| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
! $Id: cv30_routines.F90 3577 2019-10-07 13:30:19Z fhourdin $ |
| 3 |
|
|
|
| 4 |
|
|
|
| 5 |
|
|
|
| 6 |
|
✗ |
SUBROUTINE cv30_param(nd, delt) |
| 7 |
|
|
IMPLICIT NONE |
| 8 |
|
|
|
| 9 |
|
|
! ------------------------------------------------------------ |
| 10 |
|
|
! Set parameters for convectL for iflag_con = 3 |
| 11 |
|
|
! ------------------------------------------------------------ |
| 12 |
|
|
|
| 13 |
|
|
|
| 14 |
|
|
! *** PBCRIT IS THE CRITICAL CLOUD DEPTH (MB) BENEATH WHICH THE *** |
| 15 |
|
|
! *** PRECIPITATION EFFICIENCY IS ASSUMED TO BE ZERO *** |
| 16 |
|
|
! *** PTCRIT IS THE CLOUD DEPTH (MB) ABOVE WHICH THE PRECIP. *** |
| 17 |
|
|
! *** EFFICIENCY IS ASSUMED TO BE UNITY *** |
| 18 |
|
|
! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
| 19 |
|
|
! *** SPFAC IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
| 20 |
|
|
! *** OF CLOUD *** |
| 21 |
|
|
|
| 22 |
|
|
! [TAU: CHARACTERISTIC TIMESCALE USED TO COMPUTE ALPHA & BETA] |
| 23 |
|
|
! *** ALPHA AND BETA ARE PARAMETERS THAT CONTROL THE RATE OF *** |
| 24 |
|
|
! *** APPROACH TO QUASI-EQUILIBRIUM *** |
| 25 |
|
|
! *** (THEIR STANDARD VALUES ARE 1.0 AND 0.96, RESPECTIVELY) *** |
| 26 |
|
|
! *** (BETA MUST BE LESS THAN OR EQUAL TO 1) *** |
| 27 |
|
|
|
| 28 |
|
|
! *** DTCRIT IS THE CRITICAL BUOYANCY (K) USED TO ADJUST THE *** |
| 29 |
|
|
! *** APPROACH TO QUASI-EQUILIBRIUM *** |
| 30 |
|
|
! *** IT MUST BE LESS THAN 0 *** |
| 31 |
|
|
|
| 32 |
|
|
include "cv30param.h" |
| 33 |
|
|
include "conema3.h" |
| 34 |
|
|
|
| 35 |
|
|
INTEGER nd |
| 36 |
|
|
REAL delt ! timestep (seconds) |
| 37 |
|
|
|
| 38 |
|
|
! noff: integer limit for convection (nd-noff) |
| 39 |
|
|
! minorig: First level of convection |
| 40 |
|
|
|
| 41 |
|
|
! -- limit levels for convection: |
| 42 |
|
|
|
| 43 |
|
✗ |
noff = 1 |
| 44 |
|
✗ |
minorig = 1 |
| 45 |
|
✗ |
nl = nd - noff |
| 46 |
|
✗ |
nlp = nl + 1 |
| 47 |
|
✗ |
nlm = nl - 1 |
| 48 |
|
|
|
| 49 |
|
|
! -- "microphysical" parameters: |
| 50 |
|
|
|
| 51 |
|
✗ |
sigd = 0.01 |
| 52 |
|
✗ |
spfac = 0.15 |
| 53 |
|
✗ |
pbcrit = 150.0 |
| 54 |
|
✗ |
ptcrit = 500.0 |
| 55 |
|
|
! IM cf. FH epmax = 0.993 |
| 56 |
|
|
|
| 57 |
|
✗ |
omtrain = 45.0 ! used also for snow (no disctinction rain/snow) |
| 58 |
|
|
|
| 59 |
|
|
! -- misc: |
| 60 |
|
|
|
| 61 |
|
✗ |
dtovsh = -0.2 ! dT for overshoot |
| 62 |
|
✗ |
dpbase = -40. ! definition cloud base (400m above LCL) |
| 63 |
|
✗ |
dttrig = 5. ! (loose) condition for triggering |
| 64 |
|
|
|
| 65 |
|
|
! -- rate of approach to quasi-equilibrium: |
| 66 |
|
|
|
| 67 |
|
✗ |
dtcrit = -2.0 |
| 68 |
|
✗ |
tau = 8000. |
| 69 |
|
✗ |
beta = 1.0 - delt/tau |
| 70 |
|
✗ |
alpha = 1.5E-3*delt/tau |
| 71 |
|
|
! increase alpha to compensate W decrease: |
| 72 |
|
✗ |
alpha = alpha*1.5 |
| 73 |
|
|
|
| 74 |
|
|
! -- interface cloud parameterization: |
| 75 |
|
|
|
| 76 |
|
✗ |
delta = 0.01 ! cld |
| 77 |
|
|
|
| 78 |
|
|
! -- interface with boundary-layer (gust factor): (sb) |
| 79 |
|
|
|
| 80 |
|
✗ |
betad = 10.0 ! original value (from convect 4.3) |
| 81 |
|
|
|
| 82 |
|
✗ |
RETURN |
| 83 |
|
|
END SUBROUTINE cv30_param |
| 84 |
|
|
|
| 85 |
|
✗ |
SUBROUTINE cv30_prelim(len, nd, ndp1, t, q, p, ph, lv, cpn, tv, gz, h, hm, & |
| 86 |
|
|
th) |
| 87 |
|
|
IMPLICIT NONE |
| 88 |
|
|
|
| 89 |
|
|
! ===================================================================== |
| 90 |
|
|
! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
| 91 |
|
|
! "ori": from convect4.3 (vectorized) |
| 92 |
|
|
! "convect3": to be exactly consistent with convect3 |
| 93 |
|
|
! ===================================================================== |
| 94 |
|
|
|
| 95 |
|
|
! inputs: |
| 96 |
|
|
INTEGER len, nd, ndp1 |
| 97 |
|
|
REAL t(len, nd), q(len, nd), p(len, nd), ph(len, ndp1) |
| 98 |
|
|
|
| 99 |
|
|
! outputs: |
| 100 |
|
|
REAL lv(len, nd), cpn(len, nd), tv(len, nd) |
| 101 |
|
|
REAL gz(len, nd), h(len, nd), hm(len, nd) |
| 102 |
|
|
REAL th(len, nd) |
| 103 |
|
|
|
| 104 |
|
|
! local variables: |
| 105 |
|
|
INTEGER k, i |
| 106 |
|
|
REAL rdcp |
| 107 |
|
|
REAL tvx, tvy ! convect3 |
| 108 |
|
✗ |
REAL cpx(len, nd) |
| 109 |
|
|
|
| 110 |
|
|
include "cvthermo.h" |
| 111 |
|
|
include "cv30param.h" |
| 112 |
|
|
|
| 113 |
|
|
|
| 114 |
|
|
! ori do 110 k=1,nlp |
| 115 |
|
✗ |
DO k = 1, nl ! convect3 |
| 116 |
|
✗ |
DO i = 1, len |
| 117 |
|
|
! debug lv(i,k)= lv0-clmcpv*(t(i,k)-t0) |
| 118 |
|
✗ |
lv(i, k) = lv0 - clmcpv*(t(i,k)-273.15) |
| 119 |
|
✗ |
cpn(i, k) = cpd*(1.0-q(i,k)) + cpv*q(i, k) |
| 120 |
|
✗ |
cpx(i, k) = cpd*(1.0-q(i,k)) + cl*q(i, k) |
| 121 |
|
|
! ori tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
| 122 |
|
✗ |
tv(i, k) = t(i, k)*(1.0+q(i,k)/eps-q(i,k)) |
| 123 |
|
✗ |
rdcp = (rrd*(1.-q(i,k))+q(i,k)*rrv)/cpn(i, k) |
| 124 |
|
✗ |
th(i, k) = t(i, k)*(1000.0/p(i,k))**rdcp |
| 125 |
|
|
END DO |
| 126 |
|
|
END DO |
| 127 |
|
|
|
| 128 |
|
|
! gz = phi at the full levels (same as p). |
| 129 |
|
|
|
| 130 |
|
✗ |
DO i = 1, len |
| 131 |
|
✗ |
gz(i, 1) = 0.0 |
| 132 |
|
|
END DO |
| 133 |
|
|
! ori do 140 k=2,nlp |
| 134 |
|
✗ |
DO k = 2, nl ! convect3 |
| 135 |
|
✗ |
DO i = 1, len |
| 136 |
|
✗ |
tvx = t(i, k)*(1.+q(i,k)/eps-q(i,k)) !convect3 |
| 137 |
|
✗ |
tvy = t(i, k-1)*(1.+q(i,k-1)/eps-q(i,k-1)) !convect3 |
| 138 |
|
|
gz(i, k) = gz(i, k-1) + 0.5*rrd*(tvx+tvy) & !convect3 |
| 139 |
|
✗ |
*(p(i,k-1)-p(i,k))/ph(i, k) !convect3 |
| 140 |
|
|
|
| 141 |
|
|
! ori gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
| 142 |
|
|
! ori & *(p(i,k-1)-p(i,k))/ph(i,k) |
| 143 |
|
|
END DO |
| 144 |
|
|
END DO |
| 145 |
|
|
|
| 146 |
|
|
! h = phi + cpT (dry static energy). |
| 147 |
|
|
! hm = phi + cp(T-Tbase)+Lq |
| 148 |
|
|
|
| 149 |
|
|
! ori do 170 k=1,nlp |
| 150 |
|
✗ |
DO k = 1, nl ! convect3 |
| 151 |
|
✗ |
DO i = 1, len |
| 152 |
|
✗ |
h(i, k) = gz(i, k) + cpn(i, k)*t(i, k) |
| 153 |
|
✗ |
hm(i, k) = gz(i, k) + cpx(i, k)*(t(i,k)-t(i,1)) + lv(i, k)*q(i, k) |
| 154 |
|
|
END DO |
| 155 |
|
|
END DO |
| 156 |
|
|
|
| 157 |
|
✗ |
RETURN |
| 158 |
|
|
END SUBROUTINE cv30_prelim |
| 159 |
|
|
|
| 160 |
|
✗ |
SUBROUTINE cv30_feed(len, nd, t, q, qs, p, ph, hm, gz, nk, icb, icbmax, & |
| 161 |
|
✗ |
iflag, tnk, qnk, gznk, plcl) |
| 162 |
|
|
IMPLICIT NONE |
| 163 |
|
|
|
| 164 |
|
|
! ================================================================ |
| 165 |
|
|
! Purpose: CONVECTIVE FEED |
| 166 |
|
|
|
| 167 |
|
|
! Main differences with cv_feed: |
| 168 |
|
|
! - ph added in input |
| 169 |
|
|
! - here, nk(i)=minorig |
| 170 |
|
|
! - icb defined differently (plcl compared with ph instead of p) |
| 171 |
|
|
|
| 172 |
|
|
! Main differences with convect3: |
| 173 |
|
|
! - we do not compute dplcldt and dplcldr of CLIFT anymore |
| 174 |
|
|
! - values iflag different (but tests identical) |
| 175 |
|
|
! - A,B explicitely defined (!...) |
| 176 |
|
|
! ================================================================ |
| 177 |
|
|
|
| 178 |
|
|
include "cv30param.h" |
| 179 |
|
|
|
| 180 |
|
|
! inputs: |
| 181 |
|
|
INTEGER len, nd |
| 182 |
|
|
REAL t(len, nd), q(len, nd), qs(len, nd), p(len, nd) |
| 183 |
|
|
REAL hm(len, nd), gz(len, nd) |
| 184 |
|
|
REAL ph(len, nd+1) |
| 185 |
|
|
|
| 186 |
|
|
! outputs: |
| 187 |
|
|
INTEGER iflag(len), nk(len), icb(len), icbmax |
| 188 |
|
|
REAL tnk(len), qnk(len), gznk(len), plcl(len) |
| 189 |
|
|
|
| 190 |
|
|
! local variables: |
| 191 |
|
|
INTEGER i, k |
| 192 |
|
|
INTEGER ihmin(len) |
| 193 |
|
|
REAL work(len) |
| 194 |
|
✗ |
REAL pnk(len), qsnk(len), rh(len), chi(len) |
| 195 |
|
|
REAL a, b ! convect3 |
| 196 |
|
|
! ym |
| 197 |
|
✗ |
plcl = 0.0 |
| 198 |
|
|
! @ !------------------------------------------------------------------- |
| 199 |
|
|
! @ ! --- Find level of minimum moist static energy |
| 200 |
|
|
! @ ! --- If level of minimum moist static energy coincides with |
| 201 |
|
|
! @ ! --- or is lower than minimum allowable parcel origin level, |
| 202 |
|
|
! @ ! --- set iflag to 6. |
| 203 |
|
|
! @ !------------------------------------------------------------------- |
| 204 |
|
|
! @ |
| 205 |
|
|
! @ do 180 i=1,len |
| 206 |
|
|
! @ work(i)=1.0e12 |
| 207 |
|
|
! @ ihmin(i)=nl |
| 208 |
|
|
! @ 180 continue |
| 209 |
|
|
! @ do 200 k=2,nlp |
| 210 |
|
|
! @ do 190 i=1,len |
| 211 |
|
|
! @ if((hm(i,k).lt.work(i)).and. |
| 212 |
|
|
! @ & (hm(i,k).lt.hm(i,k-1)))then |
| 213 |
|
|
! @ work(i)=hm(i,k) |
| 214 |
|
|
! @ ihmin(i)=k |
| 215 |
|
|
! @ endif |
| 216 |
|
|
! @ 190 continue |
| 217 |
|
|
! @ 200 continue |
| 218 |
|
|
! @ do 210 i=1,len |
| 219 |
|
|
! @ ihmin(i)=min(ihmin(i),nlm) |
| 220 |
|
|
! @ if(ihmin(i).le.minorig)then |
| 221 |
|
|
! @ iflag(i)=6 |
| 222 |
|
|
! @ endif |
| 223 |
|
|
! @ 210 continue |
| 224 |
|
|
! @ c |
| 225 |
|
|
! @ !------------------------------------------------------------------- |
| 226 |
|
|
! @ ! --- Find that model level below the level of minimum moist static |
| 227 |
|
|
! @ ! --- energy that has the maximum value of moist static energy |
| 228 |
|
|
! @ !------------------------------------------------------------------- |
| 229 |
|
|
! @ |
| 230 |
|
|
! @ do 220 i=1,len |
| 231 |
|
|
! @ work(i)=hm(i,minorig) |
| 232 |
|
|
! @ nk(i)=minorig |
| 233 |
|
|
! @ 220 continue |
| 234 |
|
|
! @ do 240 k=minorig+1,nl |
| 235 |
|
|
! @ do 230 i=1,len |
| 236 |
|
|
! @ if((hm(i,k).gt.work(i)).and.(k.le.ihmin(i)))then |
| 237 |
|
|
! @ work(i)=hm(i,k) |
| 238 |
|
|
! @ nk(i)=k |
| 239 |
|
|
! @ endif |
| 240 |
|
|
! @ 230 continue |
| 241 |
|
|
! @ 240 continue |
| 242 |
|
|
|
| 243 |
|
|
! ------------------------------------------------------------------- |
| 244 |
|
|
! --- Origin level of ascending parcels for convect3: |
| 245 |
|
|
! ------------------------------------------------------------------- |
| 246 |
|
|
|
| 247 |
|
✗ |
DO i = 1, len |
| 248 |
|
✗ |
nk(i) = minorig |
| 249 |
|
|
END DO |
| 250 |
|
|
|
| 251 |
|
|
! ------------------------------------------------------------------- |
| 252 |
|
|
! --- Check whether parcel level temperature and specific humidity |
| 253 |
|
|
! --- are reasonable |
| 254 |
|
|
! ------------------------------------------------------------------- |
| 255 |
|
✗ |
DO i = 1, len |
| 256 |
|
|
IF (((t(i,nk(i))<250.0) .OR. (q(i,nk(i))<=0.0)) & ! @ & .or.( |
| 257 |
|
|
! p(i,ihmin(i)).lt.400.0 |
| 258 |
|
|
! ) ) |
| 259 |
|
✗ |
.AND. (iflag(i)==0)) iflag(i) = 7 |
| 260 |
|
|
END DO |
| 261 |
|
|
! ------------------------------------------------------------------- |
| 262 |
|
|
! --- Calculate lifted condensation level of air at parcel origin level |
| 263 |
|
|
! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
| 264 |
|
|
! ------------------------------------------------------------------- |
| 265 |
|
|
|
| 266 |
|
|
a = 1669.0 ! convect3 |
| 267 |
|
|
b = 122.0 ! convect3 |
| 268 |
|
|
|
| 269 |
|
✗ |
DO i = 1, len |
| 270 |
|
|
|
| 271 |
|
✗ |
IF (iflag(i)/=7) THEN ! modif sb Jun7th 2002 |
| 272 |
|
|
|
| 273 |
|
✗ |
tnk(i) = t(i, nk(i)) |
| 274 |
|
✗ |
qnk(i) = q(i, nk(i)) |
| 275 |
|
✗ |
gznk(i) = gz(i, nk(i)) |
| 276 |
|
✗ |
pnk(i) = p(i, nk(i)) |
| 277 |
|
✗ |
qsnk(i) = qs(i, nk(i)) |
| 278 |
|
|
|
| 279 |
|
✗ |
rh(i) = qnk(i)/qsnk(i) |
| 280 |
|
|
! ori rh(i)=min(1.0,rh(i)) ! removed for convect3 |
| 281 |
|
|
! ori chi(i)=tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
| 282 |
|
✗ |
chi(i) = tnk(i)/(a-b*rh(i)-tnk(i)) ! convect3 |
| 283 |
|
✗ |
plcl(i) = pnk(i)*(rh(i)**chi(i)) |
| 284 |
|
✗ |
IF (((plcl(i)<200.0) .OR. (plcl(i)>=2000.0)) .AND. (iflag(i)==0)) iflag & |
| 285 |
|
✗ |
(i) = 8 |
| 286 |
|
|
|
| 287 |
|
|
END IF ! iflag=7 |
| 288 |
|
|
|
| 289 |
|
|
END DO |
| 290 |
|
|
|
| 291 |
|
|
! ------------------------------------------------------------------- |
| 292 |
|
|
! --- Calculate first level above lcl (=icb) |
| 293 |
|
|
! ------------------------------------------------------------------- |
| 294 |
|
|
|
| 295 |
|
|
! @ do 270 i=1,len |
| 296 |
|
|
! @ icb(i)=nlm |
| 297 |
|
|
! @ 270 continue |
| 298 |
|
|
! @c |
| 299 |
|
|
! @ do 290 k=minorig,nl |
| 300 |
|
|
! @ do 280 i=1,len |
| 301 |
|
|
! @ if((k.ge.(nk(i)+1)).and.(p(i,k).lt.plcl(i))) |
| 302 |
|
|
! @ & icb(i)=min(icb(i),k) |
| 303 |
|
|
! @ 280 continue |
| 304 |
|
|
! @ 290 continue |
| 305 |
|
|
! @c |
| 306 |
|
|
! @ do 300 i=1,len |
| 307 |
|
|
! @ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
| 308 |
|
|
! @ 300 continue |
| 309 |
|
|
|
| 310 |
|
✗ |
DO i = 1, len |
| 311 |
|
✗ |
icb(i) = nlm |
| 312 |
|
|
END DO |
| 313 |
|
|
|
| 314 |
|
|
! la modification consiste a comparer plcl a ph et non a p: |
| 315 |
|
|
! icb est defini par : ph(icb)<plcl<ph(icb-1) |
| 316 |
|
|
! @ do 290 k=minorig,nl |
| 317 |
|
✗ |
DO k = 3, nl - 1 ! modif pour que icb soit sup/egal a 2 |
| 318 |
|
✗ |
DO i = 1, len |
| 319 |
|
✗ |
IF (ph(i,k)<plcl(i)) icb(i) = min(icb(i), k) |
| 320 |
|
|
END DO |
| 321 |
|
|
END DO |
| 322 |
|
|
|
| 323 |
|
✗ |
DO i = 1, len |
| 324 |
|
|
! @ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
| 325 |
|
✗ |
IF ((icb(i)==nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
| 326 |
|
|
END DO |
| 327 |
|
|
|
| 328 |
|
✗ |
DO i = 1, len |
| 329 |
|
✗ |
icb(i) = icb(i) - 1 ! icb sup ou egal a 2 |
| 330 |
|
|
END DO |
| 331 |
|
|
|
| 332 |
|
|
! Compute icbmax. |
| 333 |
|
|
|
| 334 |
|
✗ |
icbmax = 2 |
| 335 |
|
✗ |
DO i = 1, len |
| 336 |
|
|
! ! icbmax=max(icbmax,icb(i)) |
| 337 |
|
✗ |
IF (iflag(i)<7) icbmax = max(icbmax, icb(i)) ! sb Jun7th02 |
| 338 |
|
|
END DO |
| 339 |
|
|
|
| 340 |
|
✗ |
RETURN |
| 341 |
|
|
END SUBROUTINE cv30_feed |
| 342 |
|
|
|
| 343 |
|
✗ |
SUBROUTINE cv30_undilute1(len, nd, t, q, qs, gz, plcl, p, nk, icb, tp, tvp, & |
| 344 |
|
|
clw, icbs) |
| 345 |
|
|
IMPLICIT NONE |
| 346 |
|
|
|
| 347 |
|
|
! ---------------------------------------------------------------- |
| 348 |
|
|
! Equivalent de TLIFT entre NK et ICB+1 inclus |
| 349 |
|
|
|
| 350 |
|
|
! Differences with convect4: |
| 351 |
|
|
! - specify plcl in input |
| 352 |
|
|
! - icbs is the first level above LCL (may differ from icb) |
| 353 |
|
|
! - in the iterations, used x(icbs) instead x(icb) |
| 354 |
|
|
! - many minor differences in the iterations |
| 355 |
|
|
! - tvp is computed in only one time |
| 356 |
|
|
! - icbs: first level above Plcl (IMIN de TLIFT) in output |
| 357 |
|
|
! - if icbs=icb, compute also tp(icb+1),tvp(icb+1) & clw(icb+1) |
| 358 |
|
|
! ---------------------------------------------------------------- |
| 359 |
|
|
|
| 360 |
|
|
include "cvthermo.h" |
| 361 |
|
|
include "cv30param.h" |
| 362 |
|
|
|
| 363 |
|
|
! inputs: |
| 364 |
|
|
INTEGER len, nd |
| 365 |
|
|
INTEGER nk(len), icb(len) |
| 366 |
|
|
REAL t(len, nd), q(len, nd), qs(len, nd), gz(len, nd) |
| 367 |
|
|
REAL p(len, nd) |
| 368 |
|
|
REAL plcl(len) ! convect3 |
| 369 |
|
|
|
| 370 |
|
|
! outputs: |
| 371 |
|
|
REAL tp(len, nd), tvp(len, nd), clw(len, nd) |
| 372 |
|
|
|
| 373 |
|
|
! local variables: |
| 374 |
|
|
INTEGER i, k |
| 375 |
|
✗ |
INTEGER icb1(len), icbs(len), icbsmax2 ! convect3 |
| 376 |
|
|
REAL tg, qg, alv, s, ahg, tc, denom, es, rg |
| 377 |
|
✗ |
REAL ah0(len), cpp(len) |
| 378 |
|
✗ |
REAL tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) |
| 379 |
|
✗ |
REAL qsicb(len) ! convect3 |
| 380 |
|
✗ |
REAL cpinv(len) ! convect3 |
| 381 |
|
|
|
| 382 |
|
|
! ------------------------------------------------------------------- |
| 383 |
|
|
! --- Calculates the lifted parcel virtual temperature at nk, |
| 384 |
|
|
! --- the actual temperature, and the adiabatic |
| 385 |
|
|
! --- liquid water content. The procedure is to solve the equation. |
| 386 |
|
|
! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
| 387 |
|
|
! ------------------------------------------------------------------- |
| 388 |
|
|
|
| 389 |
|
✗ |
DO i = 1, len |
| 390 |
|
✗ |
tnk(i) = t(i, nk(i)) |
| 391 |
|
✗ |
qnk(i) = q(i, nk(i)) |
| 392 |
|
✗ |
gznk(i) = gz(i, nk(i)) |
| 393 |
|
|
! ori ticb(i)=t(i,icb(i)) |
| 394 |
|
|
! ori gzicb(i)=gz(i,icb(i)) |
| 395 |
|
|
END DO |
| 396 |
|
|
|
| 397 |
|
|
! *** Calculate certain parcel quantities, including static energy *** |
| 398 |
|
|
|
| 399 |
|
✗ |
DO i = 1, len |
| 400 |
|
|
ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
| 401 |
|
✗ |
273.15)) + gznk(i) |
| 402 |
|
✗ |
cpp(i) = cpd*(1.-qnk(i)) + qnk(i)*cpv |
| 403 |
|
✗ |
cpinv(i) = 1./cpp(i) |
| 404 |
|
|
END DO |
| 405 |
|
|
|
| 406 |
|
|
! *** Calculate lifted parcel quantities below cloud base *** |
| 407 |
|
|
|
| 408 |
|
✗ |
DO i = 1, len !convect3 |
| 409 |
|
✗ |
icb1(i) = min(max(icb(i), 2), nl) |
| 410 |
|
|
! if icb is below LCL, start loop at ICB+1: |
| 411 |
|
|
! (icbs est le premier niveau au-dessus du LCL) |
| 412 |
|
✗ |
icbs(i) = icb1(i) !convect3 |
| 413 |
|
✗ |
IF (plcl(i)<p(i,icb1(i))) THEN |
| 414 |
|
✗ |
icbs(i) = min(icbs(i)+1, nl) !convect3 |
| 415 |
|
|
END IF |
| 416 |
|
|
END DO !convect3 |
| 417 |
|
|
|
| 418 |
|
✗ |
DO i = 1, len !convect3 |
| 419 |
|
✗ |
ticb(i) = t(i, icbs(i)) !convect3 |
| 420 |
|
✗ |
gzicb(i) = gz(i, icbs(i)) !convect3 |
| 421 |
|
✗ |
qsicb(i) = qs(i, icbs(i)) !convect3 |
| 422 |
|
|
END DO !convect3 |
| 423 |
|
|
|
| 424 |
|
|
|
| 425 |
|
|
! Re-compute icbsmax (icbsmax2): !convect3 |
| 426 |
|
|
! !convect3 |
| 427 |
|
|
icbsmax2 = 2 !convect3 |
