| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Id $ |
| 3 |
|
|
! |
| 4 |
|
✗ |
SUBROUTINE cvltr_scav(pdtime, da, phi,phi2,d1a,dam, mpIN,epIN, & |
| 5 |
|
|
sigd,sij,wght_cvfd,clw,elij,epmlmMm,eplaMm, & |
| 6 |
|
|
pmflxrIN,pmflxsIN,ev,te,wdtrainA,wdtrainM, & |
| 7 |
|
|
paprs,it,tr,upd,dnd,inb,icb, & |
| 8 |
|
|
ccntrAA_3d,ccntrENV_3d,coefcoli_3d, & |
| 9 |
|
|
dtrcv,trsptd,dtrSscav,dtrsat,dtrUscav,qDi,qPr, & |
| 10 |
|
✗ |
qPa,qMel,qTrdi,dtrcvMA,Mint, & |
| 11 |
|
✗ |
zmfd1a,zmfphi2,zmfdam) |
| 12 |
|
|
! |
| 13 |
|
|
USE IOIPSL |
| 14 |
|
|
USE dimphy |
| 15 |
|
|
USE infotrac_phy, ONLY : nbtr,tname |
| 16 |
|
|
IMPLICIT NONE |
| 17 |
|
|
!===================================================================== |
| 18 |
|
|
! Objet : convection des traceurs / KE |
| 19 |
|
|
! Auteurs: M-A Filiberti and J-Y Grandpeix |
| 20 |
|
|
! modifiee par R Pilon : lessivage des traceurs / KE |
| 21 |
|
|
!===================================================================== |
| 22 |
|
|
|
| 23 |
|
|
include "YOMCST.h" |
| 24 |
|
|
include "YOECUMF.h" |
| 25 |
|
|
include "conema3.h" |
| 26 |
|
|
include "chem.h" |
| 27 |
|
|
|
| 28 |
|
|
! Entree |
| 29 |
|
|
REAL,INTENT(IN) :: pdtime |
| 30 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: da |
| 31 |
|
|
REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: phi |
| 32 |
|
|
! RomP |
| 33 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: d1a,dam ! matrices pour simplifier |
| 34 |
|
|
REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: phi2 ! l'ecriture des tendances |
| 35 |
|
|
! |
| 36 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: mpIN |
| 37 |
|
|
REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs ! pression aux 1/2 couches (bas en haut) |
| 38 |
|
|
INTEGER,INTENT(IN) :: it ! numero du traceur |
| 39 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(IN) :: tr ! q de traceur (bas en haut) |
| 40 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: upd ! saturated updraft mass flux |
| 41 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: dnd ! saturated downdraft mass flux |
| 42 |
|
|
! |
| 43 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: wdtrainA ! masses precipitantes de l'asc adiab |
| 44 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: wdtrainM ! masses precipitantes des melanges |
| 45 |
|
|
!JE REAL,DIMENSION(klon,klev),INTENT(IN) :: pmflxrIN ! vprecip: eau |
| 46 |
|
|
REAL,DIMENSION(klon,klev+1),INTENT(IN) :: pmflxrIN ! vprecip: eau |
| 47 |
|
|
!JE REAL,DIMENSION(klon,klev),INTENT(IN) :: pmflxsIN ! vprecip: neige |
| 48 |
|
|
REAL,DIMENSION(klon,klev+1),INTENT(IN) :: pmflxsIN ! vprecip: neige |
| 49 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: ev ! evaporation cv30_routine |
| 50 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: epIN |
| 51 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: te |
| 52 |
|
|
REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: sij ! fraction dair de lenv |
| 53 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: wght_cvfd ! weights of the layers feeding convection |
| 54 |
|
|
REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: elij ! contenu en eau condensée spécifique/conc deau condensée massique |
| 55 |
|
|
REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: epmlmMm ! eau condensee precipitee dans mel masse dair sat |
| 56 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: eplaMm ! eau condensee precipitee dans aa masse dair sat |
| 57 |
|
|
|
| 58 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: clw ! contenu en eau condensée dans lasc adiab |
| 59 |
|
|
REAL,DIMENSION(klon),INTENT(IN) :: sigd |
| 60 |
|
|
INTEGER,DIMENSION(klon),INTENT(IN) :: icb,inb |
| 61 |
|
|
! |
| 62 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: ccntrAA_3d |
| 63 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: ccntrENV_3d |
| 64 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: coefcoli_3d |
| 65 |
|
|
! |
| 66 |
|
|
! Sortie |
| 67 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: dtrcv ! tendance totale (bas en haut) |
| 68 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: dtrcvMA ! M-A Filiberti |
