426 |
|
✗ |
sigp(i, k) = sigs |
| 427 |
|
|
END DO |
| 428 |
|
|
END DO |
| 429 |
|
✗ |
DO i = 1, ncum |
| 430 |
|
|
! wd(i)=0.0 |
| 431 |
|
|
! tprime(i)=0.0 |
| 432 |
|
|
! qprime(i)=0.0 |
| 433 |
|
✗ |
precip(i) = 0.0 |
| 434 |
|
✗ |
ft(i, nl+1) = 0.0 |
| 435 |
|
✗ |
fu(i, nl+1) = 0.0 |
| 436 |
|
✗ |
fv(i, nl+1) = 0.0 |
| 437 |
|
✗ |
fq(i, nl+1) = 0.0 |
| 438 |
|
|
END DO |
| 439 |
|
|
|
| 440 |
|
|
! Compute icbmax. |
| 441 |
|
|
|
| 442 |
|
|
icbmax = 2 |
| 443 |
|
✗ |
DO i = 1, ncum |
| 444 |
|
✗ |
icbmax = max(icbmax, icb(i)) |
| 445 |
|
|
END DO |
| 446 |
|
|
|
| 447 |
|
|
|
| 448 |
|
|
! ===================================================================== |
| 449 |
|
|
! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
| 450 |
|
|
! ===================================================================== |
| 451 |
|
|
|
| 452 |
|
|
! --- The procedure is to solve the equation. |
| 453 |
|
|
! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
| 454 |
|
|
|
| 455 |
|
|
! *** Calculate certain parcel quantities, including static energy *** |
| 456 |
|
|
|
| 457 |
|
|
|
| 458 |
|
✗ |
DO i = 1, ncum |
| 459 |
|
|
ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
| 460 |
|
✗ |
273.15)) + gznk(i) |
| 461 |
|
|
END DO |
| 462 |
|
|
|
| 463 |
|
|
|
| 464 |
|
|
! *** Find lifted parcel quantities above cloud base *** |
| 465 |
|
|
|
| 466 |
|
|
|
| 467 |
|
✗ |
DO k = minorig + 1, nl |
| 468 |
|
✗ |
DO i = 1, ncum |
| 469 |
|
✗ |
IF (k>=(icb(i)+1)) THEN |
| 470 |
|
✗ |
tg = t(i, k) |
| 471 |
|
✗ |
qg = qs(i, k) |
| 472 |
|
✗ |
alv = lv0 - clmcpv*(t(i,k)-273.15) |
| 473 |
|
|
|
| 474 |
|
|
! First iteration. |
| 475 |
|
|
|
| 476 |
|
✗ |
s = cpd + alv*alv*qg/(rv*t(i,k)*t(i,k)) |
| 477 |
|
✗ |
s = 1./s |
| 478 |
|
✗ |
ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) |
| 479 |
|
✗ |
tg = tg + s*(ah0(i)-ahg) |
| 480 |
|
✗ |
tg = max(tg, 35.0) |
| 481 |
|
✗ |
tc = tg - 273.15 |
| 482 |
|
✗ |
denom = 243.5 + tc |
| 483 |
|
✗ |
IF (tc>=0.0) THEN |
| 484 |
|
✗ |
es = 6.112*exp(17.67*tc/denom) |
| 485 |
|
|
ELSE |
| 486 |
|
✗ |
es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
| 487 |
|
|
END IF |
| 488 |
|
✗ |
qg = eps*es/(p(i,k)-es*(1.-eps)) |
| 489 |
|
|
|
| 490 |
|
|
! Second iteration. |
| 491 |
|
|
|
| 492 |
|
✗ |
s = cpd + alv*alv*qg/(rv*t(i,k)*t(i,k)) |
| 493 |
|
✗ |
s = 1./s |
| 494 |
|
✗ |
ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) |
| 495 |
|
✗ |
tg = tg + s*(ah0(i)-ahg) |
| 496 |
|
✗ |
tg = max(tg, 35.0) |
| 497 |
|
✗ |
tc = tg - 273.15 |
| 498 |
|
✗ |
denom = 243.5 + tc |
| 499 |
|
✗ |
IF (tc>=0.0) THEN |
| 500 |
|
✗ |
es = 6.112*exp(17.67*tc/denom) |
| 501 |
|
|
ELSE |
| 502 |
|
✗ |
es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
| 503 |
|
|
END IF |
| 504 |
|
✗ |
qg = eps*es/(p(i,k)-es*(1.-eps)) |
| 505 |
|
|
|
| 506 |
|
|
alv = lv0 - clmcpv*(t(i,k)-273.15) |
| 507 |
|
|
! print*,'cpd dans convect2 ',cpd |
| 508 |
|
|
! print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
| 509 |
|
|
! print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
| 510 |
|
✗ |
tp(i, k) = (ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
| 511 |
|
|
! if (.not.cpd.gt.1000.) then |
| 512 |
|
|
! print*,'CPD=',cpd |
| 513 |
|
|
! stop |
| 514 |
|
|
! endif |
| 515 |
|
✗ |
clw(i, k) = qnk(i) - qg |
| 516 |
|
✗ |
clw(i, k) = max(0.0, clw(i,k)) |
| 517 |
|
✗ |
rg = qg/(1.-qnk(i)) |
| 518 |
|
✗ |
tvp(i, k) = tp(i, k)*(1.+rg*epsi) |
| 519 |
|
|
END IF |
| 520 |
|
|
END DO |
| 521 |
|
|
END DO |
| 522 |
|
|
|
| 523 |
|
|
! ===================================================================== |
| 524 |
|
|
! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
| 525 |
|
|
! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
| 526 |
|
|
! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
| 527 |
|
|
! ===================================================================== |
| 528 |
|
|
|
| 529 |
|
✗ |
DO k = minorig + 1, nl |
| 530 |
|
✗ |
DO i = 1, ncum |
| 531 |
|
✗ |
IF (k>=(nk(i)+1)) THEN |
| 532 |
|
✗ |
tca = tp(i, k) - 273.15 |
| 533 |
|
✗ |
IF (tca>=0.0) THEN |
| 534 |
|
✗ |
elacrit = elcrit |
| 535 |
|
|
ELSE |
| 536 |
|
✗ |
elacrit = elcrit*(1.0-tca/tlcrit) |
| 537 |
|
|
END IF |
| 538 |
|
✗ |
elacrit = max(elacrit, 0.0) |
| 539 |
|
✗ |
ep(i, k) = 1.0 - elacrit/max(clw(i,k), 1.0E-8) |
| 540 |
|
✗ |
ep(i, k) = max(ep(i,k), 0.0) |
| 541 |
|
✗ |
ep(i, k) = min(ep(i,k), 1.0) |
| 542 |
|
✗ |
sigp(i, k) = sigs |
| 543 |
|
|
END IF |
| 544 |
|
|
END DO |
| 545 |
|
|
END DO |
| 546 |
|
|
|
| 547 |
|
|
! ===================================================================== |
| 548 |
|
|
! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
| 549 |
|
|
! --- VIRTUAL TEMPERATURE |
| 550 |
|
|
! ===================================================================== |
| 551 |
|
|
|
| 552 |
|
