| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Id: diagedyn.F 2239 2015-03-23 07:27:30Z emillour $ |
| 3 |
|
|
! |
| 4 |
|
|
|
| 5 |
|
|
C====================================================================== |
| 6 |
|
✗ |
SUBROUTINE diagedyn(tit,iprt,idiag,idiag2,dtime |
| 7 |
|
|
e , ucov , vcov , ps, p ,pk , teta , q, ql) |
| 8 |
|
|
C====================================================================== |
| 9 |
|
|
C |
| 10 |
|
|
C Purpose: |
| 11 |
|
|
C Calcul la difference d'enthalpie et de masse d'eau entre 2 appels, |
| 12 |
|
|
C et calcul le flux de chaleur et le flux d'eau necessaire a ces |
| 13 |
|
|
C changements. Ces valeurs sont moyennees sur la surface de tout |
| 14 |
|
|
C le globe et sont exprime en W/2 et kg/s/m2 |
| 15 |
|
|
C Outil pour diagnostiquer la conservation de l'energie |
| 16 |
|
|
C et de la masse dans la dynamique. |
| 17 |
|
|
C |
| 18 |
|
|
C |
| 19 |
|
|
c====================================================================== |
| 20 |
|
|
C Arguments: |
| 21 |
|
|
C tit-----imput-A15- Comment added in PRINT (CHARACTER*15) |
| 22 |
|
|
C iprt----input-I- PRINT level ( <=1 : no PRINT) |
| 23 |
|
|
C idiag---input-I- indice dans lequel sera range les nouveaux |
| 24 |
|
|
C bilans d' entalpie et de masse |
| 25 |
|
|
C idiag2--input-I-les nouveaux bilans d'entalpie et de masse |
| 26 |
|
|
C sont compare au bilan de d'enthalpie de masse de |
| 27 |
|
|
C l'indice numero idiag2 |
| 28 |
|
|
C Cas parriculier : si idiag2=0, pas de comparaison, on |
| 29 |
|
|
c sort directement les bilans d'enthalpie et de masse |
| 30 |
|
|
C dtime----input-R- time step (s) |
| 31 |
|
|
C uconv, vconv-input-R- vents covariants (m/s) |
| 32 |
|
|
C ps-------input-R- Surface pressure (Pa) |
| 33 |
|
|
C p--------input-R- pressure at the interfaces |
| 34 |
|
|
C pk-------input-R- pk= (p/Pref)**kappa |
| 35 |
|
|
c teta-----input-R- potential temperature (K) |
| 36 |
|
|
c q--------input-R- vapeur d'eau (kg/kg) |
| 37 |
|
|
c ql-------input-R- liquid watter (kg/kg) |
| 38 |
|
|
c aire-----input-R- mesh surafce (m2) |
| 39 |
|
|
c |
| 40 |
|
|
C the following total value are computed by UNIT of earth surface |
| 41 |
|
|
C |
| 42 |
|
|
C d_h_vcol--output-R- Heat flux (W/m2) define as the Enthalpy |
| 43 |
|
|
c change (J/m2) during one time step (dtime) for the whole |
| 44 |
|
|
C atmosphere (air, watter vapour, liquid and solid) |
| 45 |
|
|
C d_qt------output-R- total water mass flux (kg/m2/s) defined as the |
| 46 |
|
|
C total watter (kg/m2) change during one time step (dtime), |
| 47 |
|
|
C d_qw------output-R- same, for the watter vapour only (kg/m2/s) |