| 69 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: trsptd ! tendance du transport |
| 70 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: dtrSscav ! tendance du lessivage courant sat |
| 71 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: dtrsat ! tendance trsp+sat scav |
| 72 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: dtrUscav ! tendance du lessivage courant unsat |
| 73 |
|
|
! |
| 74 |
|
|
! Variables locales |
| 75 |
|
|
INTEGER :: i,j,k |
| 76 |
|
✗ |
REAL,DIMENSION(klon,klev) :: dxpres ! difference de pression entre niveau (j+1) et (j) |
| 77 |
|
|
REAL :: pdtimeRG ! pas de temps * gravite |
| 78 |
|
✗ |
REAL,DIMENSION(klon,nbtr) :: qfeed ! tracer concentration feeding convection |
| 79 |
|
|
! variables pour les courants satures |
| 80 |
|
✗ |
REAL,DIMENSION(klon,klev,klev) :: zmd |
| 81 |
|
✗ |
REAL,DIMENSION(klon,klev,klev) :: za |
| 82 |
|
✗ |
REAL,DIMENSION(klon,klev,nbtr) :: zmfd,zmfa |
| 83 |
|
✗ |
REAL,DIMENSION(klon,klev,nbtr) :: zmfp,zmfu |
| 84 |
|
|
|
| 85 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: zmfd1a |
| 86 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: zmfdam |
| 87 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: zmfphi2 |
| 88 |
|
|
|
| 89 |
|
|
! RomP ! les variables sont nettoyees des valeurs aberrantes |
| 90 |
|
✗ |
REAL,DIMENSION(klon,klev) :: Pa, Pm ! pluie AA et mélanges, var temporaire |
| 91 |
|
✗ |
REAL,DIMENSION(klon,klev) :: pmflxs,pmflxr ! pmflxrIN,pmflxsIN sans valeur aberante |
| 92 |
|
✗ |
REAL,DIMENSION(klon,klev) :: mp ! flux de masse |
| 93 |
|
✗ |
REAL,DIMENSION(klon,klev) :: ep ! fraction d'eau convertie en precipitation |
| 94 |
|
✗ |
REAL,DIMENSION(klon,klev) :: evap ! evaporation : variable temporaire |
| 95 |
|
|
REAL,DIMENSION(klon,klev) :: rho !environmental density |
| 96 |
|
|
|
| 97 |
|
✗ |
REAL,DIMENSION(klon,klev) :: kappa ! denominateur du au calcul de la matrice |
| 98 |
|
|
! pour obtenir qd et qp |
| 99 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: qTrdi ! traceurs descente air insature transport MA |
| 100 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: qDi ! traceurs descente insaturees |
| 101 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: qPr ! traceurs colonne precipitante |
| 102 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: qPa ! traceurs dans les precip issues lasc. adiab. |
| 103 |
|
|
REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: qMel ! traceurs dans les precip issues des melanges |
| 104 |
|
✗ |
REAL,DIMENSION(klon,klev,nbtr) :: qMeltmp ! variable temporaire |
| 105 |
|
✗ |
REAL,DIMENSION(klon,klev,nbtr) :: qpmMint |
| 106 |
|
|
REAL,DIMENSION(klon,klev),INTENT(OUT) :: Mint |
| 107 |
|
|
! tendances |
| 108 |
|
|
REAL :: tdcvMA ! terme de transport de traceur (schema Marie Angele) |
| 109 |
|
|
REAL :: trsptrac ! terme de transport de traceur par l'air |
| 110 |
|
|
REAL :: scavtrac ! terme de lessivage courant sature |
| 111 |
|
|
REAL :: uscavtrac ! terme de lessivage courant insature |
| 112 |
|
|
! impaction |
| 113 |
|
|
!!! Correction apres discussion Romain P. / Olivier B. |
| 114 |
|
|
!!! REAL,PARAMETER :: rdrop=2.5e-3 ! rayon des gouttes d'eau |
| 115 |
|
|
REAL,PARAMETER :: rdrop=1.e-3 ! rayon des gouttes d'eau |
| 116 |
|
|
!!! |
| 117 |
|
✗ |
REAL,DIMENSION(klon,klev) :: imp ! coefficient d'impaction |
| 118 |
|
|
! |
| 119 |
|
✗ |
LOGICAL,DIMENSION(klon,klev) :: NO_precip |
| 120 |
|
|
! var tmp tests |
| 121 |
|
|
REAL :: conserv |
| 122 |
|
|
real :: conservMA |
| 123 |
|
|
|
| 124 |
|
|
!jyg< |
| 125 |
|
|
!! ! ====================================================== |
| 126 |
|
|
!! ! calcul de l'impaction |
| 127 |
|
|
!! ! ====================================================== |
| 128 |
|
|
!! |
| 129 |
|
|
!! ! impaction sur la surface de la colonne de la descente insaturee |
| 130 |
|
|
!! ! On prend la moyenne des precip entre le niveau i+1 et i |
| 131 |
|
|
!! ! I=3/4* (P(1+1)+P(i))/2 / (sigd*r*rho_l) |
| 132 |
|
|
!! ! 1000kg/m3= densite de l'eau |
| 133 |
|
|
!! ! 0.75e-3 = 3/4 /1000 |
| 134 |
|
|
!! ! Par la suite, I est tout le temps multiplie par sig_d pour avoir l'impaction sur la surface de la maille |