✗ |
DO k = minorig + 1, nl |
| 553 |
|
✗ |
DO i = 1, ncum |
| 554 |
|
✗ |
IF (k>=(icb(i)+1)) THEN |
| 555 |
|
✗ |
tvp(i, k) = tvp(i, k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
| 556 |
|
|
! print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
| 557 |
|
|
! print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
| 558 |
|
|
END IF |
| 559 |
|
|
END DO |
| 560 |
|
|
END DO |
| 561 |
|
✗ |
DO i = 1, ncum |
| 562 |
|
✗ |
tvp(i, nlp) = tvp(i, nl) - (gz(i,nlp)-gz(i,nl))/cpd |
| 563 |
|
|
END DO |
| 564 |
|
|
|
| 565 |
|
|
|
| 566 |
|
|
! ===================================================================== |
| 567 |
|
|
! --- NOW INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
| 568 |
|
|
! ===================================================================== |
| 569 |
|
|
|
| 570 |
|
✗ |
DO i = 1, ncum*nlp |
| 571 |
|
✗ |
nent(i, 1) = 0 |
| 572 |
|
✗ |
water(i, 1) = 0.0 |
| 573 |
|
✗ |
evap(i, 1) = 0.0 |
| 574 |
|
✗ |
mp(i, 1) = 0.0 |
| 575 |
|
✗ |
m(i, 1) = 0.0 |
| 576 |
|
✗ |
wt(i, 1) = omtsnow |
| 577 |
|
✗ |
hp(i, 1) = h(i, 1) |
| 578 |
|
|
! if(.not.cpn(i,1).gt.900.) then |
| 579 |
|
|
! print*,'i,lv(i,1),cpn(i,1)' |
| 580 |
|
|
! print*, i,lv(i,1),cpn(i,1) |
| 581 |
|
|
! k=(i-1)/ncum+1 |
| 582 |
|
|
! print*,'i,k',mod(i,ncum),k,' cpn',cpn(mod(i,ncum),k) |
| 583 |
|
|
! stop |
| 584 |
|
|
! endif |
| 585 |
|
✗ |
lvcp(i, 1) = lv(i, 1)/cpn(i, 1) |
| 586 |
|
|
END DO |
| 587 |
|
|
|
| 588 |
|
✗ |
DO i = 1, ncum*nlp*nlp |
| 589 |
|
✗ |
elij(i, 1, 1) = 0.0 |
| 590 |
|
✗ |
ment(i, 1, 1) = 0.0 |
| 591 |
|
✗ |
sij(i, 1, 1) = 0.0 |
| 592 |
|
|
END DO |
| 593 |
|
|
|
| 594 |
|
✗ |
DO k = 1, nlp |
| 595 |
|
✗ |
DO j = 1, nlp |
| 596 |
|
✗ |
DO i = 1, ncum |
| 597 |
|
✗ |
qent(i, k, j) = q(i, j) |
| 598 |
|
✗ |
uent(i, k, j) = u(i, j) |
| 599 |
|
✗ |
vent(i, k, j) = v(i, j) |
| 600 |
|
|
END DO |
| 601 |
|
|
END DO |
| 602 |
|
|
END DO |
| 603 |
|
|
|
| 604 |
|
✗ |
DO i = 1, ncum |
| 605 |
|
✗ |
qp(i, 1) = q(i, 1) |
| 606 |
|
✗ |
up(i, 1) = u(i, 1) |
| 607 |
|
✗ |
vp(i, 1) = v(i, 1) |
| 608 |
|
|
END DO |
| 609 |
|
✗ |
DO k = 2, nlp |
| 610 |
|
✗ |
DO i = 1, ncum |
| 611 |
|
✗ |
qp(i, k) = q(i, k-1) |
| 612 |
|
✗ |
up(i, k) = u(i, k-1) |
| 613 |
|
✗ |
vp(i, k) = v(i, k-1) |
| 614 |
|
|
END DO |
| 615 |
|
|
END DO |
| 616 |
|
|
|
| 617 |
|
|
! ===================================================================== |
| 618 |
|
|
! --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S |
| 619 |
|
|
! --- HIGHEST LEVEL OF NEUTRAL BUOYANCY |
| 620 |
|
|
! --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) |
| 621 |
|
|
! ===================================================================== |
| 622 |
|
|
|
| 623 |
|
✗ |
DO i = 1, ncum |
| 624 |
|
✗ |
cape(i) = 0.0 |
| 625 |
|
✗ |
capem(i) = 0.0 |
| 626 |
|
✗ |
inb(i) = icb(i) + 1 |
| 627 |
|
✗ |
inb1(i) = inb(i) |
| 628 |
|
|
END DO |
| 629 |
|
|
|
| 630 |
|
|
! Originial Code |
| 631 |
|
|
|
| 632 |
|
|
! do 530 k=minorig+1,nl-1 |
| 633 |
|
|
! do 520 i=1,ncum |
| 634 |
|
|
! if(k.ge.(icb(i)+1))then |
| 635 |
|
|
! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
| 636 |
|
|
! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
| 637 |
|
|
! cape(i)=cape(i)+by |
| 638 |
|
|
! if(by.ge.0.0)inb1(i)=k+1 |
| 639 |
|
|
! if(cape(i).gt.0.0)then |
| 640 |
|
|
! inb(i)=k+1 |
| 641 |
|
|
! capem(i)=cape(i) |
| 642 |
|
|
! endif |
| 643 |
|
|
! endif |
| 644 |
|
|
! 520 continue |
| 645 |
|
|
! 530 continue |
| 646 |
|
|
! do 540 i=1,ncum |
| 647 |
|
|
! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
| 648 |
|
|
! cape(i)=capem(i)+byp |
| 649 |
|
|
! defrac=capem(i)-cape(i) |
| 650 |
|
|
! defrac=max(defrac,0.001) |
| 651 |
|
|
! frac(i)=-cape(i)/defrac |
| 652 |
|
|
! frac(i)=min(frac(i),1.0) |
| 653 |
|
|
! frac(i)=max(frac(i),0.0) |
| 654 |
|
|
! 540 continue |
| 655 |
|
|
|
| 656 |
|
|
! K Emanuel fix |
| 657 |
|
|
|
| 658 |
|
|
! call zilch(byp,ncum) |
| 659 |
|
|
! do 530 k=minorig+1,nl-1 |
| 660 |
|
|
! do 520 i=1,ncum |
| 661 |
|
|
! if(k.ge.(icb(i)+1))then |
| 662 |
|
|
! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
| 663 |
|
|
! cape(i)=cape(i)+by |
| 664 |
|
|
! if(by.ge.0.0)inb1(i)=k+1 |
| 665 |
|
|
! if(cape(i).gt.0.0)then |
| 666 |
|
|
! inb(i)=k+1 |
| 667 |
|
|
! capem(i)=cape(i) |
| 668 |
|
|
! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
| 669 |
|
|
! endif |
| 670 |
|
|
! endif |
| 671 |
|
|
! 520 continue |
| 672 |
|
|
! 530 continue |
| 673 |
|
|
! do 540 i=1,ncum |
| 674 |
|
|
! inb(i)=max(inb(i),inb1(i)) |
| 675 |
|
|
! cape(i)=capem(i)+byp(i) |
| 676 |
|
|
! defrac=capem(i)-cape(i) |
| 677 |
|
|
! defrac=max(defrac,0.001) |
| 678 |
|
|
! frac(i)=-cape(i)/defrac |
| 679 |
|
|
! frac(i)=min(frac(i),1.0) |
| 680 |
|
|
! frac(i)=max(frac(i),0.0) |
| 681 |
|
|
! 540 continue |
| 682 |
|
|
|
| 683 |
|
|
! J Teixeira fix |
