| Directory: | ./ |
|---|---|
| File: | dyn3d_common/inigeom.f |
| Date: | 2022-01-11 19:19:34 |
| Exec | Total | Coverage | |
|---|---|---|---|
| Lines: | 254 | 280 | 90.7% |
| Branches: | 76 | 90 | 84.4% |
| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | ! | ||
| 2 | ! $Id: inigeom.F 2603 2016-07-25 09:31:56Z emillour $ | ||
| 3 | ! | ||
| 4 | c | ||
| 5 | c | ||
| 6 | 5 | SUBROUTINE inigeom | |
| 7 | c | ||
| 8 | c Auteur : P. Le Van | ||
| 9 | c | ||
| 10 | c ............ Version du 01/04/2001 ........................ | ||
| 11 | c | ||
| 12 | c Calcul des elongations cuij1,.cuij4 , cvij1,..cvij4 aux memes en- | ||
| 13 | c endroits que les aires aireij1,..aireij4 . | ||
| 14 | |||
| 15 | c Choix entre f(y) a derivee sinusoid. ou a derivee tangente hyperbol. | ||
| 16 | c | ||
| 17 | c | ||
| 18 | use fxhyp_m, only: fxhyp | ||
| 19 | use fyhyp_m, only: fyhyp | ||
| 20 | USE comconst_mod, ONLY: pi, g, omeg, rad | ||
| 21 | USE logic_mod, ONLY: fxyhypb, ysinus | ||
| 22 | USE serre_mod, ONLY: clon,clat,grossismx,grossismy,dzoomx,dzoomy, | ||
| 23 | & alphax,alphay,taux,tauy,transx,transy,pxo,pyo | ||
| 24 | IMPLICIT NONE | ||
| 25 | c | ||
| 26 | include "dimensions.h" | ||
| 27 | include "paramet.h" | ||
| 28 | include "comgeom2.h" | ||
| 29 | include "comdissnew.h" | ||
| 30 | |||
| 31 | c----------------------------------------------------------------------- | ||
| 32 | c .... Variables locales .... | ||
| 33 | c | ||
| 34 | INTEGER i,j,itmax,itmay,iter | ||
| 35 | REAL cvu(iip1,jjp1),cuv(iip1,jjm) | ||
| 36 | REAL ai14,ai23,airez,rlatp,rlatm,xprm,xprp,un4rad2,yprp,yprm | ||
| 37 | REAL eps,x1,xo1,f,df,xdm,y1,yo1,ydm | ||
| 38 | REAL coslatm,coslatp,radclatm,radclatp | ||
| 39 | REAL cuij1(iip1,jjp1),cuij2(iip1,jjp1),cuij3(iip1,jjp1), | ||
| 40 | * cuij4(iip1,jjp1) | ||
| 41 | REAL cvij1(iip1,jjp1),cvij2(iip1,jjp1),cvij3(iip1,jjp1), | ||
| 42 | * cvij4(iip1,jjp1) | ||
| 43 | REAL rlonvv(iip1),rlatuu(jjp1) | ||
| 44 | REAL rlatu1(jjm),yprimu1(jjm),rlatu2(jjm),yprimu2(jjm) , | ||
| 45 | * yprimv(jjm),yprimu(jjp1) | ||
| 46 | REAL gamdi_gdiv, gamdi_grot, gamdi_h | ||
| 47 | |||
| 48 | REAL rlonm025(iip1),xprimm025(iip1), rlonp025(iip1), | ||
| 49 | , xprimp025(iip1) | ||
| 50 | SAVE rlatu1,yprimu1,rlatu2,yprimu2,yprimv,yprimu | ||
| 51 | SAVE rlonm025,xprimm025,rlonp025,xprimp025 | ||
| 52 | |||
| 53 | REAL SSUM | ||
| 54 | c | ||
| 55 | c | ||
| 56 | c ------------------------------------------------------------------ | ||
| 57 | c - - | ||
| 58 | c - calcul des coeff. ( cu, cv , 1./cu**2, 1./cv**2 ) - | ||
| 59 | c - - | ||
| 60 | c ------------------------------------------------------------------ | ||
| 61 | c | ||
| 62 | c les coef. ( cu, cv ) permettent de passer des vitesses naturelles | ||
| 63 | c aux vitesses covariantes et contravariantes , ou vice-versa ... | ||
| 64 | c | ||
| 65 | c | ||
| 66 | c on a : u (covariant) = cu * u (naturel) , u(contrav)= u(nat)/cu | ||
| 67 | c v (covariant) = cv * v (naturel) , v(contrav)= v(nat)/cv | ||
| 68 | c | ||
| 69 | c on en tire : u(covariant) = cu * cu * u(contravariant) | ||
| 70 | c v(covariant) = cv * cv * v(contravariant) | ||
| 71 | c | ||
| 72 | c | ||
| 73 | c on a l'application ( x(X) , y(Y) ) avec - im/2 +1 < X < im/2 | ||
| 74 | c = = | ||
| 75 | c et - jm/2 < Y < jm/2 | ||
| 76 | c = = | ||
| 77 | c | ||
| 78 | c ................................................... | ||
| 79 | c ................................................... | ||
| 80 | c . x est la longitude du point en radians . | ||
| 81 | c . y est la latitude du point en radians . | ||
| 82 | c . . | ||
| 83 | c . on a : cu(i,j) = rad * COS(y) * dx/dX . | ||
| 84 | c . cv( j ) = rad * dy/dY . | ||
| 85 | c . aire(i,j) = cu(i,j) * cv(j) . | ||
| 86 | c . . | ||
| 87 | c . y, dx/dX, dy/dY calcules aux points concernes . | ||
| 88 | c . . | ||
| 89 | c ................................................... | ||
| 90 | c ................................................... | ||
| 91 | c | ||
| 92 | c | ||
| 93 | c | ||