| 428 |
|
✗ |
DO i = 1, len !convect3 |
| 429 |
|
✗ |
icbsmax2 = max(icbsmax2, icbs(i)) !convect3 |
| 430 |
|
|
END DO !convect3 |
| 431 |
|
|
|
| 432 |
|
|
! initialization outputs: |
| 433 |
|
|
|
| 434 |
|
✗ |
DO k = 1, icbsmax2 ! convect3 |
| 435 |
|
✗ |
DO i = 1, len ! convect3 |
| 436 |
|
✗ |
tp(i, k) = 0.0 ! convect3 |
| 437 |
|
✗ |
tvp(i, k) = 0.0 ! convect3 |
| 438 |
|
✗ |
clw(i, k) = 0.0 ! convect3 |
| 439 |
|
|
END DO ! convect3 |
| 440 |
|
|
END DO ! convect3 |
| 441 |
|
|
|
| 442 |
|
|
! tp and tvp below cloud base: |
| 443 |
|
|
|
| 444 |
|
✗ |
DO k = minorig, icbsmax2 - 1 |
| 445 |
|
✗ |
DO i = 1, len |
| 446 |
|
✗ |
tp(i, k) = tnk(i) - (gz(i,k)-gznk(i))*cpinv(i) |
| 447 |
|
✗ |
tvp(i, k) = tp(i, k)*(1.+qnk(i)/eps-qnk(i)) !whole thing (convect3) |
| 448 |
|
|
END DO |
| 449 |
|
|
END DO |
| 450 |
|
|
|
| 451 |
|
|
! *** Find lifted parcel quantities above cloud base *** |
| 452 |
|
|
|
| 453 |
|
✗ |
DO i = 1, len |
| 454 |
|
✗ |
tg = ticb(i) |
| 455 |
|
|
! ori qg=qs(i,icb(i)) |
| 456 |
|
✗ |
qg = qsicb(i) ! convect3 |
| 457 |
|
|
! debug alv=lv0-clmcpv*(ticb(i)-t0) |
| 458 |
|
✗ |
alv = lv0 - clmcpv*(ticb(i)-273.15) |
| 459 |
|
|
|
| 460 |
|
|
! First iteration. |
| 461 |
|
|
|
| 462 |
|
|
! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
| 463 |
|
|
s = cpd*(1.-qnk(i)) + cl*qnk(i) & ! convect3 |
| 464 |
|
✗ |
+alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
| 465 |
|
✗ |
s = 1./s |
| 466 |
|
|
! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
| 467 |
|
✗ |
ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
| 468 |
|
✗ |
tg = tg + s*(ah0(i)-ahg) |
| 469 |
|
|
! ori tg=max(tg,35.0) |
| 470 |
|
|
! debug tc=tg-t0 |
| 471 |
|
✗ |
tc = tg - 273.15 |
| 472 |
|
✗ |
denom = 243.5 + tc |
| 473 |
|
✗ |
denom = max(denom, 1.0) ! convect3 |
| 474 |
|
|
! ori if(tc.ge.0.0)then |
| 475 |
|
✗ |
es = 6.112*exp(17.67*tc/denom) |
| 476 |
|
|
! ori else |
| 477 |
|
|
! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
| 478 |
|
|
! ori endif |
| 479 |
|
|
! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
| 480 |
|
✗ |
qg = eps*es/(p(i,icbs(i))-es*(1.-eps)) |
| 481 |
|
|
|
| 482 |
|
|
! Second iteration. |
| 483 |
|
|
|
| 484 |
|
|
|
| 485 |
|
|
! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
| 486 |
|
|
! ori s=1./s |
| 487 |
|
|
! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
| 488 |
|
✗ |
ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
| 489 |
|
✗ |
tg = tg + s*(ah0(i)-ahg) |
| 490 |
|
|
! ori tg=max(tg,35.0) |
| 491 |
|
|
! debug tc=tg-t0 |
| 492 |
|
✗ |
tc = tg - 273.15 |
| 493 |
|
✗ |
denom = 243.5 + tc |
| 494 |
|
✗ |
denom = max(denom, 1.0) ! convect3 |
| 495 |
|
|
! ori if(tc.ge.0.0)then |
| 496 |
|
✗ |
es = 6.112*exp(17.67*tc/denom) |
| 497 |
|
|
! ori else |
| 498 |
|
|
! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
| 499 |
|
|
! ori end if |
| 500 |
|
|
! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
| 501 |
|
✗ |
qg = eps*es/(p(i,icbs(i))-es*(1.-eps)) |
| 502 |
|
|
|
| 503 |
|
|
alv = lv0 - clmcpv*(ticb(i)-273.15) |
| 504 |
|
|
|
| 505 |
|
|
! ori c approximation here: |
| 506 |
|
|
! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
| 507 |
|
|
! ori & -gz(i,icb(i))-alv*qg)/cpd |
| 508 |
|
|
|
| 509 |
|
|
! convect3: no approximation: |
| 510 |
|
✗ |
tp(i, icbs(i)) = (ah0(i)-gz(i,icbs(i))-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
| 511 |
|
|
|
| 512 |
|
|
! ori clw(i,icb(i))=qnk(i)-qg |
| 513 |
|
|
! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
| 514 |
|
✗ |
clw(i, icbs(i)) = qnk(i) - qg |
| 515 |
|
✗ |
clw(i, icbs(i)) = max(0.0, clw(i,icbs(i))) |
| 516 |
|
|
|
| 517 |
|
|
rg = qg/(1.-qnk(i)) |
| 518 |
|
|
! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
| 519 |
|
|
! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
| 520 |
|
✗ |
tvp(i, icbs(i)) = tp(i, icbs(i))*(1.+qg/eps-qnk(i)) !whole thing |
| 521 |
|
|
|
| 522 |
|
|
END DO |
| 523 |
|
|
|
| 524 |
|
|
! ori do 380 k=minorig,icbsmax2 |
| 525 |
|
|
! ori do 370 i=1,len |
| 526 |
|
|
! ori tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
| 527 |
|
|
! ori 370 continue |
| 528 |
|
|
! ori 380 continue |
| 529 |
|
|
|
| 530 |
|
|
|
| 531 |
|
|
! -- The following is only for convect3: |
| 532 |
|
|
|
| 533 |
|
|
! * icbs is the first level above the LCL: |
| 534 |
|
|
! if plcl<p(icb), then icbs=icb+1 |
| 535 |
|
|
! if plcl>p(icb), then icbs=icb |
| 536 |
|
|
|
| 537 |
|
|
! * the routine above computes tvp from minorig to icbs (included). |
| 538 |
|
|
|
| 539 |
|
|
! * to compute buoybase (in cv3_trigger.F), both tvp(icb) and tvp(icb+1) |
| 540 |
|
|
! must be known. This is the case if icbs=icb+1, but not if icbs=icb. |
| 541 |
|
|
|
| 542 |
|
|
! * therefore, in the case icbs=icb, we compute tvp at level icb+1 |
| 543 |
|
|
! (tvp at other levels will be computed in cv3_undilute2.F) |
| 544 |
|
|
|
| 545 |
|
|
|
| 546 |
|
✗ |
DO i = 1, len |
| 547 |
|
✗ |
ticb(i) = t(i, icb(i)+1) |
| 548 |
|
✗ |
gzicb(i) = gz(i, icb(i)+1) |
| 549 |
|
✗ |
qsicb(i) = qs(i, icb(i)+1) |
| 550 |
|
|
END DO |
| 551 |
|
|
|
| 552 |
|
✗ |
DO i = 1, len |
| 553 |
|
✗ |
tg = ticb(i) |
| 554 |
|
✗ |
qg = qsicb(i) ! convect3 |
| 555 |
|
|
! debug alv=lv0-clmcpv*(ticb(i)-t0) |
| 556 |
|
✗ |
alv = lv0 - clmcpv*(ticb(i)-273.15) |
| 557 |
|
|
|
| 558 |
|
|
! First iteration. |
| 559 |
|
|
|
| 560 |
|
|
! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
| 561 |
|
|
s = cpd*(1.-qnk(i)) + cl*qnk(i) & ! convect3 |
| 562 |
|
✗ |
+alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
| 563 |
|
✗ |
s = 1./s |
| 564 |
|
|
! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
| 565 |
|
✗ |
ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
| 566 |
|
✗ |
tg = tg + s*(ah0(i)-ahg) |
| 567 |
|
|
! ori tg=max(tg,35.0) |
| 568 |
|
|
! debug tc=tg-t0 |
| 569 |
|
✗ |
tc = tg - 273.15 |
| 570 |
|
✗ |
denom = 243.5 + tc |
| 571 |
|
✗ |
denom = max(denom, 1.0) ! convect3 |
| 572 |
|
|
! ori if(tc.ge.0.0)then |
| 573 |
|
✗ |
es = 6.112*exp(17.67*tc/denom) |
| 574 |
|
|
! ori else |
| 575 |
|
|
! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
| 576 |
|
|
! ori endif |
| 577 |
|
|
! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
| 578 |
|
✗ |
qg = eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
| 579 |
|
|
|
| 580 |
|
|
! Second iteration. |
| 581 |
|
|
|
| 582 |
|
|
|
| 583 |
|
|
! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
| 584 |
|
|
! ori s=1./s |
| 585 |
|
|
! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
| 586 |
|
✗ |
ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
| 587 |
|
✗ |
tg = tg + s*(ah0(i)-ahg) |
| 588 |
|
|
! ori tg=max(tg,35.0) |
| 589 |
|
|
! debug tc=tg-t0 |
| 590 |
|
✗ |
tc = tg - 273.15 |
| 591 |
|
✗ |
denom = 243.5 + tc |
| 592 |
|
✗ |
denom = max(denom, 1.0) ! convect3 |
| 593 |
|
|
! ori if(tc.ge.0.0)then |
| 594 |
|
✗ |
es = 6.112*exp(17.67*tc/denom) |
| 595 |
|
|
! ori else |
| 596 |
|
|
! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
| 597 |
|
|
! ori end if |
| 598 |
|
|
! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
| 599 |
|
✗ |
qg = eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
| 600 |
|
|
|
| 601 |
|
|
alv = lv0 - clmcpv*(ticb(i)-273.15) |
| 602 |
|
|
|
| 603 |
|
|
! ori c approximation here: |
| 604 |
|
|
! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
| 605 |
|
|
! ori & -gz(i,icb(i))-alv*qg)/cpd |
| 606 |
|
|
|
| 607 |
|
|
! convect3: no approximation: |
| 608 |
|
✗ |
tp(i, icb(i)+1) = (ah0(i)-gz(i,icb(i)+1)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
| 609 |
|
|
|
| 610 |
|
|
! ori clw(i,icb(i))=qnk(i)-qg |
| 611 |
|
|
! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
| 612 |
|
✗ |
clw(i, icb(i)+1) = qnk(i) - qg |
| 613 |
|
✗ |
clw(i, icb(i)+1) = max(0.0, clw(i,icb(i)+1)) |
| 614 |
|
|
|
| 615 |
|
|
rg = qg/(1.-qnk(i)) |
| 616 |
|
|
! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
| 617 |
|
|
! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
| 618 |
|
✗ |
tvp(i, icb(i)+1) = tp(i, icb(i)+1)*(1.+qg/eps-qnk(i)) !whole thing |
| 619 |
|
|
|
| 620 |
|
|
END DO |
| 621 |
|
|
|
| 622 |
|
✗ |
RETURN |
| 623 |
|
|
END SUBROUTINE cv30_undilute1 |
| 624 |
|
|
|
| 625 |
|
✗ |
SUBROUTINE cv30_trigger(len, nd, icb, plcl, p, th, tv, tvp, pbase, buoybase, & |
| 626 |
|
|
iflag, sig, w0) |
| 627 |
|
|
IMPLICIT NONE |
| 628 |
|
|
|
| 629 |
|
|
! ------------------------------------------------------------------- |
| 630 |
|
|
! --- TRIGGERING |
| 631 |
|
|
|
| 632 |
|
|
! - computes the cloud base |
| 633 |
|
|
! - triggering (crude in this version) |
| 634 |
|
|
! - relaxation of sig and w0 when no convection |
| 635 |
|
|
|
| 636 |
|
|
! Caution1: if no convection, we set iflag=4 |
| 637 |
|
|
! (it used to be 0 in convect3) |
| 638 |
|
|
|
| 639 |
|
|
! Caution2: at this stage, tvp (and thus buoy) are know up |
| 640 |
|
|
! through icb only! |
| 641 |
|
|
! -> the buoyancy below cloud base not (yet) set to the cloud base buoyancy |
| 642 |
|
|
! ------------------------------------------------------------------- |
| 643 |
|
|
|
| 644 |
|
|
include "cv30param.h" |
| 645 |
|
|
|
| 646 |
|
|
! input: |
| 647 |
|
|
INTEGER len, nd |
| 648 |
|
|
INTEGER icb(len) |
| 649 |
|
|
REAL plcl(len), p(len, nd) |
| 650 |
|
|
REAL th(len, nd), tv(len, nd), tvp(len, nd) |
| 651 |
|
|
|
| 652 |
|
|
! output: |
| 653 |
|
|
REAL pbase(len), buoybase(len) |
| 654 |
|
|
|
| 655 |
|
|
! input AND output: |
| 656 |
|
|
INTEGER iflag(len) |
| 657 |
|
|
REAL sig(len, nd), w0(len, nd) |
| 658 |
|
|
|
| 659 |
|
|
! local variables: |
| 660 |
|
|
INTEGER i, k |
| 661 |
|
|
REAL tvpbase, tvbase, tdif, ath, ath1 |
| 662 |
|
|
|
| 663 |
|
|
|
| 664 |
|
|
! *** set cloud base buoyancy at (plcl+dpbase) level buoyancy |
| 665 |
|
|
|
| 666 |
|
✗ |
DO i = 1, len |
| 667 |
|
✗ |
pbase(i) = plcl(i) + dpbase |
| 668 |
|
|
tvpbase = tvp(i, icb(i))*(pbase(i)-p(i,icb(i)+1))/ & |
| 669 |
|
|
(p(i,icb(i))-p(i,icb(i)+1)) + tvp(i, icb(i)+1)*(p(i,icb(i))-pbase(i))/( & |
| 670 |
|
✗ |
p(i,icb(i))-p(i,icb(i)+1)) |
| 671 |
|
|
tvbase = tv(i, icb(i))*(pbase(i)-p(i,icb(i)+1))/ & |
| 672 |
|
|
(p(i,icb(i))-p(i,icb(i)+1)) + tv(i, icb(i)+1)*(p(i,icb(i))-pbase(i))/(p & |
| 673 |
|
✗ |
(i,icb(i))-p(i,icb(i)+1)) |
| 674 |
|
✗ |
buoybase(i) = tvpbase - tvbase |
| 675 |
|
|
END DO |
| 676 |
|
|
|
| 677 |
|
|
|
| 678 |
|
|
! *** make sure that column is dry adiabatic between the surface *** |
| 679 |
|
|
! *** and cloud base, and that lifted air is positively buoyant *** |
| 680 |
|
|
! *** at cloud base *** |
| 681 |
|
|
! *** if not, return to calling program after resetting *** |
| 682 |
|
|
! *** sig(i) and w0(i) *** |
| 683 |
|
|
|
| 684 |
|
|
|
| 685 |
|
|
! oct3 do 200 i=1,len |
| 686 |
|
|
! oct3 |
| 687 |
|
|
! oct3 tdif = buoybase(i) |
| 688 |
|
|
! oct3 ath1 = th(i,1) |
| 689 |
|
|
! oct3 ath = th(i,icb(i)-1) - dttrig |
| 690 |
|
|
! oct3 |
| 691 |
|
|
! oct3 if (tdif.lt.dtcrit .or. ath.gt.ath1) then |
| 692 |
|
|
! oct3 do 60 k=1,nl |
| 693 |
|
|
! oct3 sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
| 694 |
|
|
! oct3 sig(i,k) = AMAX1(sig(i,k),0.0) |
| 695 |
|
|
! oct3 w0(i,k) = beta*w0(i,k) |
| 696 |
|
|
! oct3 60 continue |
| 697 |
|
|
! oct3 iflag(i)=4 ! pour version vectorisee |
| 698 |
|
|
! oct3c convect3 iflag(i)=0 |
| 699 |
|
|
! oct3cccc return |
| 700 |
|
|
! oct3 endif |
| 701 |
|
|
! oct3 |
| 702 |
|
|
! oct3200 continue |
| 703 |
|
|
|
| 704 |
|
|
! -- oct3: on reecrit la boucle 200 (pour la vectorisation) |
| 705 |
|
|
|
| 706 |
|
✗ |
DO k = 1, nl |
| 707 |
|
✗ |
DO i = 1, len |
| 708 |
|
|
|
| 709 |
|
✗ |
tdif = buoybase(i) |
| 710 |
|
✗ |
ath1 = th(i, 1) |
| 711 |
|
✗ |
ath = th(i, icb(i)-1) - dttrig |
| 712 |
|
|
|
| 713 |
|
✗ |
IF (tdif<dtcrit .OR. ath>ath1) THEN |
| 714 |
|
✗ |
sig(i, k) = beta*sig(i, k) - 2.*alpha*tdif*tdif |
| 715 |
|
✗ |
sig(i, k) = amax1(sig(i,k), 0.0) |
| 716 |
|
✗ |
w0(i, k) = beta*w0(i, k) |
| 717 |
|
✗ |
iflag(i) = 4 ! pour version vectorisee |
| 718 |
|
|
! convect3 iflag(i)=0 |
| 719 |
|
|
END IF |
| 720 |
|
|
|
| 721 |
|
|
END DO |
| 722 |
|
|
END DO |
| 723 |
|
|
|
| 724 |
|
|
! fin oct3 -- |
| 725 |
|
|
|
| 726 |
|
✗ |
RETURN |
| 727 |
|
|
END SUBROUTINE cv30_trigger |
| 728 |
|
|
|
| 729 |
|
✗ |
SUBROUTINE cv30_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, icbs1, & |
| 730 |
|
|
plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, & |
| 731 |
|
✗ |
th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, & |
| 732 |
|
|
iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, & |
| 733 |
|
✗ |
v, gz, th, tra, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0) |
| 734 |
|
|
USE print_control_mod, ONLY: lunout |
| 735 |
|
|
IMPLICIT NONE |
| 736 |
|
|
|
| 737 |
|
|
include "cv30param.h" |
| 738 |
|
|
|
| 739 |
|
|
! inputs: |
| 740 |
|
|
INTEGER len, ncum, nd, ntra, nloc |
| 741 |
|
|
INTEGER iflag1(len), nk1(len), icb1(len), icbs1(len) |
| 742 |
|
|
REAL plcl1(len), tnk1(len), qnk1(len), gznk1(len) |
| 743 |
|
|
REAL pbase1(len), buoybase1(len) |
| 744 |
|
|
REAL t1(len, nd), q1(len, nd), qs1(len, nd), u1(len, nd), v1(len, nd) |
| 745 |
|
|
REAL gz1(len, nd), h1(len, nd), lv1(len, nd), cpn1(len, nd) |
| 746 |
|
|
REAL p1(len, nd), ph1(len, nd+1), tv1(len, nd), tp1(len, nd) |
| 747 |
|
|
REAL tvp1(len, nd), clw1(len, nd) |
| 748 |
|
|
REAL th1(len, nd) |
| 749 |
|
|
REAL sig1(len, nd), w01(len, nd) |
| 750 |
|
|
REAL tra1(len, nd, ntra) |
| 751 |
|
|
|
| 752 |
|
|
! outputs: |
| 753 |
|
|
! en fait, on a nloc=len pour l'instant (cf cv_driver) |
| 754 |
|
|
INTEGER iflag(nloc), nk(nloc), icb(nloc), icbs(nloc) |
| 755 |
|
|
REAL plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) |
| 756 |
|
|
REAL pbase(nloc), buoybase(nloc) |
| 757 |
|
|
REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), u(nloc, nd), v(nloc, nd) |
| 758 |
|
|
REAL gz(nloc, nd), h(nloc, nd), lv(nloc, nd), cpn(nloc, nd) |
| 759 |
|
|
REAL p(nloc, nd), ph(nloc, nd+1), tv(nloc, nd), tp(nloc, nd) |
| 760 |
|
|
REAL tvp(nloc, nd), clw(nloc, nd) |
| 761 |
|
|
REAL th(nloc, nd) |
| 762 |
|
|
REAL sig(nloc, nd), w0(nloc, nd) |
| 763 |
|
|
REAL tra(nloc, nd, ntra) |
| 764 |
|
|
|
| 765 |
|
|
! local variables: |
| 766 |
|
|
INTEGER i, k, nn, j |
| 767 |
|
|
|
| 768 |
|
|
CHARACTER (LEN=20) :: modname = 'cv30_compress' |
| 769 |
|
|
CHARACTER (LEN=80) :: abort_message |
| 770 |
|
|
|
| 771 |
|
|
|
| 772 |
|
✗ |
DO k = 1, nl + 1 |
| 773 |
|
✗ |
nn = 0 |
| 774 |
|
✗ |
DO i = 1, len |
| 775 |
|
✗ |
IF (iflag1(i)==0) THEN |
| 776 |
|
✗ |
nn = nn + 1 |
| 777 |
|
✗ |
sig(nn, k) = sig1(i, k) |
| 778 |
|
✗ |
w0(nn, k) = w01(i, k) |
| 779 |
|
✗ |
t(nn, k) = t1(i, k) |
| 780 |
|
✗ |
q(nn, k) = q1(i, k) |
| 781 |
|
✗ |
qs(nn, k) = qs1(i, k) |
| 782 |
|
✗ |
u(nn, k) = u1(i, k) |
| 783 |
|
✗ |
v(nn, k) = v1(i, k) |
| 784 |
|
✗ |
gz(nn, k) = gz1(i, k) |
| 785 |
|
✗ |
h(nn, k) = h1(i, k) |
| 786 |
|
✗ |
lv(nn, k) = lv1(i, k) |
| 787 |
|
✗ |
cpn(nn, k) = cpn1(i, k) |
| 788 |
|
✗ |
p(nn, k) = p1(i, k) |
| 789 |
|
✗ |
ph(nn, k) = ph1(i, k) |
| 790 |
|
✗ |
tv(nn, k) = tv1(i, k) |
| 791 |
|
✗ |
tp(nn, k) = tp1(i, k) |
| 792 |
|
✗ |
tvp(nn, k) = tvp1(i, k) |
| 793 |
|
✗ |
clw(nn, k) = clw1(i, k) |
| 794 |
|
✗ |
th(nn, k) = th1(i, k) |
| 795 |
|
|
END IF |
| 796 |
|
|
END DO |
| 797 |
|
|
END DO |
| 798 |
|
|
|
| 799 |
|
|
! do 121 j=1,ntra |
| 800 |
|
|
! do 111 k=1,nd |
| 801 |
|
|
! nn=0 |
| 802 |
|
|
! do 101 i=1,len |
| 803 |
|
|
! if(iflag1(i).eq.0)then |
| 804 |
|
|
! nn=nn+1 |
| 805 |
|
|
! tra(nn,k,j)=tra1(i,k,j) |
| 806 |
|
|
! endif |
| 807 |
|
|
! 101 continue |
| 808 |
|
|
! 111 continue |
| 809 |
|
|
! 121 continue |
| 810 |
|
|
|
| 811 |
|
✗ |
IF (nn/=ncum) THEN |
| 812 |
|
✗ |
WRITE (lunout, *) 'strange! nn not equal to ncum: ', nn, ncum |
| 813 |
|
✗ |
abort_message = '' |
| 814 |
|
✗ |
CALL abort_physic(modname, abort_message, 1) |
| 815 |
|
|
END IF |
| 816 |
|
|
|
| 817 |
|
✗ |
nn = 0 |
| 818 |
|
✗ |
DO i = 1, len |
| 819 |
|
✗ |
IF (iflag1(i)==0) THEN |
| 820 |
|
✗ |
nn = nn + 1 |
| 821 |
|
✗ |
pbase(nn) = pbase1(i) |
| 822 |
|
✗ |
buoybase(nn) = buoybase1(i) |
| 823 |
|
✗ |
plcl(nn) = plcl1(i) |
| 824 |
|
✗ |
tnk(nn) = tnk1(i) |
| 825 |
|
✗ |
qnk(nn) = qnk1(i) |
| 826 |
|
✗ |
gznk(nn) = gznk1(i) |
| 827 |
|
✗ |
nk(nn) = nk1(i) |
| 828 |
|
✗ |
icb(nn) = icb1(i) |
| 829 |
|
✗ |
icbs(nn) = icbs1(i) |
| 830 |
|
✗ |
iflag(nn) = iflag1(i) |
| 831 |
|
|
END IF |
| 832 |
|
|
END DO |
| 833 |
|
|
|
| 834 |
|
✗ |
RETURN |
| 835 |
|
|
END SUBROUTINE cv30_compress |
| 836 |
|
|
|
| 837 |
|
✗ |
SUBROUTINE cv30_undilute2(nloc, ncum, nd, icb, icbs, nk, tnk, qnk, gznk, t, & |
| 838 |
|
|
q, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, tvp, clw, hp, & |
| 839 |
|
✗ |
ep, sigp, buoy) |
| 840 |
|
|
! epmax_cape: ajout arguments |
| 841 |
|
|
IMPLICIT NONE |
| 842 |
|
|
|
| 843 |
|
|
! --------------------------------------------------------------------- |
| 844 |
|
|
! Purpose: |
| 845 |
|
|
! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
| 846 |
|
|
! & |
| 847 |
|
|
! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
| 848 |
|
|
! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
| 849 |
|
|
! & |
| 850 |
|
|
! FIND THE LEVEL OF NEUTRAL BUOYANCY |
| 851 |
|
|
|
| 852 |
|
|
! Main differences convect3/convect4: |
| 853 |
|
|
! - icbs (input) is the first level above LCL (may differ from icb) |
| 854 |
|
|
! - many minor differences in the iterations |