| 684 |
|
|
|
| 685 |
|
✗ |
CALL zilch(byp, ncum) |
| 686 |
|
✗ |
DO i = 1, ncum |
| 687 |
|
✗ |
lcape(i) = .TRUE. |
| 688 |
|
|
END DO |
| 689 |
|
✗ |
DO k = minorig + 1, nl - 1 |
| 690 |
|
✗ |
DO i = 1, ncum |
| 691 |
|
✗ |
IF (cape(i)<0.0) lcape(i) = .FALSE. |
| 692 |
|
✗ |
IF ((k>=(icb(i)+1)) .AND. lcape(i)) THEN |
| 693 |
|
✗ |
by = (tvp(i,k)-tv(i,k))*dph(i, k)/p(i, k) |
| 694 |
|
✗ |
byp(i) = (tvp(i,k+1)-tv(i,k+1))*dph(i, k+1)/p(i, k+1) |
| 695 |
|
✗ |
cape(i) = cape(i) + by |
| 696 |
|
✗ |
IF (by>=0.0) inb1(i) = k + 1 |
| 697 |
|
✗ |
IF (cape(i)>0.0) THEN |
| 698 |
|
✗ |
inb(i) = k + 1 |
| 699 |
|
✗ |
capem(i) = cape(i) |
| 700 |
|
|
END IF |
| 701 |
|
|
END IF |
| 702 |
|
|
END DO |
| 703 |
|
|
END DO |
| 704 |
|
✗ |
DO i = 1, ncum |
| 705 |
|
✗ |
cape(i) = capem(i) + byp(i) |
| 706 |
|
✗ |
defrac = capem(i) - cape(i) |
| 707 |
|
✗ |
defrac = max(defrac, 0.001) |
| 708 |
|
✗ |
frac(i) = -cape(i)/defrac |
| 709 |
|
✗ |
frac(i) = min(frac(i), 1.0) |
| 710 |
|
✗ |
frac(i) = max(frac(i), 0.0) |
| 711 |
|
|
END DO |
| 712 |
|
|
|
| 713 |
|
|
! ===================================================================== |
| 714 |
|
|
! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
| 715 |
|
|
! ===================================================================== |
| 716 |
|
|
|
| 717 |
|
✗ |
DO k = minorig + 1, nl |
| 718 |
|
✗ |
DO i = 1, ncum |
| 719 |
|
✗ |
IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
| 720 |
|
|
hp(i, k) = h(i, nk(i)) + (lv(i,k)+(cpd-cpv)*t(i,k))*ep(i, k)*clw(i, k & |
| 721 |
|
✗ |
) |
| 722 |
|
|
END IF |
| 723 |
|
|
END DO |
| 724 |
|
|
END DO |
| 725 |
|
|
|
| 726 |
|
|
! ===================================================================== |
| 727 |
|
|
! --- CALCULATE CLOUD BASE MASS FLUX AND RATES OF MIXING, M(I), |
| 728 |
|
|
! --- AT EACH MODEL LEVEL |
| 729 |
|
|
! ===================================================================== |
| 730 |
|
|
|
| 731 |
|
|
! tvpplcl = parcel temperature lifted adiabatically from level |
| 732 |
|
|
! icb-1 to the LCL. |
| 733 |
|
|
! tvaplcl = virtual temperature at the LCL. |
| 734 |
|
|
|
| 735 |
|
✗ |
DO i = 1, ncum |
| 736 |
|
✗ |
dtpbl(i) = 0.0 |
| 737 |
|
|
tvpplcl(i) = tvp(i, icb(i)-1) - rd*tvp(i, icb(i)-1)*(p(i,icb(i)-1)-plcl(i & |
| 738 |
|
✗ |
))/(cpn(i,icb(i)-1)*p(i,icb(i)-1)) |
| 739 |
|
|
tvaplcl(i) = tv(i, icb(i)) + (tvp(i,icb(i))-tvp(i,icb(i)+1))*(plcl(i)-p(i & |
| 740 |
|
✗ |
,icb(i)))/(p(i,icb(i))-p(i,icb(i)+1)) |
| 741 |
|
|
END DO |
| 742 |
|
|
|
| 743 |
|
|
! ------------------------------------------------------------------- |
| 744 |
|
|
! --- Interpolate difference between lifted parcel and |
| 745 |
|
|
! --- environmental temperatures to lifted condensation level |
| 746 |
|
|
! ------------------------------------------------------------------- |
| 747 |
|
|
|
| 748 |
|
|
! dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). |
| 749 |
|
|
|
| 750 |
|
✗ |
DO k = minorig, icbmax |
| 751 |
|
✗ |
DO i = 1, ncum |
| 752 |
|
✗ |
IF ((k>=nk(i)) .AND. (k<=(icb(i)-1))) THEN |
| 753 |
|
✗ |
dtpbl(i) = dtpbl(i) + (tvp(i,k)-tv(i,k))*dph(i, k) |
| 754 |
|
|
END IF |
| 755 |
|
|
END DO |
| 756 |
|
|
END DO |
| 757 |
|
✗ |
DO i = 1, ncum |
| 758 |
|
✗ |
dtpbl(i) = dtpbl(i)/(ph(i,nk(i))-ph(i,icb(i))) |
| 759 |
|
✗ |
dtmin(i) = tvpplcl(i) - tvaplcl(i) + dtmax + dtpbl(i) |
| 760 |
|
|
END DO |
| 761 |
|
|
|
| 762 |
|
|
! ------------------------------------------------------------------- |
| 763 |
|
|
! --- Adjust cloud base mass flux |
| 764 |
|
|
! ------------------------------------------------------------------- |
| 765 |
|
|
|
| 766 |
|
✗ |
DO i = 1, ncum |
| 767 |
|
✗ |
work(i) = cbmf(i) |
| 768 |
|
✗ |
cbmf(i) = max(0.0, (1.0-damp)*cbmf(i)+0.1*alpha*dtmin(i)) |
| 769 |
|
✗ |
IF ((work(i)==0.0) .AND. (cbmf(i)==0.0)) THEN |
| 770 |
|
✗ |
iflag(i) = 3 |
| 771 |
|
|
END IF |
| 772 |
|
|
END DO |
| 773 |
|
|
|
| 774 |
|
|
! ------------------------------------------------------------------- |
| 775 |
|
|
! --- Calculate rates of mixing, m(i) |
| 776 |
|
|
! ------------------------------------------------------------------- |
| 777 |
|
|
|
| 778 |
|
✗ |
CALL zilch(work, ncum) |
| 779 |
|
|
|
| 780 |
|
✗ |
DO j = minorig + 1, nl |
| 781 |
|
✗ |
DO i = 1, ncum |
| 782 |
|
✗ |
IF ((j>=(icb(i)+1)) .AND. (j<=inb(i))) THEN |
| 783 |
|
✗ |
k = min(j, inb1(i)) |
| 784 |
|
|
dbo = abs(tv(i,k+1)-tvp(i,k+1)-tv(i,k-1)+tvp(i,k-1)) + & |
| 785 |
|
✗ |
entp*0.04*(ph(i,k)-ph(i,k+1)) |
| 786 |
|
✗ |
work(i) = work(i) + dbo |
| 787 |
|
✗ |
m(i, j) = cbmf(i)*dbo |
| 788 |
|
|
END IF |
| 789 |
|
|
END DO |
| 790 |
|
|
END DO |
| 791 |
|
✗ |
DO k = minorig + 1, nl |
| 792 |
|
✗ |
DO i = 1, ncum |
| 793 |
|
✗ |
IF ((k>=(icb(i)+1)) .AND. (k<=inb(i))) THEN |
| 794 |
|
✗ |
m(i, k) = m(i, k)/work(i) |
| 795 |
|
|
END IF |
| 796 |
|
|
END DO |
