| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
! $Header$ |
| 3 |
|
|
|
| 4 |
|
✗ |
SUBROUTINE diagphy(airephy, tit, iprt, tops, topl, sols, soll, sens, evap, & |
| 5 |
|
|
rain_fall, snow_fall, ts, d_etp_tot, d_qt_tot, d_ec_tot, fs_bound, & |
| 6 |
|
|
fq_bound) |
| 7 |
|
|
! ====================================================================== |
| 8 |
|
|
|
| 9 |
|
|
! Purpose: |
| 10 |
|
|
! Compute the thermal flux and the watter mass flux at the atmosphere |
| 11 |
|
|
! boundaries. Print them and also the atmospheric enthalpy change and |
| 12 |
|
|
! the atmospheric mass change. |
| 13 |
|
|
|
| 14 |
|
|
! Arguments: |
| 15 |
|
|
! airephy-------input-R- grid area |
| 16 |
|
|
! tit---------input-A15- Comment to be added in PRINT (CHARACTER*15) |
| 17 |
|
|
! iprt--------input-I- PRINT level ( <=0 : no PRINT) |
| 18 |
|
|
! tops(klon)--input-R- SW rad. at TOA (W/m2), positive up. |
| 19 |
|
|
! topl(klon)--input-R- LW rad. at TOA (W/m2), positive down |
| 20 |
|
|
! sols(klon)--input-R- Net SW flux above surface (W/m2), positive up |
| 21 |
|
|
! (i.e. -1 * flux absorbed by the surface) |
| 22 |
|
|
! soll(klon)--input-R- Net LW flux above surface (W/m2), positive up |
| 23 |
|
|
! (i.e. flux emited - flux absorbed by the surface) |
| 24 |
|
|
! sens(klon)--input-R- Sensible Flux at surface (W/m2), positive down |
| 25 |
|
|
! evap(klon)--input-R- Evaporation + sublimation watter vapour mass flux |
| 26 |
|
|
! (kg/m2/s), positive up |
| 27 |
|
|
! rain_fall(klon) |
| 28 |
|
|
! --input-R- Liquid watter mass flux (kg/m2/s), positive down |
| 29 |
|
|
! snow_fall(klon) |
| 30 |
|
|
! --input-R- Solid watter mass flux (kg/m2/s), positive down |
| 31 |
|
|
! ts(klon)----input-R- Surface temperature (K) |
| 32 |
|
|
! d_etp_tot---input-R- Heat flux equivalent to atmospheric enthalpy |
| 33 |
|
|
! change (W/m2) |
| 34 |
|
|
! d_qt_tot----input-R- Mass flux equivalent to atmospheric watter mass |
| 35 |
|
|
! change (kg/m2/s) |
| 36 |
|
|
! d_ec_tot----input-R- Flux equivalent to atmospheric cinetic energy |
| 37 |
|
|
! change (W/m2) |
| 38 |
|
|
|
| 39 |
|
|
! fs_bound---output-R- Thermal flux at the atmosphere boundaries (W/m2) |
| 40 |
|
|
! fq_bound---output-R- Watter mass flux at the atmosphere boundaries |
| 41 |
|
|
! (kg/m2/s) |
| 42 |
|
|
|
| 43 |
|
|
! J.L. Dufresne, July 2002 |
| 44 |
|
|
! Version prise sur |
| 45 |
|
|
! ~rlmd833/LMDZOR_201102/modipsl/modeles/LMDZ.3.3/libf/phylmd |
| 46 |
|
|
! le 25 Novembre 2002. |
| 47 |
|
|
! ====================================================================== |
| 48 |
|
|
|
| 49 |
|
|
USE dimphy |
