| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
|
| 3 |
|
✗ |
SUBROUTINE cv3p2_closure(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, & |
| 4 |
|
✗ |
tvp, buoy, supmax, ok_inhib, ale, alp, omega,sig, w0, ptop2, cape, cin, m, & |
| 5 |
|
|
iflag, coef, plim1, plim2, asupmax, supmax0, asupmaxmin, cbmflast, plfc, & |
| 6 |
|
|
wbeff) |
| 7 |
|
|
|
| 8 |
|
|
|
| 9 |
|
|
! ************************************************************** |
| 10 |
|
|
! * |
| 11 |
|
|
! CV3P2_CLOSURE * |
| 12 |
|
|
! Ale & Alp Closure of Convect3 * |
| 13 |
|
|
! * |
| 14 |
|
|
! written by : Kerry Emanuel * |
| 15 |
|
|
! vectorization: S. Bony * |
| 16 |
|
|
! modified by : Jean-Yves Grandpeix, 18/06/2003, 19.32.10 * |
| 17 |
|
|
! Julie Frohwirth, 14/10/2005 17.44.22 * |
| 18 |
|
|
! ************************************************************** |
| 19 |
|
|
|
| 20 |
|
|
USE print_control_mod, ONLY: prt_level, lunout |
| 21 |
|
|
IMPLICIT NONE |
| 22 |
|
|
|
| 23 |
|
|
include "cvthermo.h" |
| 24 |
|
|
include "cv3param.h" |
| 25 |
|
|
include "cvflag.h" |
| 26 |
|
|
include "YOMCST2.h" |
| 27 |
|
|
include "YOMCST.h" |
| 28 |
|
|
include "conema3.h" |
| 29 |
|
|
|
| 30 |
|
|
! input: |
| 31 |
|
|
INTEGER, INTENT (IN) :: ncum, nd, nloc |
| 32 |
|
|
INTEGER, DIMENSION (nloc), INTENT (IN) :: icb, inb |
| 33 |
|
|
REAL, DIMENSION (nloc), INTENT (IN) :: pbase, plcl |
| 34 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (IN) :: p |
| 35 |
|
|
REAL, DIMENSION (nloc, nd+1), INTENT (IN) :: ph |
| 36 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (IN) :: tv, tvp, buoy |
| 37 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (IN) :: supmax |
| 38 |
|
|
LOGICAL, INTENT (IN) :: ok_inhib ! enable convection inhibition by dryness |
| 39 |
|
|
REAL, DIMENSION (nloc), INTENT (IN) :: ale, alp |
| 40 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (IN) :: omega |
| 41 |
|
|
|
| 42 |
|
|
! input/output: |
| 43 |
|
|
INTEGER, DIMENSION (nloc), INTENT (INOUT) :: iflag |
| 44 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (INOUT) :: sig, w0 |
| 45 |
|
|
REAL, DIMENSION (nloc), INTENT (INOUT) :: ptop2 |
| 46 |
|
|
|
| 47 |
|
|
! output: |
| 48 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: cape, cin |
| 49 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (OUT) :: m |
| 50 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: plim1, plim2 |
| 51 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (OUT) :: asupmax |
| 52 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: supmax0 |
| 53 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: asupmaxmin |
| 54 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: cbmflast, plfc |
| 55 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: wbeff |
| 56 |
|
|
|
| 57 |
|
|
! local variables: |
| 58 |
|
|
INTEGER :: il, i, j, k, icbmax |
| 59 |
|
✗ |
INTEGER, DIMENSION (nloc) :: i0, klfc |
| 60 |
|
|
REAL :: deltap, fac, w, amu |
| 61 |
|
✗ |
REAL, DIMENSION (nloc, nd) :: rhodp ! Factor such that m=rhodp*sig*w |
| 62 |
|
|
REAL :: dz |
| 63 |
|
|
REAL :: pbmxup |
| 64 |
|
✗ |
REAL, DIMENSION (nloc, nd) :: dtmin, sigold |
| 65 |
|
✗ |
REAL, DIMENSION (nloc, nd) :: coefmix |
| 66 |
|
✗ |
REAL, DIMENSION (nloc) :: dtminmax |
| 67 |
|
✗ |
REAL, DIMENSION (nloc) :: pzero, ptop2old |
| 68 |
|
✗ |
REAL, DIMENSION (nloc) :: cina, cinb |
| 69 |
|
|
INTEGER, DIMENSION (nloc) :: ibeg |
| 70 |
|
✗ |
INTEGER, DIMENSION (nloc) :: nsupmax |
| 71 |
|
|
REAL :: supcrit |
| 72 |
|
|
REAL, DIMENSION (nloc, nd) :: temp |
| 73 |
|
✗ |
REAL, DIMENSION (nloc) :: p1, pmin |
| 74 |
|
✗ |
REAL, DIMENSION (nloc) :: asupmax0 |
| 75 |
|
✗ |
LOGICAL, DIMENSION (nloc) :: ok |
| 76 |
|
✗ |
REAL, DIMENSION (nloc, nd) :: siglim, wlim, mlim |
| 77 |
|
✗ |
REAL, DIMENSION (nloc) :: wb2 |
| 78 |
|
✗ |
REAL, DIMENSION (nloc) :: cbmf0 ! initial cloud base mass flux |
| 79 |
|
✗ |
REAL, DIMENSION (nloc) :: cbmflim ! cbmf given by Cape closure |
| 80 |
|
✗ |
REAL, DIMENSION (nloc) :: cbmfalp ! cbmf given by Alp closure |
| 81 |
|
✗ |
REAL, DIMENSION (nloc) :: cbmfalpb ! bounded cbmf given by Alp closure |
| 82 |
|
✗ |
REAL, DIMENSION (nloc) :: cbmfmax ! upper bound on cbmf |
| 83 |
|
|
REAL, DIMENSION (nloc) :: coef |
| 84 |
|
|
REAL, DIMENSION (nloc) :: xp, xq, xr, discr, b3, b4 |
| 85 |
|
|
REAL, DIMENSION (nloc) :: theta, bb |
| 86 |
|
|
REAL :: term1, term2, term3 |