| 135 |
|
|
!!!! ! on le neglige ici pour simplifier le code |
| 136 |
|
|
!! |
| 137 |
|
|
!! DO j=1,klev-1 |
| 138 |
|
|
!! DO i=1,klon |
| 139 |
|
|
!! imp(i,j) = coefcoli_3d(i,j)*0.75e-3/rdrop *& |
| 140 |
|
|
!! 0.5*(pmflxr(i,j+1)+pmflxs(i,j+1)+pmflxr(i,j)+pmflxs(i,j)) |
| 141 |
|
|
!! ENDDO |
| 142 |
|
|
!! ENDDO |
| 143 |
|
|
!>jyg |
| 144 |
|
|
! |
| 145 |
|
|
! initialisation pour flux de traceurs, td et autre |
| 146 |
|
|
! |
| 147 |
|
|
trsptrac = 0. |
| 148 |
|
|
scavtrac = 0. |
| 149 |
|
|
uscavtrac = 0. |
| 150 |
|
✗ |
qfeed(:,it) = 0. !RL |
| 151 |
|
✗ |
DO j=1,klev |
| 152 |
|
✗ |
DO i=1,klon |
| 153 |
|
✗ |
zmfd(i,j,it)=0. |
| 154 |
|
✗ |
zmfa(i,j,it)=0. |
| 155 |
|
✗ |
zmfu(i,j,it)=0. |
| 156 |
|
✗ |
zmfp(i,j,it)=0. |
| 157 |
|
✗ |
zmfphi2(i,j,it)=0. |
| 158 |
|
✗ |
zmfd1a(i,j,it)=0. |
| 159 |
|
✗ |
zmfdam(i,j,it)=0. |
| 160 |
|
✗ |
qDi(i,j,it)=0. |
| 161 |
|
✗ |
qPr(i,j,it)=0. |
| 162 |
|
✗ |
qPa(i,j,it)=0. |
| 163 |
|
✗ |
qMel(i,j,it)=0. |
| 164 |
|
✗ |
qMeltmp(i,j,it)=0. |
| 165 |
|
✗ |
qTrdi(i,j,it)=0. |
| 166 |
|
✗ |
kappa(i,j)=0. |
| 167 |
|
✗ |
trsptd(i,j,it)=0. |
| 168 |
|
✗ |
dtrsat(i,j,it)=0. |
| 169 |
|
✗ |
dtrSscav(i,j,it)=0. |
| 170 |
|
✗ |
dtrUscav(i,j,it)=0. |
| 171 |
|
✗ |
dtrcv(i,j,it)=0. |
| 172 |
|
✗ |
dtrcvMA(i,j,it)=0. |
| 173 |
|
✗ |
evap(i,j)=0. |
| 174 |
|
✗ |
dxpres(i,j)=0. |
| 175 |
|
✗ |
qpmMint(i,j,it)=0. |
| 176 |
|
✗ |
Mint(i,j)=0. |
| 177 |
|
|
END DO |
| 178 |
|
|
END DO |
| 179 |
|
|
|
| 180 |
|
|
! suppression des valeurs très faibles (~1e-320) |
| 181 |
|
|
! multiplication de levaporation pour lavoir par unite de temps |
| 182 |
|
|
! et par unite de surface de la maille |
| 183 |
|
|
! -> cv30_unsat : evap : masse evaporee/s/(m2 de la descente) |
| 184 |
|
✗ |
DO j=1,klev |
| 185 |
|
✗ |
DO i=1,klon |
| 186 |
|
✗ |
IF(ev(i,j).lt.1.e-16) THEN |
| 187 |
|
✗ |
evap(i,j)=0. |
| 188 |
|
|
ELSE |
| 189 |
|
✗ |
evap(i,j)=ev(i,j)*sigd(i) |
| 190 |
|
|
ENDIF |
| 191 |
|
|
END DO |
| 192 |
|
|
END DO |
| 193 |
|
|
|
| 194 |
|
✗ |
DO j=1,klev |
| 195 |
|
✗ |
DO i=1,klon |
| 196 |
|
✗ |
IF(j.LT.klev) THEN |
| 197 |
|
✗ |
IF(epIN(i,j).LT.1.e-32) THEN |
| 198 |
|
✗ |
ep(i,j)=0. |
| 199 |
|
|
ELSE |
| 200 |
|
✗ |
ep(i,j)=epIN(i,j) |
| 201 |
|
|
ENDIF |
| 202 |
|
|
ELSE |
| 203 |
|
✗ |
ep(i,j)=epmax |
| 204 |
|
|
ENDIF |
| 205 |
|
✗ |
IF(mpIN(i,j).LT.1.e-32) THEN |
| 206 |
|
✗ |
mp(i,j)=0. |
| 207 |
|
|
ELSE |
| 208 |
|
✗ |
mp(i,j)=mpIN(i,j) |
| 209 |
|
|
ENDIF |
| 210 |
|
✗ |
IF(pmflxsIN(i,j).LT.1.e-32) THEN |
| 211 |
|
✗ |
pmflxs(i,j)=0. |
| 212 |
|
|
ELSE |
| 213 |
|
✗ |
pmflxs(i,j)=pmflxsIN(i,j) |
| 214 |
|
|
ENDIF |
| 215 |
|
✗ |
IF(pmflxrIN(i,j).LT.1.e-32) THEN |
| 216 |
|
✗ |
pmflxr(i,j)=0. |
| 217 |
|
|
ELSE |
| 218 |
|
✗ |
pmflxr(i,j)=pmflxrIN(i,j) |
| 219 |
|
|
ENDIF |
| 220 |
|
✗ |
IF(wdtrainA(i,j).LT.1.e-32) THEN |
| 221 |
|
✗ |
Pa(i,j)=0. |
| 222 |
|
|
ELSE |
| 223 |
|
✗ |
Pa(i,j)=wdtrainA(i,j) |
| 224 |
|
|
ENDIF |
| 225 |
|
✗ |
IF(wdtrainM(i,j).LT.1.e-32) THEN |
| 226 |
|
✗ |
Pm(i,j)=0. |
| 227 |
|
|
ELSE |
| 228 |
|
✗ |
Pm(i,j)=wdtrainM(i,j) |
| 229 |
|
|
ENDIF |
| 230 |
|
|
END DO |
| 231 |
|
|
END DO |
| 232 |
|
|
|
| 233 |
|
|
!========================================== |
| 234 |
|
✗ |
DO j = klev-1,1,-1 |
| 235 |
|
✗ |
DO i = 1,klon |
| 236 |
|
|
NO_precip(i,j) = (pmflxr(i,j+1)+pmflxs(i,j+1)).LT.1.e-10& |
| 237 |
|
✗ |
.AND.Pa(i,j).LT.1.e-10.AND.Pm(i,j).LT.1.e-10 |
| 238 |
|
|
END DO |
| 239 |
|
|
END DO |
| 240 |
|
|
|
| 241 |
|
|
!jyg< |
| 242 |
|
|
! ====================================================== |
| 243 |
|
|
! calcul de l'impaction |
| 244 |
|
|
! ====================================================== |
| 245 |
|
|
|
| 246 |
|
|
! impaction sur la surface de la colonne de la descente insaturee |
| 247 |
|
|
! On prend la moyenne des precip entre le niveau i+1 et i |
| 248 |
|
|
! I=3/4* (P(1+1)+P(i))/2 / (sigd*r*rho_l) |
| 249 |
|
|
! 1000kg/m3= densite de l'eau |
| 250 |
|
|
! 0.75e-3 = 3/4 /1000 |
| 251 |
|
|
! Par la suite, I est tout le temps multiplie par sig_d pour avoir l'impaction sur la surface de la maille |
| 252 |
|
|
! on le neglige ici pour simplifier le code |
| 253 |
|
|
|
| 254 |
|
✗ |
DO j=1,klev-1 |
| 255 |