| 50 |
|
|
IMPLICIT NONE |
| 51 |
|
|
|
| 52 |
|
|
include "YOMCST.h" |
| 53 |
|
|
include "YOETHF.h" |
| 54 |
|
|
|
| 55 |
|
|
! Input variables |
| 56 |
|
|
REAL airephy(klon) |
| 57 |
|
|
CHARACTER *15 tit |
| 58 |
|
|
INTEGER iprt |
| 59 |
|
|
REAL tops(klon), topl(klon), sols(klon), soll(klon) |
| 60 |
|
|
REAL sens(klon), evap(klon), rain_fall(klon), snow_fall(klon) |
| 61 |
|
|
REAL ts(klon) |
| 62 |
|
|
REAL d_etp_tot, d_qt_tot, d_ec_tot |
| 63 |
|
|
! Output variables |
| 64 |
|
|
REAL fs_bound, fq_bound |
| 65 |
|
|
|
| 66 |
|
|
! Local variables |
| 67 |
|
|
REAL stops, stopl, ssols, ssoll |
| 68 |
|
|
REAL ssens, sfront, slat |
| 69 |
|
|
REAL airetot, zcpvap, zcwat, zcice |
| 70 |
|
|
REAL rain_fall_tot, snow_fall_tot, evap_tot |
| 71 |
|
|
|
| 72 |
|
|
INTEGER i |
| 73 |
|
|
|
| 74 |
|
|
INTEGER pas |
| 75 |
|
|
SAVE pas |
| 76 |
|
|
DATA pas/0/ |
| 77 |
|
|
!$OMP THREADPRIVATE(pas) |
| 78 |
|
|
|
| 79 |
|
✗ |
pas = pas + 1 |
| 80 |
|
✗ |
stops = 0. |
| 81 |
|
✗ |
stopl = 0. |
| 82 |
|
✗ |
ssols = 0. |
| 83 |
|
✗ |
ssoll = 0. |
| 84 |
|
✗ |
ssens = 0. |
| 85 |
|
|
sfront = 0. |
| 86 |
|
✗ |
evap_tot = 0. |
| 87 |
|
|
rain_fall_tot = 0. |
| 88 |
|
|
snow_fall_tot = 0. |
| 89 |
|
|
airetot = 0. |
| 90 |
|
|
|
| 91 |
|
|
! Pour les chaleur specifiques de la vapeur d'eau, de l'eau et de |
| 92 |
|
|
! la glace, on travaille par difference a la chaleur specifique de l' |
| 93 |
|
|
! air sec. En effet, comme on travaille a niveau de pression donne, |
| 94 |
|
|
! toute variation de la masse d'un constituant est totalement |
| 95 |
|
|
! compense par une variation de masse d'air. |
| 96 |
|
|
|
| 97 |
|
✗ |
zcpvap = rcpv - rcpd |
| 98 |
|
✗ |
zcwat = rcw - rcpd |
| 99 |
|
✗ |
zcice = rcs - rcpd |
| 100 |
|
|
|
| 101 |
|
✗ |
DO i = 1, klon |
| 102 |
|
✗ |
stops = stops + tops(i)*airephy(i) |
| 103 |
|
✗ |
stopl = stopl + topl(i)*airephy(i) |
| 104 |
|
✗ |
ssols = ssols + sols(i)*airephy(i) |
| 105 |
|
✗ |
ssoll = ssoll + soll(i)*airephy(i) |
| 106 |
|
✗ |
ssens = ssens + sens(i)*airephy(i) |
| 107 |
|
|
sfront = sfront + (evap(i)*zcpvap-rain_fall(i)*zcwat-snow_fall(i)*zcice)* & |
| 108 |
|
✗ |
ts(i)*airephy(i) |
| 109 |
|
✗ |
evap_tot = evap_tot + evap(i)*airephy(i) |
| 110 |
|
✗ |
rain_fall_tot = rain_fall_tot + rain_fall(i)*airephy(i) |
| 111 |
|
✗ |
snow_fall_tot = snow_fall_tot + snow_fall(i)*airephy(i) |
| 112 |
|
✗ |
airetot = airetot + airephy(i) |
| 113 |
|
|
END DO |
| 114 |
|
✗ |
stops = stops/airetot |
| 115 |
|
✗ |
stopl = stopl/airetot |
| 116 |
|
✗ |
ssols = ssols/airetot |
| 117 |
|
✗ |
ssoll = ssoll/airetot |
| 118 |
|
✗ |