| 87 |
|
✗ |
REAL, DIMENSION (nloc) :: alp2 ! Alp with offset |
| 88 |
|
|
|
| 89 |
|
|
!CR: variables for new erosion of adiabiatic ascent |
| 90 |
|
✗ |
REAL, DIMENSION (nloc, nd) :: mad, me, betalim, beta_coef |
| 91 |
|
✗ |
REAL, DIMENSION (nloc, nd) :: med, md |
| 92 |
|
|
!jyg< |
| 93 |
|
|
! coef_peel is now in the common cv3_param |
| 94 |
|
|
!! REAL :: coef_peel |
| 95 |
|
|
!! PARAMETER (coef_peel=0.25) |
| 96 |
|
|
!>jyg |
| 97 |
|
|
|
| 98 |
|
|
REAL :: sigmax |
| 99 |
|
|
PARAMETER (sigmax=0.1) |
| 100 |
|
|
!! PARAMETER (sigmax=10.) |
| 101 |
|
|
|
| 102 |
|
|
CHARACTER (LEN=20) :: modname = 'cv3p2_closure' |
| 103 |
|
|
CHARACTER (LEN=80) :: abort_message |
| 104 |
|
|
|
| 105 |
|
|
INTEGER,SAVE :: igout=1 |
| 106 |
|
|
!$OMP THREADPRIVATE(igout) |
| 107 |
|
|
|
| 108 |
|
✗ |
IF (prt_level>=20) print *,' -> cv3p2_closure, Ale ',ale(igout) |
| 109 |
|
|
|
| 110 |
|
|
|
| 111 |
|
|
! ------------------------------------------------------- |
| 112 |
|
|
! -- Initialization |
| 113 |
|
|
! ------------------------------------------------------- |
| 114 |
|
|
|
| 115 |
|
|
|
| 116 |
|
✗ |
DO il = 1, ncum |
| 117 |
|
✗ |
alp2(il) = max(alp(il), 1.E-5) |
| 118 |
|
|
! IM |
| 119 |
|
✗ |
alp2(il) = max(alp(il), 1.E-12) |
| 120 |
|
|
END DO |
| 121 |
|
|
|
| 122 |
|
|
pbmxup = 50. ! PBMXUP+PBCRIT = cloud depth above which mixed updraughts |
| 123 |
|
|
! exist (if any) |
| 124 |
|
|
|
| 125 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure nloc ncum nd icb inb nl', nloc, & |
| 126 |
|
✗ |
ncum, nd, icb(nloc), inb(nloc), nl |
| 127 |
|
✗ |
DO k = 1, nl |
| 128 |
|
✗ |
DO il = 1, ncum |
| 129 |
|
✗ |
rhodp(il,k) = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
| 130 |
|
|
END DO |
| 131 |
|
|
END DO |
| 132 |
|
|
|
| 133 |
|
|
!CR+jyg: initializations (up to nd) for erosion of adiabatic ascent and of m and wlim |
| 134 |
|
✗ |
DO k = 1,nd |
| 135 |
|
✗ |
DO il = 1, ncum |
| 136 |
|
✗ |
mad(il,k)=0. |
| 137 |
|
✗ |
me(il,k)=0. |
| 138 |
|
✗ |
betalim(il,k)=1. |
| 139 |
|
✗ |
wlim(il,k)=0. |
| 140 |
|
✗ |
m(il, k) = 0.0 |
| 141 |
|
|
ENDDO |
| 142 |
|
|
ENDDO |
| 143 |
|
|
|
| 144 |
|
|
! ------------------------------------------------------- |
| 145 |
|
|
! -- Reset sig(i) and w0(i) for i>inb and i<icb |
| 146 |
|
|
! ------------------------------------------------------- |
| 147 |
|
|
|
| 148 |
|
|
! update sig and w0 above LNB: |
| 149 |
|
|
|
| 150 |
|
✗ |
DO k = 1, nl - 1 |
| 151 |
|
✗ |
DO il = 1, ncum |
| 152 |
|
✗ |
IF ((inb(il)<(nl-1)) .AND. (k>=(inb(il)+1))) THEN |
| 153 |
|
✗ |
sig(il, k) = beta*sig(il, k) + 2.*alpha*buoy(il, inb(il))*abs(buoy(il,inb(il))) |
| 154 |
|
✗ |
sig(il, k) = amax1(sig(il,k), 0.0) |
| 155 |
|
✗ |
w0(il, k) = beta*w0(il, k) |
| 156 |
|
|
END IF |
| 157 |
|
|
END DO |
| 158 |
|
|
END DO |
| 159 |
|
|
|
| 160 |
|
|
! if(prt.level.GE.20) print*,'cv3p2_closure apres 100' |
| 161 |
|
|
! compute icbmax: |
| 162 |
|
|
|
| 163 |
|
|
icbmax = 2 |
| 164 |
|
✗ |
DO il = 1, ncum |
| 165 |
|
✗ |
icbmax = max(icbmax, icb(il)) |
| 166 |
|
|
END DO |
| 167 |
|
|
! if(prt.level.GE.20) print*,'cv3p2_closure apres 200' |
| 168 |
|
|
|
| 169 |
|
|
! update sig and w0 below cloud base: |
| 170 |
|
|
|
| 171 |
|
✗ |
DO k = 1, icbmax |
| 172 |
|
✗ |
DO il = 1, ncum |
| 173 |
|
✗ |
IF (k<=icb(il)) THEN |
| 174 |
|
✗ |
sig(il, k) = beta*sig(il, k) - 2.*alpha*buoy(il, icb(il))*buoy(il,icb(il)) |
| 175 |
|
✗ |
sig(il, k) = amax1(sig(il,k), 0.0) |
| 176 |
|
✗ |
w0(il, k) = beta*w0(il, k) |
| 177 |
|
|
END IF |
| 178 |
|
|
END DO |
| 179 |
|
|
END DO |
| 180 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 300' |
| 181 |
|
|
|
| 182 |
|
|
! ------------------------------------------------------------- |
| 183 |
|
|
! -- Reset fractional areas of updrafts and w0 at initial time |
| 184 |
|
|
! -- and after 10 time steps of no convection |
| 185 |
|
|
! ------------------------------------------------------------- |
| 186 |
|
|
|
| 187 |
|
|
!jyg< |
| 188 |
|
✗ |
IF (ok_convstop) THEN |
| 189 |
|
✗ |
DO k = 1, nl - 1 |
| 190 |
|
✗ |
DO il = 1, ncum |
| 191 |
|
✗ |
IF (sig(il,nd)<1.5 .OR. sig(il,nd)>noconv_stop) THEN |
| 192 |
|
✗ |
sig(il, k) = 0.0 |
| 193 |
|
✗ |
w0(il, k) = 0.0 |
| 194 |
|
|
END IF |
| 195 |
|
|
END DO |
| 196 |
|
|
END DO |
| 197 |
|
|
ELSE |
| 198 |
|
✗ |
DO k = 1, nl - 1 |
| 199 |
|
✗ |
DO il = 1, ncum |
| 200 |
|
✗ |