| 855 |
|
|
! - condensed water not removed from tvp in convect3 |
| 856 |
|
|
! - vertical profile of buoyancy computed here (use of buoybase) |
| 857 |
|
|
! - the determination of inb is different |
| 858 |
|
|
! - no inb1, only inb in output |
| 859 |
|
|
! --------------------------------------------------------------------- |
| 860 |
|
|
|
| 861 |
|
|
include "cvthermo.h" |
| 862 |
|
|
include "cv30param.h" |
| 863 |
|
|
include "conema3.h" |
| 864 |
|
|
|
| 865 |
|
|
! inputs: |
| 866 |
|
|
INTEGER ncum, nd, nloc |
| 867 |
|
|
INTEGER icb(nloc), icbs(nloc), nk(nloc) |
| 868 |
|
|
REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), gz(nloc, nd) |
| 869 |
|
|
REAL p(nloc, nd) |
| 870 |
|
|
REAL tnk(nloc), qnk(nloc), gznk(nloc) |
| 871 |
|
|
REAL lv(nloc, nd), tv(nloc, nd), h(nloc, nd) |
| 872 |
|
|
REAL pbase(nloc), buoybase(nloc), plcl(nloc) |
| 873 |
|
|
|
| 874 |
|
|
! outputs: |
| 875 |
|
|
INTEGER inb(nloc) |
| 876 |
|
|
REAL tp(nloc, nd), tvp(nloc, nd), clw(nloc, nd) |
| 877 |
|
|
REAL ep(nloc, nd), sigp(nloc, nd), hp(nloc, nd) |
| 878 |
|
|
REAL buoy(nloc, nd) |
| 879 |
|
|
|
| 880 |
|
|
! local variables: |
| 881 |
|
|
INTEGER i, k |
| 882 |
|
|
REAL tg, qg, ahg, alv, s, tc, es, denom, rg, tca, elacrit |
| 883 |
|
|
REAL by, defrac, pden |
| 884 |
|
✗ |
REAL ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
| 885 |
|
|
LOGICAL lcape(nloc) |
| 886 |
|
|
|
| 887 |
|
|
! ===================================================================== |
| 888 |
|
|
! --- SOME INITIALIZATIONS |
| 889 |
|
|
! ===================================================================== |
| 890 |
|
|
|
| 891 |
|
✗ |
DO k = 1, nl |
| 892 |
|
✗ |
DO i = 1, ncum |
| 893 |
|
✗ |
ep(i, k) = 0.0 |
| 894 |
|
✗ |
sigp(i, k) = spfac |
| 895 |
|
|
END DO |
| 896 |
|
|
END DO |
| 897 |
|
|
|
| 898 |
|
|
! ===================================================================== |
| 899 |
|
|
! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
| 900 |
|
|
! ===================================================================== |
| 901 |
|
|
|
| 902 |
|
|
! --- The procedure is to solve the equation. |
| 903 |
|
|
! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
| 904 |
|
|
|
| 905 |
|
|
! *** Calculate certain parcel quantities, including static energy *** |
| 906 |
|
|
|
| 907 |
|
|
|
| 908 |
|
✗ |
DO i = 1, ncum |
| 909 |
|
|
ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) & ! debug & |
| 910 |
|
|
! +qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) |
| 911 |
|
✗ |
+qnk(i)*(lv0-clmcpv*(tnk(i)-273.15)) + gznk(i) |
| 912 |
|
|
END DO |
| 913 |
|
|
|
| 914 |
|
|
|
| 915 |
|
|
! *** Find lifted parcel quantities above cloud base *** |
| 916 |
|
|
|
| 917 |
|
|
|
| 918 |
|
✗ |
DO k = minorig + 1, nl |
| 919 |
|
✗ |
DO i = 1, ncum |
| 920 |
|
|
! ori if(k.ge.(icb(i)+1))then |
| 921 |
|
✗ |
IF (k>=(icbs(i)+1)) THEN ! convect3 |
| 922 |
|
✗ |
tg = t(i, k) |
| 923 |
|
✗ |
qg = qs(i, k) |
| 924 |
|
|
! debug alv=lv0-clmcpv*(t(i,k)-t0) |
| 925 |
|
✗ |
alv = lv0 - clmcpv*(t(i,k)-273.15) |
| 926 |
|
|
|
| 927 |
|
|
! First iteration. |
| 928 |
|
|
|
| 929 |
|
|
! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
| 930 |
|
|
s = cpd*(1.-qnk(i)) + cl*qnk(i) & ! convect3 |
| 931 |
|
✗ |
+alv*alv*qg/(rrv*t(i,k)*t(i,k)) ! convect3 |
| 932 |
|
✗ |
s = 1./s |
| 933 |
|
|
! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
| 934 |
|
✗ |
ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gz(i, k) ! convect3 |
| 935 |
|
✗ |
tg = tg + s*(ah0(i)-ahg) |
| 936 |
|
|
! ori tg=max(tg,35.0) |
| 937 |
|
|
! debug tc=tg-t0 |
| 938 |
|
✗ |
tc = tg - 273.15 |
| 939 |
|
✗ |
denom = 243.5 + tc |
| 940 |
|
✗ |
denom = max(denom, 1.0) ! convect3 |
| 941 |
|
|
! ori if(tc.ge.0.0)then |
| 942 |
|
✗ |
es = 6.112*exp(17.67*tc/denom) |
| 943 |
|
|
! ori else |
| 944 |
|
|
! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
| 945 |
|
|
! ori endif |
| 946 |
|
✗ |
qg = eps*es/(p(i,k)-es*(1.-eps)) |
| 947 |
|
|
|
| 948 |
|
|
! Second iteration. |
| 949 |
|
|
|
| 950 |
|
|
! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
| 951 |
|
|
! ori s=1./s |
| 952 |
|
|
! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
| 953 |
|
✗ |
ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gz(i, k) ! convect3 |
| 954 |
|
✗ |
tg = tg + s*(ah0(i)-ahg) |
| 955 |
|
|
! ori tg=max(tg,35.0) |
| 956 |
|
|
! debug tc=tg-t0 |
| 957 |
|
✗ |
tc = tg - 273.15 |
| 958 |
|
✗ |
denom = 243.5 + tc |
| 959 |
|
✗ |
denom = max(denom, 1.0) ! convect3 |
| 960 |
|
|
! ori if(tc.ge.0.0)then |
| 961 |
|
✗ |
es = 6.112*exp(17.67*tc/denom) |
| 962 |
|
|
! ori else |
| 963 |
|
|
! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
| 964 |
|
|
! ori endif |
| 965 |
|
✗ |
qg = eps*es/(p(i,k)-es*(1.-eps)) |
| 966 |
|
|
|
| 967 |
|
|
! debug alv=lv0-clmcpv*(t(i,k)-t0) |
| 968 |
|
|
alv = lv0 - clmcpv*(t(i,k)-273.15) |
| 969 |
|
|
! print*,'cpd dans convect2 ',cpd |
| 970 |
|
|
! print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
| 971 |
|
|
! print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
| 972 |
|
|
|
| 973 |
|
|
! ori c approximation here: |
| 974 |
|
|
! ori |
| 975 |
|
|
! tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
| 976 |
|
|
|
| 977 |
|
|
! convect3: no approximation: |
| 978 |
|
✗ |
tp(i, k) = (ah0(i)-gz(i,k)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
| 979 |
|
|
|
| 980 |
|
✗ |
clw(i, k) = qnk(i) - qg |
| 981 |
|
✗ |
clw(i, k) = max(0.0, clw(i,k)) |
| 982 |
|
|
rg = qg/(1.-qnk(i)) |
| 983 |
|
|
! ori tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
| 984 |
|
|
! convect3: (qg utilise au lieu du vrai mixing ratio rg): |
| 985 |
|
✗ |
tvp(i, k) = tp(i, k)*(1.+qg/eps-qnk(i)) ! whole thing |
| 986 |
|
|
END IF |
| 987 |
|
|
END DO |
| 988 |
|
|
END DO |
| 989 |
|
|
|
| 990 |
|
|
! ===================================================================== |
| 991 |
|
|
! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
| 992 |
|
|
! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
| 993 |
|
|
! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
| 994 |
|
|
! ===================================================================== |
| 995 |
|
|
|
| 996 |
|
|
! ori do 320 k=minorig+1,nl |
| 997 |
|
✗ |
DO k = 1, nl ! convect3 |
| 998 |
|
✗ |
DO i = 1, ncum |
| 999 |
|
✗ |
pden = ptcrit - pbcrit |
| 1000 |
|
✗ |
ep(i, k) = (plcl(i)-p(i,k)-pbcrit)/pden*epmax |
| 1001 |
|
✗ |
ep(i, k) = amax1(ep(i,k), 0.0) |
| 1002 |
|
✗ |
ep(i, k) = amin1(ep(i,k), epmax) |
| 1003 |
|
✗ |
sigp(i, k) = spfac |
| 1004 |
|
|
! ori if(k.ge.(nk(i)+1))then |
| 1005 |
|
|
! ori tca=tp(i,k)-t0 |
| 1006 |
|
|
! ori if(tca.ge.0.0)then |
| 1007 |
|
|
! ori elacrit=elcrit |
| 1008 |
|
|
! ori else |
| 1009 |
|
|
! ori elacrit=elcrit*(1.0-tca/tlcrit) |
| 1010 |
|
|
! ori endif |
| 1011 |
|
|
! ori elacrit=max(elacrit,0.0) |
| 1012 |
|
|
! ori ep(i,k)=1.0-elacrit/max(clw(i,k),1.0e-8) |
| 1013 |
|
|
! ori ep(i,k)=max(ep(i,k),0.0 ) |
| 1014 |
|
|
! ori ep(i,k)=min(ep(i,k),1.0 ) |
| 1015 |
|
|
! ori sigp(i,k)=sigs |
| 1016 |
|
|
! ori endif |
| 1017 |
|
|
END DO |
| 1018 |
|
|
END DO |
| 1019 |
|
|
|
| 1020 |
|
|
! ===================================================================== |
| 1021 |
|
|
! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
| 1022 |
|
|
! --- VIRTUAL TEMPERATURE |
| 1023 |
|
|
! ===================================================================== |
| 1024 |
|
|
|
| 1025 |
|
|
! dans convect3, tvp est calcule en une seule fois, et sans retirer |
| 1026 |
|
|
! l'eau condensee (~> reversible CAPE) |
| 1027 |
|
|
|
| 1028 |
|
|
! ori do 340 k=minorig+1,nl |
| 1029 |
|
|
! ori do 330 i=1,ncum |
| 1030 |
|
|
! ori if(k.ge.(icb(i)+1))then |
| 1031 |
|
|
! ori tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
| 1032 |
|
|
! oric print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
| 1033 |
|
|
! oric print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
| 1034 |
|
|
! ori endif |
| 1035 |
|
|
! ori 330 continue |
| 1036 |
|
|
! ori 340 continue |
| 1037 |
|
|
|
| 1038 |
|
|
! ori do 350 i=1,ncum |
| 1039 |
|
|
! ori tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
| 1040 |
|
|
! ori 350 continue |
| 1041 |
|
|
|
| 1042 |
|
✗ |
DO i = 1, ncum ! convect3 |
| 1043 |
|
✗ |
tp(i, nlp) = tp(i, nl) ! convect3 |
| 1044 |
|
|
END DO ! convect3 |
| 1045 |
|
|
|
| 1046 |
|
|
! ===================================================================== |
| 1047 |
|
|
! --- EFFECTIVE VERTICAL PROFILE OF BUOYANCY (convect3 only): |
| 1048 |
|
|
! ===================================================================== |
| 1049 |
|
|
|
| 1050 |
|
|
! -- this is for convect3 only: |
| 1051 |
|
|
|
| 1052 |
|
|
! first estimate of buoyancy: |
| 1053 |
|
|
|
| 1054 |
|
✗ |
DO i = 1, ncum |
| 1055 |
|
✗ |
DO k = 1, nl |
| 1056 |
|
✗ |
buoy(i, k) = tvp(i, k) - tv(i, k) |
| 1057 |
|
|
END DO |
| 1058 |
|
|
END DO |
| 1059 |
|
|
|
| 1060 |
|
|
! set buoyancy=buoybase for all levels below base |
| 1061 |
|
|
! for safety, set buoy(icb)=buoybase |
| 1062 |
|
|
|
| 1063 |
|
✗ |
DO i = 1, ncum |
| 1064 |
|
✗ |
DO k = 1, nl |
| 1065 |
|
✗ |
IF ((k>=icb(i)) .AND. (k<=nl) .AND. (p(i,k)>=pbase(i))) THEN |
| 1066 |
|
✗ |
buoy(i, k) = buoybase(i) |
| 1067 |
|
|
END IF |
| 1068 |
|
|
END DO |
| 1069 |
|
|
! IM cf. CRio/JYG 270807 buoy(icb(i),k)=buoybase(i) |
| 1070 |
|
✗ |
buoy(i, icb(i)) = buoybase(i) |
| 1071 |
|
|
END DO |
| 1072 |
|
|
|
| 1073 |
|
|
! -- end convect3 |
| 1074 |
|
|
|
| 1075 |
|
|
! ===================================================================== |
| 1076 |
|
|
! --- FIND THE FIRST MODEL LEVEL (INB) ABOVE THE PARCEL'S |
| 1077 |
|
|
! --- LEVEL OF NEUTRAL BUOYANCY |
| 1078 |
|
|
! ===================================================================== |
| 1079 |
|
|
|
| 1080 |
|
|
! -- this is for convect3 only: |
| 1081 |
|
|
|
| 1082 |
|
✗ |
DO i = 1, ncum |
| 1083 |
|
✗ |
inb(i) = nl - 1 |
| 1084 |
|
|
END DO |
| 1085 |
|
|
|
| 1086 |
|
✗ |
DO i = 1, ncum |
| 1087 |
|
✗ |
DO k = 1, nl - 1 |
| 1088 |
|
✗ |
IF ((k>=icb(i)) .AND. (buoy(i,k)<dtovsh)) THEN |
| 1089 |
|
✗ |
inb(i) = min(inb(i), k) |
| 1090 |
|
|
END IF |
| 1091 |
|
|
END DO |
| 1092 |
|
|
END DO |
| 1093 |
|
|
|
| 1094 |
|
|
! -- end convect3 |
| 1095 |
|
|
|
| 1096 |
|
|
! ori do 510 i=1,ncum |
| 1097 |
|
|
! ori cape(i)=0.0 |
| 1098 |
|
|
! ori capem(i)=0.0 |
| 1099 |
|
|
! ori inb(i)=icb(i)+1 |
| 1100 |
|
|
! ori inb1(i)=inb(i) |
| 1101 |
|
|
! ori 510 continue |
| 1102 |
|
|
|
| 1103 |
|
|
! Originial Code |
| 1104 |
|
|
|
| 1105 |
|
|
! do 530 k=minorig+1,nl-1 |
| 1106 |
|
|
! do 520 i=1,ncum |
| 1107 |
|
|
! if(k.ge.(icb(i)+1))then |
| 1108 |
|
|
! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
| 1109 |
|
|
! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
| 1110 |
|
|
! cape(i)=cape(i)+by |
| 1111 |
|
|
! if(by.ge.0.0)inb1(i)=k+1 |
| 1112 |
|
|
! if(cape(i).gt.0.0)then |
| 1113 |
|
|
! inb(i)=k+1 |
| 1114 |
|
|
! capem(i)=cape(i) |
| 1115 |
|
|
! endif |
| 1116 |
|
|
! endif |
| 1117 |
|
|
! 520 continue |
| 1118 |
|
|
! 530 continue |
| 1119 |
|
|
! do 540 i=1,ncum |
| 1120 |
|
|
! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
| 1121 |
|
|
! cape(i)=capem(i)+byp |
| 1122 |
|
|
! defrac=capem(i)-cape(i) |
| 1123 |
|
|
! defrac=max(defrac,0.001) |
| 1124 |
|
|
! frac(i)=-cape(i)/defrac |
| 1125 |
|
|
! frac(i)=min(frac(i),1.0) |
| 1126 |
|
|
! frac(i)=max(frac(i),0.0) |
| 1127 |
|
|
! 540 continue |
| 1128 |
|
|
|
| 1129 |
|
|
! K Emanuel fix |
| 1130 |
|
|
|
| 1131 |
|
|
! call zilch(byp,ncum) |
| 1132 |
|
|
! do 530 k=minorig+1,nl-1 |
| 1133 |
|
|
! do 520 i=1,ncum |
| 1134 |
|
|
! if(k.ge.(icb(i)+1))then |
| 1135 |
|
|
! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
| 1136 |
|
|
! cape(i)=cape(i)+by |
| 1137 |
|
|
! if(by.ge.0.0)inb1(i)=k+1 |
| 1138 |
|
|
! if(cape(i).gt.0.0)then |
| 1139 |
|
|
! inb(i)=k+1 |
| 1140 |
|
|
! capem(i)=cape(i) |
| 1141 |
|
|
! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
| 1142 |
|
|
! endif |
| 1143 |
|
|
! endif |
| 1144 |
|
|
! 520 continue |
| 1145 |
|
|
! 530 continue |
| 1146 |
|
|
! do 540 i=1,ncum |
| 1147 |
|
|
! inb(i)=max(inb(i),inb1(i)) |
| 1148 |
|
|
! cape(i)=capem(i)+byp(i) |
| 1149 |
|
|
! defrac=capem(i)-cape(i) |
| 1150 |
|
|
! defrac=max(defrac,0.001) |
| 1151 |
|
|
! frac(i)=-cape(i)/defrac |
| 1152 |
|
|
! frac(i)=min(frac(i),1.0) |
| 1153 |
|
|
! frac(i)=max(frac(i),0.0) |
| 1154 |
|
|
! 540 continue |
| 1155 |
|
|
|
| 1156 |
|
|
! J Teixeira fix |
| 1157 |
|
|
|
| 1158 |
|
|
! ori call zilch(byp,ncum) |
| 1159 |
|
|
! ori do 515 i=1,ncum |
| 1160 |
|
|
! ori lcape(i)=.true. |
| 1161 |
|
|
! ori 515 continue |
| 1162 |
|
|
! ori do 530 k=minorig+1,nl-1 |
| 1163 |
|
|
! ori do 520 i=1,ncum |
| 1164 |
|
|
! ori if(cape(i).lt.0.0)lcape(i)=.false. |
| 1165 |
|
|
! ori if((k.ge.(icb(i)+1)).and.lcape(i))then |
| 1166 |
|
|
! ori by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
| 1167 |
|
|
! ori byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
| 1168 |
|
|
! ori cape(i)=cape(i)+by |
| 1169 |
|
|
! ori if(by.ge.0.0)inb1(i)=k+1 |
| 1170 |
|
|
! ori if(cape(i).gt.0.0)then |
| 1171 |
|
|
! ori inb(i)=k+1 |
| 1172 |
|
|
! ori capem(i)=cape(i) |
| 1173 |
|
|
! ori endif |
| 1174 |
|
|
! ori endif |
| 1175 |
|
|
! ori 520 continue |
| 1176 |
|
|
! ori 530 continue |
| 1177 |
|
|
! ori do 540 i=1,ncum |
| 1178 |
|
|
! ori cape(i)=capem(i)+byp(i) |
| 1179 |
|
|
! ori defrac=capem(i)-cape(i) |
| 1180 |
|
|
! ori defrac=max(defrac,0.001) |
| 1181 |
|
|
! ori frac(i)=-cape(i)/defrac |
| 1182 |
|
|
! ori frac(i)=min(frac(i),1.0) |
| 1183 |
|
|
! ori frac(i)=max(frac(i),0.0) |
| 1184 |
|
|
! ori 540 continue |
| 1185 |
|
|
|
| 1186 |
|
|
! ===================================================================== |
| 1187 |
|
|
! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
| 1188 |
|
|
! ===================================================================== |
| 1189 |
|
|
|
| 1190 |
|
|
! ym do i=1,ncum*nlp |
| 1191 |
|
|
! ym hp(i,1)=h(i,1) |
| 1192 |
|
|
! ym enddo |
| 1193 |
|
|
|
| 1194 |
|
✗ |
DO k = 1, nlp |
| 1195 |
|
✗ |
DO i = 1, ncum |
| 1196 |
|
✗ |
hp(i, k) = h(i, k) |
| 1197 |
|
|
END DO |
| 1198 |
|
|
END DO |
| 1199 |
|
|
|
| 1200 |
|
✗ |
DO k = minorig + 1, nl |
| 1201 |
|
✗ |
DO i = 1, ncum |
| 1202 |
|
✗ |
IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
| 1203 |
|
|
hp(i, k) = h(i, nk(i)) + (lv(i,k)+(cpd-cpv)*t(i,k))*ep(i, k)*clw(i, k & |
| 1204 |
|
✗ |
) |
| 1205 |
|
|
END IF |
| 1206 |
|
|
END DO |
| 1207 |
|
|
END DO |
| 1208 |
|
|
|
| 1209 |
|
✗ |
RETURN |
| 1210 |
|
|
END SUBROUTINE cv30_undilute2 |
| 1211 |
|
|
|
| 1212 |
|
✗ |
SUBROUTINE cv30_closure(nloc, ncum, nd, icb, inb, pbase, p, ph, tv, buoy, & |
| 1213 |
|
✗ |
sig, w0, cape, m) |
| 1214 |
|
|
IMPLICIT NONE |
| 1215 |
|
|
|
| 1216 |
|
|
! =================================================================== |
| 1217 |
|
|
! --- CLOSURE OF CONVECT3 |
| 1218 |
|
|
|
| 1219 |
|
|
! vectorization: S. Bony |
| 1220 |
|
|
! =================================================================== |
| 1221 |
|
|
|
| 1222 |
|
|
include "cvthermo.h" |
| 1223 |
|
|
include "cv30param.h" |
| 1224 |
|
|
|
| 1225 |
|
|
! input: |
| 1226 |
|
|
INTEGER ncum, nd, nloc |
| 1227 |
|
|
INTEGER icb(nloc), inb(nloc) |
| 1228 |
|
|
REAL pbase(nloc) |
| 1229 |
|
|
REAL p(nloc, nd), ph(nloc, nd+1) |
| 1230 |
|
|
REAL tv(nloc, nd), buoy(nloc, nd) |
| 1231 |
|
|
|
| 1232 |
|
|
! input/output: |
| 1233 |
|
|
REAL sig(nloc, nd), w0(nloc, nd) |
| 1234 |
|
|
|
| 1235 |
|
|
! output: |
| 1236 |
|
|
REAL cape(nloc) |
| 1237 |
|
|
REAL m(nloc, nd) |
| 1238 |
|
|
|
| 1239 |
|
|
! local variables: |
| 1240 |
|
|
INTEGER i, j, k, icbmax |
| 1241 |
|
|
REAL deltap, fac, w, amu |
| 1242 |
|
✗ |
REAL dtmin(nloc, nd), sigold(nloc, nd) |
| 1243 |
|
|
|
| 1244 |
|
|
! ------------------------------------------------------- |
| 1245 |
|
|
! -- Initialization |
| 1246 |
|
|
! ------------------------------------------------------- |
| 1247 |
|
|
|
| 1248 |
|
✗ |
DO k = 1, nl |
| 1249 |
|
✗ |
DO i = 1, ncum |
| 1250 |
|
✗ |
m(i, k) = 0.0 |
| 1251 |
|
|
END DO |
| 1252 |
|
|
END DO |
| 1253 |
|
|
|
| 1254 |
|
|
! ------------------------------------------------------- |
| 1255 |
|
|
! -- Reset sig(i) and w0(i) for i>inb and i<icb |
| 1256 |
|
|
! ------------------------------------------------------- |
| 1257 |
|
|
|
| 1258 |
|
|
! update sig and w0 above LNB: |
| 1259 |
|
|
|
| 1260 |
|
✗ |
DO k = 1, nl - 1 |
| 1261 |
|
✗ |
DO i = 1, ncum |
| 1262 |
|
✗ |
IF ((inb(i)<(nl-1)) .AND. (k>=(inb(i)+1))) THEN |
| 1263 |
|
|
sig(i, k) = beta*sig(i, k) + 2.*alpha*buoy(i, inb(i))*abs(buoy(i,inb( & |
| 1264 |
|
✗ |
i))) |
| 1265 |
|
✗ |
sig(i, k) = amax1(sig(i,k), 0.0) |
| 1266 |
|
✗ |
w0(i, k) = beta*w0(i, k) |
| 1267 |
|
|
END IF |
| 1268 |
|
|
END DO |
| 1269 |
|
|
END DO |
| 1270 |
|
|
|
| 1271 |
|
|
! compute icbmax: |
| 1272 |
|
|
|
| 1273 |
|
|
icbmax = 2 |
| 1274 |
|
✗ |
DO i = 1, ncum |
| 1275 |
|
✗ |
icbmax = max(icbmax, icb(i)) |
| 1276 |
|
|
END DO |
| 1277 |
|
|
|
| 1278 |
|
|
! update sig and w0 below cloud base: |
| 1279 |
|
|
|
| 1280 |
|
✗ |
DO k = 1, icbmax |
| 1281 |
|
✗ |
DO i = 1, ncum |
| 1282 |
|
✗ |
IF (k<=icb(i)) THEN |
| 1283 |
|
✗ |
sig(i, k) = beta*sig(i, k) - 2.*alpha*buoy(i, icb(i))*buoy(i, icb(i)) |
| 1284 |
|
✗ |
sig(i, k) = amax1(sig(i,k), 0.0) |
| 1285 |
|