| 48 |
|
|
C d_ql------output-R- same, for the liquid watter only (kg/m2/s) |
| 49 |
|
|
C d_ec------output-R- Cinetic Energy Budget (W/m2) for vertical air column |
| 50 |
|
|
C |
| 51 |
|
|
C |
| 52 |
|
|
C J.L. Dufresne, July 2002 |
| 53 |
|
|
c====================================================================== |
| 54 |
|
|
|
| 55 |
|
|
USE control_mod, ONLY : planet_type |
| 56 |
|
|
|
| 57 |
|
|
IMPLICIT NONE |
| 58 |
|
|
C |
| 59 |
|
|
!----------------------------------------------------------------------- |
| 60 |
|
|
! INCLUDE 'dimensions.h' |
| 61 |
|
|
! |
| 62 |
|
|
! dimensions.h contient les dimensions du modele |
| 63 |
|
|
! ndm est tel que iim=2**ndm |
| 64 |
|
|
!----------------------------------------------------------------------- |
| 65 |
|
|
|
| 66 |
|
|
INTEGER iim,jjm,llm,ndm |
| 67 |
|
|
|
| 68 |
|
|
PARAMETER (iim= 32,jjm=32,llm=39,ndm=1) |
| 69 |
|
|
|
| 70 |
|
|
!----------------------------------------------------------------------- |
| 71 |
|
|
! |
| 72 |
|
|
! $Header$ |
| 73 |
|
|
! |
| 74 |
|
|
! |
| 75 |
|
|
! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre |
| 76 |
|
|
! veillez n'utiliser que des ! pour les commentaires |
| 77 |
|
|
! et bien positionner les & des lignes de continuation |
| 78 |
|
|
! (les placer en colonne 6 et en colonne 73) |
| 79 |
|
|
! |
| 80 |
|
|
! |
| 81 |
|
|
!----------------------------------------------------------------------- |
| 82 |
|
|
! INCLUDE 'paramet.h' |
| 83 |
|
|
|
| 84 |
|
|
INTEGER iip1,iip2,iip3,jjp1,llmp1,llmp2,llmm1 |
| 85 |
|
|
INTEGER kftd,ip1jm,ip1jmp1,ip1jmi1,ijp1llm |
| 86 |
|
|
INTEGER ijmllm,mvar |
| 87 |
|
|
INTEGER jcfil,jcfllm |
| 88 |
|
|
|
| 89 |
|
|
PARAMETER( iip1= iim+1,iip2=iim+2,iip3=iim+3 & |
| 90 |
|
|
& ,jjp1=jjm+1-1/jjm) |
| 91 |
|
|
PARAMETER( llmp1 = llm+1, llmp2 = llm+2, llmm1 = llm-1 ) |
| 92 |
|
|
PARAMETER( kftd = iim/2 -ndm ) |
| 93 |
|
|
PARAMETER( ip1jm = iip1*jjm, ip1jmp1= iip1*jjp1 ) |
| 94 |
|
|
PARAMETER( ip1jmi1= ip1jm - iip1 ) |
| 95 |
|
|
PARAMETER( ijp1llm= ip1jmp1 * llm, ijmllm= ip1jm * llm ) |
| 96 |
|
|
PARAMETER( mvar= ip1jmp1*( 2*llm+1) + ijmllm ) |
| 97 |
|
|
PARAMETER( jcfil=jjm/2+5, jcfllm=jcfil*llm ) |
| 98 |
|
|
|
| 99 |
|
|
!----------------------------------------------------------------------- |
| 100 |
|
|
! |
| 101 |
|
|
! $Header$ |
| 102 |
|
|
! |
| 103 |
|
|
!CDK comgeom |
| 104 |
|
|
COMMON/comgeom/ & |
| 105 |
|
|
& cu(ip1jmp1),cv(ip1jm),unscu2(ip1jmp1),unscv2(ip1jm), & |
| 106 |
|
|
& aire(ip1jmp1),airesurg(ip1jmp1),aireu(ip1jmp1), & |
| 107 |
|
|
& airev(ip1jm),unsaire(ip1jmp1),apoln,apols, & |
| 108 |
|
|