| 94 | c , | ||
| 95 | c cv , bien que dependant de j uniquement,sera ici indice aussi en i | ||
| 96 | c pour un adressage plus facile en ij . | ||
| 97 | c | ||
| 98 | c | ||
| 99 | c | ||
| 100 | c ************** aux points u et v , ***************** | ||
| 101 | c xprimu et xprimv sont respectivement les valeurs de dx/dX | ||
| 102 | c yprimu et yprimv . . . . . . . . . . . dy/dY | ||
| 103 | c rlatu et rlatv . . . . . . . . . . .la latitude | ||
| 104 | c cvu et cv . . . . . . . . . . . cv | ||
| 105 | c | ||
| 106 | c ************** aux points u, v, scalaires, et z **************** | ||
| 107 | c cu, cuv, cuscal, cuz sont respectiv. les valeurs de cu | ||
| 108 | c | ||
| 109 | c | ||
| 110 | c | ||
| 111 | c Exemple de distribution de variables sur la grille dans le | ||
| 112 | c domaine de travail ( X,Y ) . | ||
| 113 | c ................................................................ | ||
| 114 | c DX=DY= 1 | ||
| 115 | c | ||
| 116 | c | ||
| 117 | c + represente un point scalaire ( p.exp la pression ) | ||
| 118 | c > represente la composante zonale du vent | ||
| 119 | c V represente la composante meridienne du vent | ||
| 120 | c o represente la vorticite | ||
| 121 | c | ||
| 122 | c ---- , car aux poles , les comp.zonales covariantes sont nulles | ||
| 123 | c | ||
| 124 | c | ||
| 125 | c | ||
| 126 | c i -> | ||
| 127 | c | ||
| 128 | c 1 2 3 4 5 6 7 8 | ||
| 129 | c j | ||
| 130 | c v 1 + ---- + ---- + ---- + ---- + ---- + ---- + ---- + -- | ||
| 131 | c | ||
| 132 | c V o V o V o V o V o V o V o V o | ||
| 133 | c | ||
| 134 | c 2 + > + > + > + > + > + > + > + > | ||
| 135 | c | ||
| 136 | c V o V o V o V o V o V o V o V o | ||
| 137 | c | ||
| 138 | c 3 + > + > + > + > + > + > + > + > | ||
| 139 | c | ||
| 140 | c V o V o V o V o V o V o V o V o | ||
| 141 | c | ||
| 142 | c 4 + > + > + > + > + > + > + > + > | ||
| 143 | c | ||
| 144 | c V o V o V o V o V o V o V o V o | ||
| 145 | c | ||
| 146 | c 5 + ---- + ---- + ---- + ---- + ---- + ---- + ---- + -- | ||
| 147 | c | ||
| 148 | c | ||
| 149 | c Ci-dessus, on voit que le nombre de pts.en longitude est egal | ||
| 150 | c a IM = 8 | ||
| 151 | c De meme , le nombre d'intervalles entre les 2 poles est egal | ||
| 152 | c a JM = 4 | ||
| 153 | c | ||
| 154 | c Les points scalaires ( + ) correspondent donc a des valeurs | ||
| 155 | c entieres de i ( 1 a IM ) et de j ( 1 a JM +1 ) . | ||
| 156 | c | ||
| 157 | c Les vents U ( > ) correspondent a des valeurs semi- | ||
| 158 | c entieres de i ( 1+ 0.5 a IM+ 0.5) et entieres de j ( 1 a JM+1) | ||
| 159 | c | ||
| 160 | c Les vents V ( V ) correspondent a des valeurs entieres | ||
| 161 | c de i ( 1 a IM ) et semi-entieres de j ( 1 +0.5 a JM +0.5) | ||
| 162 | c | ||
| 163 | c | ||
| 164 | c | ||
| 165 | 1 | WRITE(6,3) | |
| 166 | 3 FORMAT( // 10x,' .... INIGEOM date du 01/06/98 ..... ', | ||
| 167 | * //5x,' Calcul des elongations cu et cv comme sommes des 4 ' / | ||
| 168 | * 5x,' elong. cuij1, .. 4 , cvij1,.. 4 qui les entourent , aux | ||
| 169 | * '/ 5x,' memes endroits que les aires aireij1,...j4 . ' / ) | ||
| 170 | c | ||
| 171 | c | ||
| 172 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | IF( nitergdiv.NE.2 ) THEN |
| 173 | 1 | gamdi_gdiv = coefdis/ ( REAL(nitergdiv) -2. ) | |
| 174 | ELSE | ||
| 175 | ✗ | gamdi_gdiv = 0. | |
| 176 | ENDIF | ||
| 177 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | IF( nitergrot.NE.2 ) THEN |
| 178 | ✗ | gamdi_grot = coefdis/ ( REAL(nitergrot) -2. ) | |
| 179 | ELSE | ||
| 180 | 1 | gamdi_grot = 0. | |
| 181 | ENDIF | ||
| 182 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | IF( niterh.NE.2 ) THEN |
| 183 | ✗ | gamdi_h = coefdis/ ( REAL(niterh) -2. ) | |
| 184 | ELSE | ||
| 185 | 1 | gamdi_h = 0. | |
| 186 | ENDIF | ||
| 187 | |||
| 188 | 1 | WRITE(6,*) ' gamdi_gd ',gamdi_gdiv,gamdi_grot,gamdi_h,coefdis, | |
| 189 | 2 | * nitergdiv,nitergrot,niterh | |
| 190 | c | ||
| 191 | 1 | pi = 2.* ASIN(1.) | |
| 192 | c | ||
| 193 | 1 | WRITE(6,990) | |
| 194 | |||