✗ |
w0(i, k) = beta*w0(i, k) |
| 1286 |
|
|
END IF |
| 1287 |
|
|
END DO |
| 1288 |
|
|
END DO |
| 1289 |
|
|
|
| 1290 |
|
|
! ! if(inb.lt.(nl-1))then |
| 1291 |
|
|
! ! do 85 i=inb+1,nl-1 |
| 1292 |
|
|
! ! sig(i)=beta*sig(i)+2.*alpha*buoy(inb)* |
| 1293 |
|
|
! ! 1 abs(buoy(inb)) |
| 1294 |
|
|
! ! sig(i)=amax1(sig(i),0.0) |
| 1295 |
|
|
! ! w0(i)=beta*w0(i) |
| 1296 |
|
|
! ! 85 continue |
| 1297 |
|
|
! ! end if |
| 1298 |
|
|
|
| 1299 |
|
|
! ! do 87 i=1,icb |
| 1300 |
|
|
! ! sig(i)=beta*sig(i)-2.*alpha*buoy(icb)*buoy(icb) |
| 1301 |
|
|
! ! sig(i)=amax1(sig(i),0.0) |
| 1302 |
|
|
! ! w0(i)=beta*w0(i) |
| 1303 |
|
|
! ! 87 continue |
| 1304 |
|
|
|
| 1305 |
|
|
! ------------------------------------------------------------- |
| 1306 |
|
|
! -- Reset fractional areas of updrafts and w0 at initial time |
| 1307 |
|
|
! -- and after 10 time steps of no convection |
| 1308 |
|
|
! ------------------------------------------------------------- |
| 1309 |
|
|
|
| 1310 |
|
✗ |
DO k = 1, nl - 1 |
| 1311 |
|
✗ |
DO i = 1, ncum |
| 1312 |
|
✗ |
IF (sig(i,nd)<1.5 .OR. sig(i,nd)>12.0) THEN |
| 1313 |
|
✗ |
sig(i, k) = 0.0 |
| 1314 |
|
✗ |
w0(i, k) = 0.0 |
| 1315 |
|
|
END IF |
| 1316 |
|
|
END DO |
| 1317 |
|
|
END DO |
| 1318 |
|
|
|
| 1319 |
|
|
! ------------------------------------------------------------- |
| 1320 |
|
|
! -- Calculate convective available potential energy (cape), |
| 1321 |
|
|
! -- vertical velocity (w), fractional area covered by |
| 1322 |
|
|
! -- undilute updraft (sig), and updraft mass flux (m) |
| 1323 |
|
|
! ------------------------------------------------------------- |
| 1324 |
|
|
|
| 1325 |
|
✗ |
DO i = 1, ncum |
| 1326 |
|
✗ |
cape(i) = 0.0 |
| 1327 |
|
|
END DO |
| 1328 |
|
|
|
| 1329 |
|
|
! compute dtmin (minimum buoyancy between ICB and given level k): |
| 1330 |
|
|
|
| 1331 |
|
✗ |
DO i = 1, ncum |
| 1332 |
|
✗ |
DO k = 1, nl |
| 1333 |
|
✗ |
dtmin(i, k) = 100.0 |
| 1334 |
|
|
END DO |
| 1335 |
|
|
END DO |
| 1336 |
|
|
|
| 1337 |
|
✗ |
DO i = 1, ncum |
| 1338 |
|
✗ |
DO k = 1, nl |
| 1339 |
|
✗ |
DO j = minorig, nl |
| 1340 |
|
✗ |
IF ((k>=(icb(i)+1)) .AND. (k<=inb(i)) .AND. (j>=icb(i)) .AND. (j<=(k- & |
| 1341 |
|
✗ |
1))) THEN |
| 1342 |
|
✗ |
dtmin(i, k) = amin1(dtmin(i,k), buoy(i,j)) |
| 1343 |
|
|
END IF |
| 1344 |
|
|
END DO |
| 1345 |
|
|
END DO |
| 1346 |
|
|
END DO |
| 1347 |
|
|
|
| 1348 |
|
|
! the interval on which cape is computed starts at pbase : |
| 1349 |
|
✗ |
DO k = 1, nl |
| 1350 |
|
✗ |
DO i = 1, ncum |
| 1351 |
|
|
|
| 1352 |
|
✗ |
IF ((k>=(icb(i)+1)) .AND. (k<=inb(i))) THEN |
| 1353 |
|
|
|
| 1354 |
|
✗ |
deltap = min(pbase(i), ph(i,k-1)) - min(pbase(i), ph(i,k)) |
| 1355 |
|
✗ |
cape(i) = cape(i) + rrd*buoy(i, k-1)*deltap/p(i, k-1) |
| 1356 |
|
✗ |
cape(i) = amax1(0.0, cape(i)) |
| 1357 |
|
✗ |
sigold(i, k) = sig(i, k) |
| 1358 |
|
|
|
| 1359 |
|
|
! dtmin(i,k)=100.0 |
| 1360 |
|
|
! do 97 j=icb(i),k-1 ! mauvaise vectorisation |
| 1361 |
|
|
! dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
| 1362 |
|
|
! 97 continue |
| 1363 |
|
|
|
| 1364 |
|
✗ |
sig(i, k) = beta*sig(i, k) + alpha*dtmin(i, k)*abs(dtmin(i,k)) |
| 1365 |
|
✗ |
sig(i, k) = amax1(sig(i,k), 0.0) |
| 1366 |
|
✗ |
sig(i, k) = amin1(sig(i,k), 0.01) |
| 1367 |
|
✗ |
fac = amin1(((dtcrit-dtmin(i,k))/dtcrit), 1.0) |
| 1368 |
|
✗ |
w = (1.-beta)*fac*sqrt(cape(i)) + beta*w0(i, k) |
| 1369 |
|
✗ |
amu = 0.5*(sig(i,k)+sigold(i,k))*w |
| 1370 |
|
✗ |
m(i, k) = amu*0.007*p(i, k)*(ph(i,k)-ph(i,k+1))/tv(i, k) |
| 1371 |
|
✗ |
w0(i, k) = w |
| 1372 |
|
|
END IF |
| 1373 |
|
|
|
| 1374 |
|
|
END DO |
| 1375 |
|
|
END DO |
| 1376 |
|
|
|
| 1377 |
|
✗ |
DO i = 1, ncum |
| 1378 |
|
✗ |
w0(i, icb(i)) = 0.5*w0(i, icb(i)+1) |
| 1379 |
|
|
m(i, icb(i)) = 0.5*m(i, icb(i)+1)*(ph(i,icb(i))-ph(i,icb(i)+1))/ & |
| 1380 |
|
✗ |
(ph(i,icb(i)+1)-ph(i,icb(i)+2)) |
| 1381 |
|
✗ |
sig(i, icb(i)) = sig(i, icb(i)+1) |
| 1382 |
|
✗ |
sig(i, icb(i)-1) = sig(i, icb(i)) |
| 1383 |
|
|
END DO |
| 1384 |
|
|
|
| 1385 |
|
|
|
| 1386 |
|
|
! ! cape=0.0 |
| 1387 |
|
|
! ! do 98 i=icb+1,inb |
| 1388 |
|
|
! ! deltap = min(pbase,ph(i-1))-min(pbase,ph(i)) |
| 1389 |
|
|
! ! cape=cape+rrd*buoy(i-1)*deltap/p(i-1) |
| 1390 |
|
|
! ! dcape=rrd*buoy(i-1)*deltap/p(i-1) |
| 1391 |
|
|
! ! dlnp=deltap/p(i-1) |
| 1392 |
|
|
! ! cape=amax1(0.0,cape) |
| 1393 |
|
|
! ! sigold=sig(i) |
| 1394 |
|
|
|
| 1395 |
|
|
! ! dtmin=100.0 |
| 1396 |
|
|
! ! do 97 j=icb,i-1 |
| 1397 |
|
|
! ! dtmin=amin1(dtmin,buoy(j)) |
| 1398 |
|
|
! ! 97 continue |
| 1399 |
|
|
|
| 1400 |
|
|
! ! sig(i)=beta*sig(i)+alpha*dtmin*abs(dtmin) |
| 1401 |
|
|
! ! sig(i)=amax1(sig(i),0.0) |
| 1402 |
|
|
! ! sig(i)=amin1(sig(i),0.01) |
| 1403 |
|
|
! ! fac=amin1(((dtcrit-dtmin)/dtcrit),1.0) |
| 1404 |
|
|
! ! w=(1.-beta)*fac*sqrt(cape)+beta*w0(i) |
| 1405 |
|
|
! ! amu=0.5*(sig(i)+sigold)*w |
| 1406 |
|
|
! ! m(i)=amu*0.007*p(i)*(ph(i)-ph(i+1))/tv(i) |
| 1407 |
|
|
! ! w0(i)=w |
| 1408 |
|
|
! ! 98 continue |
| 1409 |
|
|
! ! w0(icb)=0.5*w0(icb+1) |
| 1410 |
|
|
! ! m(icb)=0.5*m(icb+1)*(ph(icb)-ph(icb+1))/(ph(icb+1)-ph(icb+2)) |
| 1411 |
|
|
! ! sig(icb)=sig(icb+1) |
| 1412 |
|
|
! ! sig(icb-1)=sig(icb) |
| 1413 |
|
|
|
| 1414 |
|
✗ |
RETURN |
| 1415 |
|
|
END SUBROUTINE cv30_closure |
| 1416 |
|
|
|
| 1417 |
|
✗ |
SUBROUTINE cv30_mixing(nloc, ncum, nd, na, ntra, icb, nk, inb, ph, t, rr, rs, & |
| 1418 |
|
✗ |
u, v, tra, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, qent, uent, & |
| 1419 |
|
✗ |
vent, sij, elij, ments, qents, traent) |
| 1420 |
|
|
IMPLICIT NONE |
| 1421 |
|
|
|
| 1422 |
|
|
! --------------------------------------------------------------------- |
| 1423 |
|
|
! a faire: |
| 1424 |
|
|
! - changer rr(il,1) -> qnk(il) |
| 1425 |
|
|
! - vectorisation de la partie normalisation des flux (do 789...) |
| 1426 |
|
|
! --------------------------------------------------------------------- |
| 1427 |
|
|
|
| 1428 |
|
|
include "cvthermo.h" |
| 1429 |
|
|
include "cv30param.h" |
| 1430 |
|
|
|
| 1431 |
|
|
! inputs: |
| 1432 |
|
|
INTEGER ncum, nd, na, ntra, nloc |
| 1433 |
|
|
INTEGER icb(nloc), inb(nloc), nk(nloc) |
| 1434 |
|
|
REAL sig(nloc, nd) |
| 1435 |
|
|
REAL qnk(nloc) |
| 1436 |
|
|
REAL ph(nloc, nd+1) |
| 1437 |
|
|
REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd) |
| 1438 |
|
|
REAL u(nloc, nd), v(nloc, nd) |
| 1439 |
|
|
REAL tra(nloc, nd, ntra) ! input of convect3 |
| 1440 |
|
|
REAL lv(nloc, na), h(nloc, na), hp(nloc, na) |
| 1441 |
|
|
REAL tv(nloc, na), tvp(nloc, na), ep(nloc, na), clw(nloc, na) |
| 1442 |
|
|
REAL m(nloc, na) ! input of convect3 |
| 1443 |
|
|
|
| 1444 |
|
|
! outputs: |
| 1445 |
|
|
REAL ment(nloc, na, na), qent(nloc, na, na) |
| 1446 |
|
|
REAL uent(nloc, na, na), vent(nloc, na, na) |
| 1447 |
|
|
REAL sij(nloc, na, na), elij(nloc, na, na) |
| 1448 |
|
|
REAL traent(nloc, nd, nd, ntra) |
| 1449 |
|
|
REAL ments(nloc, nd, nd), qents(nloc, nd, nd) |
| 1450 |
|
✗ |
REAL sigij(nloc, nd, nd) |
| 1451 |
|
|
|
| 1452 |
|
|
! local variables: |
| 1453 |
|
|
INTEGER i, j, k, il, im, jm |
| 1454 |
|
|
INTEGER num1, num2 |
| 1455 |
|
✗ |
INTEGER nent(nloc, na) |
| 1456 |
|
|
REAL rti, bf2, anum, denom, dei, altem, cwat, stemp, qp |
| 1457 |
|
|
REAL alt, smid, sjmin, sjmax, delp, delm |
| 1458 |
|
✗ |
REAL asij(nloc), smax(nloc), scrit(nloc) |
| 1459 |
|
✗ |
REAL asum(nloc, nd), bsum(nloc, nd), csum(nloc, nd) |
| 1460 |
|
|
REAL wgh |
| 1461 |
|
✗ |
REAL zm(nloc, na) |
| 1462 |
|
✗ |
LOGICAL lwork(nloc) |
| 1463 |
|
|
|
| 1464 |
|
|
! ===================================================================== |
| 1465 |
|
|
! --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
| 1466 |
|
|
! ===================================================================== |
| 1467 |
|
|
|
| 1468 |
|
|
! ori do 360 i=1,ncum*nlp |
| 1469 |
|
✗ |
DO j = 1, nl |
| 1470 |
|
✗ |
DO i = 1, ncum |
| 1471 |
|
✗ |
nent(i, j) = 0 |
| 1472 |
|
|
! in convect3, m is computed in cv3_closure |
| 1473 |
|
|
! ori m(i,1)=0.0 |
| 1474 |
|
|
END DO |
| 1475 |
|
|
END DO |
| 1476 |
|
|
|
| 1477 |
|
|
! ori do 400 k=1,nlp |
| 1478 |
|
|
! ori do 390 j=1,nlp |
| 1479 |
|
✗ |
DO j = 1, nl |
| 1480 |
|
✗ |
DO k = 1, nl |
| 1481 |
|
✗ |
DO i = 1, ncum |
| 1482 |
|
✗ |
qent(i, k, j) = rr(i, j) |
| 1483 |
|
✗ |
uent(i, k, j) = u(i, j) |
| 1484 |
|
✗ |
vent(i, k, j) = v(i, j) |
| 1485 |
|
✗ |
elij(i, k, j) = 0.0 |
| 1486 |
|
|
! ym ment(i,k,j)=0.0 |
| 1487 |
|
|
! ym sij(i,k,j)=0.0 |
| 1488 |
|
|
END DO |
| 1489 |
|
|
END DO |
| 1490 |
|
|
END DO |
| 1491 |
|
|
|
| 1492 |
|
|
! ym |
| 1493 |
|
✗ |
ment(1:ncum, 1:nd, 1:nd) = 0.0 |
| 1494 |
|
✗ |
sij(1:ncum, 1:nd, 1:nd) = 0.0 |
| 1495 |
|
|
|
| 1496 |
|
|
! do k=1,ntra |
| 1497 |
|
|
! do j=1,nd ! instead nlp |
| 1498 |
|
|
! do i=1,nd ! instead nlp |
| 1499 |
|
|
! do il=1,ncum |
| 1500 |
|
|
! traent(il,i,j,k)=tra(il,j,k) |
| 1501 |
|
|
! enddo |
| 1502 |
|
|
! enddo |
| 1503 |
|
|
! enddo |
| 1504 |
|
|
! enddo |
| 1505 |
|
✗ |
zm(:, :) = 0. |
| 1506 |
|
|
|
| 1507 |
|
|
! ===================================================================== |
| 1508 |
|
|
! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
| 1509 |
|
|
! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
| 1510 |
|
|
! --- FRACTION (sij) |
| 1511 |
|
|
! ===================================================================== |
| 1512 |
|
|
|
| 1513 |
|
✗ |
DO i = minorig + 1, nl |
| 1514 |
|
|
|
| 1515 |
|
✗ |
DO j = minorig, nl |
| 1516 |
|
✗ |
DO il = 1, ncum |
| 1517 |
|
|
IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (j>=(icb(il)- & |
| 1518 |
|
✗ |
1)) .AND. (j<=inb(il))) THEN |
| 1519 |
|
|
|
| 1520 |
|
✗ |
rti = rr(il, 1) - ep(il, i)*clw(il, i) |
| 1521 |
|
✗ |
bf2 = 1. + lv(il, j)*lv(il, j)*rs(il, j)/(rrv*t(il,j)*t(il,j)*cpd) |
| 1522 |
|
✗ |
anum = h(il, j) - hp(il, i) + (cpv-cpd)*t(il, j)*(rti-rr(il,j)) |
| 1523 |
|
✗ |
denom = h(il, i) - hp(il, i) + (cpd-cpv)*(rr(il,i)-rti)*t(il, j) |
| 1524 |
|
|
dei = denom |
| 1525 |
|
✗ |
IF (abs(dei)<0.01) dei = 0.01 |
| 1526 |
|
✗ |
sij(il, i, j) = anum/dei |
| 1527 |
|
✗ |
sij(il, i, i) = 1.0 |
| 1528 |
|
✗ |
altem = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti - rs(il, j) |
| 1529 |
|
✗ |
altem = altem/bf2 |
| 1530 |
|
✗ |
cwat = clw(il, j)*(1.-ep(il,j)) |
| 1531 |
|
|
stemp = sij(il, i, j) |
| 1532 |
|
✗ |
IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
| 1533 |
|
✗ |
anum = anum - lv(il, j)*(rti-rs(il,j)-cwat*bf2) |
| 1534 |
|
✗ |
denom = denom + lv(il, j)*(rr(il,i)-rti) |
| 1535 |
|
✗ |
IF (abs(denom)<0.01) denom = 0.01 |
| 1536 |
|
✗ |
sij(il, i, j) = anum/denom |
| 1537 |
|
|
altem = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti - & |
| 1538 |
|
✗ |
rs(il, j) |
| 1539 |
|
✗ |
altem = altem - (bf2-1.)*cwat |
| 1540 |
|
|
END IF |
| 1541 |
|
✗ |
IF (sij(il,i,j)>0.0 .AND. sij(il,i,j)<0.95) THEN |
| 1542 |
|
✗ |
qent(il, i, j) = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti |
| 1543 |
|
|
uent(il, i, j) = sij(il, i, j)*u(il, i) + & |
| 1544 |
|
✗ |
(1.-sij(il,i,j))*u(il, nk(il)) |
| 1545 |
|
|
vent(il, i, j) = sij(il, i, j)*v(il, i) + & |
| 1546 |
|
✗ |
(1.-sij(il,i,j))*v(il, nk(il)) |
| 1547 |
|
|
! !!! do k=1,ntra |
| 1548 |
|
|
! !!! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
| 1549 |
|
|
! !!! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
| 1550 |
|
|
! !!! end do |
| 1551 |
|
|
elij(il, i, j) = altem |
| 1552 |
|
✗ |
elij(il, i, j) = amax1(0.0, elij(il,i,j)) |
| 1553 |
|
✗ |
ment(il, i, j) = m(il, i)/(1.-sij(il,i,j)) |
| 1554 |
|
✗ |
nent(il, i) = nent(il, i) + 1 |
| 1555 |
|
|
END IF |
| 1556 |
|
✗ |
sij(il, i, j) = amax1(0.0, sij(il,i,j)) |
| 1557 |
|
✗ |
sij(il, i, j) = amin1(1.0, sij(il,i,j)) |
| 1558 |
|
|
END IF ! new |
| 1559 |
|
|
END DO |
| 1560 |
|
|
END DO |
| 1561 |
|
|
|
| 1562 |
|
|
! do k=1,ntra |
| 1563 |
|
|
! do j=minorig,nl |
| 1564 |
|
|
! do il=1,ncum |
| 1565 |
|
|
! if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
| 1566 |
|
|
! : (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
| 1567 |
|
|
! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
| 1568 |
|
|
! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
| 1569 |
|
|
! endif |
| 1570 |
|
|
! enddo |
| 1571 |
|
|
! enddo |
| 1572 |
|
|
! enddo |
| 1573 |
|
|
|
| 1574 |
|
|
|
| 1575 |
|
|
! *** if no air can entrain at level i assume that updraft detrains |
| 1576 |
|
|
! *** |
| 1577 |
|
|
! *** at that level and calculate detrained air flux and properties |
| 1578 |
|
|
! *** |
| 1579 |
|
|
|
| 1580 |
|
|
|
| 1581 |
|
|
! @ do 170 i=icb(il),inb(il) |
| 1582 |
|
|
|
| 1583 |
|
✗ |
DO il = 1, ncum |
| 1584 |
|
✗ |
IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (nent(il,i)==0)) THEN |
| 1585 |
|
|
! @ if(nent(il,i).eq.0)then |
| 1586 |
|
✗ |
ment(il, i, i) = m(il, i) |
| 1587 |
|
✗ |
qent(il, i, i) = rr(il, nk(il)) - ep(il, i)*clw(il, i) |
| 1588 |
|
✗ |
uent(il, i, i) = u(il, nk(il)) |
| 1589 |
|
✗ |
vent(il, i, i) = v(il, nk(il)) |
| 1590 |
|
✗ |
elij(il, i, i) = clw(il, i) |
| 1591 |
|
|
! MAF sij(il,i,i)=1.0 |
| 1592 |
|
✗ |
sij(il, i, i) = 0.0 |
| 1593 |
|
|
END IF |
| 1594 |
|
|
END DO |
| 1595 |
|
|
END DO |
| 1596 |
|
|
|
| 1597 |
|
|
! do j=1,ntra |
| 1598 |
|
|
! do i=minorig+1,nl |
| 1599 |
|
|
! do il=1,ncum |
| 1600 |
|
|
! if (i.ge.icb(il) .and. i.le.inb(il) .and. nent(il,i).eq.0) then |
| 1601 |
|
|
! traent(il,i,i,j)=tra(il,nk(il),j) |
| 1602 |
|
|
! endif |
| 1603 |
|
|
! enddo |
| 1604 |
|
|
! enddo |
| 1605 |
|
|
! enddo |
| 1606 |
|
|
|
| 1607 |
|
✗ |
DO j = minorig, nl |
| 1608 |
|
✗ |
DO i = minorig, nl |
| 1609 |
|
✗ |
DO il = 1, ncum |
| 1610 |
|
✗ |
IF ((j>=(icb(il)-1)) .AND. (j<=inb(il)) .AND. (i>=icb(il)) .AND. (i<= & |
| 1611 |
|
✗ |
inb(il))) THEN |
| 1612 |
|
✗ |
sigij(il, i, j) = sij(il, i, j) |
| 1613 |
|
|
END IF |
| 1614 |
|
|
END DO |
| 1615 |
|
|
END DO |
| 1616 |
|
|
END DO |
| 1617 |
|
|
! @ enddo |
| 1618 |
|
|
|
| 1619 |
|
|
! @170 continue |
| 1620 |
|
|
|
| 1621 |
|
|
! ===================================================================== |
| 1622 |
|
|
! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
| 1623 |
|
|
! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
| 1624 |
|
|
! ===================================================================== |
| 1625 |
|
|
|
| 1626 |
|
|
! ym call zilch(asum,ncum*nd) |
| 1627 |
|
|
! ym call zilch(bsum,ncum*nd) |
| 1628 |
|
|
! ym call zilch(csum,ncum*nd) |
| 1629 |
|
✗ |
CALL zilch(asum, nloc*nd) |
| 1630 |
|
✗ |
CALL zilch(csum, nloc*nd) |
| 1631 |
|
✗ |
CALL zilch(csum, nloc*nd) |
| 1632 |
|
|
|
| 1633 |
|
✗ |
DO il = 1, ncum |
| 1634 |
|
✗ |
lwork(il) = .FALSE. |
| 1635 |
|
|
END DO |
| 1636 |
|
|
|
| 1637 |
|
✗ |
DO i = minorig + 1, nl |
| 1638 |
|
|
|
| 1639 |
|
|
num1 = 0 |
| 1640 |
|
✗ |
DO il = 1, ncum |
| 1641 |
|
✗ |
IF (i>=icb(il) .AND. i<=inb(il)) num1 = num1 + 1 |
| 1642 |
|
|
END DO |
| 1643 |
|
✗ |
IF (num1<=0) GO TO 789 |
| 1644 |
|
|
|
| 1645 |
|
|
|
| 1646 |
|
✗ |
DO il = 1, ncum |
| 1647 |
|
✗ |
IF (i>=icb(il) .AND. i<=inb(il)) THEN |
| 1648 |
|
✗ |
lwork(il) = (nent(il,i)/=0) |
| 1649 |
|
✗ |
qp = rr(il, 1) - ep(il, i)*clw(il, i) |
| 1650 |
|
|
anum = h(il, i) - hp(il, i) - lv(il, i)*(qp-rs(il,i)) + & |
| 1651 |
|
✗ |
(cpv-cpd)*t(il, i)*(qp-rr(il,i)) |
| 1652 |
|
|
denom = h(il, i) - hp(il, i) + lv(il, i)*(rr(il,i)-qp) + & |
| 1653 |
|
✗ |
(cpd-cpv)*t(il, i)*(rr(il,i)-qp) |
| 1654 |
|
✗ |
IF (abs(denom)<0.01) denom = 0.01 |
| 1655 |
|
✗ |
scrit(il) = anum/denom |
| 1656 |
|
✗ |
alt = qp - rs(il, i) + scrit(il)*(rr(il,i)-qp) |
| 1657 |
|
✗ |
IF (scrit(il)<=0.0 .OR. alt<=0.0) scrit(il) = 1.0 |
| 1658 |
|
✗ |
smax(il) = 0.0 |
| 1659 |
|
✗ |
asij(il) = 0.0 |
| 1660 |
|
|
END IF |
| 1661 |
|
|
END DO |
| 1662 |
|
|
|
| 1663 |
|
✗ |
DO j = nl, minorig, -1 |
| 1664 |
|
|
|
| 1665 |
|
|
num2 = 0 |
| 1666 |
|
✗ |
DO il = 1, ncum |
| 1667 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. j>=(icb( & |
| 1668 |
|
✗ |
il)-1) .AND. j<=inb(il) .AND. lwork(il)) num2 = num2 + 1 |
| 1669 |
|
|
END DO |
| 1670 |
|
✗ |
IF (num2<=0) GO TO 175 |
| 1671 |
|
|
|
| 1672 |
|
✗ |
DO il = 1, ncum |
| 1673 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. j>=(icb( & |
| 1674 |
|
✗ |
il)-1) .AND. j<=inb(il) .AND. lwork(il)) THEN |
| 1675 |
|
|
|
| 1676 |
|
✗ |
IF (sij(il,i,j)>1.0E-16 .AND. sij(il,i,j)<0.95) THEN |
| 1677 |
|
|
wgh = 1.0 |
| 1678 |
|
✗ |
IF (j>i) THEN |
| 1679 |
|
✗ |
sjmax = amax1(sij(il,i,j+1), smax(il)) |
| 1680 |
|
✗ |
sjmax = amin1(sjmax, scrit(il)) |
| 1681 |
|
✗ |
smax(il) = amax1(sij(il,i,j), smax(il)) |
| 1682 |
|
✗ |
sjmin = amax1(sij(il,i,j-1), smax(il)) |
| 1683 |
|
✗ |
sjmin = amin1(sjmin, scrit(il)) |
| 1684 |
|
✗ |
IF (sij(il,i,j)<(smax(il)-1.0E-16)) wgh = 0.0 |
| 1685 |
|
✗ |
smid = amin1(sij(il,i,j), scrit(il)) |
| 1686 |
|
|
ELSE |
| 1687 |
|
✗ |
sjmax = amax1(sij(il,i,j+1), scrit(il)) |
| 1688 |
|
✗ |
smid = amax1(sij(il,i,j), scrit(il)) |
| 1689 |
|
|
sjmin = 0.0 |
| 1690 |
|
✗ |
IF (j>1) sjmin = sij(il, i, j-1) |
| 1691 |
|
✗ |
sjmin = amax1(sjmin, scrit(il)) |
| 1692 |
|
|
END IF |
| 1693 |
|
✗ |
delp = abs(sjmax-smid) |
| 1694 |
|
✗ |
delm = abs(sjmin-smid) |
| 1695 |
|
✗ |
asij(il) = asij(il) + wgh*(delp+delm) |
| 1696 |
|
✗ |
ment(il, i, j) = ment(il, i, j)*(delp+delm)*wgh |
| 1697 |
|
|
END IF |
| 1698 |
|
|
END IF |
| 1699 |
|
|
END DO |
| 1700 |
|
|
|
| 1701 |
|
✗ |
175 END DO |
| 1702 |
|
|
|
| 1703 |
|
✗ |
DO il = 1, ncum |
| 1704 |
|
✗ |
