| Directory: | ./ |
|---|---|
| File: | phys/hbtm_mod.f90 |
| Date: | 2022-01-11 19:19:34 |
| Exec | Total | Coverage | |
|---|---|---|---|
| Lines: | 189 | 189 | 100.0% |
| Branches: | 90 | 96 | 93.8% |
| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | module hbtm_mod | ||
| 2 | |||
| 3 | IMPLICIT NONE | ||
| 4 | |||
| 5 | contains | ||
| 6 | |||
| 7 | 40602618 | SUBROUTINE hbtm(knon, paprs, pplay, t2m, t10m, q2m, q10m, ustar, wstar, & | |
| 8 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | flux_t, flux_q, u, v, t, q, pblh, cape, eauliq, ctei, pblt, therm, & |
| 9 | trmb1, trmb2, trmb3, plcl) | ||
| 10 | USE dimphy | ||
| 11 | |||
| 12 | ! *************************************************************** | ||
| 13 | ! * * | ||
| 14 | ! * HBTM2 D'apres Holstag&Boville et Troen&Mahrt * | ||
| 15 | ! * JAS 47 BLM * | ||
| 16 | ! * Algorithme These Anne Mathieu * | ||
| 17 | ! * Critere d'Entrainement Peter Duynkerke (JAS 50) * | ||
| 18 | ! * written by : Anne MATHIEU & Alain LAHELLEC, 22/11/99 * | ||
| 19 | ! * features : implem. exces Mathieu * | ||
| 20 | ! *************************************************************** | ||
| 21 | ! * mods : decembre 99 passage th a niveau plus bas. voir fixer * | ||
| 22 | ! * la prise du th a z/Lambda = -.2 (max Ray) * | ||
| 23 | ! * Autre algo : entrainement ~ Theta+v =cste mais comment=>The?* | ||
| 24 | ! * on peut fixer q a .7qsat(cf non adiab)=>T2 et The2 * | ||
| 25 | ! * voir aussi //KE pblh = niveau The_e ou l = env. * | ||
| 26 | ! *************************************************************** | ||
| 27 | ! * fin therm a la HBTM passage a forme Mathieu 12/09/2001 * | ||
| 28 | ! *************************************************************** | ||
| 29 | ! * | ||
| 30 | |||
| 31 | |||
| 32 | ! AM Fev 2003 | ||
| 33 | ! Adaptation a LMDZ version couplee | ||
| 34 | |||
| 35 | ! Pour le moment on fait passer en argument les grdeurs de surface : | ||
| 36 | ! flux, t,q2m, t,q10m, on va utiliser systematiquement les grdeurs a 2m ms | ||
| 37 | ! on garde la possibilite de changer si besoin est (jusqu'a present la | ||
| 38 | ! forme de HB avec le 1er niveau modele etait conservee) | ||
| 39 | |||
| 40 | |||
| 41 | |||
| 42 | |||
| 43 | |||
| 44 | include "YOMCST.h" | ||
| 45 | REAL rlvcp, reps | ||
| 46 | ! Arguments: | ||
| 47 | |||
| 48 | INTEGER knon ! nombre de points a calculer | ||
| 49 | ! AM | ||
| 50 | REAL t2m(klon), t10m(klon) ! temperature a 2 et 10m | ||
| 51 | REAL q2m(klon), q10m(klon) ! q a 2 et 10m | ||
| 52 | REAL ustar(klon) | ||
| 53 | REAL wstar(klon) ! w*, convective velocity scale | ||
| 54 | REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) | ||
| 55 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) | ||
| 56 | REAL flux_t(klon, klev), flux_q(klon, klev) ! Flux | ||
| 57 | REAL u(klon, klev) ! vitesse U (m/s) | ||
| 58 | REAL v(klon, klev) ! vitesse V (m/s) | ||
| 59 | REAL t(klon, klev) ! temperature (K) | ||
| 60 | REAL q(klon, klev) ! vapeur d'eau (kg/kg) | ||
| 61 | ! AM REAL cd_h(klon) ! coefficient de friction au sol pour chaleur | ||
| 62 | ! AM REAL cd_m(klon) ! coefficient de friction au sol pour vitesse | ||
| 63 | |||
| 64 | INTEGER isommet | ||
| 65 | ! um PARAMETER (isommet=klev) ! limite max sommet pbl | ||
| 66 | REAL, PARAMETER :: vk = 0.35 ! Von Karman => passer a .41 ! cf U.Olgstrom | ||
| 67 | REAL, PARAMETER :: ricr = 0.4 | ||
| 68 | REAL, PARAMETER :: fak = 8.5 ! b calcul du Prandtl et de dTetas | ||
| 69 | REAL, PARAMETER :: fakn = 7.2 ! a | ||
| 70 | REAL, PARAMETER :: onet = 1.0/3.0 | ||
| 71 | REAL, PARAMETER :: t_coup = 273.15 | ||
| 72 | REAL, PARAMETER :: zkmin = 0.01 | ||
| 73 | REAL, PARAMETER :: betam = 15.0 ! pour Phim / h dans la S.L stable | ||
| 74 | REAL, PARAMETER :: betah = 15.0 | ||
| 75 | |||
| 76 | REAL, PARAMETER :: betas = 5.0 | ||
| 77 | ! Phit dans la S.L. stable (mais 2 formes / z/OBL<>1 | ||
| 78 | |||
| 79 | REAL, PARAMETER :: sffrac = 0.1 ! S.L. = z/h < .1 | ||
| 80 | REAL, PARAMETER :: usmin = 1.E-12 | ||
| 81 | REAL, PARAMETER :: binm = betam*sffrac | ||
| 82 | REAL, PARAMETER :: binh = betah*sffrac | ||
| 83 | REAL, PARAMETER :: ccon = fak*sffrac*vk | ||
| 84 | REAL, PARAMETER :: b1 = 70., b2 = 20. | ||