| 195 | c ---------------------------------------------------------------- | ||
| 196 | c | ||
| 197 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | IF( .NOT.fxyhypb ) THEN |
| 198 | c | ||
| 199 | c | ||
| 200 | ✗ | IF( ysinus ) THEN | |
| 201 | c | ||
| 202 | ✗ | WRITE(6,*) ' *** Inigeom , Y = Sinus ( Latitude ) *** ' | |
| 203 | c | ||
| 204 | c .... utilisation de f(x,y ) avec y = sinus de la latitude ..... | ||
| 205 | |||
| 206 | CALL fxysinus (rlatu,yprimu,rlatv,yprimv,rlatu1,yprimu1, | ||
| 207 | , rlatu2,yprimu2, | ||
| 208 | ✗ | , rlonu,xprimu,rlonv,xprimv,rlonm025,xprimm025,rlonp025,xprimp025) | |
| 209 | |||
| 210 | ELSE | ||
| 211 | c | ||
| 212 | ✗ | WRITE(6,*) '*** Inigeom , Y = Latitude , der. sinusoid . ***' | |
| 213 | |||
| 214 | c .... utilisation de f(x,y) a tangente sinusoidale , y etant la latit. ... | ||
| 215 | c | ||
| 216 | |||
| 217 | ✗ | pxo = clon *pi /180. | |
| 218 | ✗ | pyo = 2.* clat* pi /180. | |
| 219 | c | ||
| 220 | c .... determination de transx ( pour le zoom ) par Newton-Raphson ... | ||
| 221 | c | ||
| 222 | itmax = 10 | ||
| 223 | eps = .1e-7 | ||
| 224 | c | ||
| 225 | xo1 = 0. | ||
| 226 | ✗ | DO 10 iter = 1, itmax | |
| 227 | x1 = xo1 | ||
| 228 | ✗ | f = x1+ alphax *SIN(x1-pxo) | |
| 229 | ✗ | df = 1.+ alphax *COS(x1-pxo) | |
| 230 | ✗ | x1 = x1 - f/df | |
| 231 | ✗ | xdm = ABS( x1- xo1 ) | |
| 232 | ✗ | IF( xdm.LE.eps )GO TO 11 | |
| 233 | xo1 = x1 | ||
| 234 | ✗ | 10 CONTINUE | |
| 235 | 11 CONTINUE | ||
| 236 | c | ||
| 237 | ✗ | transx = xo1 | |
| 238 | |||
| 239 | itmay = 10 | ||
| 240 | eps = .1e-7 | ||
| 241 | C | ||
| 242 | yo1 = 0. | ||
| 243 | ✗ | DO 15 iter = 1,itmay | |
| 244 | y1 = yo1 | ||
| 245 | ✗ | f = y1 + alphay* SIN(y1-pyo) | |
| 246 | ✗ | df = 1. + alphay* COS(y1-pyo) | |
| 247 | ✗ | y1 = y1 -f/df | |
| 248 | ✗ | ydm = ABS(y1-yo1) | |
| 249 | ✗ | IF(ydm.LE.eps) GO TO 17 | |
| 250 | yo1 = y1 | ||
| 251 | ✗ | 15 CONTINUE | |
| 252 | c | ||
| 253 | 17 CONTINUE | ||
| 254 | ✗ | transy = yo1 | |
| 255 | |||
| 256 | CALL fxy ( rlatu,yprimu,rlatv,yprimv,rlatu1,yprimu1, | ||
| 257 | , rlatu2,yprimu2, | ||
| 258 | ✗ | , rlonu,xprimu,rlonv,xprimv,rlonm025,xprimm025,rlonp025,xprimp025) | |
| 259 | |||
| 260 | ENDIF | ||
| 261 | c | ||
| 262 | ELSE | ||
| 263 | c | ||
| 264 | c .... Utilisation de fxyhyper , f(x,y) a derivee tangente hyperbol. | ||
| 265 | c ..................................................................... | ||
| 266 | |||
| 267 | 1 | WRITE(6,*)'*** Inigeom , Y = Latitude , der.tg. hyperbolique ***' | |
| 268 | |||
| 269 | 1 | CALL fyhyp(rlatu, yprimu, rlatv, rlatu2, yprimu2, rlatu1, yprimu1) | |
| 270 | 1 | CALL fxhyp(xprimm025, rlonv, xprimv, rlonu, xprimu, xprimp025) | |
| 271 | |||
| 272 | ENDIF | ||
| 273 | c | ||
| 274 | c ------------------------------------------------------------------- | ||
| 275 | |||
| 276 | c | ||
| 277 | 1 | rlatu(1) = ASIN(1.) | |
| 278 | 1 | rlatu(jjp1) = - rlatu(1) | |
| 279 | c | ||
| 280 | c | ||
| 281 | c .... calcul aux poles .... | ||
| 282 | c | ||
| 283 | 1 | yprimu(1) = 0. | |
| 284 | 1 | yprimu(jjp1) = 0. | |
| 285 | c | ||
| 286 | c | ||
| 287 | 1 | un4rad2 = 0.25 * rad * rad | |
| 288 | c | ||
| 289 | c -------------------------------------------------------------------- | ||
| 290 | c -------------------------------------------------------------------- | ||
| 291 | c - - | ||
| 292 | c - calcul des aires ( aire,aireu,airev, 1./aire, 1./airez ) - | ||
| 293 | c - et de fext , force de coriolis extensive . - | ||
| 294 | c - - | ||
| 295 | c -------------------------------------------------------------------- | ||
| 296 | c -------------------------------------------------------------------- | ||
| 297 | c | ||
| 298 | c | ||
| 299 | c | ||
| 300 | c A 1 point scalaire P (i,j) de la grille, reguliere en (X,Y) , sont | ||
| 301 | c affectees 4 aires entourant P , calculees respectivement aux points | ||
| 302 | c ( i + 1/4, j - 1/4 ) : aireij1 (i,j) | ||
| 303 | c ( i + 1/4, j + 1/4 ) : aireij2 (i,j) | ||