ssens = ssens/airetot |
| 119 |
|
✗ |
sfront = sfront/airetot |
| 120 |
|
✗ |
evap_tot = evap_tot/airetot |
| 121 |
|
✗ |
rain_fall_tot = rain_fall_tot/airetot |
| 122 |
|
✗ |
snow_fall_tot = snow_fall_tot/airetot |
| 123 |
|
|
|
| 124 |
|
✗ |
slat = rlvtt*rain_fall_tot + rlstt*snow_fall_tot |
| 125 |
|
|
! Heat flux at atm. boundaries |
| 126 |
|
✗ |
fs_bound = stops - stopl - (ssols+ssoll) + ssens + sfront + slat |
| 127 |
|
|
! Watter flux at atm. boundaries |
| 128 |
|
✗ |
fq_bound = evap_tot - rain_fall_tot - snow_fall_tot |
| 129 |
|
|
|
| 130 |
|
✗ |
IF (iprt>=1) WRITE (6, 6666) tit, pas, fs_bound, d_etp_tot, fq_bound, & |
| 131 |
|
✗ |
d_qt_tot |
| 132 |
|
|
|
| 133 |
|
✗ |
IF (iprt>=1) WRITE (6, 6668) tit, pas, d_etp_tot + d_ec_tot - fs_bound, & |
| 134 |
|
✗ |
d_qt_tot - fq_bound |
| 135 |
|
|
|
| 136 |
|
✗ |
IF (iprt>=2) WRITE (6, 6667) tit, pas, stops, stopl, ssols, ssoll, ssens, & |
| 137 |
|
✗ |
slat, evap_tot, rain_fall_tot + snow_fall_tot |
| 138 |
|
|
|
| 139 |
|
✗ |
RETURN |
| 140 |
|
|
|
| 141 |
|
|
6666 FORMAT ('Phys. Flux Budget ', A15, 1I6, 2F8.2, 2(1PE13.5)) |
| 142 |
|
|
6667 FORMAT ('Phys. Boundary Flux ', A15, 1I6, 6F8.2, 2(1PE13.5)) |
| 143 |
|
|
6668 FORMAT ('Phys. Total Budget ', A15, 1I6, F8.2, 2(1PE13.5)) |
| 144 |
|
|
|
| 145 |
|
|
END SUBROUTINE diagphy |
| 146 |
|
|
|
| 147 |
|
|
! ====================================================================== |
| 148 |
|
✗ |
SUBROUTINE diagetpq(airephy, tit, iprt, idiag, idiag2, dtime, t, q, ql, qs, & |
| 149 |
|
✗ |
u, v, paprs, pplay, d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
| 150 |
|
|
! ====================================================================== |
| 151 |
|
|
|
| 152 |
|
|
! Purpose: |
| 153 |
|
|
! Calcul la difference d'enthalpie et de masse d'eau entre 2 appels, |
| 154 |
|
|
! et calcul le flux de chaleur et le flux d'eau necessaire a ces |
| 155 |
|
|
! changements. Ces valeurs sont moyennees sur la surface de tout |
| 156 |
|
|
! le globe et sont exprime en W/2 et kg/s/m2 |
| 157 |
|
|
! Outil pour diagnostiquer la conservation de l'energie |
| 158 |
|
|
! et de la masse dans la physique. Suppose que les niveau de |
| 159 |
|
|
! pression entre couche ne varie pas entre 2 appels. |
| 160 |
|
|
|
| 161 |
|
|
! Plusieurs de ces diagnostics peuvent etre fait en parallele: les |
| 162 |
|
|
! bilans sont sauvegardes dans des tableaux indices. On parlera |
| 163 |
|
|
! "d'indice de diagnostic" |
| 164 |
|
|
|
| 165 |
|
|
|
| 166 |
|
|
! ====================================================================== |
| 167 |
|
|
! Arguments: |
| 168 |
|
|