& unsairez(ip1jm),airuscv2(ip1jm),airvscu2(ip1jm), & |
| 109 |
|
|
& aireij1(ip1jmp1),aireij2(ip1jmp1),aireij3(ip1jmp1), & |
| 110 |
|
|
& aireij4(ip1jmp1),alpha1(ip1jmp1),alpha2(ip1jmp1), & |
| 111 |
|
|
& alpha3(ip1jmp1),alpha4(ip1jmp1),alpha1p2(ip1jmp1), & |
| 112 |
|
|
& alpha1p4(ip1jmp1),alpha2p3(ip1jmp1),alpha3p4(ip1jmp1), & |
| 113 |
|
|
& fext(ip1jm),constang(ip1jmp1),rlatu(jjp1),rlatv(jjm), & |
| 114 |
|
|
& rlonu(iip1),rlonv(iip1),cuvsurcv(ip1jm),cvsurcuv(ip1jm), & |
| 115 |
|
|
& cvusurcu(ip1jmp1),cusurcvu(ip1jmp1),cuvscvgam1(ip1jm), & |
| 116 |
|
|
& cuvscvgam2(ip1jm),cvuscugam1(ip1jmp1), & |
| 117 |
|
|
& cvuscugam2(ip1jmp1),cvscuvgam(ip1jm),cuscvugam(ip1jmp1), & |
| 118 |
|
|
& unsapolnga1,unsapolnga2,unsapolsga1,unsapolsga2, & |
| 119 |
|
|
& unsair_gam1(ip1jmp1),unsair_gam2(ip1jmp1),unsairz_gam(ip1jm), & |
| 120 |
|
|
& aivscu2gam(ip1jm),aiuscv2gam(ip1jm),xprimu(iip1),xprimv(iip1) |
| 121 |
|
|
|
| 122 |
|
|
! |
| 123 |
|
|
REAL & |
| 124 |
|
|
& cu,cv,unscu2,unscv2,aire,airesurg,aireu,airev,unsaire,apoln ,& |
| 125 |
|
|
& apols,unsairez,airuscv2,airvscu2,aireij1,aireij2,aireij3,aireij4,& |
| 126 |
|
|
& alpha1,alpha2,alpha3,alpha4,alpha1p2,alpha1p4,alpha2p3,alpha3p4 ,& |
| 127 |
|
|
& fext,constang,rlatu,rlatv,rlonu,rlonv,cuvscvgam1,cuvscvgam2 ,& |
| 128 |
|
|
& cvuscugam1,cvuscugam2,cvscuvgam,cuscvugam,unsapolnga1,unsapolnga2& |
| 129 |
|
|
& ,unsapolsga1,unsapolsga2,unsair_gam1,unsair_gam2,unsairz_gam ,& |
| 130 |
|
|
& aivscu2gam ,aiuscv2gam,cuvsurcv,cvsurcuv,cvusurcu,cusurcvu,xprimu& |
| 131 |
|
|
& , xprimv |
| 132 |
|
|
! |
| 133 |
|
|
! |
| 134 |
|
|
! $Header$ |
| 135 |
|
|
! |
| 136 |
|
|
! |
| 137 |
|
|
! gestion des impressions de sorties et de d�bogage |
| 138 |
|
|
! lunout: unit� du fichier dans lequel se font les sorties |
| 139 |
|
|
! (par defaut 6, la sortie standard) |
| 140 |
|
|
! prt_level: niveau d'impression souhait� (0 = minimum) |
| 141 |
|
|
! |
| 142 |
|
|
INTEGER lunout, prt_level |
| 143 |
|
|
COMMON /comprint/ lunout, prt_level |
| 144 |
|
|
|
| 145 |
|
|
!#ifdef 1 |
| 146 |
|
|
!#include "../phylmd/YOMCST.h" |
| 147 |
|
|
!#include "../phylmd/YOETHF.h" |
| 148 |
|
|
!#endif |
| 149 |
|
|
! Ehouarn: for now set these parameters to what is in Earth physics... |
| 150 |
|
|
! (cf ../phylmd/suphel.h) |
| 151 |
|
|
! this should be generalized... |
| 152 |
|
|
REAL,PARAMETER :: RCPD= |
| 153 |
|
|
& 3.5*(1000.*(6.0221367E+23*1.380658E-23)/28.9644) |
| 154 |
|
|
REAL,PARAMETER :: RCPV= |
| 155 |
|
|
& 4.*(1000.*(6.0221367E+23*1.380658E-23)/18.0153) |
| 156 |
|
|
REAL,PARAMETER :: RCS=RCPV |
| 157 |
|
|
REAL,PARAMETER :: RCW=RCPV |
| 158 |
|
|