|
✗ |
DO i=1,klon |
| 256 |
|
|
imp(i,j) = coefcoli_3d(i,j)*0.75e-3/rdrop *& |
| 257 |
|
✗ |
0.5*(pmflxr(i,j+1)+pmflxs(i,j+1)+pmflxr(i,j)+pmflxs(i,j)) |
| 258 |
|
|
ENDDO |
| 259 |
|
|
ENDDO |
| 260 |
|
|
!>jyg |
| 261 |
|
|
! ========================================= |
| 262 |
|
|
! calcul des tendances liees au downdraft |
| 263 |
|
|
! ========================================= |
| 264 |
|
|
!cdir collapse |
| 265 |
|
✗ |
DO k=1,klev |
| 266 |
|
✗ |
DO j=1,klev |
| 267 |
|
✗ |
DO i=1,klon |
| 268 |
|
✗ |
zmd(i,j,k)=0. |
| 269 |
|
✗ |
za (i,j,k)=0. |
| 270 |
|
|
END DO |
| 271 |
|
|
END DO |
| 272 |
|
|
END DO |
| 273 |
|
|
! calcul de la matrice d echange |
| 274 |
|
|
! matrice de distribution de la masse entrainee en k |
| 275 |
|
|
! commmentaire RomP : mp > 0 |
| 276 |
|
✗ |
DO k=1,klev-1 |
| 277 |
|
✗ |
DO i=1,klon |
| 278 |
|
✗ |
zmd(i,k,k)=max(0.,mp(i,k)-mp(i,k+1)) ! ~ mk(k) |
| 279 |
|
|
END DO |
| 280 |
|
|
END DO |
| 281 |
|
✗ |
DO k=2,klev |
| 282 |
|
✗ |
DO j=k-1,1,-1 |
| 283 |
|
✗ |
DO i=1,klon |
| 284 |
|
✗ |
IF(mp(i,j+1).GT.1.e-10) THEN |
| 285 |
|
✗ |
zmd(i,j,k)=zmd(i,j+1,k)*min(1.,mp(i,j)/mp(i,j+1)) !det ~ mk(j)=mk(j+1)*mp(i,j)/mp(i,j+1) |
| 286 |
|
|
ENDIF |
| 287 |
|
|
END DO |
| 288 |
|
|
END DO |
| 289 |
|
|
END DO |
| 290 |
|
✗ |
DO k=1,klev |
| 291 |
|
✗ |
DO j=1,klev-1 |
| 292 |
|
✗ |
DO i=1,klon |
| 293 |
|
✗ |
za(i,j,k)=max(0.,zmd(i,j+1,k)-zmd(i,j,k)) |
| 294 |
|
|
END DO |
| 295 |
|
|
END DO |
| 296 |
|
|
END DO |
| 297 |
|
|
!!!!! quantite de traceur dans la descente d'air insaturee : 4 juin 2012 |
| 298 |
|
✗ |
DO k=1,klev |
| 299 |
|
✗ |
DO j=1,klev-1 |
| 300 |
|
✗ |
DO i=1,klon |
| 301 |
|
✗ |
IF(mp(i,j+1).GT.1.e-10) THEN |
| 302 |
|
✗ |
qTrdi(i,j+1,it)=qTrdi(i,j+1,it)+(zmd(i,j+1,k)/mp(i,j+1))*tr(i,k,it) |
| 303 |
|
|
ELSE |
| 304 |
|
✗ |
qTrdi(i,j,it)=0.!tr(i,j,it) |
| 305 |
|
|
ENDIF |
| 306 |
|
|
ENDDO |
| 307 |
|
|
ENDDO |
| 308 |
|
|
ENDDO |
| 309 |
|
|
!!!!! |
| 310 |
|
|
! |
| 311 |
|
|
! rajout du terme lie a l ascendance induite |
| 312 |
|
|
! |
| 313 |
|
✗ |
DO j=2,klev |
| 314 |
|
✗ |
DO i=1,klon |
| 315 |
|
✗ |
za(i,j,j-1)=za(i,j,j-1)+mp(i,j) |
| 316 |
|
|
END DO |
| 317 |
|
|
END DO |
| 318 |
|
|
! |
| 319 |
|
|
! tendance courants insatures ! sans lessivage ancien schema |
| 320 |
|
|
! |
| 321 |
|
✗ |
DO k=1,klev |
| 322 |
|
✗ |
DO j=1,klev |
| 323 |
|
✗ |
DO i=1,klon |
| 324 |
|
✗ |
zmfd(i,j,it)=zmfd(i,j,it)+za(i,j,k)*(tr(i,k,it)-tr(i,j,it)) |
| 325 |
|
|
END DO |
| 326 |
|
|
END DO |
| 327 |
|
|
END DO |
| 328 |
|
|
! |
| 329 |
|
|
! ========================================= |
| 330 |
|
|
! calcul des tendances liees aux courants satures j <-> z ; k <-> z' |
| 331 |
|
|
! ========================================= |
| 332 |
|
|
!RL |
| 333 |
|
|
! Feeding concentrations |
| 334 |
|
✗ |
DO j=1,klev |
| 335 |
|
✗ |
DO i=1,klon |
| 336 |
|
✗ |
qfeed(i,it)=qfeed(i,it)+wght_cvfd(i,j)*tr(i,j,it) |
| 337 |
|
|
END DO |
| 338 |
|
|
END DO |
| 339 |
|
|
!RL |
| 340 |
|
|
! |
| 341 |
|
✗ |
DO j=1,klev |
| 342 |
|
✗ |
DO i=1,klon |
| 343 |
|
|
!RL |
| 344 |
|
|
!! zmfa(i,j,it)=da(i,j)*(tr(i,1,it)-tr(i,j,it)) ! da |
| 345 |
|
✗ |
zmfa(i,j,it)=da(i,j)*(qfeed(i,it)-tr(i,j,it)) ! da |
| 346 |
|
|
!RL |
| 347 |
|
|
END DO |
| 348 |
|
|
END DO |
| 349 |
|
|
! |
| 350 |
|
✗ |
DO k=1,klev |
| 351 |
|
✗ |
DO j=1,klev |
| 352 |
|
✗ |
DO i=1,klon |
| 353 |
|
✗ |
zmfp(i,j,it)=zmfp(i,j,it)+phi(i,j,k)*(tr(i,k,it)-tr(i,j,it)) ! phi |
| 354 |
|
|
END DO |
| 355 |
|
|
END DO |
| 356 |
|
|
END DO |
| 357 |
|
|
! RomP ajout des matrices liees au lessivage |
| 358 |
|
✗ |
DO j=1,klev |
| 359 |
|
✗ |
DO i=1,klon |
| 360 |
|
✗ |
zmfd1a(i,j,it)=d1a(i,j)*tr(i,1,it) ! da1 |
| 361 |
|
✗ |
zmfdam(i,j,it)=dam(i,j)*tr(i,1,it) ! dam |
| 362 |
|
|
END DO |
| 363 |
|
|
END DO |
| 364 |
|
✗ |
DO k=1,klev |
| 365 |
|
✗ |
DO j=1,klev |
| 366 |
|
✗ |
DO i=1,klon |
| 367 |
|
✗ |
zmfphi2(i,j,it)=zmfphi2(i,j,it)+phi2(i,j,k)*tr(i,k,it) ! psi |
| 368 |
|
|
END DO |
| 369 |
|
|
END DO |
| 370 |
|
|
END DO |
| 371 |
|
✗ |
DO j=1,klev-1 |
| 372 |
|
✗ |
DO i=1,klon |
| 373 |
|
✗ |
zmfu(i,j,it)=max(0.,upd(i,j+1)+dnd(i,j+1))*(tr(i,j+1,it)-tr(i,j,it)) |
| 374 |
|
|
END DO |
| 375 |
|
|
END DO |
| 376 |
|