! airephy-------input-R- grid area |
| 169 |
|
|
! tit-----imput-A15- Comment added in PRINT (CHARACTER*15) |
| 170 |
|
|
! iprt----input-I- PRINT level ( <=1 : no PRINT) |
| 171 |
|
|
! idiag---input-I- indice dans lequel sera range les nouveaux |
| 172 |
|
|
! bilans d' entalpie et de masse |
| 173 |
|
|
! idiag2--input-I-les nouveaux bilans d'entalpie et de masse |
| 174 |
|
|
! sont compare au bilan de d'enthalpie de masse de |
| 175 |
|
|
! l'indice numero idiag2 |
| 176 |
|
|
! Cas parriculier : si idiag2=0, pas de comparaison, on |
| 177 |
|
|
! sort directement les bilans d'enthalpie et de masse |
| 178 |
|
|
! dtime----input-R- time step (s) |
| 179 |
|
|
! t--------input-R- temperature (K) |
| 180 |
|
|
! q--------input-R- vapeur d'eau (kg/kg) |
| 181 |
|
|
! ql-------input-R- liquid watter (kg/kg) |
| 182 |
|
|
! qs-------input-R- solid watter (kg/kg) |
| 183 |
|
|
! u--------input-R- vitesse u |
| 184 |
|
|
! v--------input-R- vitesse v |
| 185 |
|
|
! paprs----input-R- pression a intercouche (Pa) |
| 186 |
|
|
! pplay----input-R- pression au milieu de couche (Pa) |
| 187 |
|
|
|
| 188 |
|
|
! the following total value are computed by UNIT of earth surface |
| 189 |
|
|
|
| 190 |
|
|
! d_h_vcol--output-R- Heat flux (W/m2) define as the Enthalpy |
| 191 |
|
|
! change (J/m2) during one time step (dtime) for the whole |
| 192 |
|
|
! atmosphere (air, watter vapour, liquid and solid) |
| 193 |
|
|
! d_qt------output-R- total water mass flux (kg/m2/s) defined as the |
| 194 |
|
|
! total watter (kg/m2) change during one time step (dtime), |
| 195 |
|
|
! d_qw------output-R- same, for the watter vapour only (kg/m2/s) |
| 196 |
|
|
! d_ql------output-R- same, for the liquid watter only (kg/m2/s) |
| 197 |
|
|
! d_qs------output-R- same, for the solid watter only (kg/m2/s) |
| 198 |
|
|
! d_ec------output-R- Cinetic Energy Budget (W/m2) for vertical air column |
| 199 |
|
|
|
| 200 |
|
|
! other (COMMON...) |
| 201 |
|
|
! RCPD, RCPV, .... |
| 202 |
|
|
|
| 203 |
|
|
! J.L. Dufresne, July 2002 |
| 204 |
|
|
! ====================================================================== |
| 205 |
|
|
|
| 206 |
|
|
USE dimphy |
| 207 |
|
|
IMPLICIT NONE |
| 208 |
|
|
|
| 209 |
|
|
include "YOMCST.h" |
| 210 |
|
|
include "YOETHF.h" |
| 211 |
|
|
|
| 212 |
|
|
! Input variables |
| 213 |
|
|
REAL airephy(klon) |
| 214 |
|
|
CHARACTER *15 tit |
| 215 |
|
|
INTEGER iprt, idiag, idiag2 |
| 216 |
|
|
REAL dtime |
| 217 |
|
|
REAL t(klon, klev), q(klon, klev), ql(klon, klev), qs(klon, klev) |
| 218 |
|
|
REAL u(klon, klev), v(klon, klev) |
| 219 |
|
|
REAL paprs(klon, klev+1), pplay(klon, klev) |