REAL,PARAMETER :: RLSTT=2.8345E+6 |
| 159 |
|
|
REAL,PARAMETER :: RLVTT=2.5008E+6 |
| 160 |
|
|
! |
| 161 |
|
|
C |
| 162 |
|
|
INTEGER imjmp1 |
| 163 |
|
|
PARAMETER( imjmp1=iim*jjp1) |
| 164 |
|
|
c Input variables |
| 165 |
|
|
CHARACTER*15 tit |
| 166 |
|
|
INTEGER iprt,idiag, idiag2 |
| 167 |
|
|
REAL dtime |
| 168 |
|
|
REAL vcov(ip1jm,llm),ucov(ip1jmp1,llm) ! vents covariants |
| 169 |
|
|
REAL ps(ip1jmp1) ! pression au sol |
| 170 |
|
|
REAL p (ip1jmp1,llmp1 ) ! pression aux interfac.des couches |
| 171 |
|
|
REAL pk (ip1jmp1,llm ) ! = (p/Pref)**kappa |
| 172 |
|
|
REAL teta(ip1jmp1,llm) ! temperature potentielle |
| 173 |
|
|
REAL q(ip1jmp1,llm) ! champs eau vapeur |
| 174 |
|
|
REAL ql(ip1jmp1,llm) ! champs eau liquide |
| 175 |
|
|
|
| 176 |
|
|
|
| 177 |
|
|
c Output variables |
| 178 |
|
|
REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec |
| 179 |
|
|
C |
| 180 |
|
|
C Local variables |
| 181 |
|
|
c |
| 182 |
|
|
REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
| 183 |
|
|
. , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
| 184 |
|
|
c h_vcol_tot-- total enthalpy of vertical air column |
| 185 |
|
|
C (air with watter vapour, liquid and solid) (J/m2) |
| 186 |
|
|
c h_dair_tot-- total enthalpy of dry air (J/m2) |
| 187 |
|
|
c h_qw_tot---- total enthalpy of watter vapour (J/m2) |
| 188 |
|
|
c h_ql_tot---- total enthalpy of liquid watter (J/m2) |
| 189 |
|
|
c h_qs_tot---- total enthalpy of solid watter (J/m2) |
| 190 |
|
|
c qw_tot------ total mass of watter vapour (kg/m2) |
| 191 |
|
|
c ql_tot------ total mass of liquid watter (kg/m2) |
| 192 |
|
|
c qs_tot------ total mass of solid watter (kg/m2) |
| 193 |
|
|
c ec_tot------ total cinetic energy (kg/m2) |
| 194 |
|
|
C |
| 195 |
|
|
REAL masse(ip1jmp1,llm) ! masse d'air |
| 196 |
|
|
REAL vcont(ip1jm,llm),ucont(ip1jmp1,llm) |
| 197 |
|
|
REAL ecin(ip1jmp1,llm) |
| 198 |
|
|
|
| 199 |
|
|
REAL zaire(imjmp1) |
| 200 |
|
|
REAL zps(imjmp1) |
| 201 |
|
|
REAL zairm(imjmp1,llm) |
| 202 |
|
|
REAL zecin(imjmp1,llm) |
| 203 |
|
|
REAL zpaprs(imjmp1,llm) |
| 204 |
|
|
REAL zpk(imjmp1,llm) |
| 205 |
|
|
REAL zt(imjmp1,llm) |
| 206 |
|
|
REAL zh(imjmp1,llm) |
| 207 |
|
|
REAL zqw(imjmp1,llm) |
| 208 |
|
|
REAL zql(imjmp1,llm) |
| 209 |
|
|
REAL zqs(imjmp1,llm) |
| 210 |
|
|
|
| 211 |
|
|
REAL zqw_col(imjmp1) |
| 212 |
|
|
REAL zql_col(imjmp1) |
| 213 |
|
|
REAL zqs_col(imjmp1) |
| 214 |
|
|
REAL zec_col(imjmp1) |
| 215 |
|
|
REAL zh_dair_col(imjmp1) |
| 216 |
|
|
REAL zh_qw_col(imjmp1), zh_ql_col(imjmp1), zh_qs_col(imjmp1) |
| 217 |
|
|
C |
| 218 |
|
|
REAL d_h_dair, d_h_qw, d_h_ql, d_h_qs |
| 219 |