✗ |
DO j=2,klev |
| 377 |
|
✗ |
DO i=1,klon |
| 378 |
|
✗ |
zmfu(i,j,it)=zmfu(i,j,it)+min(0.,upd(i,j)+dnd(i,j))*(tr(i,j,it)-tr(i,j-1,it)) |
| 379 |
|
|
END DO |
| 380 |
|
|
END DO |
| 381 |
|
|
! =================================================== |
| 382 |
|
|
! calcul des tendances liees aux courants insatures |
| 383 |
|
|
! =================================================== |
| 384 |
|
|
! pression |
| 385 |
|
✗ |
DO k=1, klev |
| 386 |
|
✗ |
DO i=1, klon |
| 387 |
|
✗ |
dxpres(i,k)=paprs(i,k)-paprs(i,k+1) |
| 388 |
|
|
ENDDO |
| 389 |
|
|
ENDDO |
| 390 |
|
✗ |
pdtimeRG=pdtime*RG |
| 391 |
|
|
|
| 392 |
|
|
! q_pa et q_pm traceurs issues des courants satures se retrouvant dans les precipitations |
| 393 |
|
✗ |
DO j=1,klev |
| 394 |
|
✗ |
DO i=1,klon |
| 395 |
|
✗ |
IF(j.GE.icb(i).AND.j.LE.inb(i)) THEN |
| 396 |
|
✗ |
IF(clw(i,j).GT.1.e-16) THEN |
| 397 |
|
|
!JE qPa(i,j,it)=ccntrAA_coef*tr(i,1,it)/clw(i,j) |
| 398 |
|
✗ |
qPa(i,j,it)=ccntrAA_3d(i,j)*tr(i,1,it)/clw(i,j) |
| 399 |
|
|
ELSE |
| 400 |
|
✗ |
qPa(i,j,it)=0. |
| 401 |
|
|
ENDIF |
| 402 |
|
|
ENDIF |
| 403 |
|
|
END DO |
| 404 |
|
|
END DO |
| 405 |
|
|
|
| 406 |
|
|
! calcul de q_pm en 2 parties : |
| 407 |
|
|
! 1) calcul de sa valeur pour un niveau z' donne |
| 408 |
|
|
! 2) integration sur la verticale sur z' |
| 409 |
|
✗ |
DO j=1,klev |
| 410 |
|
✗ |
DO k=1,j-1 |
| 411 |
|
✗ |
DO i=1,klon |
| 412 |
|
✗ |
IF(k.GE.icb(i).AND.k.LE.inb(i).AND.& |
| 413 |
|
✗ |
j.LE.inb(i)) THEN |
| 414 |
|
✗ |
IF(elij(i,k,j).GT.1.e-16) THEN |
| 415 |
|
|
!JE qMeltmp(i,j,it)=((1-ep(i,k))*ccntrAA_coef*tr(i,1,it)& |
| 416 |
|
|
!JE *(1.-sij(i,k,j)) +ccntrENV_coef& |
| 417 |
|
|
!JE *tr(i,k,it)*sij(i,k,j)) / elij(i,k,j) |
| 418 |
|
|
qMeltmp(i,j,it)=((1-ep(i,k))*ccntrAA_3d(i,k)*tr(i,1,it)& |
| 419 |
|
|
*(1.-sij(i,k,j)) +ccntrENV_3d(i,k)& |
| 420 |
|
✗ |
*tr(i,k,it)*sij(i,k,j)) / elij(i,k,j) |
| 421 |
|
|
ELSE |
| 422 |
|
✗ |
qMeltmp(i,j,it)=0. |
| 423 |
|
|
ENDIF |
| 424 |
|
✗ |
qpmMint(i,j,it)=qpmMint(i,j,it) + qMeltmp(i,j,it)*epmlmMm(i,j,k) |
| 425 |
|
✗ |
Mint(i,j)=Mint(i,j) + epmlmMm(i,j,k) |
| 426 |
|
|
ENDIF ! end if dans nuage |
| 427 |
|
|
END DO |
| 428 |
|
|
END DO |
| 429 |
|
|
END DO |
| 430 |
|
|
|
| 431 |
|
✗ |
DO j=1,klev |
| 432 |
|
✗ |
DO i=1,klon |
| 433 |
|
✗ |
IF(Mint(i,j).GT.1.e-16) THEN |
| 434 |
|
✗ |
qMel(i,j,it)=qpmMint(i,j,it)/Mint(i,j) |
| 435 |
|
|
ELSE |
| 436 |
|
✗ |
qMel(i,j,it)=0. |
| 437 |
|
|
ENDIF |
| 438 |
|
|
END DO |
| 439 |
|
|
END DO |
| 440 |
|
|
|
| 441 |
|
|
! calcul de q_d et q_p traceurs de la descente precipitante |
| 442 |
|
✗ |
DO j=klev-1,1,-1 |
| 443 |
|
✗ |
DO i=1,klon |
| 444 |
|
✗ |
IF(mp(i,j+1).GT.mp(i,j).AND.mp(i,j+1).GT.1.e-10) THEN ! detrainement |
| 445 |
|
|
kappa(i,j)=((pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j))*& |
| 446 |
|
|
(-mp(i,j+1)-imp(i,j)/RG*dxpres(i,j))& |
| 447 |
|
✗ |
+ (imp(i,j)/RG*dxpres(i,j))*(evap(i,j)/RG*dxpres(i,j))) |
| 448 |
|
|
|
| 449 |
|
✗ |
ELSEIF(mp(i,j).GT.mp(i,j+1).AND.mp(i,j).GT.1.e-10) THEN! entrainement |
| 450 |
|
✗ |
IF(j.eq.1) THEN |
| 451 |
|
|
kappa(i,j)=((pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j))*& |
| 452 |
|
|
(-mp(i,2)-imp(i,j)/RG*dxpres(i,j))& |
| 453 |
|
✗ |
+ (imp(i,j)/RG*dxpres(i,j))*(evap(i,j)/RG*dxpres(i,j))) |
| 454 |
|
|
ELSE |
| 455 |
|
|
kappa(i,j)=((pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j))*& |
| 456 |
|
|
(-mp(i,j)-imp(i,j)/RG*dxpres(i,j))& |
| 457 |
|
✗ |
+ (imp(i,j)/RG*dxpres(i,j))*(evap(i,j)/RG*dxpres(i,j))) |
| 458 |
|
|
ENDIF |
| 459 |
|
|
ELSE |
| 460 |
|
✗ |
kappa(i,j)=1. |
| 461 |
|
|
ENDIF |
| 462 |
|
|
ENDDO |
| 463 |
|
|
ENDDO |
| 464 |
|
|
|
| 465 |
|
✗ |
DO j=klev-1,1,-1 |
| 466 |
|
✗ |
DO i=1,klon |
| 467 |
|
✗ |
IF (abs(kappa(i,j)).LT.1.e-25) THEN !si denominateur nul (il peut y avoir des mp!=0) |
| 468 |
|
✗ |
kappa(i,j)=1. |
| 469 |
|
✗ |
IF(j.eq.1) THEN |
| 470 |
|
✗ |
qDi(i,j,it)=qDi(i,j+1,it) !orig tr(i,j,it) ! mp(1)=0 donc tout vient de la couche supérieure |
| 471 |
|
✗ |
ELSEIF(mp(i,j+1).GT.mp(i,j).AND.mp(i,j+1).GT.1.e-10) THEN |
| 472 |
|
✗ |
qDi(i,j,it)=qDi(i,j+1,it) |
| 473 |
|
✗ |
ELSEIF(mp(i,j).GT.mp(i,j+1).AND.mp(i,j).GT.1.e-10) THEN! entrainement |
| 474 |
|
✗ |