| 304 | c ( i - 1/4, j + 1/4 ) : aireij3 (i,j) | ||
| 305 | c ( i - 1/4, j - 1/4 ) : aireij4 (i,j) | ||
| 306 | c | ||
| 307 | c , | ||
| 308 | c Les cotes de chacun de ces 4 carres etant egaux a 1/2 suivant (X,Y). | ||
| 309 | c Chaque aire centree en 1 point scalaire P(i,j) est egale a la somme | ||
| 310 | c des 4 aires aireij1,aireij2,aireij3,aireij4 qui sont affectees au | ||
| 311 | c point (i,j) . | ||
| 312 | c On definit en outre les coefficients alpha comme etant egaux a | ||
| 313 | c (aireij / aire), c.a.d par exp. alpha1(i,j)=aireij1(i,j)/aire(i,j) | ||
| 314 | c | ||
| 315 | c De meme, toute aire centree en 1 point U est egale a la somme des | ||
| 316 | c 4 aires aireij1,aireij2,aireij3,aireij4 entourant le point U . | ||
| 317 | c Idem pour airev, airez . | ||
| 318 | c | ||
| 319 | c On a ,pour chaque maille : dX = dY = 1 | ||
| 320 | c | ||
| 321 | c | ||
| 322 | c . V | ||
| 323 | c | ||
| 324 | c aireij4 . . aireij1 | ||
| 325 | c | ||
| 326 | c U . . P . U | ||
| 327 | c | ||
| 328 | c aireij3 . . aireij2 | ||
| 329 | c | ||
| 330 | c . V | ||
| 331 | c | ||
| 332 | c | ||
| 333 | c | ||
| 334 | c | ||
| 335 | c | ||
| 336 | c .................................................................... | ||
| 337 | c | ||
| 338 | c Calcul des 4 aires elementaires aireij1,aireij2,aireij3,aireij4 | ||
| 339 | c qui entourent chaque aire(i,j) , ainsi que les 4 elongations elemen | ||
| 340 | c taires cuij et les 4 elongat. cvij qui sont calculees aux memes | ||
| 341 | c endroits que les aireij . | ||
| 342 | c | ||
| 343 | c .................................................................... | ||
| 344 | c | ||
| 345 | c ....... do 35 : boucle sur les jjm + 1 latitudes ..... | ||
| 346 | c | ||
| 347 | c | ||
| 348 |
2/2✓ Branch 0 taken 33 times.
✓ Branch 1 taken 1 times.
|
34 | DO 35 j = 1, jjp1 |
| 349 | c | ||
| 350 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 32 times.
|
33 | IF ( j. eq. 1 ) THEN |
| 351 | c | ||
| 352 | 1 | yprm = yprimu1(j) | |
| 353 | 1 | rlatm = rlatu1(j) | |
| 354 | c | ||
| 355 | 1 | coslatm = COS( rlatm ) | |
| 356 | 1 | radclatm = 0.5* rad * coslatm | |
| 357 | c | ||
| 358 |
2/2✓ Branch 0 taken 32 times.
✓ Branch 1 taken 1 times.
|
33 | DO 30 i = 1, iim |
| 359 | 32 | xprp = xprimp025( i ) | |
| 360 | 32 | xprm = xprimm025( i ) | |
| 361 | 32 | aireij2( i,1 ) = un4rad2 * coslatm * xprp * yprm | |
| 362 | 32 | aireij3( i,1 ) = un4rad2 * coslatm * xprm * yprm | |
| 363 | 32 | cuij2 ( i,1 ) = radclatm * xprp | |
| 364 | 32 | cuij3 ( i,1 ) = radclatm * xprm | |
| 365 | 32 | cvij2 ( i,1 ) = 0.5* rad * yprm | |
| 366 | 32 | cvij3 ( i,1 ) = cvij2(i,1) | |
| 367 | 1 | 30 CONTINUE | |
| 368 | c | ||
| 369 |
2/2✓ Branch 0 taken 32 times.
✓ Branch 1 taken 1 times.
|
33 | DO i = 1, iim |
| 370 | 32 | aireij1( i,1 ) = 0. | |
| 371 | 32 | aireij4( i,1 ) = 0. | |
| 372 | 32 | cuij1 ( i,1 ) = 0. | |
| 373 | 32 | cuij4 ( i,1 ) = 0. | |
| 374 | 32 | cvij1 ( i,1 ) = 0. | |
| 375 | 33 | cvij4 ( i,1 ) = 0. | |
| 376 | ENDDO | ||
| 377 | c | ||
| 378 | END IF | ||
| 379 | c | ||
| 380 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 32 times.
|
33 | IF ( j. eq. jjp1 ) THEN |
| 381 | 1 | yprp = yprimu2(j-1) | |
| 382 | 1 | rlatp = rlatu2 (j-1) | |
| 383 | ccc yprp = fyprim( REAL(j) - 0.25 ) | ||
| 384 | ccc rlatp = fy ( REAL(j) - 0.25 ) | ||
| 385 | c | ||
| 386 | 1 | coslatp = COS( rlatp ) | |
| 387 | 1 | radclatp = 0.5* rad * coslatp | |
| 388 | c | ||
| 389 |
2/2✓ Branch 0 taken 32 times.
✓ Branch 1 taken 1 times.
|
33 | DO 31 i = 1,iim |
| 390 | 32 | xprp = xprimp025( i ) | |
| 391 | 32 | xprm = xprimm025( i ) | |
| 392 | 32 | aireij1( i,jjp1 ) = un4rad2 * coslatp * xprp * yprp | |
| 393 | 32 | aireij4( i,jjp1 ) = un4rad2 * coslatp * xprm * yprp | |
| 394 | 32 | cuij1(i,jjp1) = radclatp * xprp | |
| 395 | 32 | cuij4(i,jjp1) = radclatp * xprm | |
| 396 | 32 | cvij1(i,jjp1) = 0.5 * rad* yprp | |
| 397 | 32 | cvij4(i,jjp1) = cvij1(i,jjp1) | |
| 398 | 1 | 31 CONTINUE | |
| 399 | c | ||
| 400 |
2/2✓ Branch 0 taken 32 times.