| 220 |
|
|
! Output variables |
| 221 |
|
|
REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec |
| 222 |
|
|
|
| 223 |
|
|
! Local variables |
| 224 |
|
|
|
| 225 |
|
|
REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot, h_qs_tot, qw_tot, ql_tot, & |
| 226 |
|
|
qs_tot, ec_tot |
| 227 |
|
|
! h_vcol_tot-- total enthalpy of vertical air column |
| 228 |
|
|
! (air with watter vapour, liquid and solid) (J/m2) |
| 229 |
|
|
! h_dair_tot-- total enthalpy of dry air (J/m2) |
| 230 |
|
|
! h_qw_tot---- total enthalpy of watter vapour (J/m2) |
| 231 |
|
|
! h_ql_tot---- total enthalpy of liquid watter (J/m2) |
| 232 |
|
|
! h_qs_tot---- total enthalpy of solid watter (J/m2) |
| 233 |
|
|
! qw_tot------ total mass of watter vapour (kg/m2) |
| 234 |
|
|
! ql_tot------ total mass of liquid watter (kg/m2) |
| 235 |
|
|
! qs_tot------ total mass of solid watter (kg/m2) |
| 236 |
|
|
! ec_tot------ total cinetic energy (kg/m2) |
| 237 |
|
|
|
| 238 |
|
✗ |
REAL zairm(klon, klev) ! layer air mass (kg/m2) |
| 239 |
|
✗ |
REAL zqw_col(klon) |
| 240 |
|
✗ |
REAL zql_col(klon) |
| 241 |
|
✗ |
REAL zqs_col(klon) |
| 242 |
|
✗ |
REAL zec_col(klon) |
| 243 |
|
✗ |
REAL zh_dair_col(klon) |
| 244 |
|
✗ |
REAL zh_qw_col(klon), zh_ql_col(klon), zh_qs_col(klon) |
| 245 |
|
|
|
| 246 |
|
|
REAL d_h_dair, d_h_qw, d_h_ql, d_h_qs |
| 247 |
|
|
|
| 248 |
|
|
REAL airetot, zcpvap, zcwat, zcice |
| 249 |
|
|
|
| 250 |
|
|
INTEGER i, k |
| 251 |
|
|
|
| 252 |
|
|
INTEGER ndiag ! max number of diagnostic in parallel |
| 253 |
|
|
PARAMETER (ndiag=10) |
| 254 |
|
|
INTEGER pas(ndiag) |
| 255 |
|
|
SAVE pas |
| 256 |
|
|
DATA pas/ndiag*0/ |
| 257 |
|
|
!$OMP THREADPRIVATE(pas) |
| 258 |
|
|
|
| 259 |
|
|
REAL h_vcol_pre(ndiag), h_dair_pre(ndiag), h_qw_pre(ndiag), & |
| 260 |
|
|
h_ql_pre(ndiag), h_qs_pre(ndiag), qw_pre(ndiag), ql_pre(ndiag), & |
| 261 |
|
|
qs_pre(ndiag), ec_pre(ndiag) |
| 262 |
|
|
SAVE h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre, h_qs_pre, qw_pre, ql_pre, & |
| 263 |
|
|
qs_pre, ec_pre |
| 264 |
|
|
!$OMP THREADPRIVATE(h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre) |
| 265 |
|
|
!$OMP THREADPRIVATE(h_qs_pre, qw_pre, ql_pre, qs_pre , ec_pre) |
| 266 |
|
|
! ====================================================================== |
| 267 |
|
|
|
| 268 |
|
✗ |
DO k = 1, klev |
| 269 |
|
✗ |
DO i = 1, klon |
| 270 |
|
|
! layer air mass |
| 271 |
|
✗ |
zairm(i, k) = (paprs(i,k)-paprs(i,k+1))/rg |
| 272 |
|
|
END DO |
| 273 |
|
|
END DO |
| 274 |
|
|
|
| 275 |
|
|
! Reset variables |
| 276 |
|
✗ |
DO i = 1, klon |
| 277 |
|
✗ |