IF (sig(il,nd)<1.5 .OR. sig(il,nd)>12.0) THEN |
| 201 |
|
✗ |
sig(il, k) = 0.0 |
| 202 |
|
✗ |
w0(il, k) = 0.0 |
| 203 |
|
|
END IF |
| 204 |
|
|
END DO |
| 205 |
|
|
END DO |
| 206 |
|
|
ENDIF ! (ok_convstop) |
| 207 |
|
|
!>jyg |
| 208 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 400' |
| 209 |
|
|
|
| 210 |
|
|
! ------------------------------------------------------- |
| 211 |
|
|
! -- Compute initial cloud base mass flux (Cbmf0) |
| 212 |
|
|
! ------------------------------------------------------- |
| 213 |
|
✗ |
DO il = 1, ncum |
| 214 |
|
✗ |
cbmf0(il) = 0.0 |
| 215 |
|
|
END DO |
| 216 |
|
|
|
| 217 |
|
✗ |
DO k = 1, nl |
| 218 |
|
✗ |
DO il = 1, ncum |
| 219 |
|
|
IF (k>=icb(il) .AND. k<=inb(il) & |
| 220 |
|
✗ |
.AND. icb(il)+1<=inb(il)) THEN |
| 221 |
|
✗ |
cbmf0(il) = cbmf0(il) + sig(il, k)*w0(il,k)*rhodp(il,k) |
| 222 |
|
|
END IF |
| 223 |
|
|
END DO |
| 224 |
|
|
END DO |
| 225 |
|
|
|
| 226 |
|
|
! ------------------------------------------------------------- |
| 227 |
|
|
! jyg1 |
| 228 |
|
|
! -- Calculate adiabatic ascent top pressure (ptop) |
| 229 |
|
|
! ------------------------------------------------------------- |
| 230 |
|
|
|
| 231 |
|
|
|
| 232 |
|
|
! c 1. Start at first level where precipitations form |
| 233 |
|
✗ |
DO il = 1, ncum |
| 234 |
|
✗ |
pzero(il) = plcl(il) - pbcrit |
| 235 |
|
|
END DO |
| 236 |
|
|
|
| 237 |
|
|
! c 2. Add offset |
| 238 |
|
✗ |
DO il = 1, ncum |
| 239 |
|
✗ |
pzero(il) = pzero(il) - pbmxup |
| 240 |
|
|
END DO |
| 241 |
|
✗ |
DO il = 1, ncum |
| 242 |
|
✗ |
ptop2old(il) = ptop2(il) |
| 243 |
|
|
END DO |
| 244 |
|
|
|
| 245 |
|
✗ |
DO il = 1, ncum |
| 246 |
|
|
! CR:c est quoi ce 300?? |
| 247 |
|
✗ |
p1(il) = pzero(il) - 300. |
| 248 |
|
|
END DO |
| 249 |
|
|
|
| 250 |
|
|
! compute asupmax=abs(supmax) up to lnm+1 |
| 251 |
|
|
|
| 252 |
|
✗ |
DO il = 1, ncum |
| 253 |
|
✗ |
ok(il) = .TRUE. |
| 254 |
|
✗ |
nsupmax(il) = inb(il) |
| 255 |
|
|
END DO |
| 256 |
|
|
|
| 257 |
|
✗ |
DO i = 1, nl |
| 258 |
|
✗ |
DO il = 1, ncum |
| 259 |
|
✗ |
IF (i>icb(il) .AND. i<=inb(il)) THEN |
| 260 |
|
✗ |
IF (p(il,i)<=pzero(il) .AND. supmax(il,i)<0 .AND. ok(il)) THEN |
| 261 |
|
✗ |
nsupmax(il) = i |
| 262 |
|
✗ |
ok(il) = .FALSE. |
| 263 |
|
|
END IF ! end IF (P(i) ... ) |
| 264 |
|
|
END IF ! end IF (icb+1 le i le inb) |
| 265 |
|
|
END DO |
| 266 |
|
|
END DO |
| 267 |
|
|
|
| 268 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 2.' |
| 269 |
|
✗ |
DO i = 1, nl |
| 270 |
|
✗ |
DO il = 1, ncum |
| 271 |
|
✗ |
asupmax(il, i) = abs(supmax(il,i)) |
| 272 |
|
|
END DO |
| 273 |
|
|
END DO |
| 274 |
|
|
|
| 275 |
|
|
|
| 276 |
|
✗ |
DO il = 1, ncum |
| 277 |
|
✗ |
asupmaxmin(il) = 10. |
| 278 |
|
✗ |
pmin(il) = 100. |
| 279 |
|
|
! IM ?? |
| 280 |
|
✗ |
asupmax0(il) = 0. |
| 281 |
|
|
END DO |
| 282 |
|
|
|
| 283 |
|
|
! c 3. Compute in which level is Pzero |
| 284 |
|
|
|
| 285 |
|
|
! IM bug i0 = 18 |
| 286 |
|
✗ |
DO il = 1, ncum |
| 287 |
|
✗ |
i0(il) = nl |
| 288 |
|
|
END DO |
| 289 |
|
|
|
| 290 |
|
✗ |
DO i = 1, nl |
| 291 |
|
✗ |
DO il = 1, ncum |
| 292 |
|
✗ |
IF (i>icb(il) .AND. i<=inb(il)) THEN |
| 293 |
|
✗ |
IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
| 294 |
|
✗ |
IF (pzero(il)>p(il,i) .AND. pzero(il)<p(il,i-1)) THEN |
| 295 |
|
✗ |
i0(il) = i |
| 296 |
|
|
END IF |
| 297 |
|
|
END IF |
| 298 |
|
|
END IF |
| 299 |
|
|
END DO |
| 300 |
|
|
END DO |
| 301 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 3.' |
| 302 |
|
|
|
| 303 |
|
|
! c 4. Compute asupmax at Pzero |
| 304 |
|
|
|
| 305 |
|
✗ |
DO i = 1, nl |
| 306 |
|
✗ |
DO il = 1, ncum |
| 307 |
|
✗ |
IF (i>icb(il) .AND. i<=inb(il)) THEN |
| 308 |
|
✗ |
IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
| 309 |
|
|
asupmax0(il) = ((pzero(il)-p(il,i0(il)-1))*asupmax(il,i0(il))- & |
| 310 |
|
✗ |
(pzero(il)-p(il,i0(il)))*asupmax(il,i0(il)-1))/(p(il,i0(il))-p(il,i0(il)-1)) |
| 311 |
|
|
END IF |
| 312 |
|
|
END IF |
| 313 |
|
|
END DO |
| 314 |
|
|
END DO |
| 315 |
|
|
|
| 316 |
|
|
|
| 317 |
|
✗ |
DO i = 1, nl |
| 318 |
|
✗ |
DO il = 1, ncum |
| 319 |
|
✗ |
IF (p(il,i)==pzero(il)) THEN |
| 320 |
|
✗ |
asupmax(i, il) = asupmax0(il) |
| 321 |
|
|
END IF |
| 322 |
|
|
END DO |
| 323 |
|
|
END DO |
| 324 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 4.' |
| 325 |
|
|
|
| 326 |
|
|
! c 5. Compute asupmaxmin, minimum of asupmax |