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
| 1705 |
|
✗ |
asij(il) = amax1(1.0E-16, asij(il)) |
| 1706 |
|
✗ |
asij(il) = 1.0/asij(il) |
| 1707 |
|
✗ |
asum(il, i) = 0.0 |
| 1708 |
|
✗ |
bsum(il, i) = 0.0 |
| 1709 |
|
✗ |
csum(il, i) = 0.0 |
| 1710 |
|
|
END IF |
| 1711 |
|
|
END DO |
| 1712 |
|
|
|
| 1713 |
|
✗ |
DO j = minorig, nl |
| 1714 |
|
✗ |
DO il = 1, ncum |
| 1715 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb( & |
| 1716 |
|
✗ |
il)-1) .AND. j<=inb(il)) THEN |
| 1717 |
|
✗ |
ment(il, i, j) = ment(il, i, j)*asij(il) |
| 1718 |
|
|
END IF |
| 1719 |
|
|
END DO |
| 1720 |
|
|
END DO |
| 1721 |
|
|
|
| 1722 |
|
✗ |
DO j = minorig, nl |
| 1723 |
|
✗ |
DO il = 1, ncum |
| 1724 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb( & |
| 1725 |
|
✗ |
il)-1) .AND. j<=inb(il)) THEN |
| 1726 |
|
✗ |
asum(il, i) = asum(il, i) + ment(il, i, j) |
| 1727 |
|
✗ |
ment(il, i, j) = ment(il, i, j)*sig(il, j) |
| 1728 |
|
✗ |
bsum(il, i) = bsum(il, i) + ment(il, i, j) |
| 1729 |
|
|
END IF |
| 1730 |
|
|
END DO |
| 1731 |
|
|
END DO |
| 1732 |
|
|
|
| 1733 |
|
✗ |
DO il = 1, ncum |
| 1734 |
|
✗ |
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
| 1735 |
|
✗ |
bsum(il, i) = amax1(bsum(il,i), 1.0E-16) |
| 1736 |
|
✗ |
bsum(il, i) = 1.0/bsum(il, i) |
| 1737 |
|
|
END IF |
| 1738 |
|
|
END DO |
| 1739 |
|
|
|
| 1740 |
|
✗ |
DO j = minorig, nl |
| 1741 |
|
✗ |
DO il = 1, ncum |
| 1742 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb( & |
| 1743 |
|
✗ |
il)-1) .AND. j<=inb(il)) THEN |
| 1744 |
|
✗ |
ment(il, i, j) = ment(il, i, j)*asum(il, i)*bsum(il, i) |
| 1745 |
|
|
END IF |
| 1746 |
|
|
END DO |
| 1747 |
|
|
END DO |
| 1748 |
|
|
|
| 1749 |
|
✗ |
DO j = minorig, nl |
| 1750 |
|
✗ |
DO il = 1, ncum |
| 1751 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb( & |
| 1752 |
|
✗ |
il)-1) .AND. j<=inb(il)) THEN |
| 1753 |
|
✗ |
csum(il, i) = csum(il, i) + ment(il, i, j) |
| 1754 |
|
|
END IF |
| 1755 |
|
|
END DO |
| 1756 |
|
|
END DO |
| 1757 |
|
|
|
| 1758 |
|
✗ |
DO il = 1, ncum |
| 1759 |
|
✗ |
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
| 1760 |
|
✗ |
csum(il,i)<m(il,i)) THEN |
| 1761 |
|
✗ |
nent(il, i) = 0 |
| 1762 |
|
✗ |
ment(il, i, i) = m(il, i) |
| 1763 |
|
✗ |
qent(il, i, i) = rr(il, 1) - ep(il, i)*clw(il, i) |
| 1764 |
|
✗ |
uent(il, i, i) = u(il, nk(il)) |
| 1765 |
|
✗ |
vent(il, i, i) = v(il, nk(il)) |
| 1766 |
|
✗ |
elij(il, i, i) = clw(il, i) |
| 1767 |
|
|
! MAF sij(il,i,i)=1.0 |
| 1768 |
|
✗ |
sij(il, i, i) = 0.0 |
| 1769 |
|
|
END IF |
| 1770 |
|
|
END DO ! il |
| 1771 |
|
|
|
| 1772 |
|
|
! do j=1,ntra |
| 1773 |
|
|
! do il=1,ncum |
| 1774 |
|
|
! if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
| 1775 |
|
|
! : .and. csum(il,i).lt.m(il,i) ) then |
| 1776 |
|
|
! traent(il,i,i,j)=tra(il,nk(il),j) |
| 1777 |
|
|
! endif |
| 1778 |
|
|
! enddo |
| 1779 |
|
|
! enddo |
| 1780 |
|
✗ |
789 END DO |
| 1781 |
|
|
|
| 1782 |
|
|
! MAF: renormalisation de MENT |
| 1783 |
|
✗ |
DO jm = 1, nd |
| 1784 |
|
✗ |
DO im = 1, nd |
| 1785 |
|
✗ |
DO il = 1, ncum |
| 1786 |
|
✗ |
zm(il, im) = zm(il, im) + (1.-sij(il,im,jm))*ment(il, im, jm) |
| 1787 |
|
|
END DO |
| 1788 |
|
|
END DO |
| 1789 |
|
|
END DO |
| 1790 |
|
|
|
| 1791 |
|
✗ |
DO jm = 1, nd |
| 1792 |
|
✗ |
DO im = 1, nd |
| 1793 |
|
✗ |
DO il = 1, ncum |
| 1794 |
|
✗ |
IF (zm(il,im)/=0.) THEN |
| 1795 |
|
✗ |
ment(il, im, jm) = ment(il, im, jm)*m(il, im)/zm(il, im) |
| 1796 |
|
|
END IF |
| 1797 |
|
|
END DO |
| 1798 |
|
|
END DO |
| 1799 |
|
|
END DO |
| 1800 |
|
|
|
| 1801 |
|
✗ |
DO jm = 1, nd |
| 1802 |
|
✗ |
DO im = 1, nd |
| 1803 |
|
✗ |
DO il = 1, ncum |
| 1804 |
|
✗ |
qents(il, im, jm) = qent(il, im, jm) |
| 1805 |
|
✗ |
ments(il, im, jm) = ment(il, im, jm) |
| 1806 |
|
|
END DO |
| 1807 |
|
|
END DO |
| 1808 |
|
|
END DO |
| 1809 |
|
|
|
| 1810 |
|
✗ |
RETURN |
| 1811 |
|
|
END SUBROUTINE cv30_mixing |
| 1812 |
|
|
|
| 1813 |
|
|
|
| 1814 |
|
✗ |
SUBROUTINE cv30_unsat(nloc, ncum, nd, na, ntra, icb, inb, t, rr, rs, gz, u, & |
| 1815 |
|
✗ |
v, tra, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, & |
| 1816 |
|
✗ |
mp, rp, up, vp, trap, wt, water, evap, b & ! RomP-jyg |
| 1817 |
|
|
, wdtraina, wdtrainm) ! 26/08/10 RomP-jyg |
| 1818 |
|
|
IMPLICIT NONE |
| 1819 |
|
|
|
| 1820 |
|
|
|
| 1821 |
|
|
include "cvthermo.h" |
| 1822 |
|
|
include "cv30param.h" |
| 1823 |
|
|
include "cvflag.h" |
| 1824 |
|
|
|
| 1825 |
|
|
! inputs: |
| 1826 |
|
|
INTEGER ncum, nd, na, ntra, nloc |
| 1827 |
|
|
INTEGER icb(nloc), inb(nloc) |
| 1828 |
|
|
REAL delt, plcl(nloc) |
| 1829 |
|
|
REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd) |
| 1830 |
|
|
REAL u(nloc, nd), v(nloc, nd) |
| 1831 |
|
|
REAL tra(nloc, nd, ntra) |
| 1832 |
|
|
REAL p(nloc, nd), ph(nloc, nd+1) |
| 1833 |
|
|
REAL th(nloc, na), gz(nloc, na) |
| 1834 |
|
|
REAL lv(nloc, na), ep(nloc, na), sigp(nloc, na), clw(nloc, na) |
| 1835 |
|
|
REAL cpn(nloc, na), tv(nloc, na) |
| 1836 |
|
|
REAL m(nloc, na), ment(nloc, na, na), elij(nloc, na, na) |
| 1837 |
|
|
|
| 1838 |
|
|
! outputs: |
| 1839 |
|
|
REAL mp(nloc, na), rp(nloc, na), up(nloc, na), vp(nloc, na) |
| 1840 |
|
|
REAL water(nloc, na), evap(nloc, na), wt(nloc, na) |
| 1841 |
|
|
REAL trap(nloc, na, ntra) |
| 1842 |
|
|
REAL b(nloc, na) |
| 1843 |
|
|
! 25/08/10 - RomP---- ajout des masses precipitantes ejectees |
| 1844 |
|
|
! lascendance adiabatique et des flux melanges Pa et Pm. |
| 1845 |
|
|
! Distinction des wdtrain |
| 1846 |
|
|
! Pa = wdtrainA Pm = wdtrainM |
| 1847 |
|
|
REAL wdtraina(nloc, na), wdtrainm(nloc, na) |
| 1848 |
|
|
|
| 1849 |
|
|
! local variables |
| 1850 |
|
|
INTEGER i, j, k, il, num1 |
| 1851 |
|
|
REAL tinv, delti |
| 1852 |
|
|
REAL awat, afac, afac1, afac2, bfac |
| 1853 |
|
|
REAL pr1, pr2, sigt, b6, c6, revap, tevap, delth |
| 1854 |
|
|
REAL amfac, amp2, xf, tf, fac2, ur, sru, fac, d, af, bf |
| 1855 |
|
|
REAL ampmax |
| 1856 |
|
✗ |
REAL lvcp(nloc, na) |
| 1857 |
|
✗ |
REAL wdtrain(nloc) |
| 1858 |
|
✗ |
LOGICAL lwork(nloc) |
| 1859 |
|
|
|
| 1860 |
|
|
|
| 1861 |
|
|
! ------------------------------------------------------ |
| 1862 |
|
|
|
| 1863 |
|
✗ |
delti = 1./delt |
| 1864 |
|
|
tinv = 1./3. |
| 1865 |
|
|
|
| 1866 |
|
✗ |
mp(:, :) = 0. |
| 1867 |
|
|
|
| 1868 |
|
✗ |
DO i = 1, nl |
| 1869 |
|
✗ |
DO il = 1, ncum |
| 1870 |
|
✗ |
mp(il, i) = 0.0 |
| 1871 |
|
✗ |
rp(il, i) = rr(il, i) |
| 1872 |
|
✗ |
up(il, i) = u(il, i) |
| 1873 |
|
✗ |
vp(il, i) = v(il, i) |
| 1874 |
|
✗ |
wt(il, i) = 0.001 |
| 1875 |
|
✗ |
water(il, i) = 0.0 |
| 1876 |
|
✗ |
evap(il, i) = 0.0 |
| 1877 |
|
✗ |
b(il, i) = 0.0 |
| 1878 |
|
✗ |
lvcp(il, i) = lv(il, i)/cpn(il, i) |
| 1879 |
|
|
END DO |
| 1880 |
|
|
END DO |
| 1881 |
|
|
|
| 1882 |
|
|
! do k=1,ntra |
| 1883 |
|
|
! do i=1,nd |
| 1884 |
|
|
! do il=1,ncum |
| 1885 |
|
|
! trap(il,i,k)=tra(il,i,k) |
| 1886 |
|
|
! enddo |
| 1887 |
|
|
! enddo |
| 1888 |
|
|
! enddo |
| 1889 |
|
|
! ! RomP >>> |
| 1890 |
|
✗ |
DO i = 1, nd |
| 1891 |
|
✗ |
DO il = 1, ncum |
| 1892 |
|
✗ |
wdtraina(il, i) = 0.0 |
| 1893 |
|
✗ |
wdtrainm(il, i) = 0.0 |
| 1894 |
|
|
END DO |
| 1895 |
|
|
END DO |
| 1896 |
|
|
! ! RomP <<< |
| 1897 |
|
|
|
| 1898 |
|
|
! *** check whether ep(inb)=0, if so, skip precipitating *** |
| 1899 |
|
|
! *** downdraft calculation *** |
| 1900 |
|
|
|
| 1901 |
|
|
|
| 1902 |
|
✗ |
DO il = 1, ncum |
| 1903 |
|
✗ |
lwork(il) = .TRUE. |
| 1904 |
|
✗ |
IF (ep(il,inb(il))<0.0001) lwork(il) = .FALSE. |
| 1905 |
|
|
END DO |
| 1906 |
|
|
|
| 1907 |
|
✗ |
CALL zilch(wdtrain, ncum) |
| 1908 |
|
|
|
| 1909 |
|
✗ |
DO i = nl + 1, 1, -1 |
| 1910 |
|
|
|
| 1911 |
|
|
num1 = 0 |
| 1912 |
|
✗ |
DO il = 1, ncum |
| 1913 |
|
✗ |
IF (i<=inb(il) .AND. lwork(il)) num1 = num1 + 1 |
| 1914 |
|
|
END DO |
| 1915 |
|
✗ |
IF (num1<=0) GO TO 400 |
| 1916 |
|
|
|
| 1917 |
|
|
|
| 1918 |
|
|
! *** integrate liquid water equation to find condensed water *** |
| 1919 |
|
|
! *** and condensed water flux *** |
| 1920 |
|
|
|
| 1921 |
|
|
|
| 1922 |
|
|
|
| 1923 |
|
|
! *** begin downdraft loop *** |
| 1924 |
|
|
|
| 1925 |
|
|
|
| 1926 |
|
|
|
| 1927 |
|
|
! *** calculate detrained precipitation *** |
| 1928 |
|
|
|
| 1929 |
|
✗ |
DO il = 1, ncum |
| 1930 |
|
✗ |
IF (i<=inb(il) .AND. lwork(il)) THEN |
| 1931 |
|
✗ |
IF (cvflag_grav) THEN |
| 1932 |
|
✗ |
wdtrain(il) = grav*ep(il, i)*m(il, i)*clw(il, i) |
| 1933 |
|
✗ |
wdtraina(il, i) = wdtrain(il)/grav ! Pa 26/08/10 RomP |
| 1934 |
|
|
ELSE |
| 1935 |
|
✗ |
wdtrain(il) = 10.0*ep(il, i)*m(il, i)*clw(il, i) |
| 1936 |
|
✗ |
wdtraina(il, i) = wdtrain(il)/10. ! Pa 26/08/10 RomP |
| 1937 |
|
|
END IF |
| 1938 |
|
|
END IF |
| 1939 |
|
|
END DO |
| 1940 |
|
|
|
| 1941 |
|
✗ |
IF (i>1) THEN |
| 1942 |
|
|
|
| 1943 |
|
✗ |
DO j = 1, i - 1 |
| 1944 |
|
✗ |
DO il = 1, ncum |
| 1945 |
|
✗ |
IF (i<=inb(il) .AND. lwork(il)) THEN |
| 1946 |
|
✗ |
awat = elij(il, j, i) - (1.-ep(il,i))*clw(il, i) |
| 1947 |
|
✗ |
awat = amax1(awat, 0.0) |
| 1948 |
|
✗ |
IF (cvflag_grav) THEN |
| 1949 |
|
✗ |
wdtrain(il) = wdtrain(il) + grav*awat*ment(il, j, i) |
| 1950 |
|
|
ELSE |
| 1951 |
|
✗ |
wdtrain(il) = wdtrain(il) + 10.0*awat*ment(il, j, i) |
| 1952 |
|
|
END IF |
| 1953 |
|
|
END IF |
| 1954 |
|
|
END DO |
| 1955 |
|
|
END DO |
| 1956 |
|
✗ |
DO il = 1, ncum |
| 1957 |
|
✗ |
IF (cvflag_grav) THEN |
| 1958 |
|
✗ |
wdtrainm(il, i) = wdtrain(il)/grav - wdtraina(il, i) ! Pm 26/08/10 RomP |
| 1959 |
|
|
ELSE |
| 1960 |
|
✗ |
wdtrainm(il, i) = wdtrain(il)/10. - wdtraina(il, i) ! Pm 26/08/10 RomP |
| 1961 |
|
|
END IF |
| 1962 |
|
|
END DO |
| 1963 |
|
|
|
| 1964 |
|
|
END IF |
| 1965 |
|
|
|
| 1966 |
|
|
|
| 1967 |
|
|
! *** find rain water and evaporation using provisional *** |
| 1968 |
|
|
! *** estimates of rp(i)and rp(i-1) *** |
| 1969 |
|
|
|
| 1970 |
|
|
|
| 1971 |
|
✗ |
DO il = 1, ncum |
| 1972 |
|
|
|
| 1973 |
|
✗ |
IF (i<=inb(il) .AND. lwork(il)) THEN |
| 1974 |
|
|
|
| 1975 |
|
✗ |
wt(il, i) = 45.0 |
| 1976 |
|
|
|
| 1977 |
|
✗ |
IF (i<inb(il)) THEN |
| 1978 |
|
|
rp(il, i) = rp(il, i+1) + (cpd*(t(il,i+1)-t(il, & |
| 1979 |
|
✗ |
i))+gz(il,i+1)-gz(il,i))/lv(il, i) |
| 1980 |
|
✗ |
rp(il, i) = 0.5*(rp(il,i)+rr(il,i)) |
| 1981 |
|
|
END IF |
| 1982 |
|
✗ |
rp(il, i) = amax1(rp(il,i), 0.0) |
| 1983 |
|
✗ |
rp(il, i) = amin1(rp(il,i), rs(il,i)) |
| 1984 |
|
✗ |
rp(il, inb(il)) = rr(il, inb(il)) |
| 1985 |
|
|
|
| 1986 |
|
✗ |
IF (i==1) THEN |
| 1987 |
|
✗ |
afac = p(il, 1)*(rs(il,1)-rp(il,1))/(1.0E4+2000.0*p(il,1)*rs(il,1)) |
| 1988 |
|
|
ELSE |
| 1989 |
|
|
rp(il, i-1) = rp(il, i) + (cpd*(t(il,i)-t(il, & |
| 1990 |
|
✗ |
i-1))+gz(il,i)-gz(il,i-1))/lv(il, i) |
| 1991 |
|
✗ |
rp(il, i-1) = 0.5*(rp(il,i-1)+rr(il,i-1)) |
| 1992 |
|
✗ |
rp(il, i-1) = amin1(rp(il,i-1), rs(il,i-1)) |
| 1993 |
|
✗ |
rp(il, i-1) = amax1(rp(il,i-1), 0.0) |
| 1994 |
|
|
afac1 = p(il, i)*(rs(il,i)-rp(il,i))/(1.0E4+2000.0*p(il,i)*rs(il,i) & |
| 1995 |
|
✗ |
) |
| 1996 |
|
|
afac2 = p(il, i-1)*(rs(il,i-1)-rp(il,i-1))/ & |
| 1997 |
|
✗ |
(1.0E4+2000.0*p(il,i-1)*rs(il,i-1)) |
| 1998 |
|
✗ |
afac = 0.5*(afac1+afac2) |
| 1999 |
|
|
END IF |
| 2000 |
|
✗ |
IF (i==inb(il)) afac = 0.0 |
| 2001 |
|
✗ |
afac = amax1(afac, 0.0) |
| 2002 |
|
✗ |
bfac = 1./(sigd*wt(il,i)) |
| 2003 |
|
|
|
| 2004 |
|
|
! jyg1 |
| 2005 |
|
|
! cc sigt=1.0 |
| 2006 |
|
|
! cc if(i.ge.icb)sigt=sigp(i) |
| 2007 |
|
|
! prise en compte de la variation progressive de sigt dans |
| 2008 |
|
|
! les couches icb et icb-1: |
| 2009 |
|
|
! pour plcl<ph(i+1), pr1=0 & pr2=1 |
| 2010 |
|
|
! pour plcl>ph(i), pr1=1 & pr2=0 |
| 2011 |
|
|
! pour ph(i+1)<plcl<ph(i), pr1 est la proportion a cheval |
| 2012 |
|
|
! sur le nuage, et pr2 est la proportion sous la base du |
| 2013 |
|
|
! nuage. |
| 2014 |
|
✗ |
pr1 = (plcl(il)-ph(il,i+1))/(ph(il,i)-ph(il,i+1)) |
| 2015 |
|
✗ |
pr1 = max(0., min(1.,pr1)) |
| 2016 |
|
✗ |
pr2 = (ph(il,i)-plcl(il))/(ph(il,i)-ph(il,i+1)) |
| 2017 |
|
✗ |
pr2 = max(0., min(1.,pr2)) |
| 2018 |
|
✗ |
sigt = sigp(il, i)*pr1 + pr2 |
| 2019 |
|
|
! jyg2 |
| 2020 |
|
|
|
| 2021 |
|
✗ |
b6 = bfac*50.*sigd*(ph(il,i)-ph(il,i+1))*sigt*afac |
| 2022 |
|
|
c6 = water(il, i+1) + bfac*wdtrain(il) - 50.*sigd*bfac*(ph(il,i)-ph( & |
| 2023 |
|
✗ |
il,i+1))*evap(il, i+1) |
| 2024 |
|
✗ |
IF (c6>0.0) THEN |
| 2025 |
|
✗ |
revap = 0.5*(-b6+sqrt(b6*b6+4.*c6)) |
| 2026 |
|
✗ |
evap(il, i) = sigt*afac*revap |
| 2027 |
|
✗ |
water(il, i) = revap*revap |
| 2028 |
|
|
ELSE |
| 2029 |
|
|
evap(il, i) = -evap(il, i+1) + 0.02*(wdtrain(il)+sigd*wt(il,i)* & |
| 2030 |
|
✗ |
water(il,i+1))/(sigd*(ph(il,i)-ph(il,i+1))) |
| 2031 |
|
|
END IF |
| 2032 |
|
|
|
| 2033 |
|
|
! *** calculate precipitating downdraft mass flux under *** |
| 2034 |
|
|
! *** hydrostatic approximation *** |
| 2035 |
|
|
|
| 2036 |
|
✗ |
IF (i/=1) THEN |
| 2037 |
|
|
|
| 2038 |
|
✗ |
tevap = amax1(0.0, evap(il,i)) |
| 2039 |
|
✗ |
delth = amax1(0.001, (th(il,i)-th(il,i-1))) |
| 2040 |
|
✗ |
IF (cvflag_grav) THEN |
| 2041 |
|
|
mp(il, i) = 100.*ginv*lvcp(il, i)*sigd*tevap*(p(il,i-1)-p(il,i))/ & |
| 2042 |
|
✗ |
delth |
| 2043 |
|
|
ELSE |
| 2044 |
|
✗ |
mp(il, i) = 10.*lvcp(il, i)*sigd*tevap*(p(il,i-1)-p(il,i))/delth |
| 2045 |
|
|
END IF |
| 2046 |
|
|
|
| 2047 |
|
|
! *** if hydrostatic assumption fails, *** |
| 2048 |
|
|
! *** solve cubic difference equation for downdraft theta *** |
| 2049 |
|
|
! *** and mass flux from two simultaneous differential eqns *** |
| 2050 |
|
|
|
| 2051 |
|
|
amfac = sigd*sigd*70.0*ph(il, i)*(p(il,i-1)-p(il,i))* & |
| 2052 |
|
✗ |
(th(il,i)-th(il,i-1))/(tv(il,i)*th(il,i)) |
| 2053 |
|
✗ |
amp2 = abs(mp(il,i+1)*mp(il,i+1)-mp(il,i)*mp(il,i)) |
| 2054 |
|
✗ |
IF (amp2>(0.1*amfac)) THEN |
| 2055 |
|
✗ |
xf = 100.0*sigd*sigd*sigd*(ph(il,i)-ph(il,i+1)) |
| 2056 |
|
|
tf = b(il, i) - 5.0*(th(il,i)-th(il,i-1))*t(il, i)/(lvcp(il,i)* & |
| 2057 |
|
✗ |
sigd*th(il,i)) |
| 2058 |
|
✗ |
af = xf*tf + mp(il, i+1)*mp(il, i+1)*tinv |
| 2059 |
|
|
bf = 2.*(tinv*mp(il,i+1))**3 + tinv*mp(il, i+1)*xf*tf + & |
| 2060 |
|
✗ |
50.*(p(il,i-1)-p(il,i))*xf*tevap |
| 2061 |
|
|
fac2 = 1.0 |
| 2062 |
|
✗ |
IF (bf<0.0) fac2 = -1.0 |
| 2063 |
|
✗ |
bf = abs(bf) |
| 2064 |
|
✗ |
ur = 0.25*bf*bf - af*af*af*tinv*tinv*tinv |
| 2065 |
|
✗ |
IF (ur>=0.0) THEN |
| 2066 |
|
✗ |
sru = sqrt(ur) |
| 2067 |
|
|
fac = 1.0 |
| 2068 |
|
✗ |
IF ((0.5*bf-sru)<0.0) fac = -1.0 |
| 2069 |
|
|
mp(il, i) = mp(il, i+1)*tinv + (0.5*bf+sru)**tinv + & |
| 2070 |
|
✗ |
fac*(abs(0.5*bf-sru))**tinv |
| 2071 |
|
|
ELSE |
| 2072 |
|
✗ |
d = atan(2.*sqrt(-ur)/(bf+1.0E-28)) |
| 2073 |
|
✗ |
IF (fac2<0.0) d = 3.14159 - d |
| 2074 |
|
✗ |
mp(il, i) = mp(il, i+1)*tinv + 2.*sqrt(af*tinv)*cos(d*tinv) |
| 2075 |
|
|
END IF |
| 2076 |
|
✗ |
mp(il, i) = amax1(0.0, mp(il,i)) |
| 2077 |
|
|
|
| 2078 |
|
✗ |
IF (cvflag_grav) THEN |
| 2079 |
|
|
! jyg : il y a vraisemblablement une erreur dans la ligne 2 |
| 2080 |
|
|
! suivante: |
| 2081 |
|
|
! il faut diviser par (mp(il,i)*sigd*grav) et non par |
| 2082 |
|
|
! (mp(il,i)+sigd*0.1). |
| 2083 |
|
|
! Et il faut bien revoir les facteurs 100. |
| 2084 |
|
|
b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))*tevap/(mp(il, & |
| 2085 |
|
|
i)+sigd*0.1) - 10.0*(th(il,i)-th(il,i-1))*t(il, i)/(lvcp(il,i & |
| 2086 |
|
✗ |
)*sigd*th(il,i)) |
| 2087 |
|
|
ELSE |
| 2088 |
|
|
b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))*tevap/(mp(il, & |
| 2089 |
|
|
i)+sigd*0.1) - 10.0*(th(il,i)-th(il,i-1))*t(il, i)/(lvcp(il,i & |
| 2090 |
|
✗ |
)*sigd*th(il,i)) |
| 2091 |
|
|
END IF |
| 2092 |
|
✗ |
b(il, i-1) = amax1(b(il,i-1), 0.0) |
| 2093 |
|
|
END IF |
| 2094 |
|
|
|
| 2095 |
|
|
! *** limit magnitude of mp(i) to meet cfl condition |
| 2096 |
|
|
! *** |
| 2097 |
|
|
|
| 2098 |
|
✗ |
ampmax = 2.0*(ph(il,i)-ph(il,i+1))*delti |
| 2099 |
|
✗ |
amp2 = 2.0*(ph(il,i-1)-ph(il,i))*delti |
| 2100 |
|
✗ |
ampmax = amin1(ampmax, amp2) |
| 2101 |
|
✗ |
mp(il, i) = amin1(mp(il,i), ampmax) |
| 2102 |
|
|
|
| 2103 |
|
|
! *** force mp to decrease linearly to zero |
| 2104 |
|
|
! *** |
| 2105 |
|
|
! *** between cloud base and the surface |
| 2106 |
|
|
! *** |
| 2107 |
|
|
|
| 2108 |
|
✗ |
IF (p(il,i)>p(il,icb(il))) THEN |
| 2109 |
|
|
mp(il, i) = mp(il, icb(il))*(p(il,1)-p(il,i))/ & |
| 2110 |
|
✗ |
(p(il,1)-p(il,icb(il))) |
| 2111 |
|
|
END IF |
| 2112 |
|
|
|
| 2113 |
|
|
END IF ! i.eq.1 |
| 2114 |
|
|
|
| 2115 |
|
|
! *** find mixing ratio of precipitating downdraft *** |
| 2116 |
|
|
|
| 2117 |
|
|
|
| 2118 |
|
✗ |
IF (i/=inb(il)) THEN |
| 2119 |
|
|
|
| 2120 |
|
✗ |
rp(il, i) = rr(il, i) |
| 2121 |
|
|
|
| 2122 |
|
✗ |
IF (mp(il,i)>mp(il,i+1)) THEN |
| 2123 |
|
|
|
| 2124 |
|
✗ |
IF (cvflag_grav) THEN |
| 2125 |
|
|
rp(il, i) = rp(il, i+1)*mp(il, i+1) + & |
| 2126 |
|
|
rr(il, i)*(mp(il,i)-mp(il,i+1)) + 100.*ginv*0.5*sigd*(ph(il,i & |
| 2127 |
|
✗ |
)-ph(il,i+1))*(evap(il,i+1)+evap(il,i)) |
| 2128 |
|
|
ELSE |
| 2129 |
|
|
rp(il, i) = rp(il, i+1)*mp(il, i+1) + & |
| 2130 |
|
|
rr(il, i)*(mp(il,i)-mp(il,i+1)) + 5.*sigd*(ph(il,i)-ph(il,i+1 & |
| 2131 |
|
✗ |
))*(evap(il,i+1)+evap(il,i)) |
| 2132 |
|
|
END IF |
| 2133 |
|
✗ |
rp(il, i) = rp(il, i)/mp(il, i) |
| 2134 |
|
|
up(il, i) = up(il, i+1)*mp(il, i+1) + u(il, i)*(mp(il,i)-mp(il,i+ & |
| 2135 |
|
✗ |
1)) |
| 2136 |
|
✗ |
up(il, i) = up(il, i)/mp(il, i) |
| 2137 |
|
|
vp(il, i) = vp(il, i+1)*mp(il, i+1) + v(il, i)*(mp(il,i)-mp(il,i+ & |
| 2138 |
|
✗ |
1)) |
| 2139 |
|
✗ |
vp(il, i) = vp(il, i)/mp(il, i) |
| 2140 |
|
|
|
| 2141 |
|
|