✓ Branch 1 taken 1 times.
|
33 | DO i = 1, iim |
| 401 | 32 | aireij2( i,jjp1 ) = 0. | |
| 402 | 32 | aireij3( i,jjp1 ) = 0. | |
| 403 | 32 | cvij2 ( i,jjp1 ) = 0. | |
| 404 | 32 | cvij3 ( i,jjp1 ) = 0. | |
| 405 | 32 | cuij2 ( i,jjp1 ) = 0. | |
| 406 | 33 | cuij3 ( i,jjp1 ) = 0. | |
| 407 | ENDDO | ||
| 408 | c | ||
| 409 | END IF | ||
| 410 | c | ||
| 411 | |||
| 412 |
2/2✓ Branch 0 taken 31 times.
✓ Branch 1 taken 2 times.
|
33 | IF ( j .gt. 1 .AND. j .lt. jjp1 ) THEN |
| 413 | c | ||
| 414 | 31 | rlatp = rlatu2 ( j-1 ) | |
| 415 | 31 | yprp = yprimu2( j-1 ) | |
| 416 | 31 | rlatm = rlatu1 ( j ) | |
| 417 | 31 | yprm = yprimu1( j ) | |
| 418 | cc rlatp = fy ( REAL(j) - 0.25 ) | ||
| 419 | cc yprp = fyprim( REAL(j) - 0.25 ) | ||
| 420 | cc rlatm = fy ( REAL(j) + 0.25 ) | ||
| 421 | cc yprm = fyprim( REAL(j) + 0.25 ) | ||
| 422 | |||
| 423 | 31 | coslatm = COS( rlatm ) | |
| 424 | 31 | coslatp = COS( rlatp ) | |
| 425 | 31 | radclatp = 0.5* rad * coslatp | |
| 426 | 31 | radclatm = 0.5* rad * coslatm | |
| 427 | c | ||
| 428 | 31 | ai14 = un4rad2 * coslatp * yprp | |
| 429 | 31 | ai23 = un4rad2 * coslatm * yprm | |
| 430 |
2/2✓ Branch 0 taken 992 times.
✓ Branch 1 taken 31 times.
|
1023 | DO 32 i = 1,iim |
| 431 | 992 | xprp = xprimp025( i ) | |
| 432 | 992 | xprm = xprimm025( i ) | |
| 433 | |||
| 434 | 992 | aireij1 ( i,j ) = ai14 * xprp | |
| 435 | 992 | aireij2 ( i,j ) = ai23 * xprp | |
| 436 | 992 | aireij3 ( i,j ) = ai23 * xprm | |
| 437 | 992 | aireij4 ( i,j ) = ai14 * xprm | |
| 438 | 992 | cuij1 ( i,j ) = radclatp * xprp | |
| 439 | 992 | cuij2 ( i,j ) = radclatm * xprp | |
| 440 | 992 | cuij3 ( i,j ) = radclatm * xprm | |
| 441 | 992 | cuij4 ( i,j ) = radclatp * xprm | |
| 442 | 992 | cvij1 ( i,j ) = 0.5* rad * yprp | |
| 443 | 992 | cvij2 ( i,j ) = 0.5* rad * yprm | |
| 444 | 992 | cvij3 ( i,j ) = cvij2(i,j) | |
| 445 | 992 | cvij4 ( i,j ) = cvij1(i,j) | |
| 446 | 31 | 32 CONTINUE | |
| 447 | c | ||
| 448 | END IF | ||
| 449 | c | ||
| 450 | c ........ periodicite ............ | ||
| 451 | c | ||
| 452 | 33 | cvij1 (iip1,j) = cvij1 (1,j) | |
| 453 | 33 | cvij2 (iip1,j) = cvij2 (1,j) | |
| 454 | 33 | cvij3 (iip1,j) = cvij3 (1,j) | |
| 455 | 33 | cvij4 (iip1,j) = cvij4 (1,j) | |
| 456 | 33 | cuij1 (iip1,j) = cuij1 (1,j) | |
| 457 | 33 | cuij2 (iip1,j) = cuij2 (1,j) | |
| 458 | 33 | cuij3 (iip1,j) = cuij3 (1,j) | |
| 459 | 33 | cuij4 (iip1,j) = cuij4 (1,j) | |
| 460 | 33 | aireij1 (iip1,j) = aireij1 (1,j ) | |
| 461 | 33 | aireij2 (iip1,j) = aireij2 (1,j ) | |
| 462 | 33 | aireij3 (iip1,j) = aireij3 (1,j ) | |
| 463 | 33 | aireij4 (iip1,j) = aireij4 (1,j ) | |
| 464 | |||
| 465 | 1 | 35 CONTINUE | |
| 466 | c | ||
| 467 | c .............................................................. | ||
| 468 | c | ||
| 469 |
2/2✓ Branch 0 taken 33 times.
✓ Branch 1 taken 1 times.
|
34 | DO 37 j = 1, jjp1 |
| 470 |
2/2✓ Branch 0 taken 1056 times.