| 85 | REAL, PARAMETER :: zref = 2. ! Niveau de ref a 2m peut eventuellement | ||
| 86 | ! etre choisi a 10m | ||
| 87 | REAL q_star, t_star | ||
| 88 | REAL b212, b2sr ! Lambert correlations T' q' avec T* q* | ||
| 89 | |||
| 90 | 3840 | REAL z(klon, klev) | |
| 91 | ! AM REAL pcfm(klon,klev), pcfh(klon,klev) | ||
| 92 | INTEGER i, k, j | ||
| 93 | REAL zxt | ||
| 94 | ! AM REAL zxt, zxq, zxu, zxv, zxmod, taux, tauy | ||
| 95 | ! AM REAL zx_alf1, zx_alf2 ! parametres pour extrapolation | ||
| 96 | 3840 | REAL khfs(klon) ! surface kinematic heat flux [mK/s] | |
| 97 | 3840 | REAL kqfs(klon) ! sfc kinematic constituent flux [m/s] | |
| 98 | 3840 | REAL heatv(klon) ! surface virtual heat flux | |
| 99 | 3840 | REAL rhino(klon, klev) ! bulk Richardon no. mais en Theta_v | |
| 100 | 3840 | LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx) | |
| 101 | 3840 | LOGICAL stblev(klon) ! stable pbl with levels within pbl | |
| 102 | 3840 | LOGICAL unslev(klon) ! unstbl pbl with levels within pbl | |
| 103 | 3840 | LOGICAL unssrf(klon) ! unstb pbl w/lvls within srf pbl lyr | |
| 104 | 3840 | LOGICAL unsout(klon) ! unstb pbl w/lvls in outer pbl lyr | |
| 105 | 3840 | LOGICAL check(klon) ! True=>chk if Richardson no.>critcal | |
| 106 | 3840 | LOGICAL omegafl(klon) ! flag de prolongerment cape pour pt Omega | |
| 107 | REAL pblh(klon) | ||
| 108 | REAL pblt(klon) | ||
| 109 | REAL plcl(klon) | ||
| 110 | ! AM REAL cgh(klon,2:klev) ! counter-gradient term for heat [K/m] | ||
| 111 | ! AM REAL cgq(klon,2:klev) ! counter-gradient term for constituents | ||
| 112 | ! AM REAL cgs(klon,2:klev) ! counter-gradient star (cg/flux) | ||
| 113 | 3840 | REAL unsobklen(klon) ! Monin-Obukhov lengh | |
| 114 | ! AM REAL ztvd, ztvu, | ||
| 115 | REAL zdu2 | ||
| 116 | REAL, intent(out):: therm(:) ! (klon) thermal virtual temperature excess | ||
| 117 | REAL trmb1(klon), trmb2(klon), trmb3(klon) | ||
| 118 | ! Algorithme thermique | ||
| 119 | 3840 | REAL s(klon, klev) ! [P/Po]^Kappa milieux couches | |
| 120 | 3840 | REAL th_th(klon) ! potential temperature of thermal | |
| 121 | 3840 | REAL the_th(klon) ! equivalent potential temperature of thermal | |
| 122 | 3840 | REAL qt_th(klon) ! total water of thermal | |
| 123 | 3840 | REAL tbef(klon) ! T thermique niveau precedent | |
| 124 | 3840 | REAL qsatbef(klon) | |
| 125 | 3840 | LOGICAL zsat(klon) ! le thermique est sature | |
| 126 | REAL cape(klon) ! Cape du thermique | ||
| 127 | 3840 | REAL kape(klon) ! Cape locale | |
| 128 | REAL eauliq(klon) ! Eau liqu integr du thermique | ||
| 129 | REAL ctei(klon) ! Critere d'instab d'entrainmt des nuages de CL | ||
| 130 | REAL the1, the2, aa, bb, zthvd, zthvu, xintpos, qqsat | ||
| 131 | ! IM 091204 BEG | ||
| 132 | REAL a1, a2, a3 | ||
| 133 | ! IM 091204 END | ||
| 134 | REAL xhis, rnum, denom, th1, th2, thv1, thv2, ql2 | ||
| 135 | REAL dqsat_dt, qsat2, qt1, q2, t1, t2, xnull, delt_the | ||
| 136 | REAL delt_qt, delt_2, quadsat, spblh, reduc | ||
| 137 | |||
| 138 | 3840 | REAL phiminv(klon) ! inverse phi function for momentum | |
| 139 | 3840 | REAL phihinv(klon) ! inverse phi function for heat | |
| 140 | 3840 | REAL wm(klon) ! turbulent velocity scale for momentum | |
| 141 | 3840 | REAL fak1(klon) ! k*ustar*pblh | |
| 142 | 3840 | REAL fak2(klon) ! k*wm*pblh | |
| 143 | 3840 | REAL fak3(klon) ! fakn*wstar/wm | |
| 144 | 3840 | REAL pblk(klon) ! level eddy diffusivity for momentum | |
| 145 | 3840 | REAL pr(klon) ! Prandtl number for eddy diffusivities | |
| 146 | 3840 | REAL zl(klon) ! zmzp / Obukhov length | |
| 147 | 3840 | REAL zh(klon) ! zmzp / pblh | |
| 148 | 3840 | REAL zzh(klon) ! (1-(zmzp/pblh))**2 | |
| 149 | 3840 | REAL zm(klon) ! current level height | |
| 150 | 1920 | REAL zp(klon) ! current level height + one level up | |
| 151 | REAL zcor, zdelta, zcvm5 | ||
| 152 | ! AM REAL zxqs | ||
| 153 | REAL fac, pblmin, zmzp, term | ||
| 154 | |||
| 155 | include "YOETHF.h" | ||
| 156 | include "FCTTRE.h" | ||
| 157 | |||
| 158 | |||
| 159 | |||
| 160 | ! initialisations (Anne) | ||
| 161 | isommet = klev | ||
| 162 |
2/2✓ Branch 0 taken 1908480 times.
✓ Branch 1 taken 1920 times.
|
1910400 | th_th(:) = 0. |
| 163 | q_star = 0 | ||
| 164 | t_star = 0 | ||
| 165 |
2/2✓ Branch 0 taken 1908480 times.
✓ Branch 1 taken 1920 times.