qDi(i,j,it)=(-mp(i,j+1)*(qDi(i,j+1,it)-tr(i,j,it))-mp(i,j)*tr(i,j,it))/(-mp(i,j)) |
| 475 |
|
|
ELSE ! si mp (i)=0 et mp(j+1)=0 |
| 476 |
|
✗ |
qDi(i,j,it)=tr(i,j,it) ! orig 0. |
| 477 |
|
|
ENDIF |
| 478 |
|
|
|
| 479 |
|
✗ |
IF(NO_precip(i,j)) THEN |
| 480 |
|
✗ |
qPr(i,j,it)=0. |
| 481 |
|
|
ELSE |
| 482 |
|
|
qPr(i,j,it)=((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
| 483 |
|
|
Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it)& |
| 484 |
|
|
+imp(i,j)/RG*dxpres(i,j)*qDi(i,j,it))/& |
| 485 |
|
✗ |
(pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j)) |
| 486 |
|
|
ENDIF |
| 487 |
|
|
ELSE ! denominateur non nul |
| 488 |
|
✗ |
kappa(i,j)=1./kappa(i,j) |
| 489 |
|
|
! calcul de qd et qp |
| 490 |
|
|
!!jyg (20130119) correction pour le sommet du nuage |
| 491 |
|
|
!! if(j.GE.inb(i)) THEN !au-dessus du nuage, sommet inclu |
| 492 |
|
✗ |
if(j.GT.inb(i)) THEN !au-dessus du nuage |
| 493 |
|
✗ |
qDi(i,j,it)=tr(i,j,it) ! pas de descente => environnement = descente insaturee |
| 494 |
|
✗ |
qPr(i,j,it)=0. |
| 495 |
|
|
|
| 496 |
|
|
! vvv premiere couche du modele ou mp(1)=0 ! det tout le temps vvv |
| 497 |
|
✗ |
ELSEIF(j.eq.1) THEN |
| 498 |
|
✗ |
if(mp(i,2).GT.1.e-10) THEN !mp(2) non nul -> detrainement (car mp(1) = 0) !ent pas possible |
| 499 |
|
✗ |
if(NO_precip(i,j)) THEN !pas de precip en (i) |
| 500 |
|
✗ |
qDi(i,j,it)=qDi(i,j+1,it) |
| 501 |
|
✗ |
qPr(i,j,it)=0. |
| 502 |
|
|
ELSE |
| 503 |
|
|
qDi(i,j,it)=kappa(i,j)*(& |
| 504 |
|
|
(-evap(i,j)/RG*dxpres(i,j))*((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
| 505 |
|
|
Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it)) +& |
| 506 |
|
|
(pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j))*& |
| 507 |
|
✗ |
(-mp(i,j+1)*qDi(i,j+1,it))) |
| 508 |
|
|
|
| 509 |
|
|
qPr(i,j,it)=kappa(i,j)*(& |
| 510 |
|
|
(-mp(i,j+1)-imp(i,j)/RG*dxpres(i,j))*& |
| 511 |
|
|
((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
| 512 |
|
|
Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it))& |
| 513 |
|
✗ |
+(-mp(i,j+1)*qDi(i,j+1,it)) * (imp(i,j)/RG*dxpres(i,j))) |
| 514 |
|
|
ENDIF |
| 515 |
|
|
|
| 516 |
|
|
ELSE !mp(2) nul -> plus de descente insaturee -> pluie agit sur environnement |
| 517 |
|
✗ |
qDi(i,j,it)=tr(i,j,it) ! orig 0. |
| 518 |
|
✗ |
if(NO_precip(i,j)) THEN |
| 519 |
|
✗ |
qPr(i,j,it)=0. |
| 520 |
|
|
ELSE |
| 521 |
|
|
qPr(i,j,it)=((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
| 522 |
|
|
Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it)& |
| 523 |
|
|
+imp(i,j)/RG*dxpres(i,j)*tr(i,j,it))/& |
| 524 |
|
✗ |
(pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j)) |
| 525 |
|
|
ENDIF |
| 526 |
|
|
|
| 527 |
|
|
ENDIF !mp(2) nul ou non |
| 528 |
|
|
|
| 529 |
|
|
! vvv (j!=1.AND.j.LT.inb(i)) en-dessous du sommet nuage vvv |
| 530 |
|
|
ELSE |
| 531 |
|
|
!------------------------------------------------------------- detrainement |
| 532 |
|
✗ |
if(mp(i,j+1).GT.mp(i,j).AND.mp(i,j+1).GT.1.e-10) THEN !mp(i,j).GT.1.e-10) THEN |
| 533 |
|
✗ |
if(NO_precip(i,j)) THEN |
| 534 |
|
✗ |
qDi(i,j,it)=qDi(i,j+1,it) |
| 535 |
|
✗ |
qPr(i,j,it)=0. |
| 536 |
|
|
ELSE |
| 537 |
|
|
qDi(i,j,it)=kappa(i,j)*(& |
| 538 |
|
|
(-evap(i,j)/RG*dxpres(i,j))*((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
| 539 |
|
|
Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it)) +& |
| 540 |
|
|
(pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j))*& |
| 541 |
|
✗ |
(-mp(i,j+1)*qDi(i,j+1,it))) |
| 542 |
|
|
! |
| 543 |
|
|
qPr(i,j,it)=kappa(i,j)*(& |
| 544 |
|
|
(-mp(i,j+1)-imp(i,j)/RG*dxpres(i,j))*& |
| 545 |
|
|
((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
| 546 |
|
|
Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it))& |
| 547 |
|
✗ |
+(-mp(i,j+1)*qDi(i,j+1,it)) * (imp(i,j)/RG*dxpres(i,j))) |
| 548 |
|
|
ENDIF !precip |
| 549 |
|
|
!------------------------------------------------------------- entrainement |
| 550 |
|
✗ |
ELSEIF(mp(i,j).GT.mp(i,j+1).AND.mp(i,j).GT.1.e-10) THEN |
| 551 |
|
✗ |
if(NO_precip(i,j)) THEN |
| 552 |
|
✗ |
qDi(i,j,it)=(-mp(i,j+1)*(qDi(i,j+1,it)-tr(i,j,it))-mp(i,j)*tr(i,j,it))/(-mp(i,j)) |
| 553 |
|
✗ |
qPr(i,j,it)=0. |
| 554 |
|
|
ELSE |
| 555 |
|
|