✓ Branch 1 taken 33 times.
|
1089 | DO 36 i = 1, iim |
| 471 | aire ( i,j ) = aireij1(i,j) + aireij2(i,j) + aireij3(i,j) + | ||
| 472 | 1056 | * aireij4(i,j) | |
| 473 | 1056 | alpha1 ( i,j ) = aireij1(i,j) / aire(i,j) | |
| 474 | 1056 | alpha2 ( i,j ) = aireij2(i,j) / aire(i,j) | |
| 475 | 1056 | alpha3 ( i,j ) = aireij3(i,j) / aire(i,j) | |
| 476 | 1056 | alpha4 ( i,j ) = aireij4(i,j) / aire(i,j) | |
| 477 | 1056 | alpha1p2( i,j ) = alpha1 (i,j) + alpha2 (i,j) | |
| 478 | 1056 | alpha1p4( i,j ) = alpha1 (i,j) + alpha4 (i,j) | |
| 479 | 1056 | alpha2p3( i,j ) = alpha2 (i,j) + alpha3 (i,j) | |
| 480 | 1056 | alpha3p4( i,j ) = alpha3 (i,j) + alpha4 (i,j) | |
| 481 | 33 | 36 CONTINUE | |
| 482 | c | ||
| 483 | c | ||
| 484 | 33 | aire (iip1,j) = aire (1,j) | |
| 485 | 33 | alpha1 (iip1,j) = alpha1 (1,j) | |
| 486 | 33 | alpha2 (iip1,j) = alpha2 (1,j) | |
| 487 | 33 | alpha3 (iip1,j) = alpha3 (1,j) | |
| 488 | 33 | alpha4 (iip1,j) = alpha4 (1,j) | |
| 489 | 33 | alpha1p2(iip1,j) = alpha1p2(1,j) | |
| 490 | 33 | alpha1p4(iip1,j) = alpha1p4(1,j) | |
| 491 | 33 | alpha2p3(iip1,j) = alpha2p3(1,j) | |
| 492 | 33 | alpha3p4(iip1,j) = alpha3p4(1,j) | |
| 493 | 1 | 37 CONTINUE | |
| 494 | c | ||
| 495 | |||
| 496 |
2/2✓ Branch 0 taken 33 times.
✓ Branch 1 taken 1 times.
|
34 | DO 42 j = 1,jjp1 |
| 497 |
2/2✓ Branch 0 taken 1056 times.
✓ Branch 1 taken 33 times.
|
1089 | DO 41 i = 1,iim |
| 498 | aireu (i,j)= aireij1(i,j) + aireij2(i,j) + aireij4(i+1,j) + | ||
| 499 | 1056 | * aireij3(i+1,j) | |
| 500 | 1056 | unsaire ( i,j)= 1./ aire(i,j) | |
| 501 | 1056 | unsair_gam1( i,j)= unsaire(i,j)** ( - gamdi_gdiv ) | |
| 502 | 1056 | unsair_gam2( i,j)= unsaire(i,j)** ( - gamdi_h ) | |
| 503 | 1056 | airesurg ( i,j)= aire(i,j)/ g | |
| 504 | 33 | 41 CONTINUE | |
| 505 | 33 | aireu (iip1,j) = aireu (1,j) | |
| 506 | 33 | unsaire (iip1,j) = unsaire(1,j) | |
| 507 | 33 | unsair_gam1(iip1,j) = unsair_gam1(1,j) | |
| 508 | 33 | unsair_gam2(iip1,j) = unsair_gam2(1,j) | |
| 509 | 33 | airesurg (iip1,j) = airesurg(1,j) | |
| 510 | 1 | 42 CONTINUE | |
| 511 | c | ||
| 512 | c | ||
| 513 |
2/2✓ Branch 0 taken 32 times.
✓ Branch 1 taken 1 times.
|
33 | DO 48 j = 1,jjm |
| 514 | c | ||
| 515 |
2/2✓ Branch 0 taken 1024 times.
✓ Branch 1 taken 32 times.
|
1056 | DO i=1,iim |
| 516 | airev (i,j) = aireij2(i,j)+ aireij3(i,j)+ aireij1(i,j+1) + | ||
| 517 | 1056 | * aireij4(i,j+1) | |
| 518 | ENDDO | ||
| 519 |
2/2✓ Branch 0 taken 1024 times.
✓ Branch 1 taken 32 times.
|
1056 | DO i=1,iim |
| 520 | airez = aireij2(i,j)+aireij1(i,j+1)+aireij3(i+1,j) + | ||
| 521 | 1024 | * aireij4(i+1,j+1) | |
| 522 | 1024 | unsairez(i,j) = 1./ airez | |
| 523 | 1024 | unsairz_gam(i,j)= unsairez(i,j)** ( - gamdi_grot ) | |
| 524 | 1056 | fext (i,j) = airez * SIN(rlatv(j))* 2.* omeg | |
| 525 | ENDDO | ||
| 526 | 32 | airev (iip1,j) = airev(1,j) | |
| 527 | 32 | unsairez (iip1,j) = unsairez(1,j) | |
| 528 | 32 | fext (iip1,j) = fext(1,j) | |
| 529 | 32 | unsairz_gam(iip1,j) = unsairz_gam(1,j) | |
| 530 | c | ||
| 531 | 1 | 48 CONTINUE | |
| 532 | c | ||
| 533 | c | ||
| 534 | c ..... Calcul des elongations cu,cv, cvu ......... | ||
| 535 | c | ||
| 536 |
2/2✓ Branch 0 taken 32 times.
✓ Branch 1 taken 1 times.
|
33 | DO j = 1, jjm |
| 537 |
2/2✓ Branch 0 taken 1024 times.
✓ Branch 1 taken 32 times.
|
1056 | DO i = 1, iim |
| 538 | 1024 | cv(i,j) = 0.5 *( cvij2(i,j)+cvij3(i,j)+cvij1(i,j+1)+cvij4(i,j+1)) | |
| 539 | 1024 | cvu(i,j)= 0.5 *( cvij1(i,j)+cvij4(i,j)+cvij2(i,j) +cvij3(i,j) ) | |
| 540 | 1024 | cuv(i,j)= 0.5 *( cuij2(i,j)+cuij3(i,j)+cuij1(i,j+1)+cuij4(i,j+1)) | |
| 541 | 1056 | unscv2(i,j) = 1./ ( cv(i,j)*cv(i,j) ) | |
| 542 | ENDDO | ||
| 543 |
2/2✓ Branch 0 taken 1024 times.