|
1910400 | therm = 0. |
| 166 | |||
| 167 | b212 = sqrt(b1*b2) | ||
| 168 | b2sr = sqrt(b2) | ||
| 169 | |||
| 170 | ! ============================================================ | ||
| 171 | ! Fonctions thermo implicites | ||
| 172 | ! ============================================================ | ||
| 173 | ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 174 | ! Tetens : pression partielle de vap d'eau e_sat(T) | ||
| 175 | ! ================================================= | ||
| 176 | ! ++ e_sat(T) = r2*exp( r3*(T-Tf)/(T-r4) ) id a r2*FOEWE | ||
| 177 | ! ++ avec : | ||
| 178 | ! ++ Tf = 273.16 K (Temp de fusion de la glace) | ||
| 179 | ! ++ r2 = 611.14 Pa | ||
| 180 | ! ++ r3 = 17.269 (liquide) 21.875 (solide) adim | ||
| 181 | ! ++ r4 = 35.86 7.66 Kelvin | ||
| 182 | ! ++ q_sat = eps*e_sat/(p-(1-eps)*e_sat) | ||
| 183 | ! ++ deriv� : | ||
| 184 | ! ++ ========= | ||
| 185 | ! ++ r3*(Tf-r4)*q_sat(T,p) | ||
| 186 | ! ++ d_qsat_dT = -------------------------------- | ||
| 187 | ! ++ (T-r4)^2*( 1-(1-eps)*e_sat(T)/p ) | ||
| 188 | ! ++ pour zcvm5=Lv, c'est FOEDE | ||
| 189 | ! ++ Rq :(1.-REPS)*esarg/Parg id a RETV*Qsat | ||
| 190 | ! ------------------------------------------------------------------ | ||
| 191 | |||
| 192 | ! Initialisation | ||
| 193 | 1920 | rlvcp = rlvtt/rcpd | |
| 194 | reps = rd/rv | ||
| 195 | |||
| 196 | |||
| 197 | ! DO i = 1, klon | ||
| 198 | ! pcfh(i,1) = cd_h(i) | ||
| 199 | ! pcfm(i,1) = cd_m(i) | ||
| 200 | ! ENDDO | ||
| 201 | ! DO k = 2, klev | ||
| 202 | ! DO i = 1, klon | ||
| 203 | ! pcfh(i,k) = zkmin | ||
| 204 | ! pcfm(i,k) = zkmin | ||
| 205 | ! cgs(i,k) = 0.0 | ||
| 206 | ! cgh(i,k) = 0.0 | ||
| 207 | ! cgq(i,k) = 0.0 | ||
| 208 | ! ENDDO | ||
| 209 | ! ENDDO | ||
| 210 | |||
| 211 | ! Calculer les hauteurs de chaque couche | ||
| 212 | ! (geopotentielle Int_dp/ro = Int_[Rd.T.dp/p] z = geop/g) | ||
| 213 | ! pourquoi ne pas utiliser Phi/RG ? | ||
| 214 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO i = 1, knon |
| 215 | z(i, 1) = rd*t(i, 1)/(0.5*(paprs(i,1)+pplay(i,1)))& | ||
| 216 | 788452 | *(paprs(i,1)-pplay(i,1))/rg | |
| 217 | 790372 | s(i, 1) = (pplay(i,1)/paprs(i,1))**rkappa | |
| 218 | END DO | ||
| 219 | ! s(k) = [pplay(k)/ps]^kappa | ||
| 220 | ! + + + + + + + + + pplay <-> s(k) t dp=pplay(k-1)-pplay(k) | ||
| 221 | |||
| 222 | ! ----------------- paprs <-> sig(k) | ||
| 223 | |||
| 224 | ! + + + + + + + + + pplay <-> s(k-1) | ||
| 225 | |||
| 226 | |||
| 227 | ! + + + + + + + + + pplay <-> s(1) t dp=paprs-pplay z(1) | ||
| 228 | |||
| 229 | ! ----------------- paprs <-> sig(1) | ||
| 230 | |||
| 231 |
2/2✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
|
74880 | DO k = 2, klev |
| 232 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30036056 | DO i = 1, knon |
| 233 | z(i, k) = z(i, k-1) + rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)& | ||
| 234 | 29961176 | *(pplay(i,k-1)-pplay(i,k))/rg | |
| 235 | 30034136 | s(i, k) = (pplay(i,k)/paprs(i,1))**rkappa | |
| 236 | END DO | ||
| 237 | END DO | ||
| 238 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 239 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 240 | ! +++ Determination des grandeurs de surface +++++++++++++++++++++ | ||
| 241 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 242 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 243 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO i = 1, knon |
| 244 | ! AM IF (thermcep) THEN | ||
| 245 | ! AM zdelta=MAX(0.,SIGN(1.,RTT-tsol(i))) | ||
| 246 | ! zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta | ||
| 247 | ! zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q(i,1)) | ||
| 248 | ! AM zxqs= r2es * FOEEW(tsol(i),zdelta)/paprs(i,1) | ||
| 249 | ! AM zxqs=MIN(0.5,zxqs) | ||
| 250 | ! AM zcor=1./(1.-retv*zxqs) | ||
| 251 | ! AM zxqs=zxqs*zcor | ||
| 252 | ! AM ELSE | ||
| 253 | ! AM IF (tsol(i).LT.t_coup) THEN | ||
| 254 | ! AM zxqs = qsats(tsol(i)) / paprs(i,1) | ||
| 255 | ! AM ELSE | ||
| 256 | ! AM zxqs = qsatl(tsol(i)) / paprs(i,1) | ||
| 257 | ! AM ENDIF | ||
| 258 | ! AM ENDIF | ||
| 259 | ! niveau de reference bulk; mais ici, c,a pourrait etre le niveau de ref | ||
| 260 | ! du thermique | ||
| 261 | ! AM zx_alf1 = 1.0 | ||
| 262 | ! AM zx_alf2 = 1.0 - zx_alf1 | ||
| 263 | ! AM zxt = (t(i,1)+z(i,1)*RG/RCPD/(1.+RVTMP2*q(i,1))) | ||
| 264 | ! AM . *(1.+RETV*q(i,1))*zx_alf1 | ||
| 265 | ! AM . + (t(i,2)+z(i,2)*RG/RCPD/(1.+RVTMP2*q(i,2))) | ||
| 266 | ! AM . *(1.+RETV*q(i,2))*zx_alf2 | ||
| 267 | ! AM zxu = u(i,1)*zx_alf1+u(i,2)*zx_alf2 | ||
| 268 | ! AM zxv = v(i,1)*zx_alf1+v(i,2)*zx_alf2 | ||
| 269 | ! AM zxq = q(i,1)*zx_alf1+q(i,2)*zx_alf2 | ||
| 270 | ! AM | ||
| 271 | ! AMAM zxu = u10m(i) | ||
| 272 | ! AMAM zxv = v10m(i) | ||
| 273 | ! AMAM zxmod = 1.0+SQRT(zxu**2+zxv**2) | ||
| 274 | ! AM Niveau de ref choisi a 2m | ||
| 275 | 788452 | zxt = t2m(i) | |
| 276 | |||
| 277 | ! *************************************************** | ||
| 278 | ! attention, il doit s'agir de <w'theta'> | ||
| 279 | ! ;Calcul de tcls virtuel et de w'theta'virtuel | ||
| 280 | ! ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | ||
| 281 | ! tcls=tcls*(1+.608*qcls) | ||
| 282 | |||
| 283 | ! ;Pour avoir w'theta', | ||
| 284 | ! ; il faut diviser par ro.Cp | ||
| 285 | ! Cp=Cpd*(1+0.84*qcls) | ||
| 286 | ! fcs=fcs/(ro_surf*Cp) | ||
| 287 | ! ;On transforme w'theta' en w'thetav' | ||