qDi(i,j,it)=kappa(i,j)*(& |
| 556 |
|
|
(-evap(i,j)/RG*dxpres(i,j))*((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
| 557 |
|
|
Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it)) +& |
| 558 |
|
|
(pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j))*& |
| 559 |
|
✗ |
(-mp(i,j+1)*(qDi(i,j+1,it)-tr(i,j,it))-mp(i,j)*tr(i,j,it))) |
| 560 |
|
|
! |
| 561 |
|
|
qPr(i,j,it)=kappa(i,j)*(& |
| 562 |
|
|
(-mp(i,j)-imp(i,j)/RG*dxpres(i,j))*& |
| 563 |
|
|
((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
| 564 |
|
|
Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it))& |
| 565 |
|
|
+(-mp(i,j+1)*(qDi(i,j+1,it)-tr(i,j,it))-mp(i,j)*tr(i,j,it))*& |
| 566 |
|
✗ |
(imp(i,j)/RG*dxpres(i,j))) |
| 567 |
|
|
ENDIF !precip |
| 568 |
|
|
!------------------------------------------------------------- ENDIF ! ent/det |
| 569 |
|
|
ELSE !mp nul |
| 570 |
|
✗ |
qDi(i,j,it)=tr(i,j,it) ! orig 0. |
| 571 |
|
✗ |
if(NO_precip(i,j)) THEN |
| 572 |
|
✗ |
qPr(i,j,it)=0. |
| 573 |
|
|
ELSE |
| 574 |
|
|
qPr(i,j,it)=((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
| 575 |
|
|
Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it)& |
| 576 |
|
|
+imp(i,j)/RG*dxpres(i,j)*tr(i,j,it))/& |
| 577 |
|
✗ |
(pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j)) |
| 578 |
|
|
ENDIF |
| 579 |
|
|
ENDIF ! mp nul ou non |
| 580 |
|
|
ENDIF ! condition sur j |
| 581 |
|
|
ENDIF ! kappa |
| 582 |
|
|
ENDDO |
| 583 |
|
|
ENDDO |
| 584 |
|
|
|
| 585 |
|
|
!! print test descente insaturee |
| 586 |
|
|
! DO j=klev,1,-1 |
| 587 |
|
|
! DO i=1,klon |
| 588 |
|
|
! if(it.eq.3) THEN |
| 589 |
|
|
! write(*,'(I2,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12)') j,& |
| 590 |
|
|
!! 'zmfdam',zmfdam(i,j,it),'zmfpsi',zmfphi2(i,j,it),& |
| 591 |
|
|
! 'zmfdam+zmfpsi',zmfdam(i,j,it)+zmfphi2(i,j,it),'qpmMint',qpmMint(i,j,it),& |
| 592 |
|
|
! 'Pm',Pm(i,j),'Mint',Mint(i,j),& |
| 593 |
|
|
!! 'zmfa',zmfa(i,j,it),'zmfp',zmfp(i,j,it),& |
| 594 |
|
|
! 'zmfdam',zmfdam(i,j,it),'zmfpsi',zmfphi2(i,j,it),'zmfd1a',zmfd1a(i,j,it) |
| 595 |
|
|
!! 'Pa',Pa(i,j),'eplaMm',eplaMm(i,j) |
| 596 |
|
|
!! 'zmfd1a=da1*qa',zmfd1a(i,j,it),'Pa*qPa',wdtrainA(i,j)*qPa(i,j,it),'da1',d1a(i,j) |
| 597 |
|
|
! ENDIF |
| 598 |
|
|
! ENDDO |
| 599 |
|
|
! ENDDO |
| 600 |
|
|
|
| 601 |
|
|
|
| 602 |
|
|
! =================================================== |
| 603 |
|
|
! calcul final des tendances |
| 604 |
|
|
! =================================================== |
| 605 |
|
|
|
| 606 |
|
✗ |
DO k=klev-1,1,-1 |
| 607 |
|
✗ |
DO i=1, klon |
| 608 |
|
|
! transport |
| 609 |
|
✗ |
tdcvMA=zmfd(i,k,it)+zmfu(i,k,it)+zmfa(i,k,it)+zmfp(i,k,it) ! double comptage des downdraft insatures |
| 610 |
|
✗ |
trsptrac=zmfu(i,k,it)+zmfa(i,k,it)+zmfp(i,k,it) |
| 611 |
|
|
! lessivage courants satures |
| 612 |
|
|
!JE scavtrac=-ccntrAA_coef*zmfd1a(i,k,it)& |
| 613 |
|
|
!JE -zmfphi2(i,k,it)*ccntrENV_coef& |
| 614 |
|
|
!JE -zmfdam(i,k,it)*ccntrAA_coef |
| 615 |
|
|
scavtrac=-ccntrAA_3d(i,k)*zmfd1a(i,k,it)& |
| 616 |
|
|
-zmfphi2(i,k,it)*ccntrENV_3d(i,k)& |
| 617 |
|
✗ |
-zmfdam(i,k,it)*ccntrAA_3d(i,k) |
| 618 |
|
|
! lessivage courants insatures |
| 619 |
|
✗ |
if(k.LE.inb(i).AND.k.GT.1) THEN ! tendances dans le nuage |
| 620 |
|
|
!------------------------------------------------------------- detrainement |
| 621 |
|
✗ |
if(mp(i,k+1).GT.mp(i,k).AND.mp(i,k+1).GT.1.e-10) THEN |
| 622 |
|
|
uscavtrac= (-mp(i,k)+mp(i,k+1))*(qDi(i,k,it)-tr(i,k,it))& |
| 623 |
|
✗ |
+ mp(i,k)*(tr(i,k-1,it)-tr(i,k,it)) |
| 624 |
|
|
! |
| 625 |
|
|
! if(it.eq.3) write(*,'(I2,1X,a,5X,e20.12,82X,a,e20.12)')k,' det incloud',& |
| 626 |
|
|
! (-mp(i,k)+mp(i,k+1))*(qDi(i,k,it)-tr(i,k,it))*pdtimeRG/dxpres(i,k)+& |
| 627 |
|
|
! mp(i,k)*(tr(i,k-1,it)-tr(i,k,it))*pdtimeRG/dxpres(i,k),& |
| 628 |
|
|
! 'mp',mp(i,k) |
| 629 |
|
|
!------------------------------------------------------------- entrainement |
| 630 |
|
✗ |
ELSEIF(mp(i,k).GT.mp(i,k+1).AND.mp(i,k).GT.1.e-10) THEN |
| 631 |
|
✗ |
uscavtrac= mp(i,k)*(tr(i,k-1,it)-tr(i,k,it)) |
| 632 |
|
|
! |
| 633 |
|
|
! if(it.eq.3) write(*,'(I2,1X,a,5X,e20.12,82X,a,e20.12)')k,' ent incloud',uscavtrac*pdtimeRG/dxpres(i,k), 'mp',mp(i,k) |
| 634 |
|
|