zqw_col(i) = 0. |
| 278 |
|
✗ |
zql_col(i) = 0. |
| 279 |
|
✗ |
zqs_col(i) = 0. |
| 280 |
|
✗ |
zec_col(i) = 0. |
| 281 |
|
✗ |
zh_dair_col(i) = 0. |
| 282 |
|
✗ |
zh_qw_col(i) = 0. |
| 283 |
|
✗ |
zh_ql_col(i) = 0. |
| 284 |
|
✗ |
zh_qs_col(i) = 0. |
| 285 |
|
|
END DO |
| 286 |
|
|
|
| 287 |
|
✗ |
zcpvap = rcpv |
| 288 |
|
✗ |
zcwat = rcw |
| 289 |
|
✗ |
zcice = rcs |
| 290 |
|
|
|
| 291 |
|
|
! Compute vertical sum for each atmospheric column |
| 292 |
|
|
! ================================================ |
| 293 |
|
✗ |
DO k = 1, klev |
| 294 |
|
✗ |
DO i = 1, klon |
| 295 |
|
|
! Watter mass |
| 296 |
|
✗ |
zqw_col(i) = zqw_col(i) + q(i, k)*zairm(i, k) |
| 297 |
|
✗ |
zql_col(i) = zql_col(i) + ql(i, k)*zairm(i, k) |
| 298 |
|
✗ |
zqs_col(i) = zqs_col(i) + qs(i, k)*zairm(i, k) |
| 299 |
|
|
! Cinetic Energy |
| 300 |
|
✗ |
zec_col(i) = zec_col(i) + 0.5*(u(i,k)**2+v(i,k)**2)*zairm(i, k) |
| 301 |
|
|
! Air enthalpy |
| 302 |
|
|
zh_dair_col(i) = zh_dair_col(i) + rcpd*(1.-q(i,k)-ql(i,k)-qs(i,k))* & |
| 303 |
|
✗ |
zairm(i, k)*t(i, k) |
| 304 |
|
✗ |
zh_qw_col(i) = zh_qw_col(i) + zcpvap*q(i, k)*zairm(i, k)*t(i, k) |
| 305 |
|
|
zh_ql_col(i) = zh_ql_col(i) + zcwat*ql(i, k)*zairm(i, k)*t(i, k) - & |
| 306 |
|
✗ |
rlvtt*ql(i, k)*zairm(i, k) |
| 307 |
|
|
zh_qs_col(i) = zh_qs_col(i) + zcice*qs(i, k)*zairm(i, k)*t(i, k) - & |
| 308 |
|
✗ |
rlstt*qs(i, k)*zairm(i, k) |
| 309 |
|
|
|
| 310 |
|
|
END DO |
| 311 |
|
|
END DO |
| 312 |
|
|
|
| 313 |
|
|
! Mean over the planete surface |
| 314 |
|
|
! ============================= |
| 315 |
|
|
qw_tot = 0. |
| 316 |
|
|
ql_tot = 0. |
| 317 |
|
|
qs_tot = 0. |
| 318 |
|
|
ec_tot = 0. |
| 319 |
|
|
h_vcol_tot = 0. |
| 320 |
|
|
h_dair_tot = 0. |
| 321 |
|
|
h_qw_tot = 0. |
| 322 |
|
|
h_ql_tot = 0. |
| 323 |
|
|
h_qs_tot = 0. |
| 324 |
|
|
airetot = 0. |
| 325 |
|
|
|
| 326 |
|
✗ |
DO i = 1, klon |
| 327 |
|
✗ |
qw_tot = qw_tot + zqw_col(i)*airephy(i) |
| 328 |
|
✗ |
ql_tot = ql_tot + zql_col(i)*airephy(i) |
| 329 |
|
✗ |
qs_tot = qs_tot + zqs_col(i)*airephy(i) |
| 330 |
|
✗ |
ec_tot = ec_tot + zec_col(i)*airephy(i) |
| 331 |
|
✗ |
h_dair_tot = h_dair_tot + zh_dair_col(i)*airephy(i) |
| 332 |
|
✗ |
h_qw_tot = h_qw_tot + zh_qw_col(i)*airephy(i) |
| 333 |
|
✗ |
h_ql_tot = h_ql_tot + zh_ql_col(i)*airephy(i) |
| 334 |
|
✗ |
h_qs_tot = h_qs_tot + zh_qs_col(i)*airephy(i) |
| 335 |
|
✗ |
airetot = airetot + airephy(i) |
| 336 |
|
|
END DO |
| 337 |
|
|
|
| 338 |
|
✗ |
qw_tot = qw_tot/airetot |
| 339 |
|
✗ |
ql_tot = ql_tot/airetot |
| 340 |
|
✗ |
qs_tot = qs_tot/airetot |
| 341 |
|
✗ |
ec_tot = ec_tot/airetot |
| 342 |
|
✗ |
