| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Id: friction.F 2597 2016-07-22 06:44:47Z emillour $ |
| 3 |
|
|
! |
| 4 |
|
|
c======================================================================= |
| 5 |
|
✗ |
SUBROUTINE friction(ucov,vcov,pdt) |
| 6 |
|
|
|
| 7 |
|
|
USE control_mod |
| 8 |
|
|
USE IOIPSL |
| 9 |
|
|
USE comconst_mod, ONLY: pi |
| 10 |
|
|
IMPLICIT NONE |
| 11 |
|
|
|
| 12 |
|
|
!======================================================================= |
| 13 |
|
|
! |
| 14 |
|
|
! Friction for the Newtonian case: |
| 15 |
|
|
! -------------------------------- |
| 16 |
|
|
! 2 possibilities (depending on flag 'friction_type' |
| 17 |
|
|
! friction_type=0 : A friction that is only applied to the lowermost |
| 18 |
|
|
! atmospheric layer |
| 19 |
|
|
! friction_type=1 : Friction applied on all atmospheric layer (but |
| 20 |
|
|
! (default) with stronger magnitude near the surface; see |
| 21 |
|
|
! iniacademic.F) |
| 22 |
|
|
!======================================================================= |
| 23 |
|
|
|
| 24 |
|
|
include "dimensions.h" |
| 25 |
|
|
include "paramet.h" |
| 26 |
|
|
include "comgeom2.h" |
| 27 |
|
|
include "iniprint.h" |
| 28 |
|
|
include "academic.h" |
| 29 |
|
|
|
| 30 |
|
|
! arguments: |
| 31 |
|
|
REAL,INTENT(out) :: ucov( iip1,jjp1,llm ) |
| 32 |
|
|
REAL,INTENT(out) :: vcov( iip1,jjm,llm ) |
| 33 |
|
|
REAL,INTENT(in) :: pdt ! time step |
| 34 |
|
|
|
| 35 |
|
|
! local variables: |
| 36 |
|
|
|
| 37 |
|
|
REAL modv(iip1,jjp1),zco,zsi |
| 38 |
|
|
REAL vpn,vps,upoln,upols,vpols,vpoln |
| 39 |
|
|
REAL u2(iip1,jjp1),v2(iip1,jjm) |
| 40 |
|
|
INTEGER i,j,l |
| 41 |
|
|
REAL,PARAMETER :: cfric=1.e-5 |
| 42 |
|
|
LOGICAL,SAVE :: firstcall=.true. |
| 43 |
|
|
INTEGER,SAVE :: friction_type=1 |
| 44 |
|
|
CHARACTER(len=20) :: modname="friction" |
| 45 |
|
|
CHARACTER(len=80) :: abort_message |
| 46 |
|
|
|
| 47 |
|
✗ |
IF (firstcall) THEN |
| 48 |
|
|
! set friction type |
| 49 |
|
✗ |
call getin("friction_type",friction_type) |
| 50 |
|
✗ |
if ((friction_type.lt.0).or.(friction_type.gt.1)) then |
| 51 |
|
✗ |
abort_message="wrong friction type" |
| 52 |
|
✗ |
write(lunout,*)'Friction: wrong friction type',friction_type |
| 53 |
|
✗ |
call abort_gcm(modname,abort_message,42) |
| 54 |
|
|
endif |
| 55 |
|
✗ |
firstcall=.false. |
| 56 |
|
|
ENDIF |
| 57 |
|
|
|
| 58 |
|
✗ |
if (friction_type.eq.0) then |
| 59 |
|
|