| 327 |
|
|
|
| 328 |
|
✗ |
DO i = 1, nl |
| 329 |
|
✗ |
DO il = 1, ncum |
| 330 |
|
✗ |
IF (i>icb(il) .AND. i<=inb(il)) THEN |
| 331 |
|
✗ |
IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
| 332 |
|
✗ |
IF (asupmax(il,i)<asupmaxmin(il)) THEN |
| 333 |
|
✗ |
asupmaxmin(il) = asupmax(il, i) |
| 334 |
|
✗ |
pmin(il) = p(il, i) |
| 335 |
|
|
END IF |
| 336 |
|
|
END IF |
| 337 |
|
|
END IF |
| 338 |
|
|
END DO |
| 339 |
|
|
END DO |
| 340 |
|
|
|
| 341 |
|
✗ |
DO il = 1, ncum |
| 342 |
|
|
! IM |
| 343 |
|
✗ |
IF (prt_level>=20) THEN |
| 344 |
|
✗ |
PRINT *, 'cv3p2_closure il asupmax0 asupmaxmin', il, asupmax0(il), & |
| 345 |
|
✗ |
asupmaxmin(il), pzero(il), pmin(il) |
| 346 |
|
|
END IF |
| 347 |
|
✗ |
IF (asupmax0(il)<asupmaxmin(il)) THEN |
| 348 |
|
✗ |
asupmaxmin(il) = asupmax0(il) |
| 349 |
|
✗ |
pmin(il) = pzero(il) |
| 350 |
|
|
END IF |
| 351 |
|
|
END DO |
| 352 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 5.' |
| 353 |
|
|
|
| 354 |
|
|
|
| 355 |
|
|
! Compute Supmax at Pzero |
| 356 |
|
|
|
| 357 |
|
✗ |
DO i = 1, nl |
| 358 |
|
✗ |
DO il = 1, ncum |
| 359 |
|
✗ |
IF (i>icb(il) .AND. i<=inb(il)) THEN |
| 360 |
|
✗ |
IF (p(il,i)<=pzero(il)) THEN |
| 361 |
|
|
supmax0(il) = ((p(il,i)-pzero(il))*asupmax(il,i-1)- & |
| 362 |
|
✗ |
(p(il,i-1)-pzero(il))*asupmax(il,i))/(p(il,i)-p(il,i-1)) |
| 363 |
|
✗ |
GO TO 425 |
| 364 |
|
|
END IF ! end IF (P(i) ... ) |
| 365 |
|
|
END IF ! end IF (icb+1 le i le inb) |
| 366 |
|
|
END DO |
| 367 |
|
|
END DO |
| 368 |
|
|
|
| 369 |
|
|
425 CONTINUE |
| 370 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 425.' |
| 371 |
|
|
|
| 372 |
|
|
! c 6. Calculate ptop2 |
| 373 |
|
|
|
| 374 |
|
✗ |
DO il = 1, ncum |
| 375 |
|
✗ |
IF (asupmaxmin(il)<supcrit1) THEN |
| 376 |
|
✗ |
ptop2(il) = pmin(il) |
| 377 |
|
|
END IF |
| 378 |
|
|
|
| 379 |
|
✗ |
IF (asupmaxmin(il)>supcrit1 .AND. asupmaxmin(il)<supcrit2) THEN |
| 380 |
|
✗ |
ptop2(il) = ptop2old(il) |
| 381 |
|
|
END IF |
| 382 |
|
|
|
| 383 |
|
✗ |
IF (asupmaxmin(il)>supcrit2) THEN |
| 384 |
|
✗ |
ptop2(il) = ph(il, inb(il)) |
| 385 |
|
|
END IF |
| 386 |
|
|
END DO |
| 387 |
|
|
|
| 388 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 6.' |
| 389 |
|
|
|
| 390 |
|
|
! c 7. Compute multiplying factor for adiabatic updraught mass flux |
| 391 |
|
|
|
| 392 |
|
|
|
| 393 |
|
✗ |
IF (ok_inhib) THEN |
| 394 |
|
|
|
| 395 |
|
✗ |
DO i = 1, nl |
| 396 |
|
✗ |
DO il = 1, ncum |
| 397 |
|
✗ |
IF (i<=nl) THEN |
| 398 |
|
✗ |
coefmix(il, i) = (min(ptop2(il),ph(il,i))-ph(il,i))/(ph(il,i+1)-ph(il,i)) |
| 399 |
|
✗ |
coefmix(il, i) = min(coefmix(il,i), 1.) |
| 400 |
|
|
END IF |
| 401 |
|
|
END DO |
| 402 |
|
|
END DO |
| 403 |
|
|
|
| 404 |
|
|
|
| 405 |
|
|
ELSE ! when inhibition is not taken into account, coefmix=1 |
| 406 |
|
|
|
| 407 |
|
|
|
| 408 |
|
|
|
| 409 |
|
✗ |
DO i = 1, nl |
| 410 |
|
✗ |
DO il = 1, ncum |
| 411 |
|
✗ |
IF (i<=nl) THEN |
| 412 |
|
✗ |
coefmix(il, i) = 1. |
| 413 |
|
|
END IF |
| 414 |
|
|
END DO |
| 415 |
|
|
END DO |
| 416 |
|
|
|
| 417 |
|
|
END IF ! ok_inhib |
| 418 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 7.' |
| 419 |
|
|
! ------------------------------------------------------------------- |
| 420 |
|
|
! ------------------------------------------------------------------- |
| 421 |
|
|
|
| 422 |
|
|
|
| 423 |
|
|
! jyg2 |
| 424 |
|
|
|
| 425 |
|
|
! ========================================================================== |
| 426 |
|
|
|
| 427 |
|
|
|
| 428 |
|
|
! ------------------------------------------------------------- |
| 429 |
|
|
! -- Calculate convective inhibition (CIN) |
| 430 |
|
|
! ------------------------------------------------------------- |
| 431 |
|
|
|
| 432 |
|
|
! do i=1,nloc |
| 433 |
|
|
! print*,'avant cine p',pbase(i),plcl(i) |
| 434 |
|
|
! enddo |
| 435 |
|
|
! do j=1,nd |
| 436 |
|
|
! do i=1,nloc |
| 437 |
|
|
! print*,'avant cine t',tv(i),tvp(i) |
| 438 |
|
|
! enddo |
| 439 |
|
|
! enddo |
| 440 |
|
|
CALL cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, cina, & |
| 441 |
|
✗ |
cinb, plfc) |
| 442 |
|
|
|
| 443 |
|
✗ |
DO il = 1, ncum |
| 444 |
|
✗ |
cin(il) = cina(il) + cinb(il) |
| 445 |
|
|
END DO |
| 446 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure after cv3_cine: cina, cinb, cin ', & |
| 447 |
|
✗ |
cina(igout), cinb(igout), cin(igout) |
| 448 |
|
|