✓ Branch 1 taken 32 times.
|
1056 | DO i = 1, iim |
| 544 | 1024 | cuvsurcv (i,j) = airev(i,j) * unscv2(i,j) | |
| 545 | 1024 | cvsurcuv (i,j) = 1./cuvsurcv(i,j) | |
| 546 | 1024 | cuvscvgam1(i,j) = cuvsurcv (i,j) ** ( - gamdi_gdiv ) | |
| 547 | 1024 | cuvscvgam2(i,j) = cuvsurcv (i,j) ** ( - gamdi_h ) | |
| 548 | 1056 | cvscuvgam(i,j) = cvsurcuv (i,j) ** ( - gamdi_grot ) | |
| 549 | ENDDO | ||
| 550 | 32 | cv (iip1,j) = cv (1,j) | |
| 551 | 32 | cvu (iip1,j) = cvu (1,j) | |
| 552 | 32 | unscv2 (iip1,j) = unscv2 (1,j) | |
| 553 | 32 | cuv (iip1,j) = cuv (1,j) | |
| 554 | 32 | cuvsurcv (iip1,j) = cuvsurcv (1,j) | |
| 555 | 32 | cvsurcuv (iip1,j) = cvsurcuv (1,j) | |
| 556 | 32 | cuvscvgam1(iip1,j) = cuvscvgam1(1,j) | |
| 557 | 32 | cuvscvgam2(iip1,j) = cuvscvgam2(1,j) | |
| 558 | 33 | cvscuvgam(iip1,j) = cvscuvgam(1,j) | |
| 559 | ENDDO | ||
| 560 | |||
| 561 |
2/2✓ Branch 0 taken 31 times.
✓ Branch 1 taken 1 times.
|
32 | DO j = 2, jjm |
| 562 |
2/2✓ Branch 0 taken 992 times.
✓ Branch 1 taken 31 times.
|
1023 | DO i = 1, iim |
| 563 | 992 | cu(i,j) = 0.5*(cuij1(i,j)+cuij4(i+1,j)+cuij2(i,j)+cuij3(i+1,j)) | |
| 564 | 992 | unscu2 (i,j) = 1./ ( cu(i,j) * cu(i,j) ) | |
| 565 | 992 | cvusurcu (i,j) = aireu(i,j) * unscu2(i,j) | |
| 566 | 992 | cusurcvu (i,j) = 1./ cvusurcu(i,j) | |
| 567 | 992 | cvuscugam1 (i,j) = cvusurcu(i,j) ** ( - gamdi_gdiv ) | |
| 568 | 992 | cvuscugam2 (i,j) = cvusurcu(i,j) ** ( - gamdi_h ) | |
| 569 | 1023 | cuscvugam (i,j) = cusurcvu(i,j) ** ( - gamdi_grot ) | |
| 570 | ENDDO | ||
| 571 | 31 | cu (iip1,j) = cu(1,j) | |
| 572 | 31 | unscu2 (iip1,j) = unscu2(1,j) | |
| 573 | 31 | cvusurcu (iip1,j) = cvusurcu(1,j) | |
| 574 | 31 | cusurcvu (iip1,j) = cusurcvu(1,j) | |
| 575 | 31 | cvuscugam1(iip1,j) = cvuscugam1(1,j) | |
| 576 | 31 | cvuscugam2(iip1,j) = cvuscugam2(1,j) | |
| 577 | 32 | cuscvugam (iip1,j) = cuscvugam(1,j) | |
| 578 | ENDDO | ||
| 579 | |||
| 580 | c | ||
| 581 | c .... calcul aux poles .... | ||
| 582 | c | ||
| 583 |
2/2✓ Branch 0 taken 33 times.
✓ Branch 1 taken 1 times.
|
34 | DO i = 1, iip1 |
| 584 | 33 | cu ( i, 1 ) = 0. | |
| 585 | 33 | unscu2( i, 1 ) = 0. | |
| 586 | cvu ( i, 1 ) = 0. | ||
| 587 | c | ||
| 588 | 33 | cu (i, jjp1) = 0. | |
| 589 | 33 | unscu2(i, jjp1) = 0. | |
| 590 | 1 | cvu (i, jjp1) = 0. | |
| 591 | ENDDO | ||
| 592 | c | ||
| 593 | c .............................................................. | ||
| 594 | c | ||
| 595 |
2/2✓ Branch 0 taken 32 times.
✓ Branch 1 taken 1 times.
|
33 | DO j = 1, jjm |
| 596 |
2/2✓ Branch 0 taken 1024 times.
✓ Branch 1 taken 32 times.
|
1056 | DO i= 1, iim |
| 597 | 1024 | airvscu2 (i,j) = airev(i,j)/ ( cuv(i,j) * cuv(i,j) ) | |
| 598 | 1056 | aivscu2gam(i,j) = airvscu2(i,j)** ( - gamdi_grot ) | |
| 599 | ENDDO | ||
| 600 | 32 | airvscu2 (iip1,j) = airvscu2(1,j) | |
| 601 | 33 | aivscu2gam(iip1,j) = aivscu2gam(1,j) | |
| 602 | ENDDO | ||
| 603 | |||
| 604 |
2/2✓ Branch 0 taken 31 times.
✓ Branch 1 taken 1 times.
|
32 | DO j=2,jjm |
| 605 |
2/2✓ Branch 0 taken 992 times.