| 797 |
|
|
END DO |
| 798 |
|
|
|
| 799 |
|
|
|
| 800 |
|
|
! ===================================================================== |
| 801 |
|
|
! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
| 802 |
|
|
! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
| 803 |
|
|
! --- FRACTION (sij) |
| 804 |
|
|
! ===================================================================== |
| 805 |
|
|
|
| 806 |
|
|
|
| 807 |
|
✗ |
DO i = minorig + 1, nl |
| 808 |
|
✗ |
DO j = minorig + 1, nl |
| 809 |
|
✗ |
DO ij = 1, ncum |
| 810 |
|
✗ |
IF ((i>=(icb(ij)+1)) .AND. (j>=icb(ij)) .AND. (i<=inb(ij)) .AND. (j<= & |
| 811 |
|
✗ |
inb(ij))) THEN |
| 812 |
|
✗ |
qti = qnk(ij) - ep(ij, i)*clw(ij, i) |
| 813 |
|
✗ |
bf2 = 1. + lv(ij, j)*lv(ij, j)*qs(ij, j)/(rv*t(ij,j)*t(ij,j)*cpd) |
| 814 |
|
✗ |
anum = h(ij, j) - hp(ij, i) + (cpv-cpd)*t(ij, j)*(qti-q(ij,j)) |
| 815 |
|
✗ |
denom = h(ij, i) - hp(ij, i) + (cpd-cpv)*(q(ij,i)-qti)*t(ij, j) |
| 816 |
|
|
dei = denom |
| 817 |
|
✗ |
IF (abs(dei)<0.01) dei = 0.01 |
| 818 |
|
✗ |
sij(ij, i, j) = anum/dei |
| 819 |
|
✗ |
sij(ij, i, i) = 1.0 |
| 820 |
|
✗ |
altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) |
| 821 |
|
✗ |
altem = altem/bf2 |
| 822 |
|
✗ |
cwat = clw(ij, j)*(1.-ep(ij,j)) |
| 823 |
|
|
stemp = sij(ij, i, j) |
| 824 |
|
✗ |
IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
| 825 |
|
✗ |
anum = anum - lv(ij, j)*(qti-qs(ij,j)-cwat*bf2) |
| 826 |
|
✗ |
denom = denom + lv(ij, j)*(q(ij,i)-qti) |
| 827 |
|
✗ |
IF (abs(denom)<0.01) denom = 0.01 |
| 828 |
|
✗ |
sij(ij, i, j) = anum/denom |
| 829 |
|
✗ |
altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) |
| 830 |
|
✗ |
altem = altem - (bf2-1.)*cwat |
| 831 |
|
|
END IF |
| 832 |
|
✗ |
IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN |
| 833 |
|
✗ |
qent(ij, i, j) = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti |
| 834 |
|
|
uent(ij, i, j) = sij(ij, i, j)*u(ij, i) + & |
| 835 |
|
✗ |
(1.-sij(ij,i,j))*u(ij, nk(ij)) |
| 836 |
|
|
vent(ij, i, j) = sij(ij, i, j)*v(ij, i) + & |
| 837 |
|
✗ |
(1.-sij(ij,i,j))*v(ij, nk(ij)) |
| 838 |
|
|
elij(ij, i, j) = altem |
| 839 |
|
✗ |
elij(ij, i, j) = max(0.0, elij(ij,i,j)) |
| 840 |
|
✗ |
ment(ij, i, j) = m(ij, i)/(1.-sij(ij,i,j)) |
| 841 |
|
✗ |
nent(ij, i) = nent(ij, i) + 1 |
| 842 |
|
|
END IF |
| 843 |
|
✗ |
sij(ij, i, j) = max(0.0, sij(ij,i,j)) |
| 844 |
|
✗ |
sij(ij, i, j) = min(1.0, sij(ij,i,j)) |
| 845 |
|
|
END IF |
| 846 |
|
|
END DO |
| 847 |
|
|
END DO |
| 848 |
|
|
|
| 849 |
|
|
! *** If no air can entrain at level i assume that updraft detrains |
| 850 |
|
|
! *** |
| 851 |
|
|
! *** at that level and calculate detrained air flux and properties |
| 852 |
|
|
! *** |
| 853 |
|
|
|
| 854 |
|
✗ |
DO ij = 1, ncum |
| 855 |
|
✗ |
IF ((i>=(icb(ij)+1)) .AND. (i<=inb(ij)) .AND. (nent(ij,i)==0)) THEN |
| 856 |
|
✗ |
ment(ij, i, i) = m(ij, i) |
| 857 |
|
✗ |
qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
| 858 |
|
✗ |
uent(ij, i, i) = u(ij, nk(ij)) |
| 859 |
|
✗ |
vent(ij, i, i) = v(ij, nk(ij)) |
| 860 |
|
✗ |
elij(ij, i, i) = clw(ij, i) |
| 861 |
|
✗ |
sij(ij, i, i) = 1.0 |
| 862 |
|
|
END IF |
| 863 |
|
|
END DO |
| 864 |
|
|
END DO |
| 865 |
|
|
|
| 866 |
|
✗ |
DO i = 1, ncum |
| 867 |
|
✗ |
sij(i, inb(i), inb(i)) = 1.0 |
| 868 |
|
|
END DO |
| 869 |
|
|
|
| 870 |
|
|
! ===================================================================== |
| 871 |
|
|
! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
| 872 |
|
|
! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
| 873 |
|
|
! ===================================================================== |
| 874 |
|
|
|
| 875 |
|
|
|
| 876 |
|
✗ |
CALL zilch(bsum, ncum*nlp) |
| 877 |
|
✗ |
DO ij = 1, ncum |
| 878 |
|
✗ |
lwork(ij) = .FALSE. |
| 879 |
|
|
END DO |
| 880 |
|
✗ |
DO i = minorig + 1, nl |
| 881 |
|
|
|
| 882 |
|
|
num1 = 0 |
| 883 |
|
✗ |
DO ij = 1, ncum |
| 884 |
|
✗ |
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) num1 = num1 + 1 |
| 885 |
|
|
END DO |
| 886 |
|
✗ |
IF (num1<=0) GO TO 789 |
| 887 |
|
|
|
| 888 |
|
✗ |
DO ij = 1, ncum |
| 889 |
|
✗ |
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) THEN |
| 890 |
|
✗ |
lwork(ij) = (nent(ij,i)/=0) |
| 891 |
|
✗ |
qp1 = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
| 892 |
|
✗ |
anum = h(ij, i) - hp(ij, i) - lv(ij, i)*(qp1-qs(ij,i)) |
| 893 |
|
✗ |
denom = h(ij, i) - hp(ij, i) + lv(ij, i)*(q(ij,i)-qp1) |
| 894 |
|
✗ |
IF (abs(denom)<0.01) denom = 0.01 |
| 895 |
|
✗ |
scrit(ij) = anum/denom |
| 896 |
|
✗ |
alt = qp1 - qs(ij, i) + scrit(ij)*(q(ij,i)-qp1) |
| 897 |
|
✗ |
IF (scrit(ij)<0.0 .OR. alt<0.0) scrit(ij) = 1.0 |
| 898 |
|
✗ |
asij(ij) = 0.0 |
| 899 |
|
✗ |
smin(ij) = 1.0 |
| 900 |
|
|
END IF |
| 901 |
|
|
END DO |
| 902 |
|
✗ |
DO j = minorig, nl |
| 903 |
|
|
|
| 904 |
|
|
num2 = 0 |
| 905 |
|
✗ |