c calcul des composantes au carre du vent naturel |
| 60 |
|
✗ |
do j=1,jjp1 |
| 61 |
|
✗ |
do i=1,iip1 |
| 62 |
|
✗ |
u2(i,j)=ucov(i,j,1)*ucov(i,j,1)*unscu2(i,j) |
| 63 |
|
|
enddo |
| 64 |
|
|
enddo |
| 65 |
|
✗ |
do j=1,jjm |
| 66 |
|
✗ |
do i=1,iip1 |
| 67 |
|
✗ |
v2(i,j)=vcov(i,j,1)*vcov(i,j,1)*unscv2(i,j) |
| 68 |
|
|
enddo |
| 69 |
|
|
enddo |
| 70 |
|
|
|
| 71 |
|
|
c calcul du module de V en dehors des poles |
| 72 |
|
✗ |
do j=2,jjm |
| 73 |
|
✗ |
do i=2,iip1 |
| 74 |
|
✗ |
modv(i,j)=sqrt(0.5*(u2(i-1,j)+u2(i,j)+v2(i,j-1)+v2(i,j))) |
| 75 |
|
|
enddo |
| 76 |
|
✗ |
modv(1,j)=modv(iip1,j) |
| 77 |
|
|
enddo |
| 78 |
|
|
|
| 79 |
|
|
c les deux composantes du vent au pole sont obtenues comme |
| 80 |
|
|
c premiers modes de fourier de v pres du pole |
| 81 |
|
|
upoln=0. |
| 82 |
|
|
vpoln=0. |
| 83 |
|
|
upols=0. |
| 84 |
|
|
vpols=0. |
| 85 |
|
|
do i=2,iip1 |
| 86 |
|
|
zco=cos(rlonv(i))*(rlonu(i)-rlonu(i-1)) |
| 87 |
|
|
zsi=sin(rlonv(i))*(rlonu(i)-rlonu(i-1)) |
| 88 |
|
|
vpn=vcov(i,1,1)/cv(i,1) |
| 89 |
|
|
vps=vcov(i,jjm,1)/cv(i,jjm) |
| 90 |
|
|
upoln=upoln+zco*vpn |
| 91 |
|
|
vpoln=vpoln+zsi*vpn |
| 92 |
|
|
upols=upols+zco*vps |
| 93 |
|
|
vpols=vpols+zsi*vps |
| 94 |
|
|
enddo |
| 95 |
|
|
vpn=sqrt(upoln*upoln+vpoln*vpoln)/pi |
| 96 |
|
|
vps=sqrt(upols*upols+vpols*vpols)/pi |
| 97 |
|
✗ |
do i=1,iip1 |
| 98 |
|
|
c modv(i,1)=vpn |
| 99 |
|
|
c modv(i,jjp1)=vps |
| 100 |
|
✗ |
modv(i,1)=modv(i,2) |
| 101 |
|
✗ |
modv(i,jjp1)=modv(i,jjm) |
| 102 |
|
|
enddo |
| 103 |
|
|
|
| 104 |
|
|
c calcul du frottement au sol. |
| 105 |
|
✗ |
do j=2,jjm |
| 106 |
|
✗ |
do i=1,iim |
| 107 |
|
|
ucov(i,j,1)=ucov(i,j,1) |
| 108 |
|
✗ |
s -cfric*pdt*0.5*(modv(i+1,j)+modv(i,j))*ucov(i,j,1) |
| 109 |
|
|
enddo |
| 110 |
|
✗ |
ucov(iip1,j,1)=ucov(1,j,1) |
| 111 |
|
|
enddo |
| 112 |
|
✗ |
do j=1,jjm |
| 113 |
|
✗ |
do i=1,iip1 |
| 114 |
|
|
vcov(i,j,1)=vcov(i,j,1) |
| 115 |
|
✗ |
s -cfric*pdt*0.5*(modv(i,j+1)+modv(i,j))*vcov(i,j,1) |
| 116 |
|
|
enddo |
| 117 |
|
✗ |
vcov(iip1,j,1)=vcov(1,j,1) |
| 118 |
|
|
enddo |
| 119 |
|
|
endif ! of if (friction_type.eq.0) |
| 120 |
|
|
|
| 121 |
|
✗ |
if (friction_type.eq.1) then |
| 122 |
|
✗ |
do l=1,llm |
| 123 |
|
✗ |
ucov(:,:,l)=ucov(:,:,l)*(1.-pdt*kfrict(l)) |
| 124 |
|
✗ |
vcov(:,:,l)=vcov(:,:,l)*(1.-pdt*kfrict(l)) |
| 125 |
|
|
enddo |
| 126 |
|
|
endif |
| 127 |
|
|
|
| 128 |
|
✗ |
RETURN |
| 129 |
|
|
END |
| 130 |
|
|
|
| 131 |
|
|
|