!=!------------------------------------------------------------- end ent/det |
| 635 |
|
|
ELSE ! mp(i,k+1)=0. et mp(i,k)=0. pluie directement sur l environnement |
| 636 |
|
|
|
| 637 |
|
✗ |
if(NO_precip(i,k)) THEN |
| 638 |
|
|
uscavtrac=0. |
| 639 |
|
|
! if(it.eq.3) write(*,'(I2,1X,a,e20.12,82X,a,e20.12)')k,' no P ent incloud',uscavtrac*pdtimeRG/dxpres(i,k), 'mp',mp(i,k) |
| 640 |
|
|
ELSE |
| 641 |
|
✗ |
uscavtrac=-imp(i,k)*tr(i,k,it)*dxpres(i,k)/RG+evap(i,k)*qPr(i,k,it)*dxpres(i,k)/RG |
| 642 |
|
|
! if(it.eq.3) write(*,'(I2,1X,a,3X,e20.12,82X,a,e20.12)')k,' P env incloud',uscavtrac*pdtimeRG/dxpres(i,k), 'mp',mp(i,k) |
| 643 |
|
|
!!JE adds |
| 644 |
|
|
! if(it.eq.3) write(*,'(I2,1X,a,3X,e20.12,82X,a,e20.12)')k,' P env incloud',uscavtrac, 'imp',imp(i,k) |
| 645 |
|
|
! if(it.eq.3) write(*,'(I2,1X,a,3X,e20.12,82X,a,e20.12)')k,' P env incloud',uscavtrac, 'tr',tr(i,k,it) |
| 646 |
|
|
! if(it.eq.3) write(*,'(I2,1X,a,3X,e20.12,82X,a,e20.12)')k,' P env incloud',uscavtrac, 'evap',evap(i,k) |
| 647 |
|
|
! if(it.eq.3) write(*,'(I2,1X,a,3X,e20.12,82X,a,e20.12)')k,' P env incloud',uscavtrac, 'qPr',qPr(i,k,it) |
| 648 |
|
|
! if(it.eq.3) write(*,'(I2,1X,a,3X,e20.12,82X,a,e20.12)')k,' P env incloud',uscavtrac, 'dxpres',dxpres(i,k) |
| 649 |
|
|
!!Je end |
| 650 |
|
|
|
| 651 |
|
|
ENDIF |
| 652 |
|
|
ENDIF ! mp/det/ent |
| 653 |
|
|
!------------------------------------------------------------- premiere couche |
| 654 |
|
✗ |
ELSEIF(k.eq.1) THEN ! mp(1)=0. |
| 655 |
|
✗ |
if(mp(i,2).GT.1.e-10) THEN !detrainement |
| 656 |
|
✗ |
uscavtrac= (-0.+mp(i,2))*(qDi(i,k,it)-tr(i,k,it)) !& |
| 657 |
|
|
! + mp(i,2)*(0.-tr(i,k,it)) |
| 658 |
|
|
! |
| 659 |
|
|
! if(it.eq.3) write(*,'(I2,1X,a,e20.12,84X,a,e20.12)')k,' 1 det',& |
| 660 |
|
|
! (-0.+mp(i,2))*(qDi(i,k,it)-tr(i,k,it))*pdtimeRG/dxpres(i,k)+& |
| 661 |
|
|
! mp(i,2)*(0.-tr(i,k,it))*pdtimeRG/dxpres(i,k),& |
| 662 |
|
|
! 'mp',mp(i,k) |
| 663 |
|
|
ELSE ! mp(2) = 0 = mp(1) pas de descente insaturee, rien ne se passe s'il ne pleut pas, sinon pluie->env |
| 664 |
|
✗ |
if(NO_precip(i,1)) THEN |
| 665 |
|
|
uscavtrac=0. |
| 666 |
|
|
ELSE |
| 667 |
|
✗ |
uscavtrac=-imp(i,k)*tr(i,k,it)*dxpres(i,k)/RG+evap(i,k)*qPr(i,k,it)*dxpres(i,k)/RG |
| 668 |
|
|
ENDIF |
| 669 |
|
|
! if(it.eq.3) write(*,'(I2,1X,a,2X,e20.12,82X,a,e20.12)')k,'1 P env incloud',uscavtrac*pdtimeRG/dxpres(i,k), 'mp',mp(i,k) |
| 670 |
|
|
ENDIF |
| 671 |
|
|
|
| 672 |
|
|
ELSE ! k > INB au-dessus du nuage |
| 673 |
|
|
uscavtrac=0. |
| 674 |
|
|
ENDIF |
| 675 |
|
|
|
| 676 |
|
|
! ===== tendances finales ====== |
| 677 |
|
✗ |
trsptd(i,k,it)=trsptrac*pdtimeRG/dxpres(i,k) ! td transport sans eau dans courants satures |
| 678 |
|
✗ |
dtrSscav(i,k,it)=scavtrac*pdtimeRG/dxpres(i,k) ! td du lessivage dans courants satures |
| 679 |
|
✗ |
dtrUscav(i,k,it)=uscavtrac*pdtimeRG/dxpres(i,k) ! td courant insat |
| 680 |
|
✗ |
dtrsat(i,k,it)=(trsptrac+scavtrac)*pdtimeRG/dxpres(i,k) ! td courant sat |
| 681 |
|
✗ |
dtrcv(i,k,it)=(trsptrac+scavtrac+uscavtrac)*pdtimeRG/dxpres(i,k)!dtrsat(i,k,it)+dtrUscav(i,k,it) td conv |
| 682 |
|
|
!!!!!! |
| 683 |
|
✗ |
dtrcvMA(i,k,it)=tdcvMA*pdtimeRG/dxpres(i,k) ! MA tendance convection |
| 684 |
|
|
ENDDO |
| 685 |
|
|
ENDDO |
| 686 |
|
|
|
| 687 |
|
|
! test de conservation du traceur |
| 688 |
|
|
!print*,"_____________________________________________________________" |
| 689 |
|
|
!print*," " |
| 690 |
|
|
! conserv=0. |
| 691 |
|
|
! conservMA=0. |
| 692 |
|
|
! DO k= klev-1,1,-1 |
| 693 |
|
|
! DO i=1, klon |
| 694 |
|
|
! conserv=conserv+dtrcv(i,k,it)* & |
| 695 |
|
|
! (paprs(i,k)-paprs(i,k+1))/RG |
| 696 |
|
|
! conservMA=conservMA+dtrcvMA(i,k,it)* & |
| 697 |
|
|
! (paprs(i,k)-paprs(i,k+1))/RG |
| 698 |
|
|
! |
| 699 |
|
|
! if(it.eq.3) write(*,'(I2,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12)') k,& |
| 700 |
|
|
! 'MA td ',dtrcvMA(i,k,it)*dxpres(i,k)/RG,& |
| 701 |
|
|
! ' td',dtrcv(i,k,it)*dxpres(i,k)/RG,' conservMA ',conservMA,'conserv ',conserv |
| 702 |
|
|
!! |
| 703 |
|
|
! ENDDO |
| 704 |
|
|
! ENDDO |
| 705 |
|
|
! if(it.eq.3) print *,'it',it,'conserv ',conserv,'conservMA ',conservMA |
| 706 |
|
|
|
| 707 |
|
✗ |
END SUBROUTINE cvltr_scav |
| 708 |
|
|
|