h_dair_tot = h_dair_tot/airetot |
| 343 |
|
✗ |
h_qw_tot = h_qw_tot/airetot |
| 344 |
|
✗ |
h_ql_tot = h_ql_tot/airetot |
| 345 |
|
✗ |
h_qs_tot = h_qs_tot/airetot |
| 346 |
|
|
|
| 347 |
|
✗ |
h_vcol_tot = h_dair_tot + h_qw_tot + h_ql_tot + h_qs_tot |
| 348 |
|
|
|
| 349 |
|
|
! Compute the change of the atmospheric state compare to the one |
| 350 |
|
|
! stored in "idiag2", and convert it in flux. THis computation |
| 351 |
|
|
! is performed IF idiag2 /= 0 and IF it is not the first CALL |
| 352 |
|
|
! for "idiag" |
| 353 |
|
|
! =================================== |
| 354 |
|
|
|
| 355 |
|
✗ |
IF ((idiag2>0) .AND. (pas(idiag2)/=0)) THEN |
| 356 |
|
✗ |
d_h_vcol = (h_vcol_tot-h_vcol_pre(idiag2))/dtime |
| 357 |
|
|
d_h_dair = (h_dair_tot-h_dair_pre(idiag2))/dtime |
| 358 |
|
|
d_h_qw = (h_qw_tot-h_qw_pre(idiag2))/dtime |
| 359 |
|
|
d_h_ql = (h_ql_tot-h_ql_pre(idiag2))/dtime |
| 360 |
|
|
d_h_qs = (h_qs_tot-h_qs_pre(idiag2))/dtime |
| 361 |
|
✗ |
d_qw = (qw_tot-qw_pre(idiag2))/dtime |
| 362 |
|
✗ |
d_ql = (ql_tot-ql_pre(idiag2))/dtime |
| 363 |
|
✗ |
d_qs = (qs_tot-qs_pre(idiag2))/dtime |
| 364 |
|
✗ |
d_ec = (ec_tot-ec_pre(idiag2))/dtime |
| 365 |
|
✗ |
d_qt = d_qw + d_ql + d_qs |
| 366 |
|
|
ELSE |
| 367 |
|
✗ |
d_h_vcol = 0. |
| 368 |
|
|
d_h_dair = 0. |
| 369 |
|
|
d_h_qw = 0. |
| 370 |
|
|
d_h_ql = 0. |
| 371 |
|
|
d_h_qs = 0. |
| 372 |
|
✗ |
d_qw = 0. |
| 373 |
|
✗ |
d_ql = 0. |
| 374 |
|
✗ |
d_qs = 0. |
| 375 |
|
✗ |
d_ec = 0. |
| 376 |
|
✗ |
d_qt = 0. |
| 377 |
|
|
END IF |
| 378 |
|
|
|
| 379 |
|
✗ |
IF (iprt>=2) THEN |
| 380 |
|
✗ |
WRITE (6, 9000) tit, pas(idiag), d_qt, d_qw, d_ql, d_qs |
| 381 |
|
|
9000 FORMAT ('Phys. Watter Mass Budget (kg/m2/s)', A15, 1I6, 10(1PE14.6)) |
| 382 |
|
✗ |
WRITE (6, 9001) tit, pas(idiag), d_h_vcol |
| 383 |
|
|
9001 FORMAT ('Phys. Enthalpy Budget (W/m2) ', A15, 1I6, 10(F8.2)) |
| 384 |
|
✗ |
WRITE (6, 9002) tit, pas(idiag), d_ec |
| 385 |
|
|
9002 FORMAT ('Phys. Cinetic Energy Budget (W/m2) ', A15, 1I6, 10(F8.2)) |
| 386 |
|
|
END IF |
| 387 |
|
|
|
| 388 |
|
|
! Store the new atmospheric state in "idiag" |
| 389 |
|
|
|
| 390 |
|
✗ |
pas(idiag) = pas(idiag) + 1 |
| 391 |
|
✗ |
h_vcol_pre(idiag) = h_vcol_tot |
| 392 |
|
✗ |
h_dair_pre(idiag) = h_dair_tot |
| 393 |
|
✗ |
h_qw_pre(idiag) = h_qw_tot |
| 394 |
|
✗ |
h_ql_pre(idiag) = h_ql_tot |
| 395 |
|
✗ |
h_qs_pre(idiag) = h_qs_tot |
| 396 |
|
✗ |
qw_pre(idiag) = qw_tot |
| 397 |
|
✗ |
ql_pre(idiag) = ql_tot |
| 398 |
|
✗ |
qs_pre(idiag) = qs_tot |
| 399 |
|
✗ |
ec_pre(idiag) = ec_tot |
| 400 |
|
|
|
| 401 |
|
✗ |
RETURN |
| 402 |
|
|
END SUBROUTINE diagetpq |
| 403 |
|
|
|