| 288 | ! Lv=(2.501-0.00237*(tcls-273.15))*1.E6 | ||
| 289 | ! xle=xle/(ro_surf*Lv) | ||
| 290 | ! fcsv=fcs+.608*xle*tcls | ||
| 291 | ! *************************************************** | ||
| 292 | ! AM khfs(i) = (tsol(i)*(1.+RETV*q(i,1))-zxt) *zxmod*cd_h(i) | ||
| 293 | ! AM kqfs(i) = (zxqs-zxq) *zxmod*cd_h(i) * beta(i) | ||
| 294 | ! AM | ||
| 295 | ! dif khfs est deja w't'_v / heatv(i) = khfs(i) + RETV*zxt*kqfs(i) | ||
| 296 | ! AM calcule de Ro = paprs(i,1)/Rd zxt | ||
| 297 | ! AM convention >0 vers le bas ds lmdz | ||
| 298 | 788452 | khfs(i) = -flux_t(i, 1)*zxt*rd/(rcpd*paprs(i,1)) | |
| 299 | 788452 | kqfs(i) = -flux_q(i, 1)*zxt*rd/(paprs(i,1)) | |
| 300 | ! AM verifier que khfs et kqfs sont bien de la forme w'l' | ||
| 301 | 788452 | heatv(i) = khfs(i) + 0.608*zxt*kqfs(i) | |
| 302 | ! a comparer aussi aux sorties de clqh : flux_T/RoCp et flux_q/RoLv | ||
| 303 | ! AM heatv(i) = khfs(i) | ||
| 304 | ! AM ustar est en entree | ||
| 305 | ! AM taux = zxu *zxmod*cd_m(i) | ||
| 306 | ! AM tauy = zxv *zxmod*cd_m(i) | ||
| 307 | ! AM ustar(i) = SQRT(taux**2+tauy**2) | ||
| 308 | ! AM ustar(i) = MAX(SQRT(ustar(i)),0.01) | ||
| 309 | ! Theta et qT du thermique sans exces (interpolin vers surf) | ||
| 310 | ! chgt de niveau du thermique (jeudi 30/12/1999) | ||
| 311 | ! (interpolation lineaire avant integration phi_h) | ||
| 312 | ! AM qT_th(i) = zxqs*beta(i) + 4./z(i,1)*(q(i,1)-zxqs*beta(i)) | ||
| 313 | ! AM qT_th(i) = max(qT_th(i),q(i,1)) | ||
| 314 | 788452 | qt_th(i) = q2m(i) | |
| 315 | ! n The_th restera la Theta du thermique sans exces jusqu'a 2eme calcul | ||
| 316 | ! n reste a regler convention P) pour Theta | ||
| 317 | ! The_th(i) = tsol(i) + 4./z(i,1)*(t(i,1)-tsol(i)) | ||
| 318 | ! - + RLvCp*qT_th(i) | ||
| 319 | ! AM Th_th(i) = tsol(i) + 4./z(i,1)*(t(i,1)-tsol(i)) | ||
| 320 | 790372 | th_th(i) = t2m(i) | |
| 321 | END DO | ||
| 322 | |||
| 323 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO i = 1, knon |
| 324 | 788452 | rhino(i, 1) = 0.0 ! Global Richardson | |
| 325 | 788452 | check(i) = .TRUE. | |
| 326 | 788452 | pblh(i) = z(i, 1) ! on initialise pblh a l'altitude du 1er niveau | |
| 327 | 788452 | plcl(i) = 6000. | |
| 328 | ! Lambda = -u*^3 / (alpha.g.kvon.<w'Theta'v> | ||
| 329 | 788452 | unsobklen(i) = -rg*vk*heatv(i)/(t(i,1)*max(ustar(i),usmin)**3) | |
| 330 | 788452 | trmb1(i) = 0. | |
| 331 | 788452 | trmb2(i) = 0. | |
| 332 | 790372 | trmb3(i) = 0. | |
| 333 | END DO | ||
| 334 | |||
| 335 | |||
| 336 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 337 | ! PBL height calculation: | ||
| 338 | ! Search for level of pbl. Scan upward until the Richardson number between | ||
| 339 | ! the first level and the current level exceeds the "critical" value. | ||
| 340 | ! (bonne idee Nu de separer le Ric et l'exces de temp du thermique) | ||
| 341 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 342 | fac = 100.0 | ||
| 343 |
2/2✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
|
74880 | DO k = 2, isommet |
| 344 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30036056 | DO i = 1, knon |
| 345 |
2/2✓ Branch 0 taken 3139740 times.
✓ Branch 1 taken 26821436 times.
|
30034136 | IF (check(i)) THEN |
| 346 | ! pourquoi / niveau 1 (au lieu du sol) et le terme en u*^2 ? | ||
| 347 | ! test zdu2 = | ||
| 348 | ! (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 | ||
| 349 | 3139740 | zdu2 = u(i, k)**2 + v(i, k)**2 | |
| 350 | 3139740 | zdu2 = max(zdu2, 1.0E-20) | |
| 351 | ! Theta_v environnement | ||
| 352 | 3139740 | zthvd = t(i, k)/s(i, k)*(1.+retv*q(i,k)) | |
| 353 | |||
| 354 | ! therm Theta_v sans exces (avec hypothese fausse de H&B, sinon, | ||
| 355 | ! passer par Theta_e et virpot) | ||
| 356 | ! zthvu=t(i,1)/s(i,1)*(1.+RETV*q(i,1)) | ||
| 357 | ! AM zthvu = Th_th(i)*(1.+RETV*q(i,1)) | ||
| 358 | 3139740 | zthvu = th_th(i)*(1.+retv*qt_th(i)) | |
| 359 | ! Le Ri par Theta_v | ||
| 360 | ! AM rhino(i,k) = (z(i,k)-z(i,1))*RG*(zthvd-zthvu) | ||
| 361 | ! AM . /(zdu2*0.5*(zthvd+zthvu)) | ||
| 362 | ! AM On a nveau de ref a 2m ??? | ||
| 363 | rhino(i, k) = (z(i,k)-zref)*rg*(zthvd-zthvu)/(zdu2*0.5& | ||
| 364 | 3139740 | *(zthvd+zthvu)) | |
| 365 | |||
| 366 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 2351288 times.
|
3139740 | IF (rhino(i,k)>=ricr) THEN |
| 367 | pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rhino(i,k-1))& | ||
| 368 | 788452 | /(rhino(i,k-1)-rhino(i,k)) | |
| 369 | ! test04 | ||
| 370 | 788452 | pblh(i) = pblh(i) + 100. | |
| 371 | pblt(i) = t(i, k-1) + (t(i,k)-t(i,k-1))*(pblh(i)-z(i,k-1))& | ||
| 372 | 788452 | /(z(i,k)- z(i,k-1)) | |
| 373 | 788452 | check(i) = .FALSE. | |
| 374 | END IF | ||
| 375 | END IF | ||
| 376 | END DO | ||
| 377 | END DO | ||
| 378 | |||
| 379 | |||
| 380 | ! Set pbl height to maximum value where computation exceeds number of | ||
| 381 | ! layers allowed | ||
| 382 | |||
| 383 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO i = 1, knon |
| 384 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 788452 times.
|
790372 | IF (check(i)) pblh(i) = z(i, isommet) |
| 385 | END DO | ||
| 386 | |||
| 387 | ! Improve estimate of pbl height for the unstable points. | ||
| 388 | ! Find unstable points (sensible heat flux is upward): | ||
| 389 | |||
| 390 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO i = 1, knon |
| 391 |
2/2✓ Branch 0 taken 525309 times.