|
|
C |
| 220 |
|
|
REAL airetot, zcpvap, zcwat, zcice |
| 221 |
|
|
C |
| 222 |
|
|
INTEGER i, k, jj, ij , l ,ip1jjm1 |
| 223 |
|
|
C |
| 224 |
|
|
INTEGER ndiag ! max number of diagnostic in parallel |
| 225 |
|
|
PARAMETER (ndiag=10) |
| 226 |
|
|
integer pas(ndiag) |
| 227 |
|
|
save pas |
| 228 |
|
|
data pas/ndiag*0/ |
| 229 |
|
|
C |
| 230 |
|
|
REAL h_vcol_pre(ndiag), h_dair_pre(ndiag), h_qw_pre(ndiag) |
| 231 |
|
|
$ , h_ql_pre(ndiag), h_qs_pre(ndiag), qw_pre(ndiag) |
| 232 |
|
|
$ , ql_pre(ndiag), qs_pre(ndiag) , ec_pre(ndiag) |
| 233 |
|
|
SAVE h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre |
| 234 |
|
|
$ , h_qs_pre, qw_pre, ql_pre, qs_pre , ec_pre |
| 235 |
|
|
|
| 236 |
|
|
|
| 237 |
|
|
!#ifdef 1 |
| 238 |
|
✗ |
IF (planet_type=="earth") THEN |
| 239 |
|
|
|
| 240 |
|
|
c====================================================================== |
| 241 |
|
|
C Compute Kinetic enrgy |
| 242 |
|
✗ |
CALL covcont ( llm , ucov , vcov , ucont, vcont ) |
| 243 |
|
✗ |
CALL enercin ( vcov , ucov , vcont , ucont , ecin ) |
| 244 |
|
✗ |
CALL massdair( p, masse ) |
| 245 |
|
|
c====================================================================== |
| 246 |
|
|
C |
| 247 |
|
|
C |
| 248 |
|
✗ |
print*,'MAIS POURQUOI DONC DIAGEDYN NE MARCHE PAS ?' |
| 249 |
|
✗ |
return |
| 250 |
|
|
C On ne garde les donnees que dans les colonnes i=1,iim |
| 251 |
|
|
DO jj = 1,jjp1 |
| 252 |
|
|
ip1jjm1=iip1*(jj-1) |
| 253 |
|
|
DO ij = 1,iim |
| 254 |
|
|
i=iim*(jj-1)+ij |
| 255 |
|
|
zaire(i)=aire(ij+ip1jjm1) |
| 256 |
|
|
zps(i)=ps(ij+ip1jjm1) |
| 257 |
|
|
ENDDO |
| 258 |
|
|
ENDDO |
| 259 |
|
|
C 3D arrays |
| 260 |
|
|
DO l = 1, llm |
| 261 |
|
|
DO jj = 1,jjp1 |
| 262 |
|
|
ip1jjm1=iip1*(jj-1) |
| 263 |
|
|
DO ij = 1,iim |
| 264 |
|
|
i=iim*(jj-1)+ij |
| 265 |
|
|
zairm(i,l) = masse(ij+ip1jjm1,l) |
| 266 |
|
|
zecin(i,l) = ecin(ij+ip1jjm1,l) |
| 267 |
|
|
zpaprs(i,l) = p(ij+ip1jjm1,l) |
| 268 |
|
|
zpk(i,l) = pk(ij+ip1jjm1,l) |
| 269 |
|
|
zh(i,l) = teta(ij+ip1jjm1,l) |
| 270 |
|
|
zqw(i,l) = q(ij+ip1jjm1,l) |
| 271 |
|
|
zql(i,l) = ql(ij+ip1jjm1,l) |
| 272 |
|
|
zqs(i,l) = 0. |
| 273 |
|
|
ENDDO |
| 274 |
|
|
ENDDO |
| 275 |
|
|
ENDDO |
| 276 |
|
|
C |
| 277 |
|
|
C Reset variables |
| 278 |
|
|
DO i = 1, imjmp1 |
| 279 |
|
|
zqw_col(i)=0. |
| 280 |
|
|
zql_col(i)=0. |
| 281 |
|
|
zqs_col(i)=0. |
| 282 |
|
|
zec_col(i) = 0. |
| 283 |
|
|
zh_dair_col(i) = 0. |
| 284 |
|
|
zh_qw_col(i) = 0. |
| 285 |
|
|
zh_ql_col(i) = 0. |
| 286 |
|
|
zh_qs_col(i) = 0. |
| 287 |
|
|
ENDDO |
| 288 |
|
|
C |
| 289 |
|
|
zcpvap=RCPV |
| 290 |
|
|
zcwat=RCW |
| 291 |
|
|
zcice=RCS |
| 292 |