! do j=1,ntra |
| 2142 |
|
|
! trap(il,i,j)=trap(il,i+1,j)*mp(il,i+1) |
| 2143 |
|
|
! testmaf : +trap(il,i,j)*(mp(il,i)-mp(il,i+1)) |
| 2144 |
|
|
! : +tra(il,i,j)*(mp(il,i)-mp(il,i+1)) |
| 2145 |
|
|
! trap(il,i,j)=trap(il,i,j)/mp(il,i) |
| 2146 |
|
|
! end do |
| 2147 |
|
|
|
| 2148 |
|
|
ELSE |
| 2149 |
|
|
|
| 2150 |
|
✗ |
IF (mp(il,i+1)>1.0E-16) THEN |
| 2151 |
|
✗ |
IF (cvflag_grav) THEN |
| 2152 |
|
|
rp(il, i) = rp(il, i+1) + 100.*ginv*0.5*sigd*(ph(il,i)-ph(il, & |
| 2153 |
|
✗ |
i+1))*(evap(il,i+1)+evap(il,i))/mp(il, i+1) |
| 2154 |
|
|
ELSE |
| 2155 |
|
|
rp(il, i) = rp(il, i+1) + 5.*sigd*(ph(il,i)-ph(il,i+1))*(evap & |
| 2156 |
|
✗ |
(il,i+1)+evap(il,i))/mp(il, i+1) |
| 2157 |
|
|
END IF |
| 2158 |
|
✗ |
up(il, i) = up(il, i+1) |
| 2159 |
|
✗ |
vp(il, i) = vp(il, i+1) |
| 2160 |
|
|
|
| 2161 |
|
|
! do j=1,ntra |
| 2162 |
|
|
! trap(il,i,j)=trap(il,i+1,j) |
| 2163 |
|
|
! end do |
| 2164 |
|
|
|
| 2165 |
|
|
END IF |
| 2166 |
|
|
END IF |
| 2167 |
|
✗ |
rp(il, i) = amin1(rp(il,i), rs(il,i)) |
| 2168 |
|
✗ |
rp(il, i) = amax1(rp(il,i), 0.0) |
| 2169 |
|
|
|
| 2170 |
|
|
END IF |
| 2171 |
|
|
END IF |
| 2172 |
|
|
END DO |
| 2173 |
|
|
|
| 2174 |
|
✗ |
400 END DO |
| 2175 |
|
|
|
| 2176 |
|
✗ |
RETURN |
| 2177 |
|
|
END SUBROUTINE cv30_unsat |
| 2178 |
|
|
|
| 2179 |
|
✗ |
SUBROUTINE cv30_yield(nloc, ncum, nd, na, ntra, icb, inb, delt, t, rr, u, v, & |
| 2180 |
|
✗ |
tra, gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, rp, up, vp, trap, & |
| 2181 |
|
✗ |
wt, water, evap, b, ment, qent, uent, vent, nent, elij, traent, sig, tv, & |
| 2182 |
|
✗ |
tvp, iflag, precip, vprecip, ft, fr, fu, fv, ftra, upwd, dnwd, dnwd0, ma, & |
| 2183 |
|
|
mike, tls, tps, qcondc, wd) |
| 2184 |
|
|
IMPLICIT NONE |
| 2185 |
|
|
|
| 2186 |
|
|
include "cvthermo.h" |
| 2187 |
|
|
include "cv30param.h" |
| 2188 |
|
|
include "cvflag.h" |
| 2189 |
|
|
include "conema3.h" |
| 2190 |
|
|
|
| 2191 |
|
|
! inputs: |
| 2192 |
|
|
INTEGER ncum, nd, na, ntra, nloc |
| 2193 |
|
|
INTEGER icb(nloc), inb(nloc) |
| 2194 |
|
|
REAL delt |
| 2195 |
|
|
REAL t(nloc, nd), rr(nloc, nd), u(nloc, nd), v(nloc, nd) |
| 2196 |
|
|
REAL tra(nloc, nd, ntra), sig(nloc, nd) |
| 2197 |
|
|
REAL gz(nloc, na), ph(nloc, nd+1), h(nloc, na), hp(nloc, na) |
| 2198 |
|
|
REAL th(nloc, na), p(nloc, nd), tp(nloc, na) |
| 2199 |
|
|
REAL lv(nloc, na), cpn(nloc, na), ep(nloc, na), clw(nloc, na) |
| 2200 |
|
|
REAL m(nloc, na), mp(nloc, na), rp(nloc, na), up(nloc, na) |
| 2201 |
|
|
REAL vp(nloc, na), wt(nloc, nd), trap(nloc, nd, ntra) |
| 2202 |
|
|
REAL water(nloc, na), evap(nloc, na), b(nloc, na) |
| 2203 |
|
|
REAL ment(nloc, na, na), qent(nloc, na, na), uent(nloc, na, na) |
| 2204 |
|
|
! ym real vent(nloc,na,na), nent(nloc,na), elij(nloc,na,na) |
| 2205 |
|
|
REAL vent(nloc, na, na), elij(nloc, na, na) |
| 2206 |
|
|
INTEGER nent(nloc, na) |
| 2207 |
|
|
REAL traent(nloc, na, na, ntra) |
| 2208 |
|
|
REAL tv(nloc, nd), tvp(nloc, nd) |
| 2209 |
|
|
|
| 2210 |
|
|
! input/output: |
| 2211 |
|
|
INTEGER iflag(nloc) |
| 2212 |
|
|
|
| 2213 |
|
|
! outputs: |
| 2214 |
|
|
REAL precip(nloc) |
| 2215 |
|
|
REAL vprecip(nloc, nd+1) |
| 2216 |
|
|
REAL ft(nloc, nd), fr(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
| 2217 |
|
|
REAL ftra(nloc, nd, ntra) |
| 2218 |
|
|
REAL upwd(nloc, nd), dnwd(nloc, nd), ma(nloc, nd) |
| 2219 |
|
|
REAL dnwd0(nloc, nd), mike(nloc, nd) |
| 2220 |
|
|
REAL tls(nloc, nd), tps(nloc, nd) |
| 2221 |
|
|
REAL qcondc(nloc, nd) ! cld |
| 2222 |
|
|
REAL wd(nloc) ! gust |
| 2223 |
|
|
|
| 2224 |
|
|
! local variables: |
| 2225 |
|
|
INTEGER i, k, il, n, j, num1 |
| 2226 |
|
|
REAL rat, awat, delti |
| 2227 |
|
|
REAL ax, bx, cx, dx, ex |
| 2228 |
|
|
REAL cpinv, rdcp, dpinv |
| 2229 |
|
✗ |
REAL lvcp(nloc, na), mke(nloc, na) |
| 2230 |
|
✗ |
REAL am(nloc), work(nloc), ad(nloc), amp1(nloc) |
| 2231 |
|
|
! !! real up1(nloc), dn1(nloc) |
| 2232 |
|
✗ |
REAL up1(nloc, nd, nd), dn1(nloc, nd, nd) |
| 2233 |
|
✗ |
REAL asum(nloc), bsum(nloc), csum(nloc), dsum(nloc) |
| 2234 |
|
✗ |
REAL qcond(nloc, nd), nqcond(nloc, nd), wa(nloc, nd) ! cld |
| 2235 |
|
✗ |
REAL siga(nloc, nd), sax(nloc, nd), mac(nloc, nd) ! cld |
| 2236 |
|
|
|
| 2237 |
|
|
|
| 2238 |
|
|
! ------------------------------------------------------------- |
| 2239 |
|
|
|
| 2240 |
|
|
! initialization: |
| 2241 |
|
|
|
| 2242 |
|
✗ |
delti = 1.0/delt |
| 2243 |
|
|
|
| 2244 |
|
✗ |
DO il = 1, ncum |
| 2245 |
|
✗ |
precip(il) = 0.0 |
| 2246 |
|
✗ |
wd(il) = 0.0 ! gust |
| 2247 |
|
✗ |
vprecip(il, nd+1) = 0. |
| 2248 |
|
|
END DO |
| 2249 |
|
|
|
| 2250 |
|
✗ |
DO i = 1, nd |
| 2251 |
|
✗ |
DO il = 1, ncum |
| 2252 |
|
✗ |
vprecip(il, i) = 0.0 |
| 2253 |
|
✗ |
ft(il, i) = 0.0 |
| 2254 |
|
✗ |
fr(il, i) = 0.0 |
| 2255 |
|
✗ |
fu(il, i) = 0.0 |
| 2256 |
|
✗ |
fv(il, i) = 0.0 |
| 2257 |
|
✗ |
qcondc(il, i) = 0.0 ! cld |
| 2258 |
|
✗ |
qcond(il, i) = 0.0 ! cld |
| 2259 |
|
✗ |
nqcond(il, i) = 0.0 ! cld |
| 2260 |
|
|
END DO |
| 2261 |
|
|
END DO |
| 2262 |
|
|
|
| 2263 |
|
|
! do j=1,ntra |
| 2264 |
|
|
! do i=1,nd |
| 2265 |
|
|
! do il=1,ncum |
| 2266 |
|
|
! ftra(il,i,j)=0.0 |
| 2267 |
|
|
! enddo |
| 2268 |
|
|
! enddo |
| 2269 |
|
|
! enddo |
| 2270 |
|
|
|
| 2271 |
|
✗ |
DO i = 1, nl |
| 2272 |
|
✗ |
DO il = 1, ncum |
| 2273 |
|
✗ |
lvcp(il, i) = lv(il, i)/cpn(il, i) |
| 2274 |
|
|
END DO |
| 2275 |
|
|
END DO |
| 2276 |
|
|
|
| 2277 |
|
|
|
| 2278 |
|
|
|
| 2279 |
|
|
! *** calculate surface precipitation in mm/day *** |
| 2280 |
|
|
|
| 2281 |
|
✗ |
DO il = 1, ncum |
| 2282 |
|
✗ |
IF (ep(il,inb(il))>=0.0001) THEN |
| 2283 |
|
✗ |
IF (cvflag_grav) THEN |
| 2284 |
|
✗ |
precip(il) = wt(il, 1)*sigd*water(il, 1)*86400.*1000./(rowl*grav) |
| 2285 |
|
|
ELSE |
| 2286 |
|
✗ |
precip(il) = wt(il, 1)*sigd*water(il, 1)*8640. |
| 2287 |
|
|
END IF |
| 2288 |
|
|
END IF |
| 2289 |
|
|
END DO |
| 2290 |
|
|
|
| 2291 |
|
|
! *** CALCULATE VERTICAL PROFILE OF PRECIPITATIONs IN kg/m2/s === |
| 2292 |
|
|
|
| 2293 |
|
|
! MAF rajout pour lessivage |
| 2294 |
|
✗ |
DO k = 1, nl |
| 2295 |
|
✗ |
DO il = 1, ncum |
| 2296 |
|
✗ |
IF (k<=inb(il)) THEN |
| 2297 |
|
✗ |
IF (cvflag_grav) THEN |
| 2298 |
|
✗ |
vprecip(il, k) = wt(il, k)*sigd*water(il, k)/grav |
| 2299 |
|
|
ELSE |
| 2300 |
|
✗ |
vprecip(il, k) = wt(il, k)*sigd*water(il, k)/10. |
| 2301 |
|
|
END IF |
| 2302 |
|
|
END IF |
| 2303 |
|
|
END DO |
| 2304 |
|
|
END DO |
| 2305 |
|
|
|
| 2306 |
|
|
|
| 2307 |
|
|
! *** Calculate downdraft velocity scale *** |
| 2308 |
|
|
! *** NE PAS UTILISER POUR L'INSTANT *** |
| 2309 |
|
|
|
| 2310 |
|
|
! ! do il=1,ncum |
| 2311 |
|
|
! ! wd(il)=betad*abs(mp(il,icb(il)))*0.01*rrd*t(il,icb(il)) |
| 2312 |
|
|
! ! : /(sigd*p(il,icb(il))) |
| 2313 |
|
|
! ! enddo |
| 2314 |
|
|
|
| 2315 |
|
|
|
| 2316 |
|
|
! *** calculate tendencies of lowest level potential temperature *** |
| 2317 |
|
|
! *** and mixing ratio *** |
| 2318 |
|
|
|
| 2319 |
|
✗ |
DO il = 1, ncum |
| 2320 |
|
✗ |
work(il) = 1.0/(ph(il,1)-ph(il,2)) |
| 2321 |
|
✗ |
am(il) = 0.0 |
| 2322 |
|
|
END DO |
| 2323 |
|
|
|
| 2324 |
|
✗ |
DO k = 2, nl |
| 2325 |
|
✗ |
DO il = 1, ncum |
| 2326 |
|
✗ |
IF (k<=inb(il)) THEN |
| 2327 |
|
✗ |
am(il) = am(il) + m(il, k) |
| 2328 |
|
|
END IF |
| 2329 |
|
|
END DO |
| 2330 |
|
|
END DO |
| 2331 |
|
|
|
| 2332 |
|
✗ |
DO il = 1, ncum |
| 2333 |
|
|
|
| 2334 |
|
|
! convect3 if((0.1*dpinv*am).ge.delti)iflag(il)=4 |
| 2335 |
|
✗ |
IF (cvflag_grav) THEN |
| 2336 |
|
✗ |
IF ((0.01*grav*work(il)*am(il))>=delti) iflag(il) = 1 !consist vect |
| 2337 |
|
|
ft(il, 1) = 0.01*grav*work(il)*am(il)*(t(il,2)-t(il,1)+(gz(il,2)-gz(il, & |
| 2338 |
|
✗ |
1))/cpn(il,1)) |
| 2339 |
|
|
ELSE |
| 2340 |
|
✗ |
IF ((0.1*work(il)*am(il))>=delti) iflag(il) = 1 !consistency vect |
| 2341 |
|
|
ft(il, 1) = 0.1*work(il)*am(il)*(t(il,2)-t(il,1)+(gz(il,2)-gz(il, & |
| 2342 |
|
✗ |
1))/cpn(il,1)) |
| 2343 |
|
|
END IF |
| 2344 |
|
|
|
| 2345 |
|
✗ |
ft(il, 1) = ft(il, 1) - 0.5*lvcp(il, 1)*sigd*(evap(il,1)+evap(il,2)) |
| 2346 |
|
|
|
| 2347 |
|
✗ |
IF (cvflag_grav) THEN |
| 2348 |
|
|
ft(il, 1) = ft(il, 1) - 0.009*grav*sigd*mp(il, 2)*t(il, 1)*b(il, 1)* & |
| 2349 |
|
✗ |
work(il) |
| 2350 |
|
|
ELSE |
| 2351 |
|
✗ |
ft(il, 1) = ft(il, 1) - 0.09*sigd*mp(il, 2)*t(il, 1)*b(il, 1)*work(il) |
| 2352 |
|
|
END IF |
| 2353 |
|
|
|
| 2354 |
|
|
ft(il, 1) = ft(il, 1) + 0.01*sigd*wt(il, 1)*(cl-cpd)*water(il, 2)*(t(il,2 & |
| 2355 |
|
✗ |
)-t(il,1))*work(il)/cpn(il, 1) |
| 2356 |
|
|
|
| 2357 |
|
✗ |
IF (cvflag_grav) THEN |
| 2358 |
|
|
! jyg1 Correction pour mieux conserver l'eau (conformite avec |
| 2359 |
|
|
! CONVECT4.3) |
| 2360 |
|
|
! (sb: pour l'instant, on ne fait que le chgt concernant grav, pas |
| 2361 |
|
|
! evap) |
| 2362 |
|
|
fr(il, 1) = 0.01*grav*mp(il, 2)*(rp(il,2)-rr(il,1))*work(il) + & |
| 2363 |
|
✗ |
sigd*0.5*(evap(il,1)+evap(il,2)) |
| 2364 |
|
|
! +tard : +sigd*evap(il,1) |
| 2365 |
|
|
|
| 2366 |
|
✗ |
fr(il, 1) = fr(il, 1) + 0.01*grav*am(il)*(rr(il,2)-rr(il,1))*work(il) |
| 2367 |
|
|
|
| 2368 |
|
|
fu(il, 1) = fu(il, 1) + 0.01*grav*work(il)*(mp(il,2)*(up(il,2)-u(il, & |
| 2369 |
|
✗ |
1))+am(il)*(u(il,2)-u(il,1))) |
| 2370 |
|
|
fv(il, 1) = fv(il, 1) + 0.01*grav*work(il)*(mp(il,2)*(vp(il,2)-v(il, & |
| 2371 |
|
✗ |
1))+am(il)*(v(il,2)-v(il,1))) |
| 2372 |
|
|
ELSE ! cvflag_grav |
| 2373 |
|
|
fr(il, 1) = 0.1*mp(il, 2)*(rp(il,2)-rr(il,1))*work(il) + & |
| 2374 |
|
✗ |
sigd*0.5*(evap(il,1)+evap(il,2)) |
| 2375 |
|
✗ |
fr(il, 1) = fr(il, 1) + 0.1*am(il)*(rr(il,2)-rr(il,1))*work(il) |
| 2376 |
|
|
fu(il, 1) = fu(il, 1) + 0.1*work(il)*(mp(il,2)*(up(il,2)-u(il, & |
| 2377 |
|
✗ |
1))+am(il)*(u(il,2)-u(il,1))) |
| 2378 |
|
|
fv(il, 1) = fv(il, 1) + 0.1*work(il)*(mp(il,2)*(vp(il,2)-v(il, & |
| 2379 |
|
✗ |
1))+am(il)*(v(il,2)-v(il,1))) |
| 2380 |
|
|
END IF ! cvflag_grav |
| 2381 |
|
|
|
| 2382 |
|
|
END DO ! il |
| 2383 |
|
|
|
| 2384 |
|
|
! do j=1,ntra |
| 2385 |
|
|
! do il=1,ncum |
| 2386 |
|
|
! if (cvflag_grav) then |
| 2387 |
|
|
! ftra(il,1,j)=ftra(il,1,j)+0.01*grav*work(il) |
| 2388 |
|
|
! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
| 2389 |
|
|
! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
| 2390 |
|
|
! else |
| 2391 |
|
|
! ftra(il,1,j)=ftra(il,1,j)+0.1*work(il) |
| 2392 |
|
|
! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
| 2393 |
|
|
! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
| 2394 |
|
|
! endif |
| 2395 |
|
|
! enddo |
| 2396 |
|
|
! enddo |
| 2397 |
|
|
|
| 2398 |
|
✗ |
DO j = 2, nl |
| 2399 |
|
✗ |
DO il = 1, ncum |
| 2400 |
|
✗ |
IF (j<=inb(il)) THEN |
| 2401 |
|
✗ |
IF (cvflag_grav) THEN |
| 2402 |
|
|
fr(il, 1) = fr(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(qent(il, & |
| 2403 |
|
✗ |
j,1)-rr(il,1)) |
| 2404 |
|
|
fu(il, 1) = fu(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(uent(il, & |
| 2405 |
|
✗ |
j,1)-u(il,1)) |
| 2406 |
|
|
fv(il, 1) = fv(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(vent(il, & |
| 2407 |
|
✗ |
j,1)-v(il,1)) |
| 2408 |
|
|
ELSE ! cvflag_grav |
| 2409 |
|
|
fr(il, 1) = fr(il, 1) + 0.1*work(il)*ment(il, j, 1)*(qent(il,j,1)- & |
| 2410 |
|
✗ |
rr(il,1)) |
| 2411 |
|
|
fu(il, 1) = fu(il, 1) + 0.1*work(il)*ment(il, j, 1)*(uent(il,j,1)-u & |
| 2412 |
|
✗ |
(il,1)) |
| 2413 |
|
|
fv(il, 1) = fv(il, 1) + 0.1*work(il)*ment(il, j, 1)*(vent(il,j,1)-v & |
| 2414 |
|
✗ |
(il,1)) |
| 2415 |
|
|
END IF ! cvflag_grav |
| 2416 |
|
|
END IF ! j |
| 2417 |
|
|
END DO |
| 2418 |
|
|
END DO |
| 2419 |
|
|
|
| 2420 |
|
|
! do k=1,ntra |
| 2421 |
|
|
! do j=2,nl |
| 2422 |
|
|
! do il=1,ncum |
| 2423 |
|
|
! if (j.le.inb(il)) then |
| 2424 |
|
|
|
| 2425 |
|
|
! if (cvflag_grav) then |
| 2426 |
|
|
! ftra(il,1,k)=ftra(il,1,k)+0.01*grav*work(il)*ment(il,j,1) |
| 2427 |
|
|
! : *(traent(il,j,1,k)-tra(il,1,k)) |
| 2428 |
|
|
! else |
| 2429 |
|
|
! ftra(il,1,k)=ftra(il,1,k)+0.1*work(il)*ment(il,j,1) |
| 2430 |
|
|
! : *(traent(il,j,1,k)-tra(il,1,k)) |
| 2431 |
|
|
! endif |
| 2432 |
|
|
|
| 2433 |
|
|
! endif |
| 2434 |
|
|
! enddo |
| 2435 |
|
|
! enddo |
| 2436 |
|
|
! enddo |
| 2437 |
|
|
|
| 2438 |
|
|
|
| 2439 |
|
|
! *** calculate tendencies of potential temperature and mixing ratio *** |
| 2440 |
|
|
! *** at levels above the lowest level *** |
| 2441 |
|
|
|
| 2442 |
|
|
! *** first find the net saturated updraft and downdraft mass fluxes *** |
| 2443 |
|
|
! *** through each level *** |
| 2444 |
|
|
|
| 2445 |
|
|
|
| 2446 |
|
✗ |
DO i = 2, nl + 1 ! newvecto: mettre nl au lieu nl+1? |
| 2447 |
|
|
|
| 2448 |
|
|
num1 = 0 |
| 2449 |
|
✗ |
DO il = 1, ncum |
| 2450 |
|
✗ |
IF (i<=inb(il)) num1 = num1 + 1 |
| 2451 |
|
|
END DO |
| 2452 |
|
✗ |
IF (num1<=0) GO TO 500 |
| 2453 |
|
|
|
| 2454 |
|
✗ |
CALL zilch(amp1, ncum) |
| 2455 |
|
✗ |
CALL zilch(ad, ncum) |
| 2456 |
|
|
|
| 2457 |
|
✗ |
DO k = i + 1, nl + 1 |
| 2458 |
|
✗ |
DO il = 1, ncum |
| 2459 |
|
✗ |
IF (i<=inb(il) .AND. k<=(inb(il)+1)) THEN |
| 2460 |
|
✗ |
amp1(il) = amp1(il) + m(il, k) |
| 2461 |
|
|
END IF |
| 2462 |
|
|
END DO |
| 2463 |
|
|
END DO |
| 2464 |
|
|
|
| 2465 |
|
✗ |
DO k = 1, i |
| 2466 |
|
✗ |
DO j = i + 1, nl + 1 |
| 2467 |
|
✗ |
DO il = 1, ncum |
| 2468 |
|
✗ |
IF (i<=inb(il) .AND. j<=(inb(il)+1)) THEN |
| 2469 |
|
✗ |
amp1(il) = amp1(il) + ment(il, k, j) |
| 2470 |
|
|
END IF |
| 2471 |
|
|
END DO |
| 2472 |
|
|
END DO |
| 2473 |
|
|
END DO |
| 2474 |
|
|
|
| 2475 |
|
✗ |
DO k = 1, i - 1 |
| 2476 |
|
✗ |
DO j = i, nl + 1 ! newvecto: nl au lieu nl+1? |
| 2477 |
|
✗ |
DO il = 1, ncum |
| 2478 |
|
✗ |
IF (i<=inb(il) .AND. j<=inb(il)) THEN |
| 2479 |
|
✗ |
ad(il) = ad(il) + ment(il, j, k) |
| 2480 |
|
|
END IF |
| 2481 |
|
|
END DO |
| 2482 |
|
|
END DO |
| 2483 |
|
|
END DO |
| 2484 |
|
|
|
| 2485 |
|
✗ |
DO il = 1, ncum |
| 2486 |
|
✗ |
IF (i<=inb(il)) THEN |
| 2487 |
|
✗ |
dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
| 2488 |
|
✗ |
cpinv = 1.0/cpn(il, i) |
| 2489 |
|
|
|
| 2490 |
|
|
! convect3 if((0.1*dpinv*amp1).ge.delti)iflag(il)=4 |
| 2491 |
|
✗ |
IF (cvflag_grav) THEN |
| 2492 |
|
✗ |
IF ((0.01*grav*dpinv*amp1(il))>=delti) iflag(il) = 1 ! vecto |
| 2493 |
|
|
ELSE |
| 2494 |
|
✗ |
IF ((0.1*dpinv*amp1(il))>=delti) iflag(il) = 1 ! vecto |
| 2495 |
|
|
END IF |
| 2496 |
|
|
|
| 2497 |
|
✗ |
IF (cvflag_grav) THEN |
| 2498 |
|
|
ft(il, i) = 0.01*grav*dpinv*(amp1(il)*(t(il,i+1)-t(il, & |
| 2499 |
|
|
i)+(gz(il,i+1)-gz(il,i))*cpinv)-ad(il)*(t(il,i)-t(il, & |
| 2500 |
|
|
i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) - 0.5*sigd*lvcp(il, i)*(evap( & |
| 2501 |
|
✗ |
il,i)+evap(il,i+1)) |
| 2502 |
|
✗ |
rat = cpn(il, i-1)*cpinv |
| 2503 |
|
|
ft(il, i) = ft(il, i) - 0.009*grav*sigd*(mp(il,i+1)*t(il,i)*b(il,i) & |
| 2504 |
|
✗ |
-mp(il,i)*t(il,i-1)*rat*b(il,i-1))*dpinv |
| 2505 |
|
|
ft(il, i) = ft(il, i) + 0.01*grav*dpinv*ment(il, i, i)*(hp(il,i)-h( & |
| 2506 |
|
✗ |
il,i)+t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
| 2507 |
|
|
ELSE ! cvflag_grav |
| 2508 |
|
|
ft(il, i) = 0.1*dpinv*(amp1(il)*(t(il,i+1)-t(il, & |
| 2509 |
|
|
i)+(gz(il,i+1)-gz(il,i))*cpinv)-ad(il)*(t(il,i)-t(il, & |
| 2510 |
|
|
i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) - 0.5*sigd*lvcp(il, i)*(evap( & |
| 2511 |
|
✗ |
il,i)+evap(il,i+1)) |
| 2512 |
|
✗ |
rat = cpn(il, i-1)*cpinv |
| 2513 |
|
|
ft(il, i) = ft(il, i) - 0.09*sigd*(mp(il,i+1)*t(il,i)*b(il,i)-mp(il & |
| 2514 |
|
✗ |
,i)*t(il,i-1)*rat*b(il,i-1))*dpinv |
| 2515 |
|
|
ft(il, i) = ft(il, i) + 0.1*dpinv*ment(il, i, i)*(hp(il,i)-h(il,i)+ & |
| 2516 |
|
✗ |
t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
| 2517 |
|
|
END IF ! cvflag_grav |
| 2518 |
|
|
|
| 2519 |
|
|
|
| 2520 |
|
|
ft(il, i) = ft(il, i) + 0.01*sigd*wt(il, i)*(cl-cpd)*water(il, i+1)*( & |
| 2521 |
|
✗ |
t(il,i+1)-t(il,i))*dpinv*cpinv |
| 2522 |
|
|
|
| 2523 |
|
✗ |
IF (cvflag_grav) THEN |
| 2524 |
|
|
fr(il, i) = 0.01*grav*dpinv*(amp1(il)*(rr(il,i+1)-rr(il, & |
| 2525 |
|
✗ |
i))-ad(il)*(rr(il,i)-rr(il,i-1))) |
| 2526 |
|
|
fu(il, i) = fu(il, i) + 0.01*grav*dpinv*(amp1(il)*(u(il,i+1)-u(il, & |
| 2527 |
|
✗ |
i))-ad(il)*(u(il,i)-u(il,i-1))) |
| 2528 |
|
|
fv(il, i) = fv(il, i) + 0.01*grav*dpinv*(amp1(il)*(v(il,i+1)-v(il, & |
| 2529 |
|
✗ |
i))-ad(il)*(v(il,i)-v(il,i-1))) |
| 2530 |
|
|
ELSE ! cvflag_grav |
| 2531 |
|
|
fr(il, i) = 0.1*dpinv*(amp1(il)*(rr(il,i+1)-rr(il, & |
| 2532 |
|
✗ |
i))-ad(il)*(rr(il,i)-rr(il,i-1))) |
| 2533 |
|
|
fu(il, i) = fu(il, i) + 0.1*dpinv*(amp1(il)*(u(il,i+1)-u(il, & |
| 2534 |
|
✗ |
i))-ad(il)*(u(il,i)-u(il,i-1))) |
| 2535 |
|
|
fv(il, i) = fv(il, i) + 0.1*dpinv*(amp1(il)*(v(il,i+1)-v(il, & |
| 2536 |
|
✗ |
i))-ad(il)*(v(il,i)-v(il,i-1))) |
| 2537 |
|
|
END IF ! cvflag_grav |
| 2538 |
|
|
|
| 2539 |
|
|
END IF ! i |
| 2540 |
|
|
END DO |
| 2541 |
|
|
|
| 2542 |
|
|
! do k=1,ntra |
| 2543 |
|
|
! do il=1,ncum |
| 2544 |
|
|
! if (i.le.inb(il)) then |
| 2545 |
|
|
! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
| 2546 |
|
|
! cpinv=1.0/cpn(il,i) |
| 2547 |
|
|
! if (cvflag_grav) then |
| 2548 |
|
|
! ftra(il,i,k)=ftra(il,i,k)+0.01*grav*dpinv |
| 2549 |
|
|
! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
| 2550 |
|
|
! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
| 2551 |
|
|
! else |
| 2552 |
|
|
! ftra(il,i,k)=ftra(il,i,k)+0.1*dpinv |
| 2553 |
|
|
! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
| 2554 |
|
|
! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
| 2555 |
|
|
! endif |
| 2556 |
|
|
! endif |
| 2557 |
|