✓ Branch 1 taken 263143 times.
|
790372 | IF (heatv(i)>0.) THEN |
| 392 | 525309 | unstbl(i) = .TRUE. | |
| 393 | 525309 | check(i) = .TRUE. | |
| 394 | ELSE | ||
| 395 | 263143 | unstbl(i) = .FALSE. | |
| 396 | 263143 | check(i) = .FALSE. | |
| 397 | END IF | ||
| 398 | END DO | ||
| 399 | |||
| 400 | ! For the unstable case, compute velocity scale and the | ||
| 401 | ! convective temperature excess: | ||
| 402 | |||
| 403 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO i = 1, knon |
| 404 |
2/2✓ Branch 0 taken 525309 times.
✓ Branch 1 taken 263143 times.
|
790372 | IF (check(i)) THEN |
| 405 | 525309 | phiminv(i) = (1.-binm*pblh(i)*unsobklen(i))**onet | |
| 406 | ! *************************************************** | ||
| 407 | ! Wm ? et W* ? c'est la formule pour z/h < .1 | ||
| 408 | ! ;Calcul de w* ;; | ||
| 409 | ! ;;;;;;;;;;;;;;;; | ||
| 410 | ! w_star=((g/tcls)*fcsv*z(ind))^(1/3.) [ou prendre la premiere approx | ||
| 411 | ! de h) | ||
| 412 | ! ;; CALCUL DE wm ;; | ||
| 413 | ! ;;;;;;;;;;;;;;;;;; | ||
| 414 | ! ; Ici on considerera que l'on est dans la couche de surf jusqu'a | ||
| 415 | ! 100 m | ||
| 416 | ! ; On prend svt couche de surface=0.1*h mais on ne connait pas h | ||
| 417 | ! ;;;;;;;;;;;Dans la couche de surface | ||
| 418 | ! if (z(ind) le 20) then begin | ||
| 419 | ! Phim=(1.-15.*(z(ind)/L))^(-1/3.) | ||
| 420 | ! wm=u_star/Phim | ||
| 421 | ! ;;;;;;;;;;;En dehors de la couche de surface | ||
| 422 | ! endif else if (z(ind) gt 20) then begin | ||
| 423 | ! wm=(u_star^3+c1*w_star^3)^(1/3.) | ||
| 424 | ! endif | ||
| 425 | ! *************************************************** | ||
| 426 | 525309 | wm(i) = ustar(i)*phiminv(i) | |
| 427 | ! =================================================================== | ||
| 428 | ! valeurs de Dominique Lambert de la campagne SEMAPHORE : | ||
| 429 | ! <T'^2> = 100.T*^2; <q'^2> = 20.q*^2 a 10m | ||
| 430 | ! <Tv'^2> = (1+1.2q).100.T* + 1.2Tv.sqrt(20*100).T*.q* + | ||
| 431 | ! (.608*Tv)^2*20.q*^2; | ||
| 432 | ! et dTetavS = sqrt(<Tv'^2>) ainsi calculee. | ||
| 433 | ! avec : T*=<w'T'>_s/w* et q*=<w'q'>/w* | ||
| 434 | ! !!! on peut donc utiliser w* pour les fluctuations <-> Lambert | ||
| 435 | ! (leur corellation pourrait dependre de beta par ex) | ||
| 436 | ! if fcsv(i,j) gt 0 then begin | ||
| 437 | ! dTetavs=b1*(1.+2.*.608*q_10(i,j))*(fcs(i,j)/wm(i,j))^2+$ | ||
| 438 | ! (.608*Thetav_10(i,j))^2*b2*(xle(i,j)/wm(i,j))^2+$ | ||
| 439 | ! 2.*.608*thetav_10(i,j)*sqrt(b1*b2)*(xle(i,j)/wm(i,j))*(fcs(i,j) | ||
| 440 | ! /wm(i,j)) | ||
| 441 | ! dqs=b2*(xle(i,j)/wm(i,j))^2 | ||
| 442 | ! theta_s(i,j)=thetav_10(i,j)+sqrt(dTetavs) | ||
| 443 | ! q_s(i,j)=q_10(i,j)+sqrt(dqs) | ||
| 444 | ! endif else begin | ||
| 445 | ! Theta_s(i,j)=thetav_10(i,j) | ||
| 446 | ! q_s(i,j)=q_10(i,j) | ||
| 447 | ! endelse | ||
| 448 | ! =================================================================== | ||
| 449 | |||
| 450 | ! HBTM therm(i) = heatv(i)*fak/wm(i) | ||
| 451 | ! forme Mathieu : | ||
| 452 | 525309 | q_star = kqfs(i)/wm(i) | |
| 453 | 525309 | t_star = khfs(i)/wm(i) | |
| 454 | ! IM 091204 BEG | ||
| 455 | IF (1==0) THEN | ||
| 456 | IF (t_star<0. .OR. q_star<0.) THEN | ||
| 457 | PRINT *, 'i t_star q_star khfs kqfs wm', i, t_star, q_star, & | ||
| 458 | khfs(i), kqfs(i), wm(i) | ||
| 459 | END IF | ||
| 460 | END IF | ||
| 461 | ! IM 091204 END | ||
| 462 | ! AM Nveau cde ref 2m => | ||
| 463 | ! AM therm(i) = sqrt( b1*(1.+2.*RETV*q(i,1))*t_star**2 | ||
| 464 | ! AM + + (RETV*T(i,1))**2*b2*q_star**2 | ||
| 465 | ! AM + + 2.*RETV*T(i,1)*b212*q_star*t_star | ||
| 466 | ! AM + ) | ||
| 467 | ! IM 091204 BEG | ||
| 468 | 525309 | a1 = b1*(1.+2.*retv*qt_th(i))*t_star**2 | |
| 469 | 525309 | a2 = (retv*th_th(i))**2*b2*q_star*q_star | |
| 470 | 525309 | a3 = 2.*retv*th_th(i)*b212*q_star*t_star | |
| 471 | 525309 | aa = a1 + a2 + a3 | |
| 472 | IF (1==0) THEN | ||
| 473 | IF (aa<0.) THEN | ||
| 474 | PRINT *, 'i a1 a2 a3 aa', i, a1, a2, a3, aa | ||
| 475 | PRINT *, 'i qT_th Th_th t_star q_star RETV b1 b2 b212', i, & | ||
| 476 | qt_th(i), th_th(i), t_star, q_star, retv, b1, b2, b212 | ||
| 477 | END IF | ||
| 478 | END IF | ||
| 479 | ! IM 091204 END | ||