! ------------------------------------------------------------- |
| 449 |
|
|
! --Update buoyancies to account for Ale |
| 450 |
|
|
! ------------------------------------------------------------- |
| 451 |
|
|
|
| 452 |
|
|
CALL cv3_buoy(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, ale, cin, tv, & |
| 453 |
|
✗ |
tvp, buoy) |
| 454 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure after cv3_buoy' |
| 455 |
|
|
|
| 456 |
|
|
! ------------------------------------------------------------- |
| 457 |
|
|
! -- Calculate convective available potential energy (cape), |
| 458 |
|
|
! -- vertical velocity (w), fractional area covered by |
| 459 |
|
|
! -- undilute updraft (sig), and updraft mass flux (m) |
| 460 |
|
|
! ------------------------------------------------------------- |
| 461 |
|
|
|
| 462 |
|
✗ |
DO il = 1, ncum |
| 463 |
|
✗ |
cape(il) = 0.0 |
| 464 |
|
✗ |
dtminmax(il) = -100. |
| 465 |
|
|
END DO |
| 466 |
|
|
|
| 467 |
|
|
! compute dtmin (minimum buoyancy between ICB and given level k): |
| 468 |
|
|
|
| 469 |
|
✗ |
DO k = 1, nl |
| 470 |
|
✗ |
DO il = 1, ncum |
| 471 |
|
✗ |
dtmin(il, k) = 100.0 |
| 472 |
|
|
END DO |
| 473 |
|
|
END DO |
| 474 |
|
|
|
| 475 |
|
✗ |
DO k = 1, nl |
| 476 |
|
✗ |
DO j = minorig, nl |
| 477 |
|
✗ |
DO il = 1, ncum |
| 478 |
|
|
IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (j>=icb(il)) & |
| 479 |
|
✗ |
.AND. (j<=(k-1))) THEN |
| 480 |
|
✗ |
dtmin(il, k) = amin1(dtmin(il,k), buoy(il,j)) |
| 481 |
|
|
END IF |
| 482 |
|
|
END DO |
| 483 |
|
|
END DO |
| 484 |
|
|
END DO |
| 485 |
|
|
!jyg< |
| 486 |
|
|
! Store maximum of dtmin |
| 487 |
|
|
! C est pas terrible d avoir ce test sur Ale+Cin encore une fois ici. |
| 488 |
|
|
! A REVOIR ! |
| 489 |
|
✗ |
DO k = 1, nl |
| 490 |
|
✗ |
DO il = 1, ncum |
| 491 |
|
✗ |
IF (k>=(icb(il)+1) .AND. k<=inb(il) .AND. ale(il)+cin(il)>0.) THEN |
| 492 |
|
✗ |
dtminmax(il) = max(dtmin(il,k), dtminmax(il)) |
| 493 |
|
|
ENDIF |
| 494 |
|
|
END DO |
| 495 |
|
|
END DO |
| 496 |
|
|
! |
| 497 |
|
|
! prevent convection when ale+cin <= 0 |
| 498 |
|
✗ |
DO k = 1, nl |
| 499 |
|
✗ |
DO il = 1, ncum |
| 500 |
|
✗ |
IF (k>=(icb(il)+1) .AND. k<=inb(il)) THEN |
| 501 |
|
✗ |
dtmin(il,k) = min(dtmin(il,k), dtminmax(il)) |
| 502 |
|
|
ENDIF |
| 503 |
|
|
END DO |
| 504 |
|
|
END DO |
| 505 |
|
|
!>jyg |
| 506 |
|
|
! |
| 507 |
|
✗ |
IF (prt_level >= 20) THEN |
| 508 |
|
✗ |
print *,'cv3p2_closure: dtmin ', (k, dtmin(igout,k), k=1,nl) |
| 509 |
|
✗ |
print *,'cv3p2_closure: dtminmax ', dtminmax(igout) |
| 510 |
|
|
ENDIF |
| 511 |
|
|
! |
| 512 |
|
|
! the interval on which cape is computed starts at pbase : |
| 513 |
|
|
|
| 514 |
|
✗ |
DO k = 1, nl |
| 515 |
|
✗ |
DO il = 1, ncum |
| 516 |
|
|
|
| 517 |
|
✗ |
IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
| 518 |
|
|
|
| 519 |
|
✗ |
IF (iflag_mix_adiab.eq.1) THEN |
| 520 |
|
|
!CR:computation of cape from LCL: keep flag or to modify in all cases? |
| 521 |
|
✗ |
deltap = min(plcl(il), ph(il,k-1)) - min(plcl(il), ph(il,k)) |
| 522 |
|
|
ELSE |
| 523 |
|
✗ |
deltap = min(pbase(il), ph(il,k-1)) - min(pbase(il), ph(il,k)) |
| 524 |
|
|
ENDIF |
| 525 |
|
✗ |
cape(il) = cape(il) + rrd*buoy(il, k-1)*deltap/p(il, k-1) |
| 526 |
|
✗ |
cape(il) = amax1(0.0, cape(il)) |
| 527 |
|
✗ |
sigold(il, k) = sig(il, k) |
| 528 |
|
|
|
| 529 |
|
|
|
| 530 |
|
|
! jyg Coefficient coefmix limits convection to levels where a |
| 531 |
|
|
! sufficient |
| 532 |
|
|
! fraction of mixed draughts are ascending. |
| 533 |
|
✗ |
siglim(il, k) = coefmix(il, k)*alpha1*dtmin(il, k)*abs(dtmin(il,k)) |
| 534 |
|
✗ |
siglim(il, k) = amax1(siglim(il,k), 0.0) |
| 535 |
|
✗ |
siglim(il, k) = amin1(siglim(il,k), 0.01) |
| 536 |
|
|
! c fac=AMIN1(((dtcrit-dtmin(il,k))/dtcrit),1.0) |
| 537 |
|
|
fac = 1. |
| 538 |
|
✗ |
wlim(il, k) = fac*sqrt(cape(il)) |
| 539 |
|
✗ |
amu = siglim(il, k)*wlim(il, k) |
| 540 |
|
|
!! rhodp(il,k) = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) !cor jyg : computed earlier |
| 541 |
|
✗ |
mlim(il, k) = amu*rhodp(il,k) |
| 542 |
|
|
! print*, 'siglim ', k,siglim(1,k) |
| 543 |
|
|
END IF |
| 544 |
|
|
|
| 545 |
|
|
END DO |
| 546 |
|
|
END DO |
| 547 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 600' |
| 548 |
|
|
|
| 549 |
|
✗ |
DO il = 1, ncum |
| 550 |
|
|
! IM beg |
| 551 |
|
✗ |
IF (prt_level>=20) THEN |
| 552 |
|
✗ |