✓ Branch 1 taken 31 times.
|
1023 | DO i=1,iim |
| 606 | 992 | airuscv2 (i,j) = aireu(i,j)/ ( cvu(i,j) * cvu(i,j) ) | |
| 607 | 1023 | aiuscv2gam (i,j) = airuscv2(i,j)** ( - gamdi_grot ) | |
| 608 | ENDDO | ||
| 609 | 31 | airuscv2 (iip1,j) = airuscv2 (1,j) | |
| 610 | 32 | aiuscv2gam(iip1,j) = aiuscv2gam(1,j) | |
| 611 | ENDDO | ||
| 612 | |||
| 613 | c | ||
| 614 | c calcul des aires aux poles : | ||
| 615 | c ----------------------------- | ||
| 616 | c | ||
| 617 | 1 | apoln = SSUM(iim,aire(1,1),1) | |
| 618 | 1 | apols = SSUM(iim,aire(1,jjp1),1) | |
| 619 | 1 | unsapolnga1 = 1./ ( apoln ** ( - gamdi_gdiv ) ) | |
| 620 | 1 | unsapolsga1 = 1./ ( apols ** ( - gamdi_gdiv ) ) | |
| 621 | 1 | unsapolnga2 = 1./ ( apoln ** ( - gamdi_h ) ) | |
| 622 | 1 | unsapolsga2 = 1./ ( apols ** ( - gamdi_h ) ) | |
| 623 | c | ||
| 624 | c----------------------------------------------------------------------- | ||
| 625 | c gtitre='Coriolis version ancienne' | ||
| 626 | c gfichier='fext1' | ||
| 627 | c CALL writestd(fext,iip1*jjm) | ||
| 628 | c | ||
| 629 | c changement F. Hourdin calcul conservatif pour fext | ||
| 630 | c constang contient le produit a * cos ( latitude ) * omega | ||
| 631 | c | ||
| 632 |
2/2✓ Branch 0 taken 32 times.
✓ Branch 1 taken 1 times.
|
33 | DO i=1,iim |
| 633 | 33 | constang(i,1) = 0. | |
| 634 | ENDDO | ||
| 635 |
2/2✓ Branch 0 taken 31 times.
✓ Branch 1 taken 1 times.
|
32 | DO j=1,jjm-1 |
| 636 |
2/2✓ Branch 0 taken 992 times.
✓ Branch 1 taken 31 times.
|
1024 | DO i=1,iim |
| 637 | 1023 | constang(i,j+1) = rad*omeg*cu(i,j+1)*COS(rlatu(j+1)) | |
| 638 | ENDDO | ||
| 639 | ENDDO | ||
| 640 |
2/2✓ Branch 0 taken 32 times.
✓ Branch 1 taken 1 times.
|
33 | DO i=1,iim |
| 641 | 33 | constang(i,jjp1) = 0. | |
| 642 | ENDDO | ||
| 643 | c | ||
| 644 | c periodicite en longitude | ||
| 645 | c | ||
| 646 |
2/2✓ Branch 0 taken 32 times.
✓ Branch 1 taken 1 times.
|
33 | DO j=1,jjm |
| 647 | 33 | fext(iip1,j) = fext(1,j) | |
| 648 | ENDDO | ||
| 649 |
2/2✓ Branch 0 taken 33 times.
✓ Branch 1 taken 1 times.
|
34 | DO j=1,jjp1 |
| 650 | 34 | constang(iip1,j) = constang(1,j) | |
| 651 | ENDDO | ||
| 652 | |||
| 653 | c fin du changement | ||
| 654 | |||
| 655 | c | ||
| 656 | c----------------------------------------------------------------------- | ||
| 657 | c | ||
| 658 | 1 | WRITE(6,*) ' *** Coordonnees de la grille *** ' | |
| 659 | 1 | WRITE(6,995) | |
| 660 | c | ||
| 661 | 1 | WRITE(6,*) ' LONGITUDES aux pts. V ( degres ) ' | |
| 662 | 1 | WRITE(6,995) | |
| 663 |
2/2✓ Branch 0 taken 33 times.
✓ Branch 1 taken 1 times.
|
34 | DO i=1,iip1 |
| 664 | 34 | rlonvv(i) = rlonv(i)*180./pi | |
| 665 | ENDDO | ||
| 666 | 1 | WRITE(6,400) rlonvv | |
| 667 | c | ||
| 668 | 1 | WRITE(6,995) | |
| 669 | 1 | WRITE(6,*) ' LATITUDES aux pts. V ( degres ) ' | |
| 670 | 1 | WRITE(6,995) | |
| 671 |
2/2✓ Branch 0 taken 32 times.
✓ Branch 1 taken 1 times.
|
33 | DO i=1,jjm |
| 672 | 33 | rlatuu(i)=rlatv(i)*180./pi | |
| 673 | ENDDO | ||
| 674 | 1 | WRITE(6,400) (rlatuu(i),i=1,jjm) | |
| 675 | c | ||
| 676 |
2/2✓ Branch 0 taken 33 times.
✓ Branch 1 taken 1 times.
|
34 | DO i=1,iip1 |
| 677 | 34 | rlonvv(i)=rlonu(i)*180./pi | |
| 678 | ENDDO | ||
| 679 | 1 | WRITE(6,995) | |
| 680 | 1 | WRITE(6,*) ' LONGITUDES aux pts. U ( degres ) ' | |
| 681 | 1 | WRITE(6,995) | |
| 682 | 1 | WRITE(6,400) rlonvv | |
| 683 | 1 | WRITE(6,995) | |
| 684 | |||
| 685 | 1 | WRITE(6,*) ' LATITUDES aux pts. U ( degres ) ' | |
| 686 | 1 | WRITE(6,995) | |
| 687 |
2/2✓ Branch 0 taken 33 times.
✓ Branch 1 taken 1 times.
|
34 | DO i=1,jjp1 |
| 688 | 34 | rlatuu(i)=rlatu(i)*180./pi | |
| 689 | ENDDO | ||
| 690 | 1 | WRITE(6,400) (rlatuu(i),i=1,jjp1) | |
| 691 | 1 | WRITE(6,995) | |
| 692 | c | ||
| 693 | 444 format(f10.3,f6.0) | ||
| 694 | 400 FORMAT(1x,8f8.2) | ||
| 695 | 990 FORMAT(//) | ||
| 696 | 995 FORMAT(/) | ||
| 697 | c | ||
| 698 | 1 | RETURN | |
| 699 | END | ||
| 700 |