| 480 | therm(i) = sqrt(b1*(1.+2.*retv*qt_th(i))*t_star**2+(retv*th_th( & | ||
| 481 | i))**2*b2*q_star*q_star & ! IM 101204 + + | ||
| 482 | ! 2.*RETV*Th_th(i)*b212*q_star*t_star | ||
| 483 | 525309 | +max(0.,2.*retv*th_th(i)*b212*q_star*t_star)) | |
| 484 | |||
| 485 | ! Theta et qT du thermique (forme H&B) avec exces | ||
| 486 | ! (attention, on ajoute therm(i) qui est virtuelle ...) | ||
| 487 | ! pourquoi pas sqrt(b1)*t_star ? | ||
| 488 | ! dqs = b2sr*kqfs(i)/wm(i) | ||
| 489 | 525309 | qt_th(i) = qt_th(i) + b2sr*q_star | |
| 490 | ! new on differre le calcul de Theta_e | ||
| 491 | ! The_th(i) = The_th(i) + therm(i) + RLvCp*qT_th(i) | ||
| 492 | ! ou: The_th(i) = The_th(i) + sqrt(b1)*khfs(i)/wm(i) + | ||
| 493 | ! RLvCp*qT_th(i) | ||
| 494 | 525309 | rhino(i, 1) = 0.0 | |
| 495 | END IF | ||
| 496 | END DO | ||
| 497 | |||
| 498 | ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 499 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 500 | ! ++ Improve pblh estimate for unstable conditions using the +++++++ | ||
| 501 | ! ++ convective temperature excess : +++++++ | ||
| 502 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 503 | ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 504 | |||
| 505 |
2/2✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
|
74880 | DO k = 2, isommet |
| 506 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30036056 | DO i = 1, knon |
| 507 |
2/2✓ Branch 0 taken 2701897 times.
✓ Branch 1 taken 27259279 times.
|
30034136 | IF (check(i)) THEN |
| 508 | ! test zdu2 = | ||
| 509 | ! (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 | ||
| 510 | 2701897 | zdu2 = u(i, k)**2 + v(i, k)**2 | |
| 511 | 2701897 | zdu2 = max(zdu2, 1.0E-20) | |
| 512 | ! Theta_v environnement | ||
| 513 | 2701897 | zthvd = t(i, k)/s(i, k)*(1.+retv*q(i,k)) | |
| 514 | |||
| 515 | ! et therm Theta_v (avec hypothese de constance de H&B, | ||
| 516 | ! zthvu=(t(i,1)+therm(i))/s(i,1)*(1.+RETV*q(i,1)) | ||
| 517 | 2701897 | zthvu = th_th(i)*(1.+retv*qt_th(i)) + therm(i) | |
| 518 | |||
| 519 | |||
| 520 | ! Le Ri par Theta_v | ||
| 521 | ! AM Niveau de ref 2m | ||
| 522 | ! AM rhino(i,k) = (z(i,k)-z(i,1))*RG*(zthvd-zthvu) | ||
| 523 | ! AM . /(zdu2*0.5*(zthvd+zthvu)) | ||
| 524 | rhino(i, k) = (z(i,k)-zref)*rg*(zthvd-zthvu)/(zdu2*0.5& | ||
| 525 | 2701897 | *(zthvd+zthvu)) | |
| 526 | |||
| 527 | |||
| 528 |
2/2✓ Branch 0 taken 525309 times.
✓ Branch 1 taken 2176588 times.
|
2701897 | IF (rhino(i,k)>=ricr) THEN |
| 529 | pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rhino(i,k-1))& | ||
| 530 | 525309 | /(rhino(i,k-1)-rhino(i,k)) | |
| 531 | ! test04 | ||
| 532 | 525309 | pblh(i) = pblh(i) + 100. | |
| 533 | pblt(i) = t(i, k-1) + (t(i,k)-t(i,k-1))*(pblh(i)-z(i,k-1))& | ||
| 534 | 525309 | /(z(i,k)- z(i,k-1)) | |
| 535 | 525309 | check(i) = .FALSE. | |
| 536 | ! IM 170305 BEG | ||
| 537 | IF (1==0) THEN | ||
| 538 | ! debug print -120;34 -34- 58 et 0;26 wamp | ||
| 539 | IF (i==950 .OR. i==192 .OR. i==624 .OR. i==118) THEN | ||
| 540 | PRINT *, ' i,Th_th,Therm,qT :', i, th_th(i), therm(i), & | ||
| 541 | qt_th(i) | ||
| 542 | q_star = kqfs(i)/wm(i) | ||
| 543 | t_star = khfs(i)/wm(i) | ||
| 544 | PRINT *, 'q* t*, b1,b2,b212 ', q_star, t_star, & | ||
| 545 | b1*(1.+2.*retv*qt_th(i))*t_star**2, & | ||
| 546 | (retv*th_th(i))**2*b2*q_star**2, 2.*retv*th_th(i)& | ||
| 547 | *b212*q_star *t_star | ||
| 548 | PRINT *, 'zdu2 ,100.*ustar(i)**2', zdu2, fac*ustar(i)**2 | ||
| 549 | END IF | ||
| 550 | END IF !(1.EQ.0) THEN | ||
| 551 | ! IM 170305 END | ||
| 552 | ! q_star = kqfs(i)/wm(i) | ||
| 553 | ! t_star = khfs(i)/wm(i) | ||
| 554 | ! trmb1(i) = b1*(1.+2.*RETV*q(i,1))*t_star**2 | ||
| 555 | ! trmb2(i) = (RETV*T(i,1))**2*b2*q_star**2 | ||
| 556 | ! Omega now trmb3(i) = 2.*RETV*T(i,1)*b212*q_star*t_star | ||
| 557 | END IF | ||
| 558 | END IF | ||
| 559 | END DO | ||
| 560 | END DO | ||
| 561 | |||
| 562 | ! Set pbl height to maximum value where computation exceeds number of | ||
| 563 | ! layers allowed | ||
| 564 | |||
| 565 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO i = 1, knon |
| 566 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 788452 times.