DO ij = 1, ncum |
| 906 |
|
|
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
| 907 |
|
✗ |
ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) num2 = num2 + 1 |
| 908 |
|
|
END DO |
| 909 |
|
✗ |
IF (num2<=0) GO TO 783 |
| 910 |
|
|
|
| 911 |
|
✗ |
DO ij = 1, ncum |
| 912 |
|
|
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
| 913 |
|
✗ |
ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
| 914 |
|
✗ |
IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN |
| 915 |
|
✗ |
IF (j>i) THEN |
| 916 |
|
✗ |
smid = min(sij(ij,i,j), scrit(ij)) |
| 917 |
|
|
sjmax = smid |
| 918 |
|
|
sjmin = smid |
| 919 |
|
✗ |
IF (smid<smin(ij) .AND. sij(ij,i,j+1)<smid) THEN |
| 920 |
|
✗ |
smin(ij) = smid |
| 921 |
|
✗ |
sjmax = min(sij(ij,i,j+1), sij(ij,i,j), scrit(ij)) |
| 922 |
|
✗ |
sjmin = max(sij(ij,i,j-1), sij(ij,i,j)) |
| 923 |
|
✗ |
sjmin = min(sjmin, scrit(ij)) |
| 924 |
|
|
END IF |
| 925 |
|
|
ELSE |
| 926 |
|
✗ |
sjmax = max(sij(ij,i,j+1), scrit(ij)) |
| 927 |
|
✗ |
smid = max(sij(ij,i,j), scrit(ij)) |
| 928 |
|
|
sjmin = 0.0 |
| 929 |
|
✗ |
IF (j>1) sjmin = sij(ij, i, j-1) |
| 930 |
|
✗ |
sjmin = max(sjmin, scrit(ij)) |
| 931 |
|
|
END IF |
| 932 |
|
✗ |
delp = abs(sjmax-smid) |
| 933 |
|
✗ |
delm = abs(sjmin-smid) |
| 934 |
|
✗ |
asij(ij) = asij(ij) + (delp+delm)*(ph(ij,j)-ph(ij,j+1)) |
| 935 |
|
✗ |
ment(ij, i, j) = ment(ij, i, j)*(delp+delm)*(ph(ij,j)-ph(ij,j+1)) |
| 936 |
|
|
END IF |
| 937 |
|
|
END IF |
| 938 |
|
|
END DO |
| 939 |
|
✗ |
783 END DO |
| 940 |
|
✗ |
DO ij = 1, ncum |
| 941 |
|
✗ |
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. lwork(ij)) THEN |
| 942 |
|
✗ |
asij(ij) = max(1.0E-21, asij(ij)) |
| 943 |
|
✗ |
asij(ij) = 1.0/asij(ij) |
| 944 |
|
✗ |
bsum(ij, i) = 0.0 |
| 945 |
|
|
END IF |
| 946 |
|
|
END DO |
| 947 |
|
✗ |
DO j = minorig, nl + 1 |
| 948 |
|
✗ |
DO ij = 1, ncum |
| 949 |
|
|
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
| 950 |
|
✗ |
ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
| 951 |
|
✗ |
ment(ij, i, j) = ment(ij, i, j)*asij(ij) |
| 952 |
|
✗ |
bsum(ij, i) = bsum(ij, i) + ment(ij, i, j) |
| 953 |
|
|
END IF |
| 954 |
|
|
END DO |
| 955 |
|
|
END DO |
| 956 |
|
✗ |
DO ij = 1, ncum |
| 957 |
|
|
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (bsum(ij, & |
| 958 |
|
✗ |
i)<1.0E-18) .AND. lwork(ij)) THEN |
| 959 |
|
✗ |
nent(ij, i) = 0 |
| 960 |
|
✗ |
ment(ij, i, i) = m(ij, i) |
| 961 |
|
✗ |
qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
| 962 |
|
✗ |
uent(ij, i, i) = u(ij, nk(ij)) |
| 963 |
|
✗ |
vent(ij, i, i) = v(ij, nk(ij)) |
| 964 |
|
✗ |
elij(ij, i, i) = clw(ij, i) |
| 965 |
|
✗ |
sij(ij, i, i) = 1.0 |
| 966 |
|
|
END IF |
| 967 |
|
|
END DO |
| 968 |
|
✗ |
789 END DO |
| 969 |
|
|
|
| 970 |
|
|
! ===================================================================== |
| 971 |
|
|
! --- PRECIPITATING DOWNDRAFT CALCULATION |
| 972 |
|
|
! ===================================================================== |
| 973 |
|
|
|
| 974 |
|
|
! *** Check whether ep(inb)=0, if so, skip precipitating *** |
| 975 |
|
|
! *** downdraft calculation *** |
| 976 |
|
|
|
| 977 |
|
|
|
| 978 |
|
|
! *** Integrate liquid water equation to find condensed water *** |
| 979 |
|
|
! *** and condensed water flux *** |
| 980 |
|
|
|
| 981 |
|
|
|
| 982 |
|
✗ |
DO i = 1, ncum |
| 983 |
|
✗ |
jtt(i) = 2 |
| 984 |
|
✗ |
IF (ep(i,inb(i))<=0.0001) iflag(i) = 2 |
| 985 |
|
✗ |
IF (iflag(i)==0) THEN |
| 986 |
|
✗ |
lwork(i) = .TRUE. |
| 987 |
|
|
ELSE |
| 988 |
|
✗ |
lwork(i) = .FALSE. |
| 989 |
|
|
END IF |
| 990 |
|
|
END DO |
| 991 |
|
|
|
| 992 |
|
|
! *** Begin downdraft loop *** |
| 993 |
|
|
|
| 994 |
|
|
|
| 995 |
|
✗ |
CALL zilch(wdtrain, ncum) |
| 996 |
|
✗ |
DO i = nl + 1, 1, -1 |
| 997 |
|
|
|
| 998 |
|
|
num1 = 0 |
| 999 |
|
✗ |
DO ij = 1, ncum |
| 1000 |
|
✗ |
IF ((i<=inb(ij)) .AND. lwork(ij)) num1 = num1 + 1 |
| 1001 |
|
|
END DO |
| 1002 |
|
✗ |
IF (num1<=0) GO TO 899 |
| 1003 |
|
|
|
| 1004 |
|
|
|
| 1005 |
|
|
! *** Calculate detrained precipitation *** |
| 1006 |
|
|
|
| 1007 |
|
✗ |
DO ij = 1, ncum |
| 1008 |
|
✗ |
IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
| 1009 |
|
✗ |
wdtrain(ij) = g*ep(ij, i)*m(ij, i)*clw(ij, i) |
| 1010 |
|
|
END IF |
| 1011 |
|
|
END DO |
| 1012 |
|
|
|
| 1013 |
|
✗ |
IF (i>1) THEN |
| 1014 |
|
✗ |
DO j = 1, i - 1 |
| 1015 |
|
✗ |
DO ij = 1, ncum |
| 1016 |
|
✗ |
IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
| 1017 |
|
✗ |
awat = elij(ij, j, i) - (1.-ep(ij,i))*clw(ij, i) |
| 1018 |
|
✗ |
awat = max(0.0, awat) |
| 1019 |
|
✗ |
wdtrain(ij) = wdtrain(ij) + g*awat*ment(ij, j, i) |
| 1020 |
|
|
END IF |
| 1021 |
|
|
END DO |
| 1022 |
|
|
END DO |
| 1023 |
|
|
END IF |
| 1024 |
|
|
|
| 1025 |
|
|
! *** Find rain water and evaporation using provisional *** |
| 1026 |
|
|
! *** estimates of qp(i)and qp(i-1) *** |