PRINT *, 'cv3p2_closure il icb mlim ph ph+1 ph+2', il, icb(il), & |
| 553 |
|
✗ |
mlim(il, icb(il)+1), ph(il, icb(il)), ph(il, icb(il)+1), & |
| 554 |
|
✗ |
ph(il, icb(il)+2) |
| 555 |
|
|
END IF |
| 556 |
|
|
|
| 557 |
|
✗ |
IF (icb(il)+1<=inb(il)) THEN |
| 558 |
|
|
! IM end |
| 559 |
|
|
mlim(il, icb(il)) = 0.5*mlim(il,icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
| 560 |
|
✗ |
(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
| 561 |
|
|
! IM beg |
| 562 |
|
|
END IF !(icb(il.le.inb(il))) then |
| 563 |
|
|
! IM end |
| 564 |
|
|
END DO |
| 565 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 700' |
| 566 |
|
|
|
| 567 |
|
|
! |
| 568 |
|
|
! ------------------------------------------------------------------------ |
| 569 |
|
|
! c Compute Cloud base mass flux given by Cape closure (cbmflim = cbmf of |
| 570 |
|
|
! c elementary systems), cbmf given by Alp closure (cbmfalp), cbmf given by Alp |
| 571 |
|
|
! c closure with an upper bound imposed (cbmfalpb) and cbmf resulting from |
| 572 |
|
|
! c time integration (cbmflast). |
| 573 |
|
|
! ------------------------------------------------------------------------ |
| 574 |
|
|
|
| 575 |
|
✗ |
DO il = 1, ncum |
| 576 |
|
✗ |
cbmflim(il) = 0. |
| 577 |
|
✗ |
cbmfalp(il) = 0. |
| 578 |
|
✗ |
cbmfalpb(il) = 0. |
| 579 |
|
✗ |
cbmflast(il) = 0. |
| 580 |
|
|
END DO |
| 581 |
|
|
|
| 582 |
|
|
! c 1. Compute cloud base mass flux of elementary system (Cbmflim) |
| 583 |
|
|
|
| 584 |
|
✗ |
DO k = 1, nl |
| 585 |
|
✗ |
DO il = 1, ncum |
| 586 |
|
|
! old IF (k .ge. icb(il) .and. k .le. inb(il)) THEN |
| 587 |
|
|
! IM IF (k .ge. icb(il)+1 .and. k .le. inb(il)) THEN |
| 588 |
|
|
IF (k>=icb(il) .AND. k<=inb(il) & !cor jyg |
| 589 |
|
✗ |
.AND. icb(il)+1<=inb(il)) THEN !cor jyg |
| 590 |
|
✗ |
cbmflim(il) = cbmflim(il) + mlim(il, k) |
| 591 |
|
|
END IF |
| 592 |
|
|
END DO |
| 593 |
|
|
END DO |
| 594 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure after cbmflim: cbmflim ', cbmflim(igout) |
| 595 |
|
|
|
| 596 |
|
|
! 1.5 Compute cloud base mass flux given by Alp closure (Cbmfalp), maximum |
| 597 |
|
|
! allowed mass flux (Cbmfmax) and bounded mass flux (Cbmfalpb) |
| 598 |
|
|
! Cbmfalpb is set to zero if Cbmflim (the mass flux of elementary cloud) |
| 599 |
|
|
! is exceedingly small. |
| 600 |
|
|
|
| 601 |
|
✗ |
DO il = 1, ncum |
| 602 |
|
✗ |
wb2(il) = sqrt(2.*max(ale(il)+cin(il),0.)) |
| 603 |
|
|
END DO |
| 604 |
|
|
|
| 605 |
|
✗ |
DO il = 1, ncum |
| 606 |
|
✗ |
IF (plfc(il)<100.) THEN |
| 607 |
|
|
! This is an irealistic value for plfc => no calculation of wbeff |
| 608 |
|
✗ |
wbeff(il) = 100.1 |
| 609 |
|
|
ELSE |
| 610 |
|
|
! Calculate wbeff |
| 611 |
|
✗ |
IF (NINT(flag_wb)==0) THEN |
| 612 |
|
✗ |
wbeff(il) = wbmax |
| 613 |
|
✗ |
ELSE IF (NINT(flag_wb)==1) THEN |
| 614 |
|
✗ |
wbeff(il) = wbmax/(1.+500./(ph(il,1)-plfc(il))) |
| 615 |
|
✗ |
ELSE IF (NINT(flag_wb)==2) THEN |
| 616 |
|
✗ |
wbeff(il) = wbmax*(0.01*(ph(il,1)-plfc(il)))**2 |
| 617 |
|
|
END IF |
| 618 |
|
|
END IF |
| 619 |
|
|
END DO |
| 620 |
|
|
|
| 621 |
|
|
!CR:Compute k at plfc |
| 622 |
|
✗ |
DO il=1,ncum |
| 623 |
|
✗ |
klfc(il)=nl |
| 624 |
|
|
ENDDO |
| 625 |
|
✗ |
DO k=1,nl |
| 626 |
|
✗ |
DO il=1,ncum |
| 627 |
|
✗ |
if ((plfc(il).lt.ph(il,k)).and.(plfc(il).ge.ph(il,k+1))) then |
| 628 |
|
✗ |
klfc(il)=k |
| 629 |
|
|
endif |
| 630 |
|
|
ENDDO |
| 631 |
|
|
ENDDO |
| 632 |
|
|
!RC |
| 633 |
|
|
|
| 634 |
|
✗ |
DO il = 1, ncum |
| 635 |
|
|
! jyg Modification du coef de wb*wb pour conformite avec papier Wake |
| 636 |
|
|
! c cbmfalp(il) = alp2(il)/(0.5*wb*wb-Cin(il)) |
| 637 |
|
✗ |
cbmfalp(il) = alp2(il)/(2.*wbeff(il)*wbeff(il)-cin(il)) |
| 638 |
|
|
!CR: Add large-scale component to the mass-flux |
| 639 |
|
|
!encore connu sous le nom "Experience du tube de dentifrice" |
| 640 |
|
✗ |
if ((coef_clos_ls.gt.0.).and.(plfc(il).gt.0.)) then |
| 641 |
|
✗ |
cbmfalp(il) = cbmfalp(il) - coef_clos_ls*min(0.,1./RG*omega(il,klfc(il))) |
| 642 |
|
|
endif |
| 643 |
|
|
!RC |
| 644 |
|
✗ |
IF (cbmfalp(il)==0 .AND. alp2(il)/=0.) THEN |
| 645 |
|
✗ |
WRITE (lunout, *) 'cv3p2_closure cbmfalp=0 and alp NE 0 il alp2 alp cin ' , & |
| 646 |
|
✗ |
il, alp2(il), alp(il), cin(il) |
| 647 |
|
✗ |
abort_message = '' |
| 648 |
|
✗ |
CALL abort_physic(modname, abort_message, 1) |
| 649 |
|
|
END IF |
| 650 |
|
✗ |
cbmfmax(il) = sigmax*wb2(il)*100.*p(il, icb(il))/(rrd*tv(il,icb(il))) |