|
|
C |
| 293 |
|
|
C Compute vertical sum for each atmospheric column |
| 294 |
|
|
C ================================================ |
| 295 |
|
|
DO k = 1, llm |
| 296 |
|
|
DO i = 1, imjmp1 |
| 297 |
|
|
C Watter mass |
| 298 |
|
|
zqw_col(i) = zqw_col(i) + zqw(i,k)*zairm(i,k) |
| 299 |
|
|
zql_col(i) = zql_col(i) + zql(i,k)*zairm(i,k) |
| 300 |
|
|
zqs_col(i) = zqs_col(i) + zqs(i,k)*zairm(i,k) |
| 301 |
|
|
C Cinetic Energy |
| 302 |
|
|
zec_col(i) = zec_col(i) |
| 303 |
|
|
$ +zecin(i,k)*zairm(i,k) |
| 304 |
|
|
C Air enthalpy |
| 305 |
|
|
zt(i,k)= zh(i,k) * zpk(i,k) / RCPD |
| 306 |
|
|
zh_dair_col(i) = zh_dair_col(i) |
| 307 |
|
|
$ + RCPD*(1.-zqw(i,k)-zql(i,k)-zqs(i,k))*zairm(i,k)*zt(i,k) |
| 308 |
|
|
zh_qw_col(i) = zh_qw_col(i) |
| 309 |
|
|
$ + zcpvap*zqw(i,k)*zairm(i,k)*zt(i,k) |
| 310 |
|
|
zh_ql_col(i) = zh_ql_col(i) |
| 311 |
|
|
$ + zcwat*zql(i,k)*zairm(i,k)*zt(i,k) |
| 312 |
|
|
$ - RLVTT*zql(i,k)*zairm(i,k) |
| 313 |
|
|
zh_qs_col(i) = zh_qs_col(i) |
| 314 |
|
|
$ + zcice*zqs(i,k)*zairm(i,k)*zt(i,k) |
| 315 |
|
|
$ - RLSTT*zqs(i,k)*zairm(i,k) |
| 316 |
|
|
|
| 317 |
|
|
END DO |
| 318 |
|
|
ENDDO |
| 319 |
|
|
C |
| 320 |
|
|
C Mean over the planete surface |
| 321 |
|
|
C ============================= |
| 322 |
|
|
qw_tot = 0. |
| 323 |
|
|
ql_tot = 0. |
| 324 |
|
|
qs_tot = 0. |
| 325 |
|
|
ec_tot = 0. |
| 326 |
|
|
h_vcol_tot = 0. |
| 327 |
|
|
h_dair_tot = 0. |
| 328 |
|
|
h_qw_tot = 0. |
| 329 |
|
|
h_ql_tot = 0. |
| 330 |
|
|
h_qs_tot = 0. |
| 331 |
|
|
airetot=0. |
| 332 |
|
|
C |
| 333 |
|
|
do i=1,imjmp1 |
| 334 |
|
|
qw_tot = qw_tot + zqw_col(i) |
| 335 |
|
|
ql_tot = ql_tot + zql_col(i) |
| 336 |
|
|
qs_tot = qs_tot + zqs_col(i) |
| 337 |
|
|
ec_tot = ec_tot + zec_col(i) |
| 338 |
|
|
h_dair_tot = h_dair_tot + zh_dair_col(i) |
| 339 |
|
|
h_qw_tot = h_qw_tot + zh_qw_col(i) |
| 340 |
|
|
h_ql_tot = h_ql_tot + zh_ql_col(i) |
| 341 |
|
|
h_qs_tot = h_qs_tot + zh_qs_col(i) |
| 342 |
|
|
airetot=airetot+zaire(i) |
| 343 |
|
|
END DO |
| 344 |
|
|
C |
| 345 |
|
|
qw_tot = qw_tot/airetot |
| 346 |
|
|
ql_tot = ql_tot/airetot |
| 347 |
|
|
qs_tot = qs_tot/airetot |
| 348 |
|
|
ec_tot = ec_tot/airetot |
| 349 |
|
|
h_dair_tot = h_dair_tot/airetot |
| 350 |
|
|
h_qw_tot = h_qw_tot/airetot |
| 351 |
|
|
h_ql_tot = h_ql_tot/airetot |
| 352 |
|
|
h_qs_tot = h_qs_tot/airetot |
| 353 |
|
|
C |
| 354 |
|
|
h_vcol_tot = h_dair_tot+h_qw_tot+h_ql_tot+h_qs_tot |
| 355 |
|
|
C |
| 356 |
|
|
C Compute the change of the atmospheric state compare to the one |
| 357 |
|
|
C stored in "idiag2", and convert it in flux. THis computation |
| 358 |
|
|