| 1027 |
|
|
|
| 1028 |
|
|
|
| 1029 |
|
|
! *** Value of terminal velocity and coeffecient of evaporation for snow |
| 1030 |
|
|
! *** |
| 1031 |
|
|
|
| 1032 |
|
✗ |
DO ij = 1, ncum |
| 1033 |
|
✗ |
IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
| 1034 |
|
✗ |
coeff = coeffs |
| 1035 |
|
✗ |
wt(ij, i) = omtsnow |
| 1036 |
|
|
|
| 1037 |
|
|
! *** Value of terminal velocity and coeffecient of evaporation for |
| 1038 |
|
|
! rain *** |
| 1039 |
|
|
|
| 1040 |
|
✗ |
IF (t(ij,i)>273.0) THEN |
| 1041 |
|
✗ |
coeff = coeffr |
| 1042 |
|
✗ |
wt(ij, i) = omtrain |
| 1043 |
|
|
END IF |
| 1044 |
|
✗ |
qsm = 0.5*(q(ij,i)+qp(ij,i+1)) |
| 1045 |
|
✗ |
afac = coeff*ph(ij, i)*(qs(ij,i)-qsm)/(1.0E4+2.0E3*ph(ij,i)*qs(ij,i)) |
| 1046 |
|
✗ |
afac = max(afac, 0.0) |
| 1047 |
|
✗ |
sigt = sigp(ij, i) |
| 1048 |
|
✗ |
sigt = max(0.0, sigt) |
| 1049 |
|
✗ |
sigt = min(1.0, sigt) |
| 1050 |
|
✗ |
b6 = 100.*(ph(ij,i)-ph(ij,i+1))*sigt*afac/wt(ij, i) |
| 1051 |
|
✗ |
c6 = (water(ij,i+1)*wt(ij,i+1)+wdtrain(ij)/sigd)/wt(ij, i) |
| 1052 |
|
✗ |
revap = 0.5*(-b6+sqrt(b6*b6+4.*c6)) |
| 1053 |
|
✗ |
evap(ij, i) = sigt*afac*revap |
| 1054 |
|
✗ |
water(ij, i) = revap*revap |
| 1055 |
|
|
|
| 1056 |
|
|
! *** Calculate precipitating downdraft mass flux under *** |
| 1057 |
|
|
! *** hydrostatic approximation *** |
| 1058 |
|
|
|
| 1059 |
|
✗ |
IF (i>1) THEN |
| 1060 |
|
✗ |
dhdp = (h(ij,i)-h(ij,i-1))/(p(ij,i-1)-p(ij,i)) |
| 1061 |
|
✗ |
dhdp = max(dhdp, 10.0) |
| 1062 |
|
✗ |
mp(ij, i) = 100.*ginv*lv(ij, i)*sigd*evap(ij, i)/dhdp |
| 1063 |
|
✗ |
mp(ij, i) = max(mp(ij,i), 0.0) |
| 1064 |
|
|
|
| 1065 |
|
|
! *** Add small amount of inertia to downdraft *** |
| 1066 |
|
|
|
| 1067 |
|
✗ |
fac = 20.0/(ph(ij,i-1)-ph(ij,i)) |
| 1068 |
|
✗ |
mp(ij, i) = (fac*mp(ij,i+1)+mp(ij,i))/(1.+fac) |
| 1069 |
|
|
|
| 1070 |
|
|
! *** Force mp to decrease linearly to zero |
| 1071 |
|
|
! *** |
| 1072 |
|
|
! *** between about 950 mb and the surface |
| 1073 |
|
|
! *** |
| 1074 |
|
|
|
| 1075 |
|
✗ |
IF (p(ij,i)>(0.949*p(ij,1))) THEN |
| 1076 |
|
✗ |
jtt(ij) = max(jtt(ij), i) |
| 1077 |
|
|
mp(ij, i) = mp(ij, jtt(ij))*(p(ij,1)-p(ij,i))/ & |
| 1078 |
|
✗ |
(p(ij,1)-p(ij,jtt(ij))) |
| 1079 |
|
|
END IF |
| 1080 |
|
|
END IF |
| 1081 |
|
|
|
| 1082 |
|
|
! *** Find mixing ratio of precipitating downdraft *** |
| 1083 |
|
|
|
| 1084 |
|
✗ |
IF (i/=inb(ij)) THEN |
| 1085 |
|
✗ |
IF (i==1) THEN |
| 1086 |
|
✗ |
qstm = qs(ij, 1) |
| 1087 |
|
|
ELSE |
| 1088 |
|
✗ |
qstm = qs(ij, i-1) |
| 1089 |
|
|
END IF |
| 1090 |
|
✗ |
IF (mp(ij,i)>mp(ij,i+1)) THEN |
| 1091 |
|
✗ |
rat = mp(ij, i+1)/mp(ij, i) |
| 1092 |
|
|
qp(ij, i) = qp(ij, i+1)*rat + q(ij, i)*(1.0-rat) + & |
| 1093 |
|
✗ |
100.*ginv*sigd*(ph(ij,i)-ph(ij,i+1))*(evap(ij,i)/mp(ij,i)) |
| 1094 |
|
✗ |
up(ij, i) = up(ij, i+1)*rat + u(ij, i)*(1.-rat) |
| 1095 |
|
✗ |
vp(ij, i) = vp(ij, i+1)*rat + v(ij, i)*(1.-rat) |
| 1096 |
|
|
ELSE |
| 1097 |
|
✗ |
IF (mp(ij,i+1)>0.0) THEN |
| 1098 |
|
|
qp(ij, i) = (gz(ij,i+1)-gz(ij,i)+qp(ij,i+1)*(lv(ij,i+1)+t(ij, & |
| 1099 |
|
|
i+1)*(cl-cpd))+cpd*(t(ij,i+1)-t(ij, & |
| 1100 |
|
✗ |
i)))/(lv(ij,i)+t(ij,i)*(cl-cpd)) |
| 1101 |
|
✗ |
up(ij, i) = up(ij, i+1) |
| 1102 |
|
✗ |
vp(ij, i) = vp(ij, i+1) |
| 1103 |
|
|
END IF |
| 1104 |
|
|
END IF |
| 1105 |
|
✗ |
qp(ij, i) = min(qp(ij,i), qstm) |
| 1106 |
|
✗ |
qp(ij, i) = max(qp(ij,i), 0.0) |
| 1107 |
|
|
END IF |
| 1108 |
|
|
END IF |
| 1109 |
|
|
END DO |
| 1110 |
|
✗ |
899 END DO |
| 1111 |
|
|
|
| 1112 |
|
|
! *** Calculate surface precipitation in mm/day *** |
| 1113 |
|
|
|
| 1114 |
|
✗ |
DO i = 1, ncum |
| 1115 |
|
✗ |
IF (iflag(i)<=1) THEN |
| 1116 |
|
|
! c precip(i)=precip(i)+wt(i,1)*sigd*water(i,1)*3600.*24000. |
| 1117 |
|
|
! c & /(rowl*g) |
| 1118 |
|
|
! c precip(i)=precip(i)*delt/86400. |
| 1119 |
|
✗ |
precip(i) = wt(i, 1)*sigd*water(i, 1)*86400/g |
| 1120 |
|
|
END IF |
| 1121 |
|
|
END DO |
| 1122 |
|
|
|
| 1123 |
|
|
|
| 1124 |
|
|
! *** Calculate downdraft velocity scale and surface temperature and *** |
| 1125 |
|
|
! *** water vapor fluctuations *** |
| 1126 |
|
|
|
| 1127 |
|
|
! wd=beta*abs(mp(icb))*0.01*rd*t(icb)/(sigd*p(icb)) |
| 1128 |
|
|
! qprime=0.5*(qp(1)-q(1)) |
| 1129 |
|
|
! tprime=lv0*qprime/cpd |
| 1130 |
|
|
|
| 1131 |
|
|
! *** Calculate tendencies of lowest level potential temperature *** |
| 1132 |
|
|
! *** and mixing ratio *** |
| 1133 |
|
|
|
| 1134 |
|
✗ |
DO i = 1, ncum |
| 1135 |
|
✗ |
work(i) = 0.01/(ph(i,1)-ph(i,2)) |
| 1136 |
|
✗ |
am(i) = 0.0 |
| 1137 |
|
|
END DO |
| 1138 |
|
✗ |
DO k = 2, nl |
| 1139 |
|
✗ |
DO i = 1, ncum |
| 1140 |
|
✗ |
IF ((nk(i)==1) .AND. (k<=inb(i)) .AND. (nk(i)==1)) THEN |
| 1141 |
|
✗ |
am(i) = am(i) + m(i, k) |
| 1142 |
|
|
END IF |
| 1143 |
|
|
END DO |
| 1144 |
|
|
END DO |
| 1145 |
|
✗ |
DO i = 1, ncum |
| 1146 |
|
✗ |
IF ((g*work(i)*am(i))>=delti) iflag(i) = 1 |