|
790372 | IF (check(i)) pblh(i) = z(i, isommet) |
| 567 | END DO | ||
| 568 | |||
| 569 | ! PBL height must be greater than some minimum mechanical mixing depth | ||
| 570 | ! Several investigators have proposed minimum mechanical mixing depth | ||
| 571 | ! relationships as a function of the local friction velocity, u*. We | ||
| 572 | ! make use of a linear relationship of the form h = c u* where c=700. | ||
| 573 | ! The scaling arguments that give rise to this relationship most often | ||
| 574 | ! represent the coefficient c as some constant over the local coriolis | ||
| 575 | ! parameter. Here we make use of the experimental results of Koracin | ||
| 576 | ! and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f | ||
| 577 | ! where f was evaluated at 39.5 N and 52 N. Thus we use a typical mid | ||
| 578 | ! latitude value for f so that c = 0.07/f = 700. | ||
| 579 | |||
| 580 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO i = 1, knon |
| 581 | 788452 | pblmin = 700.0*ustar(i) | |
| 582 | 788452 | pblh(i) = max(pblh(i), pblmin) | |
| 583 | ! par exemple : | ||
| 584 | 790372 | pblt(i) = t(i, 2) + (t(i,3)-t(i,2))*(pblh(i)-z(i,2))/(z(i,3)-z(i,2)) | |
| 585 | END DO | ||
| 586 | |||
| 587 | ! ******************************************************************** | ||
| 588 | ! pblh is now available; do preparation for diffusivity calculation : | ||
| 589 | ! ******************************************************************** | ||
| 590 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO i = 1, knon |
| 591 | 788452 | check(i) = .TRUE. | |
| 592 | 788452 | zsat(i) = .FALSE. | |
| 593 | ! omegafl utilise pour prolongement CAPE | ||
| 594 | 788452 | omegafl(i) = .FALSE. | |
| 595 | 788452 | cape(i) = 0. | |
| 596 | 788452 | kape(i) = 0. | |
| 597 | 788452 | eauliq(i) = 0. | |
| 598 | 788452 | ctei(i) = 0. | |
| 599 | 788452 | pblk(i) = 0.0 | |
| 600 | 788452 | fak1(i) = ustar(i)*pblh(i)*vk | |
| 601 | |||
| 602 | ! Do additional preparation for unstable cases only, set temperature | ||
| 603 | ! and moisture perturbations depending on stability. | ||
| 604 | ! *** Rq: les formule sont prises dans leur forme CS *** | ||
| 605 |
2/2✓ Branch 0 taken 525309 times.
✓ Branch 1 taken 263143 times.
|
788452 | IF (unstbl(i)) THEN |
| 606 | ! AM Niveau de ref du thermique | ||
| 607 | ! AM zxt=(t(i,1)-z(i,1)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) | ||
| 608 | ! AM . *(1.+RETV*q(i,1)) | ||
| 609 | zxt = (th_th(i)-zref*0.5*rg/rcpd/(1.+rvtmp2*qt_th(i)))* & | ||
| 610 | 525309 | (1.+retv*qt_th(i)) | |
| 611 | 525309 | phiminv(i) = (1.-binm*pblh(i)*unsobklen(i))**onet | |
| 612 | 525309 | phihinv(i) = sqrt(1.-binh*pblh(i)*unsobklen(i)) | |
| 613 | 525309 | wm(i) = ustar(i)*phiminv(i) | |
| 614 | 525309 | fak2(i) = wm(i)*pblh(i)*vk | |
| 615 | 525309 | wstar(i) = (heatv(i)*rg*pblh(i)/zxt)**onet | |
| 616 | 525309 | fak3(i) = fakn*wstar(i)/wm(i) | |
| 617 | ELSE | ||
| 618 | 263143 | wstar(i) = 0. | |
| 619 | END IF | ||
| 620 | ! Computes Theta_e for thermal (all cases : to be modified) | ||
| 621 | ! attention ajout therm(i) = virtuelle | ||
| 622 | 790372 | the_th(i) = th_th(i) + therm(i) + rlvcp*qt_th(i) | |
| 623 | ! ou: The_th(i) = Th_th(i) + sqrt(b1)*khfs(i)/wm(i) + RLvCp*qT_th(i) | ||
| 624 | END DO | ||
| 625 | |||
| 626 | ! Main level loop to compute the diffusivities and | ||
| 627 | ! counter-gradient terms: | ||
| 628 | |||
| 629 |
2/2✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
|
74880 | DO k = 2, isommet |
| 630 | |||
| 631 | ! Find levels within boundary layer: | ||
| 632 | |||
| 633 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30034136 | DO i = 1, knon |
| 634 | 29961176 | unslev(i) = .FALSE. | |
| 635 | 29961176 | stblev(i) = .FALSE. | |
| 636 | 29961176 | zm(i) = z(i, k-1) | |
| 637 | 29961176 | zp(i) = z(i, k) | |
| 638 | IF (zkmin==0.0 .AND. zp(i)>pblh(i)) zp(i) = pblh(i) | ||
| 639 |
2/2✓ Branch 0 taken 3674587 times.
✓ Branch 1 taken 26286589 times.
|
30034136 | IF (zm(i)<pblh(i)) THEN |
| 640 | 3674587 | zmzp = 0.5*(zm(i)+zp(i)) | |
| 641 | ! debug | ||
| 642 | ! if (i.EQ.1864) then | ||
| 643 | ! print*,'i,pblh(1864),obklen(1864)',i,pblh(i),obklen(i) | ||
| 644 | ! endif | ||
| 645 | |||
| 646 | 3674587 | zh(i) = zmzp/pblh(i) | |
| 647 | 3674587 | zl(i) = zmzp*unsobklen(i) | |
| 648 | 3674587 | zzh(i) = 0. | |
| 649 |
2/2✓ Branch 0 taken 3233453 times.
✓ Branch 1 taken 441134 times.
|
3674587 | IF (zh(i)<=1.0) zzh(i) = (1.-zh(i))**2 |
| 650 | |||
| 651 | ! stblev for points zm < plbh and stable and neutral | ||
| 652 | ! unslev for points zm < plbh and unstable | ||
| 653 | |||
| 654 |
2/2✓ Branch 0 taken 2888851 times.
✓ Branch 1 taken 785736 times.
|
3674587 | IF (unstbl(i)) THEN |
| 655 | 2888851 | unslev(i) = .TRUE. | |
| 656 | ELSE | ||
| 657 | 785736 | stblev(i) = .TRUE. | |
| 658 | END IF | ||
| 659 | END IF | ||
| 660 | END DO | ||
| 661 | ! print*,'fin calcul niveaux' | ||
| 662 | |||
| 663 | ! Stable and neutral points; set diffusivities; counter-gradient | ||
| 664 | ! terms zero for stable case: | ||
| 665 | |||
| 666 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30034136 | DO i = 1, knon |
| 667 |
2/2✓ Branch 0 taken 785736 times.