C is performed IF idiag2 /= 0 and IF it is not the first CALL |
| 359 |
|
|
c for "idiag" |
| 360 |
|
|
C =================================== |
| 361 |
|
|
C |
| 362 |
|
|
IF ( (idiag2.gt.0) .and. (pas(idiag2) .ne. 0) ) THEN |
| 363 |
|
|
d_h_vcol = (h_vcol_tot - h_vcol_pre(idiag2) )/dtime |
| 364 |
|
|
d_h_dair = (h_dair_tot- h_dair_pre(idiag2))/dtime |
| 365 |
|
|
d_h_qw = (h_qw_tot - h_qw_pre(idiag2) )/dtime |
| 366 |
|
|
d_h_ql = (h_ql_tot - h_ql_pre(idiag2) )/dtime |
| 367 |
|
|
d_h_qs = (h_qs_tot - h_qs_pre(idiag2) )/dtime |
| 368 |
|
|
d_qw = (qw_tot - qw_pre(idiag2) )/dtime |
| 369 |
|
|
d_ql = (ql_tot - ql_pre(idiag2) )/dtime |
| 370 |
|
|
d_qs = (qs_tot - qs_pre(idiag2) )/dtime |
| 371 |
|
|
d_ec = (ec_tot - ec_pre(idiag2) )/dtime |
| 372 |
|
|
d_qt = d_qw + d_ql + d_qs |
| 373 |
|
|
ELSE |
| 374 |
|
|
d_h_vcol = 0. |
| 375 |
|
|
d_h_dair = 0. |
| 376 |
|
|
d_h_qw = 0. |
| 377 |
|
|
d_h_ql = 0. |
| 378 |
|
|
d_h_qs = 0. |
| 379 |
|
|
d_qw = 0. |
| 380 |
|
|
d_ql = 0. |
| 381 |
|
|
d_qs = 0. |
| 382 |
|
|
d_ec = 0. |
| 383 |
|
|
d_qt = 0. |
| 384 |
|
|
ENDIF |
| 385 |
|
|
C |
| 386 |
|
|
IF (iprt.ge.2) THEN |
| 387 |
|
|
WRITE(6,9000) tit,pas(idiag),d_qt,d_qw,d_ql,d_qs |
| 388 |
|
|
9000 format('Dyn3d. Watter Mass Budget (kg/m2/s)',A15 |
| 389 |
|
|
$ ,1i6,10(1pE14.6)) |
| 390 |
|
|
WRITE(6,9001) tit,pas(idiag), d_h_vcol |
| 391 |
|
|
9001 format('Dyn3d. Enthalpy Budget (W/m2) ',A15,1i6,10(F8.2)) |
| 392 |
|
|
WRITE(6,9002) tit,pas(idiag), d_ec |
| 393 |
|
|
9002 format('Dyn3d. Cinetic Energy Budget (W/m2) ',A15,1i6,10(F8.2)) |
| 394 |
|
|
C WRITE(6,9003) tit,pas(idiag), ec_tot |
| 395 |
|
|
9003 format('Dyn3d. Cinetic Energy (W/m2) ',A15,1i6,10(E15.6)) |
| 396 |
|
|
WRITE(6,9004) tit,pas(idiag), d_h_vcol+d_ec |
| 397 |
|
|
9004 format('Dyn3d. Total Energy Budget (W/m2) ',A15,1i6,10(F8.2)) |
| 398 |
|
|
END IF |
| 399 |
|
|
C |
| 400 |
|
|
C Store the new atmospheric state in "idiag" |
| 401 |
|
|
C |
| 402 |
|
|
pas(idiag)=pas(idiag)+1 |
| 403 |
|
|
h_vcol_pre(idiag) = h_vcol_tot |
| 404 |
|
|
h_dair_pre(idiag) = h_dair_tot |
| 405 |
|
|
h_qw_pre(idiag) = h_qw_tot |
| 406 |
|
|
h_ql_pre(idiag) = h_ql_tot |
| 407 |
|
|
h_qs_pre(idiag) = h_qs_tot |
| 408 |
|
|
qw_pre(idiag) = qw_tot |
| 409 |
|
|
ql_pre(idiag) = ql_tot |
| 410 |
|
|
qs_pre(idiag) = qs_tot |
| 411 |
|
|
ec_pre (idiag) = ec_tot |
| 412 |
|
|
C |
| 413 |
|
|
!#else |
| 414 |
|
|
ELSE |
| 415 |
|
✗ |
write(lunout,*)'diagedyn: set to function with Earth parameters' |
| 416 |
|
|
ENDIF ! of if (planet_type=="earth") |
| 417 |
|
|
!#endif |
| 418 |
|
|
! #endif of #ifdef 1 |
| 419 |
|
✗ |
RETURN |
| 420 |
|
|
END |
| 421 |
|
|
|