| 1147 |
|
|
ft(i, 1) = ft(i, 1) + g*work(i)*am(i)*(t(i,2)-t(i,1)+(gz(i,2)-gz(i, & |
| 1148 |
|
✗ |
1))/cpn(i,1)) |
| 1149 |
|
✗ |
ft(i, 1) = ft(i, 1) - lvcp(i, 1)*sigd*evap(i, 1) |
| 1150 |
|
|
ft(i, 1) = ft(i, 1) + sigd*wt(i, 2)*(cl-cpd)*water(i, 2)*(t(i,2)-t(i,1))* & |
| 1151 |
|
✗ |
work(i)/cpn(i, 1) |
| 1152 |
|
|
fq(i, 1) = fq(i, 1) + g*mp(i, 2)*(qp(i,2)-q(i,1))*work(i) + & |
| 1153 |
|
✗ |
sigd*evap(i, 1) |
| 1154 |
|
✗ |
fq(i, 1) = fq(i, 1) + g*am(i)*(q(i,2)-q(i,1))*work(i) |
| 1155 |
|
|
fu(i, 1) = fu(i, 1) + g*work(i)*(mp(i,2)*(up(i,2)-u(i,1))+am(i)*(u(i, & |
| 1156 |
|
✗ |
2)-u(i,1))) |
| 1157 |
|
|
fv(i, 1) = fv(i, 1) + g*work(i)*(mp(i,2)*(vp(i,2)-v(i,1))+am(i)*(v(i, & |
| 1158 |
|
✗ |
2)-v(i,1))) |
| 1159 |
|
|
END DO |
| 1160 |
|
✗ |
DO j = 2, nl |
| 1161 |
|
✗ |
DO i = 1, ncum |
| 1162 |
|
✗ |
IF (j<=inb(i)) THEN |
| 1163 |
|
✗ |
fq(i, 1) = fq(i, 1) + g*work(i)*ment(i, j, 1)*(qent(i,j,1)-q(i,1)) |
| 1164 |
|
✗ |
fu(i, 1) = fu(i, 1) + g*work(i)*ment(i, j, 1)*(uent(i,j,1)-u(i,1)) |
| 1165 |
|
✗ |
fv(i, 1) = fv(i, 1) + g*work(i)*ment(i, j, 1)*(vent(i,j,1)-v(i,1)) |
| 1166 |
|
|
END IF |
| 1167 |
|
|
END DO |
| 1168 |
|
|
END DO |
| 1169 |
|
|
|
| 1170 |
|
|
! *** Calculate tendencies of potential temperature and mixing ratio *** |
| 1171 |
|
|
! *** at levels above the lowest level *** |
| 1172 |
|
|
|
| 1173 |
|
|
! *** First find the net saturated updraft and downdraft mass fluxes *** |
| 1174 |
|
|
! *** through each level *** |
| 1175 |
|
|
|
| 1176 |
|
✗ |
DO i = 2, nl + 1 |
| 1177 |
|
|
|
| 1178 |
|
|
num1 = 0 |
| 1179 |
|
✗ |
DO ij = 1, ncum |
| 1180 |
|
✗ |
IF (i<=inb(ij)) num1 = num1 + 1 |
| 1181 |
|
|
END DO |
| 1182 |
|
✗ |
IF (num1<=0) GO TO 1500 |
| 1183 |
|
|
|
| 1184 |
|
✗ |
CALL zilch(amp1, ncum) |
| 1185 |
|
✗ |
CALL zilch(ad, ncum) |
| 1186 |
|
|
|
| 1187 |
|
✗ |
DO k = i + 1, nl + 1 |
| 1188 |
|
✗ |
DO ij = 1, ncum |
| 1189 |
|
✗ |
IF ((i>=nk(ij)) .AND. (i<=inb(ij)) .AND. (k<=(inb(ij)+1))) THEN |
| 1190 |
|
✗ |
amp1(ij) = amp1(ij) + m(ij, k) |
| 1191 |
|
|
END IF |
| 1192 |
|
|
END DO |
| 1193 |
|
|
END DO |
| 1194 |
|
|
|
| 1195 |
|
✗ |
DO k = 1, i |
| 1196 |
|
✗ |
DO j = i + 1, nl + 1 |
| 1197 |
|
✗ |
DO ij = 1, ncum |
| 1198 |
|
✗ |
IF ((j<=(inb(ij)+1)) .AND. (i<=inb(ij))) THEN |
| 1199 |
|
✗ |
amp1(ij) = amp1(ij) + ment(ij, k, j) |
| 1200 |
|
|
END IF |
| 1201 |
|
|
END DO |
| 1202 |
|
|
END DO |
| 1203 |
|
|
END DO |
| 1204 |
|
✗ |
DO k = 1, i - 1 |
| 1205 |
|
✗ |
DO j = i, nl + 1 |
| 1206 |
|
✗ |
DO ij = 1, ncum |
| 1207 |
|
✗ |
IF ((i<=inb(ij)) .AND. (j<=inb(ij))) THEN |
| 1208 |
|
✗ |
ad(ij) = ad(ij) + ment(ij, j, k) |
| 1209 |
|
|
END IF |
| 1210 |
|
|
END DO |
| 1211 |
|
|
END DO |
| 1212 |
|
|
END DO |
| 1213 |
|
|
|
| 1214 |
|
✗ |
DO ij = 1, ncum |
| 1215 |
|
✗ |
IF (i<=inb(ij)) THEN |
| 1216 |
|
✗ |
dpinv = 0.01/(ph(ij,i)-ph(ij,i+1)) |
| 1217 |
|
✗ |
cpinv = 1.0/cpn(ij, i) |
| 1218 |
|
|
|
| 1219 |
|
|
ft(ij, i) = ft(ij, i) + g*dpinv*(amp1(ij)*(t(ij,i+1)-t(ij, & |
| 1220 |
|
|
i)+(gz(ij,i+1)-gz(ij,i))*cpinv)-ad(ij)*(t(ij,i)-t(ij, & |
| 1221 |
|
✗ |
i-1)+(gz(ij,i)-gz(ij,i-1))*cpinv)) - sigd*lvcp(ij, i)*evap(ij, i) |
| 1222 |
|
|
ft(ij, i) = ft(ij, i) + g*dpinv*ment(ij, i, i)*(hp(ij,i)-h(ij,i)+t(ij & |
| 1223 |
|
✗ |
,i)*(cpv-cpd)*(q(ij,i)-qent(ij,i,i)))*cpinv |
| 1224 |
|
|
ft(ij, i) = ft(ij, i) + sigd*wt(ij, i+1)*(cl-cpd)*water(ij, i+1)*(t( & |
| 1225 |
|
✗ |
ij,i+1)-t(ij,i))*dpinv*cpinv |
| 1226 |
|
|
fq(ij, i) = fq(ij, i) + g*dpinv*(amp1(ij)*(q(ij,i+1)-q(ij, & |
| 1227 |
|
✗ |
i))-ad(ij)*(q(ij,i)-q(ij,i-1))) |
| 1228 |
|
|
fu(ij, i) = fu(ij, i) + g*dpinv*(amp1(ij)*(u(ij,i+1)-u(ij, & |
| 1229 |
|
✗ |
i))-ad(ij)*(u(ij,i)-u(ij,i-1))) |
| 1230 |
|
|
fv(ij, i) = fv(ij, i) + g*dpinv*(amp1(ij)*(v(ij,i+1)-v(ij, & |
| 1231 |
|
✗ |
i))-ad(ij)*(v(ij,i)-v(ij,i-1))) |
| 1232 |
|
|
END IF |
| 1233 |
|
|
END DO |
| 1234 |
|
✗ |
DO k = 1, i - 1 |
| 1235 |
|
✗ |
DO ij = 1, ncum |
| 1236 |
|
✗ |
IF (i<=inb(ij)) THEN |
| 1237 |
|
✗ |
awat = elij(ij, k, i) - (1.-ep(ij,i))*clw(ij, i) |
| 1238 |
|
✗ |
awat = max(awat, 0.0) |
| 1239 |
|
|
fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-awat-q & |
| 1240 |
|
✗ |
(ij,i)) |
| 1241 |
|
|
fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & |
| 1242 |
|
✗ |
)) |
| 1243 |
|
|
fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & |
| 1244 |
|
✗ |
)) |
| 1245 |
|
|
END IF |
| 1246 |
|
|
END DO |
| 1247 |
|
|
END DO |
| 1248 |
|
✗ |
DO k = i, nl + 1 |
| 1249 |
|
✗ |
DO ij = 1, ncum |
| 1250 |
|
✗ |
IF ((i<=inb(ij)) .AND. (k<=inb(ij))) THEN |
| 1251 |
|
|
fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-q(ij,i & |
| 1252 |
|
✗ |
)) |
| 1253 |
|
|
fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & |
| 1254 |
|
✗ |
)) |
| 1255 |
|
|
fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & |
| 1256 |
|
✗ |
)) |
| 1257 |