|
! enddo |
| 2558 |
|
|
! enddo |
| 2559 |
|
|
|
| 2560 |
|
✗ |
DO k = 1, i - 1 |
| 2561 |
|
✗ |
DO il = 1, ncum |
| 2562 |
|
✗ |
IF (i<=inb(il)) THEN |
| 2563 |
|
✗ |
dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
| 2564 |
|
|
cpinv = 1.0/cpn(il, i) |
| 2565 |
|
|
|
| 2566 |
|
✗ |
awat = elij(il, k, i) - (1.-ep(il,i))*clw(il, i) |
| 2567 |
|
✗ |
awat = amax1(awat, 0.0) |
| 2568 |
|
|
|
| 2569 |
|
✗ |
IF (cvflag_grav) THEN |
| 2570 |
|
|
fr(il, i) = fr(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(qent(il,k & |
| 2571 |
|
✗ |
,i)-awat-rr(il,i)) |
| 2572 |
|
|
fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k & |
| 2573 |
|
✗ |
,i)-u(il,i)) |
| 2574 |
|
|
fv(il, i) = fv(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(vent(il,k & |
| 2575 |
|
✗ |
,i)-v(il,i)) |
| 2576 |
|
|
ELSE ! cvflag_grav |
| 2577 |
|
|
fr(il, i) = fr(il, i) + 0.1*dpinv*ment(il, k, i)*(qent(il,k,i)- & |
| 2578 |
|
✗ |
awat-rr(il,i)) |
| 2579 |
|
|
fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k & |
| 2580 |
|
✗ |
,i)-u(il,i)) |
| 2581 |
|
|
fv(il, i) = fv(il, i) + 0.1*dpinv*ment(il, k, i)*(vent(il,k,i)-v( & |
| 2582 |
|
✗ |
il,i)) |
| 2583 |
|
|
END IF ! cvflag_grav |
| 2584 |
|
|
|
| 2585 |
|
|
! (saturated updrafts resulting from mixing) ! cld |
| 2586 |
|
✗ |
qcond(il, i) = qcond(il, i) + (elij(il,k,i)-awat) ! cld |
| 2587 |
|
✗ |
nqcond(il, i) = nqcond(il, i) + 1. ! cld |
| 2588 |
|
|
END IF ! i |
| 2589 |
|
|
END DO |
| 2590 |
|
|
END DO |
| 2591 |
|
|
|
| 2592 |
|
|
! do j=1,ntra |
| 2593 |
|
|
! do k=1,i-1 |
| 2594 |
|
|
! do il=1,ncum |
| 2595 |
|
|
! if (i.le.inb(il)) then |
| 2596 |
|
|
! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
| 2597 |
|
|
! cpinv=1.0/cpn(il,i) |
| 2598 |
|
|
! if (cvflag_grav) then |
| 2599 |
|
|
! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
| 2600 |
|
|
! : *(traent(il,k,i,j)-tra(il,i,j)) |
| 2601 |
|
|
! else |
| 2602 |
|
|
! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
| 2603 |
|
|
! : *(traent(il,k,i,j)-tra(il,i,j)) |
| 2604 |
|
|
! endif |
| 2605 |
|
|
! endif |
| 2606 |
|
|
! enddo |
| 2607 |
|
|
! enddo |
| 2608 |
|
|
! enddo |
| 2609 |
|
|
|
| 2610 |
|
✗ |
DO k = i, nl + 1 |
| 2611 |
|
✗ |
DO il = 1, ncum |
| 2612 |
|
✗ |
IF (i<=inb(il) .AND. k<=inb(il)) THEN |
| 2613 |
|
✗ |
dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
| 2614 |
|
|
cpinv = 1.0/cpn(il, i) |
| 2615 |
|
|
|
| 2616 |
|
✗ |
IF (cvflag_grav) THEN |
| 2617 |
|
|
fr(il, i) = fr(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(qent(il,k & |
| 2618 |
|
✗ |
,i)-rr(il,i)) |
| 2619 |
|
|
fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k & |
| 2620 |
|
✗ |
,i)-u(il,i)) |
| 2621 |
|
|
fv(il, i) = fv(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(vent(il,k & |
| 2622 |
|
✗ |
,i)-v(il,i)) |
| 2623 |
|
|
ELSE ! cvflag_grav |
| 2624 |
|
|
fr(il, i) = fr(il, i) + 0.1*dpinv*ment(il, k, i)*(qent(il,k,i)-rr & |
| 2625 |
|
✗ |
(il,i)) |
| 2626 |
|
|
fu(il, i) = fu(il, i) + 0.1*dpinv*ment(il, k, i)*(uent(il,k,i)-u( & |
| 2627 |
|
✗ |
il,i)) |
| 2628 |
|
|
fv(il, i) = fv(il, i) + 0.1*dpinv*ment(il, k, i)*(vent(il,k,i)-v( & |
| 2629 |
|
✗ |
il,i)) |
| 2630 |
|
|
END IF ! cvflag_grav |
| 2631 |
|
|
END IF ! i and k |
| 2632 |
|
|
END DO |
| 2633 |
|
|
END DO |
| 2634 |
|
|
|
| 2635 |
|
|
! do j=1,ntra |
| 2636 |
|
|
! do k=i,nl+1 |
| 2637 |
|
|
! do il=1,ncum |
| 2638 |
|
|
! if (i.le.inb(il) .and. k.le.inb(il)) then |
| 2639 |
|
|
! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
| 2640 |
|
|
! cpinv=1.0/cpn(il,i) |
| 2641 |
|
|
! if (cvflag_grav) then |
| 2642 |
|
|
! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
| 2643 |
|
|
! : *(traent(il,k,i,j)-tra(il,i,j)) |
| 2644 |
|
|
! else |
| 2645 |
|
|
! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
| 2646 |
|
|
! : *(traent(il,k,i,j)-tra(il,i,j)) |
| 2647 |
|
|
! endif |
| 2648 |
|
|
! endif ! i and k |
| 2649 |
|
|
! enddo |
| 2650 |
|
|
! enddo |
| 2651 |
|
|
! enddo |
| 2652 |
|
|
|
| 2653 |
|
✗ |
DO il = 1, ncum |
| 2654 |
|
✗ |
IF (i<=inb(il)) THEN |
| 2655 |
|
✗ |
dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
| 2656 |
|
|
cpinv = 1.0/cpn(il, i) |
| 2657 |
|
|
|
| 2658 |
|
✗ |
IF (cvflag_grav) THEN |
| 2659 |
|
|
! sb: on ne fait pas encore la correction permettant de mieux |
| 2660 |
|
|
! conserver l'eau: |
| 2661 |
|
|
fr(il, i) = fr(il, i) + 0.5*sigd*(evap(il,i)+evap(il,i+1)) + & |
| 2662 |
|
|
0.01*grav*(mp(il,i+1)*(rp(il,i+1)-rr(il,i))-mp(il,i)*(rp(il, & |
| 2663 |
|
✗ |
i)-rr(il,i-1)))*dpinv |
| 2664 |
|
|
|
| 2665 |
|
|
fu(il, i) = fu(il, i) + 0.01*grav*(mp(il,i+1)*(up(il,i+1)-u(il, & |
| 2666 |
|
✗ |
i))-mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
| 2667 |
|
|
fv(il, i) = fv(il, i) + 0.01*grav*(mp(il,i+1)*(vp(il,i+1)-v(il, & |
| 2668 |
|
✗ |
i))-mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
| 2669 |
|
|
ELSE ! cvflag_grav |
| 2670 |
|
|
fr(il, i) = fr(il, i) + 0.5*sigd*(evap(il,i)+evap(il,i+1)) + & |
| 2671 |
|
|
0.1*(mp(il,i+1)*(rp(il,i+1)-rr(il,i))-mp(il,i)*(rp(il,i)-rr(il, & |
| 2672 |
|
✗ |
i-1)))*dpinv |
| 2673 |
|
|
fu(il, i) = fu(il, i) + 0.1*(mp(il,i+1)*(up(il,i+1)-u(il, & |
| 2674 |
|
✗ |
i))-mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
| 2675 |
|
|
fv(il, i) = fv(il, i) + 0.1*(mp(il,i+1)*(vp(il,i+1)-v(il, & |
| 2676 |
|
✗ |
i))-mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
| 2677 |
|
|
END IF ! cvflag_grav |
| 2678 |
|
|
|
| 2679 |
|
|
END IF ! i |
| 2680 |
|
|
END DO |
| 2681 |
|
|
|
| 2682 |
|
|
! sb: interface with the cloud parameterization: ! cld |
| 2683 |
|
|
|
| 2684 |
|
✗ |
DO k = i + 1, nl |
| 2685 |
|
✗ |
DO il = 1, ncum |
| 2686 |
|
✗ |
IF (k<=inb(il) .AND. i<=inb(il)) THEN ! cld |
| 2687 |
|
|
! (saturated downdrafts resulting from mixing) ! cld |
| 2688 |
|
✗ |
qcond(il, i) = qcond(il, i) + elij(il, k, i) ! cld |
| 2689 |
|
✗ |
nqcond(il, i) = nqcond(il, i) + 1. ! cld |
| 2690 |
|
|
END IF ! cld |
| 2691 |
|
|
END DO ! cld |
| 2692 |
|
|
END DO ! cld |
| 2693 |
|
|
|
| 2694 |
|
|
! (particular case: no detraining level is found) ! cld |
| 2695 |
|
✗ |
DO il = 1, ncum ! cld |
| 2696 |
|
✗ |
IF (i<=inb(il) .AND. nent(il,i)==0) THEN ! cld |
| 2697 |
|
✗ |
qcond(il, i) = qcond(il, i) + (1.-ep(il,i))*clw(il, i) ! cld |
| 2698 |
|
✗ |
nqcond(il, i) = nqcond(il, i) + 1. ! cld |
| 2699 |
|
|
END IF ! cld |
| 2700 |
|
|
END DO ! cld |
| 2701 |
|
|
|
| 2702 |
|
✗ |
DO il = 1, ncum ! cld |
| 2703 |
|
✗ |
IF (i<=inb(il) .AND. nqcond(il,i)/=0.) THEN ! cld |
| 2704 |
|
✗ |
qcond(il, i) = qcond(il, i)/nqcond(il, i) ! cld |
| 2705 |
|
|
END IF ! cld |
| 2706 |
|
|
END DO |
| 2707 |
|
|
|
| 2708 |
|
|
! do j=1,ntra |
| 2709 |
|
|
! do il=1,ncum |
| 2710 |
|
|
! if (i.le.inb(il)) then |
| 2711 |
|
|
! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
| 2712 |
|
|
! cpinv=1.0/cpn(il,i) |
| 2713 |
|
|
|
| 2714 |
|
|
! if (cvflag_grav) then |
| 2715 |
|
|
! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv |
| 2716 |
|
|
! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
| 2717 |
|
|
! : -mp(il,i)*(trap(il,i,j)-tra(il,i-1,j))) |
| 2718 |
|
|
! else |
| 2719 |
|
|
! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv |
| 2720 |
|
|
! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
| 2721 |
|
|
! : -mp(il,i)*(trap(il,i,j)-tra(il,i-1,j))) |
| 2722 |
|
|
! endif |
| 2723 |
|
|
! endif ! i |
| 2724 |
|
|
! enddo |
| 2725 |
|
|
! enddo |
| 2726 |
|
|
|
| 2727 |
|
✗ |
500 END DO |
| 2728 |
|
|
|
| 2729 |
|
|
|
| 2730 |
|
|
! *** move the detrainment at level inb down to level inb-1 *** |
| 2731 |
|
|
! *** in such a way as to preserve the vertically *** |
| 2732 |
|
|
! *** integrated enthalpy and water tendencies *** |
| 2733 |
|
|
|
| 2734 |
|
✗ |
DO il = 1, ncum |
| 2735 |
|
|
|
| 2736 |
|
|
ax = 0.1*ment(il, inb(il), inb(il))*(hp(il,inb(il))-h(il,inb(il))+t(il, & |
| 2737 |
|
|
inb(il))*(cpv-cpd)*(rr(il,inb(il))-qent(il,inb(il), & |
| 2738 |
|
✗ |
inb(il))))/(cpn(il,inb(il))*(ph(il,inb(il))-ph(il,inb(il)+1))) |
| 2739 |
|
✗ |
ft(il, inb(il)) = ft(il, inb(il)) - ax |
| 2740 |
|
|
ft(il, inb(il)-1) = ft(il, inb(il)-1) + ax*cpn(il, inb(il))*(ph(il,inb(il & |
| 2741 |
|
|
))-ph(il,inb(il)+1))/(cpn(il,inb(il)-1)*(ph(il,inb(il)-1)-ph(il, & |
| 2742 |
|
✗ |
inb(il)))) |
| 2743 |
|
|
|
| 2744 |
|
|
bx = 0.1*ment(il, inb(il), inb(il))*(qent(il,inb(il),inb(il))-rr(il,inb( & |
| 2745 |
|
✗ |
il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
| 2746 |
|
✗ |
fr(il, inb(il)) = fr(il, inb(il)) - bx |
| 2747 |
|
|
fr(il, inb(il)-1) = fr(il, inb(il)-1) + bx*(ph(il,inb(il))-ph(il,inb(il)+ & |
| 2748 |
|
✗ |
1))/(ph(il,inb(il)-1)-ph(il,inb(il))) |
| 2749 |
|
|
|
| 2750 |
|
|
cx = 0.1*ment(il, inb(il), inb(il))*(uent(il,inb(il),inb(il))-u(il,inb(il & |
| 2751 |
|
✗ |
)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
| 2752 |
|
✗ |
fu(il, inb(il)) = fu(il, inb(il)) - cx |
| 2753 |
|
|
fu(il, inb(il)-1) = fu(il, inb(il)-1) + cx*(ph(il,inb(il))-ph(il,inb(il)+ & |
| 2754 |
|
✗ |
1))/(ph(il,inb(il)-1)-ph(il,inb(il))) |
| 2755 |
|
|
|
| 2756 |
|
|
dx = 0.1*ment(il, inb(il), inb(il))*(vent(il,inb(il),inb(il))-v(il,inb(il & |
| 2757 |
|
✗ |
)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
| 2758 |
|
✗ |
fv(il, inb(il)) = fv(il, inb(il)) - dx |
| 2759 |
|
|
fv(il, inb(il)-1) = fv(il, inb(il)-1) + dx*(ph(il,inb(il))-ph(il,inb(il)+ & |
| 2760 |
|
✗ |
1))/(ph(il,inb(il)-1)-ph(il,inb(il))) |
| 2761 |
|
|
|
| 2762 |
|
|
END DO |
| 2763 |
|
|
|
| 2764 |
|
|
! do j=1,ntra |
| 2765 |
|
|
! do il=1,ncum |
| 2766 |
|
|
! ex=0.1*ment(il,inb(il),inb(il)) |
| 2767 |
|
|
! : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
| 2768 |
|
|
! : /(ph(il,inb(il))-ph(il,inb(il)+1)) |
| 2769 |
|
|
! ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
| 2770 |
|
|
! ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
| 2771 |
|
|
! : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
| 2772 |
|
|
! : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
| 2773 |
|
|
! enddo |
| 2774 |
|
|
! enddo |
| 2775 |
|
|
|
| 2776 |
|
|
|
| 2777 |
|
|
! *** homoginize tendencies below cloud base *** |
| 2778 |
|
|
|
| 2779 |
|
|
|
| 2780 |
|
✗ |
DO il = 1, ncum |
| 2781 |
|
✗ |
asum(il) = 0.0 |
| 2782 |
|
✗ |
bsum(il) = 0.0 |
| 2783 |
|
✗ |
csum(il) = 0.0 |
| 2784 |
|
✗ |
dsum(il) = 0.0 |
| 2785 |
|
|
END DO |
| 2786 |
|
|
|
| 2787 |
|
✗ |
DO i = 1, nl |
| 2788 |
|
✗ |
DO il = 1, ncum |
| 2789 |
|
✗ |
IF (i<=(icb(il)-1)) THEN |
| 2790 |
|
✗ |
asum(il) = asum(il) + ft(il, i)*(ph(il,i)-ph(il,i+1)) |
| 2791 |
|
|
bsum(il) = bsum(il) + fr(il, i)*(lv(il,i)+(cl-cpd)*(t(il,i)-t(il, & |
| 2792 |
|
✗ |
1)))*(ph(il,i)-ph(il,i+1)) |
| 2793 |
|
|
csum(il) = csum(il) + (lv(il,i)+(cl-cpd)*(t(il,i)-t(il, & |
| 2794 |
|
✗ |
1)))*(ph(il,i)-ph(il,i+1)) |
| 2795 |
|
✗ |
dsum(il) = dsum(il) + t(il, i)*(ph(il,i)-ph(il,i+1))/th(il, i) |
| 2796 |
|
|
END IF |
| 2797 |
|
|
END DO |
| 2798 |
|
|
END DO |
| 2799 |
|
|
|
| 2800 |
|
|
! !!! do 700 i=1,icb(il)-1 |
| 2801 |
|
✗ |
DO i = 1, nl |
| 2802 |
|
✗ |
DO il = 1, ncum |
| 2803 |
|
✗ |
IF (i<=(icb(il)-1)) THEN |
| 2804 |
|
✗ |
ft(il, i) = asum(il)*t(il, i)/(th(il,i)*dsum(il)) |
| 2805 |
|
✗ |
fr(il, i) = bsum(il)/csum(il) |
| 2806 |
|
|
END IF |
| 2807 |
|
|
END DO |
| 2808 |
|
|
END DO |
| 2809 |
|
|
|
| 2810 |
|
|
|
| 2811 |
|
|
! *** reset counter and return *** |
| 2812 |
|
|
|
| 2813 |
|
✗ |
DO il = 1, ncum |
| 2814 |
|
✗ |
sig(il, nd) = 2.0 |
| 2815 |
|
|
END DO |
| 2816 |
|
|
|
| 2817 |
|
|
|
| 2818 |
|
✗ |
DO i = 1, nd |
| 2819 |
|
✗ |
DO il = 1, ncum |
| 2820 |
|
✗ |
upwd(il, i) = 0.0 |
| 2821 |
|
✗ |
dnwd(il, i) = 0.0 |
| 2822 |
|
|
END DO |
| 2823 |
|
|
END DO |
| 2824 |
|
|
|
| 2825 |
|
✗ |
DO i = 1, nl |
| 2826 |
|
✗ |
DO il = 1, ncum |
| 2827 |
|
✗ |
dnwd0(il, i) = -mp(il, i) |
| 2828 |
|
|
END DO |
| 2829 |
|
|
END DO |
| 2830 |
|
✗ |
DO i = nl + 1, nd |
| 2831 |
|
✗ |
DO il = 1, ncum |
| 2832 |
|
✗ |
dnwd0(il, i) = 0. |
| 2833 |
|
|
END DO |
| 2834 |
|
|
END DO |
| 2835 |
|
|
|
| 2836 |
|
|
|
| 2837 |
|
✗ |
DO i = 1, nl |
| 2838 |
|
✗ |
DO il = 1, ncum |
| 2839 |
|
✗ |
IF (i>=icb(il) .AND. i<=inb(il)) THEN |
| 2840 |
|
✗ |
upwd(il, i) = 0.0 |
| 2841 |
|
✗ |
dnwd(il, i) = 0.0 |
| 2842 |
|
|
END IF |
| 2843 |
|
|
END DO |
| 2844 |
|
|
END DO |
| 2845 |
|
|
|
| 2846 |
|
✗ |
DO i = 1, nl |
| 2847 |
|
✗ |
DO k = 1, nl |
| 2848 |
|
✗ |
DO il = 1, ncum |
| 2849 |
|
✗ |
up1(il, k, i) = 0.0 |
| 2850 |
|
✗ |
dn1(il, k, i) = 0.0 |
| 2851 |
|
|
END DO |
| 2852 |
|
|
END DO |
| 2853 |
|
|
END DO |
| 2854 |
|
|
|
| 2855 |
|
✗ |
DO i = 1, nl |
| 2856 |
|
✗ |
DO k = i, nl |
| 2857 |
|
✗ |
DO n = 1, i - 1 |
| 2858 |
|
✗ |
DO il = 1, ncum |
| 2859 |
|
✗ |
IF (i>=icb(il) .AND. i<=inb(il) .AND. k<=inb(il)) THEN |
| 2860 |
|
✗ |
up1(il, k, i) = up1(il, k, i) + ment(il, n, k) |
| 2861 |
|
✗ |
dn1(il, k, i) = dn1(il, k, i) - ment(il, k, n) |
| 2862 |
|
|
END IF |
| 2863 |
|
|
END DO |
| 2864 |
|
|
END DO |
| 2865 |
|
|
END DO |
| 2866 |
|
|
END DO |
| 2867 |
|
|
|
| 2868 |
|
✗ |
DO i = 2, nl |
| 2869 |
|
✗ |
DO k = i, nl |
| 2870 |
|
✗ |
DO il = 1, ncum |
| 2871 |
|
|
! test if (i.ge.icb(il).and.i.le.inb(il).and.k.le.inb(il)) |
| 2872 |
|
|
! then |
| 2873 |
|
✗ |
IF (i<=inb(il) .AND. k<=inb(il)) THEN |
| 2874 |
|
✗ |
upwd(il, i) = upwd(il, i) + m(il, k) + up1(il, k, i) |
| 2875 |
|
✗ |
dnwd(il, i) = dnwd(il, i) + dn1(il, k, i) |
| 2876 |
|
|
END IF |
| 2877 |
|
|
END DO |
| 2878 |
|
|
END DO |
| 2879 |
|
|
END DO |
| 2880 |
|
|
|
| 2881 |
|
|
|
| 2882 |
|
|
! !!! DO il=1,ncum |
| 2883 |
|
|
! !!! do i=icb(il),inb(il) |
| 2884 |
|
|
! !!! |
| 2885 |
|
|
! !!! upwd(il,i)=0.0 |
| 2886 |
|
|
! !!! dnwd(il,i)=0.0 |
| 2887 |
|
|
! !!! do k=i,inb(il) |
| 2888 |
|
|
! !!! up1=0.0 |
| 2889 |
|
|
! !!! dn1=0.0 |
| 2890 |
|
|
! !!! do n=1,i-1 |
| 2891 |
|
|
! !!! up1=up1+ment(il,n,k) |
| 2892 |
|
|
! !!! dn1=dn1-ment(il,k,n) |
| 2893 |
|
|
! !!! enddo |
| 2894 |
|
|
! !!! upwd(il,i)=upwd(il,i)+m(il,k)+up1 |
| 2895 |
|
|
! !!! dnwd(il,i)=dnwd(il,i)+dn1 |
| 2896 |
|
|
! !!! enddo |
| 2897 |
|
|
! !!! enddo |
| 2898 |
|
|
! !!! |
| 2899 |
|
|
! !!! ENDDO |
| 2900 |
|
|
|
| 2901 |
|
|
! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 2902 |
|
|
! determination de la variation de flux ascendant entre |
| 2903 |
|
|
! deux niveau non dilue mike |
| 2904 |
|
|
! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 2905 |
|
|
|
| 2906 |
|
✗ |
DO i = 1, nl |
| 2907 |
|
✗ |
DO il = 1, ncum |
| 2908 |
|
✗ |
mike(il, i) = m(il, i) |
| 2909 |
|
|
END DO |
| 2910 |
|
|
END DO |
| 2911 |
|
|
|
| 2912 |
|
✗ |
DO i = nl + 1, nd |
| 2913 |
|
✗ |
DO il = 1, ncum |
| 2914 |
|
✗ |
mike(il, i) = 0. |
| 2915 |
|
|
END DO |
| 2916 |
|
|
END DO |
| 2917 |
|
|
|
| 2918 |
|
✗ |
DO i = 1, nd |
| 2919 |
|
✗ |
DO il = 1, ncum |
| 2920 |
|
✗ |
ma(il, i) = 0 |
| 2921 |
|
|
END DO |
| 2922 |
|
|
END DO |
| 2923 |
|
|
|
| 2924 |
|
✗ |
DO i = 1, nl |
| 2925 |
|
✗ |
DO j = i, nl |
| 2926 |
|
✗ |
DO il = 1, ncum |
| 2927 |
|
✗ |
ma(il, i) = ma(il, i) + m(il, j) |
| 2928 |
|
|
END DO |
| 2929 |
|
|
END DO |
| 2930 |
|
|
END DO |
| 2931 |
|
|
|
| 2932 |
|
✗ |
DO i = nl + 1, nd |
| 2933 |
|
✗ |
DO il = 1, ncum |
| 2934 |
|
✗ |
ma(il, i) = 0. |
| 2935 |
|
|
END DO |
| 2936 |
|
|
END DO |
| 2937 |
|
|
|
| 2938 |
|
✗ |
DO i = 1, nl |
| 2939 |
|
✗ |
DO il = 1, ncum |
| 2940 |
|
✗ |
IF (i<=(icb(il)-1)) THEN |
| 2941 |
|
✗ |
ma(il, i) = 0 |
| 2942 |
|
|
END IF |
| 2943 |
|
|
END DO |
| 2944 |
|
|
END DO |
| 2945 |
|
|
|
| 2946 |
|
|
! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 2947 |
|
|
! icb represente de niveau ou se trouve la |
| 2948 |
|
|
! base du nuage , et inb le top du nuage |
| 2949 |
|
|
! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 2950 |
|
|
|
| 2951 |
|
✗ |
DO i = 1, nd |
| 2952 |
|
✗ |
DO il = 1, ncum |
| 2953 |
|
✗ |
mke(il, i) = upwd(il, i) + dnwd(il, i) |
| 2954 |
|
|
END DO |
| 2955 |
|
|
END DO |
| 2956 |
|
|
|
| 2957 |
|
✗ |
DO i = 1, nd |
| 2958 |
|
✗ |
DO il = 1, ncum |
| 2959 |
|
|
rdcp = (rrd*(1.-rr(il,i))-rr(il,i)*rrv)/(cpd*(1.-rr(il, & |
| 2960 |
|
✗ |
i))+rr(il,i)*cpv) |
| 2961 |
|
✗ |
tls(il, i) = t(il, i)*(1000.0/p(il,i))**rdcp |
| 2962 |
|
✗ |
tps(il, i) = tp(il, i) |
| 2963 |
|
|
END DO |
| 2964 |
|
|
END DO |
| 2965 |
|
|
|
| 2966 |
|
|
|
| 2967 |
|
|
! *** diagnose the in-cloud mixing ratio *** ! cld |
| 2968 |
|
|
! *** of condensed water *** ! cld |
| 2969 |
|
|
! ! cld |
| 2970 |
|
|
|
| 2971 |
|
✗ |
DO i = 1, nd ! cld |
| 2972 |
|
✗ |
DO il = 1, ncum ! cld |
| 2973 |
|
✗ |
mac(il, i) = 0.0 ! cld |
| 2974 |
|
✗ |
wa(il, i) = 0.0 ! cld |
| 2975 |
|
✗ |
siga(il, i) = 0.0 ! cld |
| 2976 |
|
✗ |
sax(il, i) = 0.0 ! cld |
| 2977 |
|
|
END DO ! cld |
| 2978 |
|
|
END DO ! cld |
| 2979 |
|
|
|
| 2980 |
|
✗ |
DO i = minorig, nl ! cld |
| 2981 |
|
✗ |
DO k = i + 1, nl + 1 ! cld |
| 2982 |
|
✗ |
DO il = 1, ncum ! cld |
| 2983 |
|
✗ |
IF (i<=inb(il) .AND. k<=(inb(il)+1)) THEN ! cld |
| 2984 |
|
✗ |
mac(il, i) = mac(il, i) + m(il, k) ! cld |
| 2985 |
|
|
END IF ! cld |
| 2986 |
|
|
END DO ! cld |
| 2987 |
|
|
END DO ! cld |
| 2988 |
|
|
END DO ! cld |
| 2989 |
|
|
|
| 2990 |
|
✗ |
DO i = 1, nl ! cld |
| 2991 |
|
✗ |
DO j = 1, i ! cld |
| 2992 |
|
✗ |
DO il = 1, ncum ! cld |
| 2993 |
|
|
IF (i>=icb(il) .AND. i<=(inb(il)-1) & ! cld |
| 2994 |
|
✗ |
.AND. j>=icb(il)) THEN ! cld |
| 2995 |
|
|
sax(il, i) = sax(il, i) + rrd*(tvp(il,j)-tv(il,j)) & ! cld |
| 2996 |
|
✗ |
*(ph(il,j)-ph(il,j+1))/p(il, j) ! cld |