| 651 |
|
|
END DO |
| 652 |
|
|
|
| 653 |
|
|
!jyg< |
| 654 |
|
✗ |
IF (OK_intermittent) THEN |
| 655 |
|
✗ |
DO il = 1, ncum |
| 656 |
|
✗ |
IF (cbmflim(il)>1.E-6) THEN |
| 657 |
|
✗ |
cbmfalpb(il) = min(cbmfalp(il), (cbmfmax(il)-beta*cbmf0(il))/(1.-beta)) |
| 658 |
|
|
! print*,'cbmfalpb',cbmfalpb(il),cbmfmax(il) |
| 659 |
|
|
END IF |
| 660 |
|
|
END DO |
| 661 |
|
|
ELSE |
| 662 |
|
|
!>jyg |
| 663 |
|
✗ |
DO il = 1, ncum |
| 664 |
|
✗ |
IF (cbmflim(il)>1.E-6) THEN |
| 665 |
|
|
! ATTENTION TEST CR |
| 666 |
|
|
! if (cbmfmax(il).lt.1.e-12) then |
| 667 |
|
✗ |
cbmfalpb(il) = min(cbmfalp(il), cbmfmax(il)) |
| 668 |
|
|
! else |
| 669 |
|
|
! cbmfalpb(il) = cbmfalp(il) |
| 670 |
|
|
! endif |
| 671 |
|
|
! print*,'cbmfalpb',cbmfalp(il),cbmfmax(il) |
| 672 |
|
|
END IF |
| 673 |
|
|
END DO |
| 674 |
|
|
ENDIF !(OK_intermittent) |
| 675 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres cbmfalpb: cbmfalpb ',cbmfalpb(igout) |
| 676 |
|
|
|
| 677 |
|
|
! c 2. Compute coefficient and apply correction |
| 678 |
|
|
|
| 679 |
|
✗ |
DO il = 1, ncum |
| 680 |
|
✗ |
coef(il) = (cbmfalpb(il)+1.E-10)/(cbmflim(il)+1.E-10) |
| 681 |
|
|
END DO |
| 682 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres coef_plantePLUS' |
| 683 |
|
|
|
| 684 |
|
✗ |
DO k = 1, nl |
| 685 |
|
✗ |
DO il = 1, ncum |
| 686 |
|
✗ |
IF (k>=icb(il)+1 .AND. k<=inb(il)) THEN |
| 687 |
|
✗ |
amu = beta*sig(il, k)*w0(il, k) + (1.-beta)*coef(il)*siglim(il, k)*wlim(il, k) |
| 688 |
|
|
w0(il, k) = wlim(il, k) |
| 689 |
|
✗ |
w0(il, k) = max(w0(il,k), 1.E-10) |
| 690 |
|
✗ |
sig(il, k) = amu/w0(il, k) |
| 691 |
|
✗ |
sig(il, k) = min(sig(il,k), 1.) |
| 692 |
|
|
! c amu = 0.5*(SIG(il,k)+sigold(il,k))*W0(il,k) |
| 693 |
|
|
!jyg m(il, k) = amu*0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
| 694 |
|
✗ |
m(il, k) = amu*rhodp(il,k) |
| 695 |
|
|
END IF |
| 696 |
|
|
END DO |
| 697 |
|
|
END DO |
| 698 |
|
|
! jyg2 |
| 699 |
|
✗ |
DO il = 1, ncum |
| 700 |
|
✗ |
w0(il, icb(il)) = 0.5*w0(il, icb(il)+1) |
| 701 |
|
|
m(il, icb(il)) = 0.5*m(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
| 702 |
|
✗ |
(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
| 703 |
|
✗ |
sig(il, icb(il)) = sig(il, icb(il)+1) |
| 704 |
|
✗ |
sig(il, icb(il)-1) = sig(il, icb(il)) |
| 705 |
|
|
END DO |
| 706 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres w0_sig_M: w0, sig ', & |
| 707 |
|
✗ |
(k,w0(igout,k),sig(igout,k), k=icb(igout),inb(igout)) |
| 708 |
|
|
|
| 709 |
|
|
!CR: new erosion of adiabatic ascent: modification of m |
| 710 |
|
|
!computation of the sum of ascending fluxes |
| 711 |
|
✗ |
IF (iflag_mix_adiab.eq.1) THEN |
| 712 |
|
|
|
| 713 |
|
|
!Verification sum(me)=sum(m) |
| 714 |
|
✗ |
DO k = 1,nd |
| 715 |
|
✗ |
DO il = 1, ncum |
| 716 |
|
✗ |
md(il,k)=0. |
| 717 |
|
✗ |
med(il,k)=0. |
| 718 |
|
|
ENDDO |
| 719 |
|
|
ENDDO |
| 720 |
|
|
|
| 721 |
|
✗ |
DO k = nl,1,-1 |
| 722 |
|
✗ |
DO il = 1, ncum |
| 723 |
|
✗ |
md(il,k)=md(il,k+1)+m(il,k+1) |
| 724 |
|
|
ENDDO |
| 725 |
|
|
ENDDO |
| 726 |
|
|
|
| 727 |
|
✗ |
DO k = nl,1,-1 |
| 728 |
|
✗ |
DO il = 1, ncum |
| 729 |
|
✗ |
IF ((k>=(icb(il))) .AND. (k<=inb(il))) THEN |
| 730 |
|
✗ |
mad(il,k)=mad(il,k+1)+m(il,k+1) |
| 731 |
|
|
ENDIF |
| 732 |
|
|
! print*,"mad",il,k,mad(il,k) |
| 733 |
|
|
ENDDO |
| 734 |
|
|
ENDDO |
| 735 |
|
|
|
| 736 |
|
|
!CR: erosion of each adiabatic ascent during its ascent |
| 737 |
|
|
|
| 738 |
|
|
!Computation of erosion coefficient beta_coef |
| 739 |
|
✗ |
DO k = 1, nl |
| 740 |
|
✗ |
DO il = 1, ncum |
| 741 |
|
✗ |
IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (mlim(il,k).gt.0.)) THEN |
| 742 |
|
|
! print*,"beta_coef",il,k,icb(il),inb(il),buoy(il,k),tv(il,k),wlim(il,k),wlim(il,k+1) |
| 743 |
|
✗ |
beta_coef(il,k)=RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2 |
| 744 |
|
|
ELSE |
| 745 |
|
✗ |
beta_coef(il,k)=0. |
| 746 |
|
|
ENDIF |
| 747 |
|
|
ENDDO |
| 748 |
|
|
ENDDO |
| 749 |
|
|
|
| 750 |
|
|
! print*,"apres beta_coef" |
| 751 |
|
|
|
| 752 |
|
✗ |
DO k = 1, nl |
| 753 |
|
✗ |
DO il = 1, ncum |
| 754 |
|
|
|
| 755 |
|
✗ |
IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
| 756 |
|
|
|
| 757 |
|
|
! print*,"dz",il,k,tv(il, k-1) |
| 758 |
|
✗ |
dz = (ph(il,k-1)-ph(il,k))/(p(il, k-1)/(rrd*tv(il, k-1))*RG) |
| 759 |
|
✗ |
betalim(il,k)=betalim(il,k-1)*exp(-1.*beta_coef(il,k-1)*dz) |