|
|
END IF |
| 1258 |
|
|
END DO |
| 1259 |
|
|
END DO |
| 1260 |
|
✗ |
DO ij = 1, ncum |
| 1261 |
|
✗ |
IF (i<=inb(ij)) THEN |
| 1262 |
|
|
fq(ij, i) = fq(ij, i) + sigd*evap(ij, i) + g*(mp(ij,i+1)*(qp(ij, & |
| 1263 |
|
✗ |
i+1)-q(ij,i))-mp(ij,i)*(qp(ij,i)-q(ij,i-1)))*dpinv |
| 1264 |
|
|
fu(ij, i) = fu(ij, i) + g*(mp(ij,i+1)*(up(ij,i+1)-u(ij, & |
| 1265 |
|
✗ |
i))-mp(ij,i)*(up(ij,i)-u(ij,i-1)))*dpinv |
| 1266 |
|
|
fv(ij, i) = fv(ij, i) + g*(mp(ij,i+1)*(vp(ij,i+1)-v(ij, & |
| 1267 |
|
✗ |
i))-mp(ij,i)*(vp(ij,i)-v(ij,i-1)))*dpinv |
| 1268 |
|
|
END IF |
| 1269 |
|
|
END DO |
| 1270 |
|
✗ |
1500 END DO |
| 1271 |
|
|
|
| 1272 |
|
|
! *** Adjust tendencies at top of convection layer to reflect *** |
| 1273 |
|
|
! *** actual position of the level zero cape *** |
| 1274 |
|
|
|
| 1275 |
|
✗ |
DO ij = 1, ncum |
| 1276 |
|
✗ |
fqold = fq(ij, inb(ij)) |
| 1277 |
|
✗ |
fq(ij, inb(ij)) = fq(ij, inb(ij))*(1.-frac(ij)) |
| 1278 |
|
|
fq(ij, inb(ij)-1) = fq(ij, inb(ij)-1) + frac(ij)*fqold*((ph(ij, & |
| 1279 |
|
|
inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & |
| 1280 |
|
✗ |
inb(ij))))*lv(ij, inb(ij))/lv(ij, inb(ij)-1) |
| 1281 |
|
✗ |
ftold = ft(ij, inb(ij)) |
| 1282 |
|
✗ |
ft(ij, inb(ij)) = ft(ij, inb(ij))*(1.-frac(ij)) |
| 1283 |
|
|
ft(ij, inb(ij)-1) = ft(ij, inb(ij)-1) + frac(ij)*ftold*((ph(ij, & |
| 1284 |
|
|
inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & |
| 1285 |
|
✗ |
inb(ij))))*cpn(ij, inb(ij))/cpn(ij, inb(ij)-1) |
| 1286 |
|
✗ |
fuold = fu(ij, inb(ij)) |
| 1287 |
|
✗ |
fu(ij, inb(ij)) = fu(ij, inb(ij))*(1.-frac(ij)) |
| 1288 |
|
|
fu(ij, inb(ij)-1) = fu(ij, inb(ij)-1) + frac(ij)*fuold*((ph(ij, & |
| 1289 |
|
✗ |
inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
| 1290 |
|
✗ |
fvold = fv(ij, inb(ij)) |
| 1291 |
|
✗ |
fv(ij, inb(ij)) = fv(ij, inb(ij))*(1.-frac(ij)) |
| 1292 |
|
|
fv(ij, inb(ij)-1) = fv(ij, inb(ij)-1) + frac(ij)*fvold*((ph(ij, & |
| 1293 |
|
✗ |
inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
| 1294 |
|
|
END DO |
| 1295 |
|
|
|
| 1296 |
|
|
! *** Very slightly adjust tendencies to force exact *** |
| 1297 |
|
|
! *** enthalpy, momentum and tracer conservation *** |
| 1298 |
|
|
|
| 1299 |
|
✗ |
DO ij = 1, ncum |
| 1300 |
|
✗ |
ents(ij) = 0.0 |
| 1301 |
|
✗ |
uav(ij) = 0.0 |
| 1302 |
|
✗ |
vav(ij) = 0.0 |
| 1303 |
|
✗ |
DO i = 1, inb(ij) |
| 1304 |
|
|
ents(ij) = ents(ij) + (cpn(ij,i)*ft(ij,i)+lv(ij,i)*fq(ij,i))*(ph(ij,i)- & |
| 1305 |
|
✗ |
ph(ij,i+1)) |
| 1306 |
|
✗ |
uav(ij) = uav(ij) + fu(ij, i)*(ph(ij,i)-ph(ij,i+1)) |
| 1307 |
|
✗ |
vav(ij) = vav(ij) + fv(ij, i)*(ph(ij,i)-ph(ij,i+1)) |
| 1308 |
|
|
END DO |
| 1309 |
|
|
END DO |
| 1310 |
|
✗ |
DO ij = 1, ncum |
| 1311 |
|
✗ |
ents(ij) = ents(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
| 1312 |
|
✗ |
uav(ij) = uav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
| 1313 |
|
✗ |
vav(ij) = vav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
| 1314 |
|
|
END DO |
| 1315 |
|
✗ |
DO ij = 1, ncum |
| 1316 |
|
✗ |
DO i = 1, inb(ij) |
| 1317 |
|
✗ |
ft(ij, i) = ft(ij, i) - ents(ij)/cpn(ij, i) |
| 1318 |
|
✗ |
fu(ij, i) = (1.-cu)*(fu(ij,i)-uav(ij)) |
| 1319 |
|
✗ |
fv(ij, i) = (1.-cu)*(fv(ij,i)-vav(ij)) |
| 1320 |
|
|
END DO |
| 1321 |
|
|
END DO |
| 1322 |
|
|
|
| 1323 |
|
✗ |
DO k = 1, nl + 1 |
| 1324 |
|
✗ |
DO i = 1, ncum |
| 1325 |
|
✗ |
IF ((q(i,k)+delt*fq(i,k))<0.0) iflag(i) = 10 |
| 1326 |
|
|
END DO |
| 1327 |
|
|
END DO |
| 1328 |
|
|
|
| 1329 |
|
|
|
| 1330 |
|
✗ |
DO i = 1, ncum |
| 1331 |
|
✗ |
IF (iflag(i)>2) THEN |
| 1332 |
|
✗ |
precip(i) = 0.0 |
| 1333 |
|
✗ |
cbmf(i) = 0.0 |
| 1334 |
|
|
END IF |
| 1335 |
|
|
END DO |
| 1336 |
|
✗ |
DO k = 1, nl |
| 1337 |
|
✗ |
DO i = 1, ncum |
| 1338 |
|
✗ |
IF (iflag(i)>2) THEN |
| 1339 |
|
✗ |
ft(i, k) = 0.0 |
| 1340 |
|
✗ |
fq(i, k) = 0.0 |
| 1341 |
|
✗ |
fu(i, k) = 0.0 |
| 1342 |
|
✗ |
fv(i, k) = 0.0 |
| 1343 |
|
|
END IF |
| 1344 |
|
|
END DO |
| 1345 |
|
|
END DO |
| 1346 |
|
✗ |
DO i = 1, ncum |
| 1347 |
|
✗ |
precip1(idcum(i)) = precip(i) |
| 1348 |
|
✗ |
cbmf1(idcum(i)) = cbmf(i) |
| 1349 |
|
✗ |
iflag1(idcum(i)) = iflag(i) |
| 1350 |
|
|
END DO |
| 1351 |
|
✗ |
DO k = 1, nl |
| 1352 |
|
✗ |
DO i = 1, ncum |
| 1353 |
|
✗ |
ft1(idcum(i), k) = ft(i, k) |
| 1354 |
|
✗ |
fq1(idcum(i), k) = fq(i, k) |
| 1355 |
|
✗ |
fu1(idcum(i), k) = fu(i, k) |
| 1356 |
|
✗ |
fv1(idcum(i), k) = fv(i, k) |
| 1357 |
|
|
END DO |
| 1358 |
|
|
END DO |
| 1359 |
|
|
|
| 1360 |
|
✗ |
DO k = 1, nd |
| 1361 |
|
✗ |
DO i = 1, len |
| 1362 |
|
✗ |
ma(i, k) = 0. |
| 1363 |
|
|
END DO |
| 1364 |
|
|
END DO |
| 1365 |
|
✗ |
DO k = nl, 1, -1 |
| 1366 |
|
✗ |
DO i = 1, ncum |
| 1367 |
|
✗ |
ma(i, k) = ma(i, k+1) + m(i, k) |
| 1368 |
|
|
END DO |
| 1369 |
|
|
END DO |
| 1370 |
|
|
|
| 1371 |
|
✗ |
RETURN |
| 1372 |
|
|
END SUBROUTINE convect2 |
| 1373 |
|
|
|
| 1374 |
|
|
|