| 2997 |
|
|
END IF ! cld |
| 2998 |
|
|
END DO ! cld |
| 2999 |
|
|
END DO ! cld |
| 3000 |
|
|
END DO ! cld |
| 3001 |
|
|
|
| 3002 |
|
✗ |
DO i = 1, nl ! cld |
| 3003 |
|
✗ |
DO il = 1, ncum ! cld |
| 3004 |
|
|
IF (i>=icb(il) .AND. i<=(inb(il)-1) & ! cld |
| 3005 |
|
✗ |
.AND. sax(il,i)>0.0) THEN ! cld |
| 3006 |
|
✗ |
wa(il, i) = sqrt(2.*sax(il,i)) ! cld |
| 3007 |
|
|
END IF ! cld |
| 3008 |
|
|
END DO ! cld |
| 3009 |
|
|
END DO ! cld |
| 3010 |
|
|
|
| 3011 |
|
✗ |
DO i = 1, nl ! cld |
| 3012 |
|
✗ |
DO il = 1, ncum ! cld |
| 3013 |
|
✗ |
IF (wa(il,i)>0.0) & ! cld |
| 3014 |
|
|
siga(il, i) = mac(il, i)/wa(il, i) & ! cld |
| 3015 |
|
✗ |
*rrd*tvp(il, i)/p(il, i)/100./delta ! cld |
| 3016 |
|
✗ |
siga(il, i) = min(siga(il,i), 1.0) ! cld |
| 3017 |
|
|
! IM cf. FH |
| 3018 |
|
✗ |
IF (iflag_clw==0) THEN |
| 3019 |
|
|
qcondc(il, i) = siga(il, i)*clw(il, i)*(1.-ep(il,i)) & ! cld |
| 3020 |
|
✗ |
+(1.-siga(il,i))*qcond(il, i) ! cld |
| 3021 |
|
✗ |
ELSE IF (iflag_clw==1) THEN |
| 3022 |
|
✗ |
qcondc(il, i) = qcond(il, i) ! cld |
| 3023 |
|
|
END IF |
| 3024 |
|
|
|
| 3025 |
|
|
END DO ! cld |
| 3026 |
|
|
END DO ! cld |
| 3027 |
|
|
|
| 3028 |
|
✗ |
RETURN |
| 3029 |
|
|
END SUBROUTINE cv30_yield |
| 3030 |
|
|
|
| 3031 |
|
|
! !RomP >>> |
| 3032 |
|
✗ |
SUBROUTINE cv30_tracer(nloc, len, ncum, nd, na, ment, sij, da, phi, phi2, & |
| 3033 |
|
✗ |
d1a, dam, ep, vprecip, elij, clw, epmlmmm, eplamm, icb, inb) |
| 3034 |
|
|
IMPLICIT NONE |
| 3035 |
|
|
|
| 3036 |
|
|
include "cv30param.h" |
| 3037 |
|
|
|
| 3038 |
|
|
! inputs: |
| 3039 |
|
|
INTEGER ncum, nd, na, nloc, len |
| 3040 |
|
|
REAL ment(nloc, na, na), sij(nloc, na, na) |
| 3041 |
|
|
REAL clw(nloc, nd), elij(nloc, na, na) |
| 3042 |
|
|
REAL ep(nloc, na) |
| 3043 |
|
|
INTEGER icb(nloc), inb(nloc) |
| 3044 |
|
|
REAL vprecip(nloc, nd+1) |
| 3045 |
|
|
! ouputs: |
| 3046 |
|
|
REAL da(nloc, na), phi(nloc, na, na) |
| 3047 |
|
|
REAL phi2(nloc, na, na) |
| 3048 |
|
|
REAL d1a(nloc, na), dam(nloc, na) |
| 3049 |
|
|
REAL epmlmmm(nloc, na, na), eplamm(nloc, na) |
| 3050 |
|
|
! variables pour tracer dans precip de l'AA et des mel |
| 3051 |
|
|
! local variables: |
| 3052 |
|
|
INTEGER i, j, k, nam1 |
| 3053 |
|
✗ |
REAL epm(nloc, na, na) |
| 3054 |
|
|
|
| 3055 |
|
✗ |
nam1=na-1 ! Introduced because ep is not defined for j=na |
| 3056 |
|
|
! variables d'Emanuel : du second indice au troisieme |
| 3057 |
|
|
! ---> tab(i,k,j) -> de l origine k a l arrivee j |
| 3058 |
|
|
! ment, sij, elij |
| 3059 |
|
|
! variables personnelles : du troisieme au second indice |
| 3060 |
|
|
! ---> tab(i,j,k) -> de k a j |
| 3061 |
|
|
! phi, phi2 |
| 3062 |
|
|
|
| 3063 |
|
|
! initialisations |
| 3064 |
|
✗ |
DO j = 1, na |
| 3065 |
|
✗ |
DO i = 1, ncum |
| 3066 |
|
✗ |
da(i, j) = 0. |
| 3067 |
|
✗ |
d1a(i, j) = 0. |
| 3068 |
|
✗ |
dam(i, j) = 0. |
| 3069 |
|
✗ |
eplamm(i, j) = 0. |
| 3070 |
|
|
END DO |
| 3071 |
|
|
END DO |
| 3072 |
|
✗ |
DO k = 1, na |
| 3073 |
|
✗ |
DO j = 1, na |
| 3074 |
|
✗ |
DO i = 1, ncum |
| 3075 |
|
✗ |
epm(i, j, k) = 0. |
| 3076 |
|
✗ |
epmlmmm(i, j, k) = 0. |
| 3077 |
|
✗ |
phi(i, j, k) = 0. |
| 3078 |
|
✗ |
phi2(i, j, k) = 0. |
| 3079 |
|
|
END DO |
| 3080 |
|
|
END DO |
| 3081 |
|
|
END DO |
| 3082 |
|
|
|
| 3083 |
|
|
! fraction deau condensee dans les melanges convertie en precip : epm |
| 3084 |
|
|
! et eau condens�e pr�cipit�e dans masse d'air satur� : l_m*dM_m/dzdz.dzdz |
| 3085 |
|
✗ |
DO j = 1, nam1 |
| 3086 |
|
✗ |
DO k = 1, j - 1 |
| 3087 |
|
✗ |
DO i = 1, ncum |
| 3088 |
|
✗ |
IF (k>=icb(i) .AND. k<=inb(i) .AND. j<=inb(i)) THEN |
| 3089 |
|
|
! !jyg epm(i,j,k)=1.-(1.-ep(i,j))*clw(i,j)/elij(i,k,j) |
| 3090 |
|
✗ |
epm(i, j, k) = 1. - (1.-ep(i,j))*clw(i, j)/max(elij(i,k,j), 1.E-16) |
| 3091 |
|
|
! ! |
| 3092 |
|
✗ |
epm(i, j, k) = max(epm(i,j,k), 0.0) |
| 3093 |
|
|
END IF |
| 3094 |
|
|
END DO |
| 3095 |
|
|
END DO |
| 3096 |
|
|
END DO |
| 3097 |
|
|
|
| 3098 |
|
✗ |
DO j = 1, nam1 |
| 3099 |
|
✗ |
DO k = 1, nam1 |
| 3100 |
|
✗ |
DO i = 1, ncum |
| 3101 |
|
✗ |
IF (k>=icb(i) .AND. k<=inb(i)) THEN |
| 3102 |
|
|
eplamm(i, j) = eplamm(i, j) + ep(i, j)*clw(i, j)*ment(i, j, k)*(1.- & |
| 3103 |
|
✗ |
sij(i,j,k)) |
| 3104 |
|
|
END IF |
| 3105 |
|
|
END DO |
| 3106 |
|
|
END DO |
| 3107 |
|
|
END DO |
| 3108 |
|
|
|
| 3109 |
|
✗ |
DO j = 1, nam1 |
| 3110 |
|
✗ |
DO k = 1, j - 1 |
| 3111 |
|
✗ |
DO i = 1, ncum |
| 3112 |
|
✗ |
IF (k>=icb(i) .AND. k<=inb(i) .AND. j<=inb(i)) THEN |
| 3113 |
|
✗ |
epmlmmm(i, j, k) = epm(i, j, k)*elij(i, k, j)*ment(i, k, j) |
| 3114 |
|
|
END IF |
| 3115 |
|
|
END DO |
| 3116 |
|
|
END DO |
| 3117 |
|
|
END DO |
| 3118 |
|
|
|
| 3119 |
|
|
! matrices pour calculer la tendance des concentrations dans cvltr.F90 |
| 3120 |
|
✗ |
DO j = 1, nam1 |
| 3121 |
|
✗ |
DO k = 1, nam1 |
| 3122 |
|
✗ |
DO i = 1, ncum |
| 3123 |
|
✗ |
da(i, j) = da(i, j) + (1.-sij(i,k,j))*ment(i, k, j) |
| 3124 |
|
✗ |
phi(i, j, k) = sij(i, k, j)*ment(i, k, j) |
| 3125 |
|
✗ |
d1a(i, j) = d1a(i, j) + ment(i, k, j)*ep(i, k)*(1.-sij(i,k,j)) |
| 3126 |
|
|
END DO |
| 3127 |
|
|
END DO |
| 3128 |
|
|
END DO |
| 3129 |
|
|
|
| 3130 |
|
✗ |
DO j = 1, nam1 |
| 3131 |
|
✗ |
DO k = 1, j - 1 |
| 3132 |
|
✗ |
DO i = 1, ncum |
| 3133 |
|
|
dam(i, j) = dam(i, j) + ment(i, k, j)*epm(i, j, k)*(1.-ep(i,k))*(1.- & |
| 3134 |
|
✗ |
sij(i,k,j)) |
| 3135 |
|
✗ |
phi2(i, j, k) = phi(i, j, k)*epm(i, j, k) |
| 3136 |
|
|
END DO |
| 3137 |
|
|
END DO |
| 3138 |
|
|
END DO |
| 3139 |
|
|
|
| 3140 |
|
✗ |
RETURN |
| 3141 |
|
|
END SUBROUTINE cv30_tracer |
| 3142 |
|
|
! RomP <<< |
| 3143 |
|
|
|
| 3144 |
|
✗ |
SUBROUTINE cv30_uncompress(nloc, len, ncum, nd, ntra, idcum, iflag, precip, & |
| 3145 |
|
✗ |
vprecip, evap, ep, sig, w0, ft, fq, fu, fv, ftra, inb, ma, upwd, dnwd, & |
| 3146 |
|
✗ |
dnwd0, qcondc, wd, cape, da, phi, mp, phi2, d1a, dam, sij, elij, clw, & |
| 3147 |
|
✗ |
epmlmmm, eplamm, wdtraina, wdtrainm,epmax_diag, iflag1, precip1, vprecip1, evap1, & |
| 3148 |
|
|
ep1, sig1, w01, ft1, fq1, fu1, fv1, ftra1, inb1, ma1, upwd1, dnwd1, & |
| 3149 |
|
✗ |
dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1, phi21, d1a1, dam1, sij1, & |
| 3150 |
|
|
elij1, clw1, epmlmmm1, eplamm1, wdtraina1, wdtrainm1,epmax_diag1) ! epmax_cape |
| 3151 |
|
|
IMPLICIT NONE |
| 3152 |
|
|
|
| 3153 |
|
|
include "cv30param.h" |
| 3154 |
|
|
|
| 3155 |
|
|
! inputs: |
| 3156 |
|
|
INTEGER len, ncum, nd, ntra, nloc |
| 3157 |
|
|
INTEGER idcum(nloc) |
| 3158 |
|
|
INTEGER iflag(nloc) |
| 3159 |
|
|
INTEGER inb(nloc) |
| 3160 |
|
|
REAL precip(nloc) |
| 3161 |
|
|
REAL vprecip(nloc, nd+1), evap(nloc, nd) |
| 3162 |
|
|
REAL ep(nloc, nd) |
| 3163 |
|
|
REAL sig(nloc, nd), w0(nloc, nd) |
| 3164 |
|
|
REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
| 3165 |
|
|
REAL ftra(nloc, nd, ntra) |
| 3166 |
|
|
REAL ma(nloc, nd) |
| 3167 |
|
|
REAL upwd(nloc, nd), dnwd(nloc, nd), dnwd0(nloc, nd) |
| 3168 |
|
|
REAL qcondc(nloc, nd) |
| 3169 |
|
|
REAL wd(nloc), cape(nloc) |
| 3170 |
|
|
REAL da(nloc, nd), phi(nloc, nd, nd), mp(nloc, nd) |
| 3171 |
|
|
REAL epmax_diag(nloc) ! epmax_cape |
| 3172 |
|
|
! RomP >>> |
| 3173 |
|
|
REAL phi2(nloc, nd, nd) |
| 3174 |
|
|
REAL d1a(nloc, nd), dam(nloc, nd) |
| 3175 |
|
|
REAL wdtraina(nloc, nd), wdtrainm(nloc, nd) |
| 3176 |
|
|
REAL sij(nloc, nd, nd) |
| 3177 |
|
|
REAL elij(nloc, nd, nd), clw(nloc, nd) |
| 3178 |
|
|
REAL epmlmmm(nloc, nd, nd), eplamm(nloc, nd) |
| 3179 |
|
|
! RomP <<< |
| 3180 |
|
|
|
| 3181 |
|
|
! outputs: |
| 3182 |
|
|
INTEGER iflag1(len) |
| 3183 |
|
|
INTEGER inb1(len) |
| 3184 |
|
|
REAL precip1(len) |
| 3185 |
|
|
REAL vprecip1(len, nd+1), evap1(len, nd) !<<< RomP |
| 3186 |
|
|
REAL ep1(len, nd) !<<< RomP |
| 3187 |
|
|
REAL sig1(len, nd), w01(len, nd) |
| 3188 |
|
|
REAL ft1(len, nd), fq1(len, nd), fu1(len, nd), fv1(len, nd) |
| 3189 |
|
|
REAL ftra1(len, nd, ntra) |
| 3190 |
|
|
REAL ma1(len, nd) |
| 3191 |
|
|
REAL upwd1(len, nd), dnwd1(len, nd), dnwd01(len, nd) |
| 3192 |
|
|
REAL qcondc1(nloc, nd) |
| 3193 |
|
|
REAL wd1(nloc), cape1(nloc) |
| 3194 |
|
|
REAL da1(nloc, nd), phi1(nloc, nd, nd), mp1(nloc, nd) |
| 3195 |
|
|
REAL epmax_diag1(len) ! epmax_cape |
| 3196 |
|
|
! RomP >>> |
| 3197 |
|
|
REAL phi21(len, nd, nd) |
| 3198 |
|
|
REAL d1a1(len, nd), dam1(len, nd) |
| 3199 |
|
|
REAL wdtraina1(len, nd), wdtrainm1(len, nd) |
| 3200 |
|
|
REAL sij1(len, nd, nd) |
| 3201 |
|
|
REAL elij1(len, nd, nd), clw1(len, nd) |
| 3202 |
|
|
REAL epmlmmm1(len, nd, nd), eplamm1(len, nd) |
| 3203 |
|
|
! RomP <<< |
| 3204 |
|
|
|
| 3205 |
|
|
! local variables: |
| 3206 |
|
|
INTEGER i, k, j |
| 3207 |
|
|
|
| 3208 |
|
✗ |
DO i = 1, ncum |
| 3209 |
|
✗ |
precip1(idcum(i)) = precip(i) |
| 3210 |
|
✗ |
iflag1(idcum(i)) = iflag(i) |
| 3211 |
|
✗ |
wd1(idcum(i)) = wd(i) |
| 3212 |
|
✗ |
inb1(idcum(i)) = inb(i) |
| 3213 |
|
✗ |
cape1(idcum(i)) = cape(i) |
| 3214 |
|
✗ |
epmax_diag1(idcum(i))=epmax_diag(i) ! epmax_cape |
| 3215 |
|
|
END DO |
| 3216 |
|
|
|
| 3217 |
|
✗ |
DO k = 1, nl |
| 3218 |
|
✗ |
DO i = 1, ncum |
| 3219 |
|
✗ |
vprecip1(idcum(i), k) = vprecip(i, k) |
| 3220 |
|
✗ |
evap1(idcum(i), k) = evap(i, k) !<<< RomP |
| 3221 |
|
✗ |
sig1(idcum(i), k) = sig(i, k) |
| 3222 |
|
✗ |
w01(idcum(i), k) = w0(i, k) |
| 3223 |
|
✗ |
ft1(idcum(i), k) = ft(i, k) |
| 3224 |
|
✗ |
fq1(idcum(i), k) = fq(i, k) |
| 3225 |
|
✗ |
fu1(idcum(i), k) = fu(i, k) |
| 3226 |
|
✗ |
fv1(idcum(i), k) = fv(i, k) |
| 3227 |
|
✗ |
ma1(idcum(i), k) = ma(i, k) |
| 3228 |
|
✗ |
upwd1(idcum(i), k) = upwd(i, k) |
| 3229 |
|
✗ |
dnwd1(idcum(i), k) = dnwd(i, k) |
| 3230 |
|
✗ |
dnwd01(idcum(i), k) = dnwd0(i, k) |
| 3231 |
|
✗ |
qcondc1(idcum(i), k) = qcondc(i, k) |
| 3232 |
|
✗ |
da1(idcum(i), k) = da(i, k) |
| 3233 |
|
✗ |
mp1(idcum(i), k) = mp(i, k) |
| 3234 |
|
|
! RomP >>> |
| 3235 |
|
✗ |
ep1(idcum(i), k) = ep(i, k) |
| 3236 |
|
✗ |
d1a1(idcum(i), k) = d1a(i, k) |
| 3237 |
|
✗ |
dam1(idcum(i), k) = dam(i, k) |
| 3238 |
|
✗ |
clw1(idcum(i), k) = clw(i, k) |
| 3239 |
|
✗ |
eplamm1(idcum(i), k) = eplamm(i, k) |
| 3240 |
|
✗ |
wdtraina1(idcum(i), k) = wdtraina(i, k) |
| 3241 |
|
✗ |
wdtrainm1(idcum(i), k) = wdtrainm(i, k) |
| 3242 |
|
|
! RomP <<< |
| 3243 |
|
|
END DO |
| 3244 |
|
|
END DO |
| 3245 |
|
|
|
| 3246 |
|
✗ |
DO i = 1, ncum |
| 3247 |
|
✗ |
sig1(idcum(i), nd) = sig(i, nd) |
| 3248 |
|
|
END DO |
| 3249 |
|
|
|
| 3250 |
|
|
|
| 3251 |
|
|
! do 2100 j=1,ntra |
| 3252 |
|
|
! do 2110 k=1,nd ! oct3 |
| 3253 |
|
|
! do 2120 i=1,ncum |
| 3254 |
|
|
! ftra1(idcum(i),k,j)=ftra(i,k,j) |
| 3255 |
|
|
! 2120 continue |
| 3256 |
|
|
! 2110 continue |
| 3257 |
|
|
! 2100 continue |
| 3258 |
|
✗ |
DO j = 1, nd |
| 3259 |
|
✗ |
DO k = 1, nd |
| 3260 |
|
✗ |
DO i = 1, ncum |
| 3261 |
|
✗ |
sij1(idcum(i), k, j) = sij(i, k, j) |
| 3262 |
|
✗ |
phi1(idcum(i), k, j) = phi(i, k, j) |
| 3263 |
|
✗ |
phi21(idcum(i), k, j) = phi2(i, k, j) |
| 3264 |
|
✗ |
elij1(idcum(i), k, j) = elij(i, k, j) |
| 3265 |
|
✗ |
epmlmmm1(idcum(i), k, j) = epmlmmm(i, k, j) |
| 3266 |
|
|
END DO |
| 3267 |
|
|
END DO |
| 3268 |
|
|
END DO |
| 3269 |
|
|
|
| 3270 |
|
✗ |
RETURN |
| 3271 |
|
|
END SUBROUTINE cv30_uncompress |
| 3272 |
|
|
|
| 3273 |
|
✗ |
subroutine cv30_epmax_fn_cape(nloc,ncum,nd & |
| 3274 |
|
✗ |
,cape,ep,hp,icb,inb,clw,nk,t,h,lv & |
| 3275 |
|
✗ |
,epmax_diag) |
| 3276 |
|
|
implicit none |
| 3277 |
|
|
|
| 3278 |
|
|
! On fait varier epmax en fn de la cape |
| 3279 |
|
|
! Il faut donc recalculer ep, et hp qui a d�j� �t� calcul� et |
| 3280 |
|
|
! qui en d�pend |
| 3281 |
|
|
! Toutes les autres variables fn de ep sont calcul�es plus bas. |
| 3282 |
|
|
|
| 3283 |
|
|
! |
| 3284 |
|
|
! $Header$ |
| 3285 |
|
|
! |
| 3286 |
|
|
! Thermodynamical constants for convectL: |
| 3287 |
|
|
|
| 3288 |
|
|
real cpd, cpv, cl, ci, rrv, rrd, lv0, lf0, g, rowl, t0 |
| 3289 |
|
|
real clmcpv, clmcpd, cpdmcp, cpvmcpd, cpvmcl, clmci |
| 3290 |
|
|
real eps, epsi, epsim1 |
| 3291 |
|
|
real ginv, hrd |
| 3292 |
|
|
real grav |
| 3293 |
|
|
|
| 3294 |
|
|
COMMON /cvthermo/ cpd, cpv, cl, ci, rrv, rrd, lv0, lf0, g, rowl & |
| 3295 |
|
|
,t0, clmcpv, clmcpd, cpdmcp, cpvmcpd, cpvmcl & |
| 3296 |
|
|
,clmci, eps, epsi, epsim1, ginv, hrd, grav |
| 3297 |
|
|
|
| 3298 |
|
|
!$OMP THREADPRIVATE(/cvthermo/) |
| 3299 |
|
|
! |
| 3300 |
|
|
! $Header$ |
| 3301 |
|
|
! |
| 3302 |
|
|
!------------------------------------------------------------ |
| 3303 |
|
|
! Parameters for convectL, iflag_con=30: |
| 3304 |
|
|
! (includes - microphysical parameters, |
| 3305 |
|
|
! - parameters that control the rate of approach |
| 3306 |
|
|
! to quasi-equilibrium) |
| 3307 |
|
|
! - noff & minorig (previously in input of convect1) |
| 3308 |
|
|
!------------------------------------------------------------ |
| 3309 |
|
|
|
| 3310 |
|
|
integer noff, minorig, nl, nlp, nlm |
| 3311 |
|
|
real sigd, spfac |
| 3312 |
|
|
!IM cf. FH : pour compatibilite avec conema3 TEMPORAIRE real pbcrit, ptcrit, epmax |
| 3313 |
|
|
real pbcrit, ptcrit |
| 3314 |
|
|
real omtrain |
| 3315 |
|
|
real dtovsh, dpbase, dttrig |
| 3316 |
|
|
real dtcrit, tau, beta, alpha |
| 3317 |
|
|
real delta |
| 3318 |
|
|
real betad |
| 3319 |
|
|
|
| 3320 |
|
|
COMMON /cv30param/ noff, minorig, nl, nlp, nlm & |
| 3321 |
|
|
, sigd, spfac & |
| 3322 |
|
|
!IM cf. FH : pour compatibilite avec conema3 TEMPORAIRE : ,pbcrit, ptcrit, epmax |
| 3323 |
|
|
,pbcrit, ptcrit & |
| 3324 |
|
|
,omtrain & |
| 3325 |
|
|
,dtovsh, dpbase, dttrig & |
| 3326 |
|
|
,dtcrit, tau, beta, alpha, delta, betad |
| 3327 |
|
|
|
| 3328 |
|
|
!$OMP THREADPRIVATE(/cv30param/) |
| 3329 |
|
|
! |
| 3330 |
|
|
! $Header$ |
| 3331 |
|
|
!-- Modified by : Filiberti M-A 06/2005 |
| 3332 |
|
|
! |
| 3333 |
|
|
real epmax ! 0.993 |
| 3334 |
|
|
real coef_epmax_cape ! 0.993 |
| 3335 |
|
|
!jyg< |
| 3336 |
|
|
REAL cvl_comp_threshold ! 0. |
| 3337 |
|
|
!>jyg |
| 3338 |
|
|
logical ok_adj_ema ! F |
| 3339 |
|
|
integer iflag_clw ! 0 |
| 3340 |
|
|
integer iflag_cvl_sigd |
| 3341 |
|
|
real cvl_sig2feed ! 0.97 |
| 3342 |
|
|
|
| 3343 |
|
|
!jyg< |
| 3344 |
|
|
!! common/comconema1/epmax,coef_epmax_cape,ok_adj_ema,iflag_clw,sig1feed,sig2feed |
| 3345 |
|
|
!! common/comconema2/iflag_cvl_sigd |
| 3346 |
|
|
common/comconema1/epmax,coef_epmax_cape, cvl_comp_threshold, cvl_sig2feed |
| 3347 |
|
|
common/comconema2/iflag_cvl_sigd, iflag_clw, ok_adj_ema |
| 3348 |
|
|
!>jyg |
| 3349 |
|
|
|
| 3350 |
|
|
! common/comconema/epmax,coef_epmax_cape,ok_adj_ema,iflag_clw |
| 3351 |
|
|
!$OMP THREADPRIVATE(/comconema1/) |
| 3352 |
|
|
!$OMP THREADPRIVATE(/comconema2/) |
| 3353 |
|
|
|
| 3354 |
|
|
|
| 3355 |
|
|
! inputs: |
| 3356 |
|
|
integer ncum, nd, nloc |
| 3357 |
|
|
integer icb(nloc), inb(nloc) |
| 3358 |
|
|
real cape(nloc) |
| 3359 |
|
|
real clw(nloc,nd),lv(nloc,nd),t(nloc,nd),h(nloc,nd) |
| 3360 |
|
|
integer nk(nloc) |
| 3361 |
|
|
! inouts: |
| 3362 |
|
|
real ep(nloc,nd) |
| 3363 |
|
|
real hp(nloc,nd) |
| 3364 |
|
|
! outputs ou local |
| 3365 |
|
|
real epmax_diag(nloc) |
| 3366 |
|
|
! locals |
| 3367 |
|
|
integer i,k |
| 3368 |
|
✗ |
real hp_bak(nloc,nd) |
| 3369 |
|
|
CHARACTER (LEN=20) :: modname='cv30_epmax_fn_cape' |
| 3370 |
|
|
CHARACTER (LEN=80) :: abort_message |
| 3371 |
|
|
|
| 3372 |
|
|
! on recalcule ep et hp |
| 3373 |
|
|
|
| 3374 |
|
✗ |
if (coef_epmax_cape.gt.1e-12) then |
| 3375 |
|
✗ |
do i=1,ncum |
| 3376 |
|
✗ |
epmax_diag(i)=epmax-coef_epmax_cape*sqrt(cape(i)) |
| 3377 |
|
✗ |
do k=1,nl |
| 3378 |
|
✗ |
ep(i,k)=ep(i,k)/epmax*epmax_diag(i) |
| 3379 |
|
✗ |
ep(i,k)=amax1(ep(i,k),0.0) |
| 3380 |
|
✗ |
ep(i,k)=amin1(ep(i,k),epmax_diag(i)) |
| 3381 |
|
|
enddo |
| 3382 |
|
|
enddo |
| 3383 |
|
|
|
| 3384 |
|
|
! On recalcule hp: |
| 3385 |
|
✗ |
do k=1,nl |
| 3386 |
|
✗ |
do i=1,ncum |
| 3387 |
|
✗ |
hp_bak(i,k)=hp(i,k) |
| 3388 |
|
|
enddo |
| 3389 |
|
|
enddo |
| 3390 |
|
✗ |
do k=1,nlp |
| 3391 |
|
✗ |
do i=1,ncum |
| 3392 |
|
✗ |
hp(i,k)=h(i,k) |
| 3393 |
|
|
enddo |
| 3394 |
|
|
enddo |
| 3395 |
|
✗ |
do k=minorig+1,nl |
| 3396 |
|
✗ |
do i=1,ncum |
| 3397 |
|
✗ |
if((k.ge.icb(i)).and.(k.le.inb(i)))then |
| 3398 |
|
✗ |
hp(i,k)=h(i,nk(i))+(lv(i,k)+(cpd-cpv)*t(i,k))*ep(i,k)*clw(i,k) |
| 3399 |
|
|
endif |
| 3400 |
|
|
enddo |
| 3401 |
|
|
enddo !do k=minorig+1,n |
| 3402 |
|
|
! write(*,*) 'cv30_routines 6218: hp(1,20)=',hp(1,20) |
| 3403 |
|
✗ |
do i=1,ncum |
| 3404 |
|
✗ |
do k=1,nl |
| 3405 |
|
✗ |
if (abs(hp_bak(i,k)-hp(i,k)).gt.0.01) then |
| 3406 |
|
✗ |
write(*,*) 'i,k=',i,k |
| 3407 |
|
✗ |
write(*,*) 'coef_epmax_cape=',coef_epmax_cape |
| 3408 |
|
✗ |
write(*,*) 'epmax_diag(i)=',epmax_diag(i) |
| 3409 |
|
✗ |
write(*,*) 'ep(i,k)=',ep(i,k) |
| 3410 |
|
✗ |
write(*,*) 'hp(i,k)=',hp(i,k) |
| 3411 |
|
✗ |
write(*,*) 'hp_bak(i,k)=',hp_bak(i,k) |
| 3412 |
|
✗ |
write(*,*) 'h(i,k)=',h(i,k) |
| 3413 |
|
✗ |
write(*,*) 'nk(i)=',nk(i) |
| 3414 |
|
✗ |
write(*,*) 'h(i,nk(i))=',h(i,nk(i)) |
| 3415 |
|
✗ |
write(*,*) 'lv(i,k)=',lv(i,k) |
| 3416 |
|
✗ |
write(*,*) 't(i,k)=',t(i,k) |
| 3417 |
|
✗ |
write(*,*) 'clw(i,k)=',clw(i,k) |
| 3418 |
|
✗ |
write(*,*) 'cpd,cpv=',cpd,cpv |
| 3419 |
|
✗ |
CALL abort_physic(modname,abort_message,0) |
| 3420 |
|
|
endif |
| 3421 |
|
|
enddo !do k=1,nl |
| 3422 |
|
|
enddo !do i=1,ncum |
| 3423 |
|
|
endif !if (coef_epmax_cape.gt.1e-12) then |
| 3424 |
|
|
|
| 3425 |
|
✗ |
return |
| 3426 |
|
|
end subroutine cv30_epmax_fn_cape |
| 3427 |
|
|
|
| 3428 |
|
|
|
| 3429 |
|
|
|