✓ Branch 1 taken 29175440 times.
|
30034136 | IF (stblev(i)) THEN |
| 668 |
2/2✓ Branch 0 taken 223565 times.
✓ Branch 1 taken 562171 times.
|
785736 | IF (zl(i)<=1.) THEN |
| 669 | 223565 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(1.+betas*zl(i)) | |
| 670 | ELSE | ||
| 671 | 562171 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(betas+zl(i)) | |
| 672 | END IF | ||
| 673 | ! pcfm(i,k) = pblk(i) | ||
| 674 | ! pcfh(i,k) = pcfm(i,k) | ||
| 675 | END IF | ||
| 676 | END DO | ||
| 677 | |||
| 678 | ! unssrf, unstable within surface layer of pbl | ||
| 679 | ! unsout, unstable within outer layer of pbl | ||
| 680 | |||
| 681 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30034136 | DO i = 1, knon |
| 682 | 29961176 | unssrf(i) = .FALSE. | |
| 683 | 29961176 | unsout(i) = .FALSE. | |
| 684 |
2/2✓ Branch 0 taken 2888851 times.
✓ Branch 1 taken 27072325 times.
|
30034136 | IF (unslev(i)) THEN |
| 685 |
2/2✓ Branch 0 taken 431477 times.
✓ Branch 1 taken 2457374 times.
|
2888851 | IF (zh(i)<sffrac) THEN |
| 686 | 431477 | unssrf(i) = .TRUE. | |
| 687 | ELSE | ||
| 688 | 2457374 | unsout(i) = .TRUE. | |
| 689 | END IF | ||
| 690 | END IF | ||
| 691 | END DO | ||
| 692 | |||
| 693 | ! Unstable for surface layer; counter-gradient terms zero | ||
| 694 | |||
| 695 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30034136 | DO i = 1, knon |
| 696 |
2/2✓ Branch 0 taken 431477 times.
✓ Branch 1 taken 29529699 times.
|
30034136 | IF (unssrf(i)) THEN |
| 697 | 431477 | term = (1.-betam*zl(i))**onet | |
| 698 | 431477 | pblk(i) = fak1(i)*zh(i)*zzh(i)*term | |
| 699 | 431477 | pr(i) = term/sqrt(1.-betah*zl(i)) | |
| 700 | END IF | ||
| 701 | END DO | ||
| 702 | ! print*,'fin counter-gradient terms zero' | ||
| 703 | |||
| 704 | ! Unstable for outer layer; counter-gradient terms non-zero: | ||
| 705 | |||
| 706 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30034136 | DO i = 1, knon |
| 707 |
2/2✓ Branch 0 taken 2457374 times.
✓ Branch 1 taken 27503802 times.
|
30034136 | IF (unsout(i)) THEN |
| 708 | 2457374 | pblk(i) = fak2(i)*zh(i)*zzh(i) | |
| 709 | ! cgs(i,k) = fak3(i)/(pblh(i)*wm(i)) | ||
| 710 | ! cgh(i,k) = khfs(i)*cgs(i,k) | ||
| 711 | 2457374 | pr(i) = phiminv(i)/phihinv(i) + ccon*fak3(i)/fak | |
| 712 | ! cgq(i,k) = kqfs(i)*cgs(i,k) | ||
| 713 | END IF | ||
| 714 | END DO | ||
| 715 | ! print*,'fin counter-gradient terms non zero' | ||
| 716 | |||
| 717 | ! For all unstable layers, compute diffusivities and ctrgrad ter m | ||
| 718 | |||
| 719 | ! DO i = 1, knon | ||
| 720 | ! IF (unslev(i)) THEN | ||
| 721 | ! pcfm(i,k) = pblk(i) | ||
| 722 | ! pcfh(i,k) = pblk(i)/pr(i) | ||
| 723 | ! etc cf original | ||
| 724 | ! ENDIF | ||
| 725 | ! ENDDO | ||
| 726 | |||
| 727 | ! For all layers, compute integral info and CTEI | ||
| 728 | |||
| 729 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30036056 | DO i = 1, knon |
| 730 |
1/4✗ Branch 0 not taken.
✓ Branch 1 taken 29961176 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
30034136 | IF (check(i) .OR. omegafl(i)) THEN |
| 731 |
2/2✓ Branch 0 taken 2166523 times.
✓ Branch 1 taken 27794653 times.
|
29961176 | IF (.NOT. zsat(i)) THEN |
| 732 | ! Th2 = The_th(i) - RLvCp*qT_th(i) | ||
| 733 | 2166523 | th2 = th_th(i) | |
| 734 | 2166523 | t2 = th2*s(i, k) | |
| 735 | ! thermodyn functions | ||
| 736 | 2166523 | zdelta = max(0., sign(1.,rtt-t2)) | |
| 737 | 2166523 | qqsat = r2es*foeew(t2, zdelta)/pplay(i, k) | |
| 738 | 2166523 | qqsat = min(0.5, qqsat) | |
| 739 | 2166523 | zcor = 1./(1.-retv*qqsat) | |
| 740 | 2166523 | qqsat = qqsat*zcor | |
| 741 | |||
| 742 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1378071 times.
|
2166523 | IF (qqsat<qt_th(i)) THEN |
| 743 | ! on calcule lcl | ||
| 744 |
2/2✓ Branch 0 taken 346404 times.
✓ Branch 1 taken 442048 times.
|
788452 | IF (k==2) THEN |
| 745 | 346404 | plcl(i) = z(i, k) | |
| 746 | ELSE | ||
| 747 | plcl(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(qt_th(i)& | ||
| 748 | 442048 | -qsatbef(i))/(qsatbef(i)-qqsat) | |
| 749 | END IF | ||
| 750 | 788452 | zsat(i) = .TRUE. | |
| 751 | 788452 | tbef(i) = t2 | |
| 752 | END IF | ||
| 753 | |||
| 754 | 2166523 | qsatbef(i) = qqsat ! bug dans la version orig ??? | |
| 755 | END IF | ||
| 756 | ! amn ???? cette ligne a deja ete faite normalement ? | ||
| 757 | END IF | ||
| 758 | ! print*,'hbtm2 i,k=',i,k | ||
| 759 | END DO | ||
| 760 | END DO ! end of level loop | ||
| 761 | ! IM 170305 BEG | ||
| 762 | IF (1==0) THEN | ||
| 763 | PRINT *, 'hbtm2 ok' | ||
| 764 | END IF !(1.EQ.0) THEN | ||
| 765 | ! IM 170305 END | ||
| 766 | |||
| 767 | 1920 | END SUBROUTINE hbtm | |
| 768 | |||
| 769 | end module hbtm_mod | ||
| 770 |