| 760 |
|
|
! betalim(il,k)=betalim(il,k-1)*exp(-RG*coef_peel*buoy(il,k-1)/tv(il,k-1)/5.**2*dz) |
| 761 |
|
|
! print*,"me",il,k,mlim(il,k),buoy(il,k),wlim(il,k),mad(il,k) |
| 762 |
|
✗ |
dz = (ph(il,k)-ph(il,k+1))/(p(il, k)/(rrd*tv(il, k))*RG) |
| 763 |
|
|
! me(il,k)=betalim(il,k)*(m(il,k)+RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz*mad(il,k)) |
| 764 |
|
✗ |
me(il,k)=betalim(il,k)*(m(il,k)+beta_coef(il,k)*dz*mad(il,k)) |
| 765 |
|
|
! print*,"B/w2",il,k,RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz |
| 766 |
|
|
|
| 767 |
|
|
END IF |
| 768 |
|
|
|
| 769 |
|
|
!Modification of m |
| 770 |
|
✗ |
m(il,k)=me(il,k) |
| 771 |
|
|
END DO |
| 772 |
|
|
END DO |
| 773 |
|
|
|
| 774 |
|
|
! DO il = 1, ncum |
| 775 |
|
|
! dz = (ph(il,icb(il))-ph(il,icb(il)+1))/(p(il, icb(il))/(rrd*tv(il, icb(il)))*RG) |
| 776 |
|
|
! m(il,icb(il))=m(il,icb(il))+RG*coef_peel*buoy(il,icb(il))/tv(il,icb(il)) & |
| 777 |
|
|
! /((wlim(il,icb(il))+wlim(il,icb(il)+1))/2.)**2*dz*mad(il,icb(il)) |
| 778 |
|
|
! print*,"wlim(icb)",icb(il),wlim(il,icb(il)),m(il,icb(il)) |
| 779 |
|
|
! ENDDO |
| 780 |
|
|
|
| 781 |
|
|
!Verification sum(me)=sum(m) |
| 782 |
|
✗ |
DO k = nl,1,-1 |
| 783 |
|
✗ |
DO il = 1, ncum |
| 784 |
|
✗ |
med(il,k)=med(il,k+1)+m(il,k+1) |
| 785 |
|
|
! print*,"somme(me),somme(m)",il,k,icb(il),med(il,k),md(il,k),me(il,k),m(il,k),wlim(il,k) |
| 786 |
|
|
ENDDO |
| 787 |
|
|
ENDDO |
| 788 |
|
|
|
| 789 |
|
|
|
| 790 |
|
|
ENDIF !(iflag_mix_adiab) |
| 791 |
|
|
!RC |
| 792 |
|
|
|
| 793 |
|
|
! c 3. Compute final cloud base mass flux; |
| 794 |
|
|
! c set iflag to 3 if cloud base mass flux is exceedingly small and is |
| 795 |
|
|
! c decreasing (i.e. if the final mass flux (cbmflast) is greater than |
| 796 |
|
|
! c the target mass flux (cbmfalpb)). |
| 797 |
|
|
! c If(ok_convstop): set iflag to 4 if no positive buoyancy has been met |
| 798 |
|
|
|
| 799 |
|
|
!jyg DO il = 1, ncum |
| 800 |
|
|
!jyg cbmflast(il) = 0. |
| 801 |
|
|
!jyg END DO |
| 802 |
|
|
|
| 803 |
|
✗ |
DO k = 1, nl |
| 804 |
|
✗ |
DO il = 1, ncum |
| 805 |
|
✗ |
IF (k>=icb(il) .AND. k<=inb(il)) THEN |
| 806 |
|
|
!IMpropo?? IF ((k.ge.(icb(il)+1)).and.(k.le.inb(il))) THEN |
| 807 |
|
✗ |
cbmflast(il) = cbmflast(il) + m(il, k) |
| 808 |
|
|
END IF |
| 809 |
|
|
END DO |
| 810 |
|
|
END DO |
| 811 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres cbmflast: cbmflast ',cbmflast(igout) |
| 812 |
|
|
|
| 813 |
|
✗ |
DO il = 1, ncum |
| 814 |
|
✗ |
IF (cbmflast(il)<1.E-6 .AND. cbmflast(il)>=cbmfalpb(il)) THEN |
| 815 |
|
✗ |
iflag(il) = 3 |
| 816 |
|
|
END IF |
| 817 |
|
|
END DO |
| 818 |
|
|
|
| 819 |
|
|
!jyg< |
| 820 |
|
✗ |
IF (ok_convstop) THEN |
| 821 |
|
✗ |
DO il = 1, ncum |
| 822 |
|
✗ |
IF (dtminmax(il) .LE. 0.) THEN |
| 823 |
|
✗ |
iflag(il) = 4 |
| 824 |
|
|
END IF |
| 825 |
|
|
END DO |
| 826 |
|
|
ELSE |
| 827 |
|
|
!>jyg |
| 828 |
|
✗ |
DO k = 1, nl |
| 829 |
|
✗ |
DO il = 1, ncum |
| 830 |
|
✗ |
IF (iflag(il)>=3) THEN |
| 831 |
|
✗ |
m(il, k) = 0. |
| 832 |
|
✗ |
sig(il, k) = 0. |
| 833 |
|
✗ |
w0(il, k) = 0. |
| 834 |
|
|
END IF |
| 835 |
|
|
END DO |
| 836 |
|
|
END DO |
| 837 |
|
|
ENDIF ! (ok_convstop) |
| 838 |
|
|
! |
| 839 |
|
✗ |
IF (prt_level >= 10) THEN |
| 840 |
|
✗ |
print *,'cv3p2_closure: iflag ',iflag(igout) |
| 841 |
|
|
ENDIF |
| 842 |
|
|
! |
| 843 |
|
|
|
| 844 |
|
|
! c 4. Introduce a correcting factor for coef, in order to obtain an |
| 845 |
|
|
! effective |
| 846 |
|
|
! c sigdz larger in the present case (using cv3p2_closure) than in the |
| 847 |
|
|
! old |
| 848 |
|
|
! c closure (using cv3_closure). |
| 849 |
|
|
IF (1==0) THEN |
| 850 |
|
|
DO il = 1, ncum |
| 851 |
|
|
! c coef(il) = 2.*coef(il) |
| 852 |
|
|
coef(il) = 5.*coef(il) |
| 853 |
|
|
END DO |
| 854 |
|
|
! version CVS du ..2008 |
| 855 |
|
|
ELSE |
| 856 |
|
✗ |
IF (iflag_cvl_sigd==0) THEN |
| 857 |
|
|
! test pour verifier qu on fait la meme chose qu avant: sid constant |
| 858 |
|
✗ |
coef(1:ncum) = 1. |
| 859 |
|
|
ELSE |
| 860 |
|
✗ |
coef(1:ncum) = min(2.*coef(1:ncum), 5.) |
| 861 |
|
✗ |
coef(1:ncum) = max(2.*coef(1:ncum), 0.2) |
| 862 |
|
|
END IF |
| 863 |
|
|
END IF |
| 864 |
|
|
|
| 865 |
|
✗ |
IF (prt_level>=20) PRINT *, 'cv3p2_closure FIN' |
| 866 |
|
✗ |
RETURN |
| 867 |
|
|
END SUBROUTINE cv3p2_closure |
| 868 |
|
|
|
| 869 |
|
|
|
| 870 |
|
|
|