| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Id: interpre.F 2622 2016-09-04 06:12:02Z emillour $ |
| 3 |
|
|
! |
| 4 |
|
✗ |
subroutine interpre(q,qppm,w,fluxwppm,masse, |
| 5 |
|
|
s apppm,bpppm,massebx,masseby,pbaru,pbarv, |
| 6 |
|
|
s unatppm,vnatppm,psppm) |
| 7 |
|
|
|
| 8 |
|
|
USE comconst_mod, ONLY: g |
| 9 |
|
|
USE comvert_mod, ONLY: ap, bp |
| 10 |
|
|
|
| 11 |
|
|
implicit none |
| 12 |
|
|
|
| 13 |
|
|
include "dimensions.h" |
| 14 |
|
|
include "paramet.h" |
| 15 |
|
|
include "comdissip.h" |
| 16 |
|
|
include "comgeom2.h" |
| 17 |
|
|
include "description.h" |
| 18 |
|
|
|
| 19 |
|
|
c--------------------------------------------------- |
| 20 |
|
|
c Arguments |
| 21 |
|
|
real apppm(llm+1),bpppm(llm+1) |
| 22 |
|
|
real q(iip1,jjp1,llm),qppm(iim,jjp1,llm) |
| 23 |
|
|
c--------------------------------------------------- |
| 24 |
|
|
real masse(iip1,jjp1,llm) |
| 25 |
|
|
real massebx(iip1,jjp1,llm),masseby(iip1,jjm,llm) |
| 26 |
|
|
real w(iip1,jjp1,llm) |
| 27 |
|
|
real fluxwppm(iim,jjp1,llm) |
| 28 |
|
|
real pbaru(iip1,jjp1,llm ) |
| 29 |
|
|
real pbarv(iip1,jjm,llm) |
| 30 |
|
|
real unatppm(iim,jjp1,llm) |
| 31 |
|
|
real vnatppm(iim,jjp1,llm) |
| 32 |
|
|
real psppm(iim,jjp1) |
| 33 |
|
|
c--------------------------------------------------- |
| 34 |
|
|
c Local |
| 35 |
|
|
real vnat(iip1,jjp1,llm) |
| 36 |
|
|
real unat(iip1,jjp1,llm) |
| 37 |
|
|
real fluxw(iip1,jjp1,llm) |
| 38 |
|
|
real smass(iip1,jjp1) |
| 39 |
|
|
c---------------------------------------------------- |
| 40 |
|
|
integer l,ij,i,j |
| 41 |
|
|
|
| 42 |
|
|
c CALCUL DE LA PRESSION DE SURFACE |
| 43 |
|
|
c Les coefficients ap et bp sont pass�s en common |
| 44 |
|
|
c Calcul de la pression au sol en mb optimis�e pour |
| 45 |
|
|
c la vectorialisation |
| 46 |
|
|
|
| 47 |
|
✗ |
do j=1,jjp1 |
| 48 |
|
✗ |
do i=1,iip1 |
| 49 |
|
✗ |
smass(i,j)=0. |
| 50 |
|
|
enddo |
| 51 |
|
|
enddo |
| 52 |
|
|
|
| 53 |
|
✗ |
do l=1,llm |
| 54 |
|
✗ |
do j=1,jjp1 |
| 55 |
|
✗ |
do i=1,iip1 |
| 56 |
|
✗ |
smass(i,j)=smass(i,j)+masse(i,j,l) |
| 57 |
|
|
enddo |
| 58 |
|
|
enddo |
| 59 |
|
|
enddo |
| 60 |
|
|
|
| 61 |
|
✗ |
do j=1,jjp1 |
| 62 |
|
✗ |
do i=1,iim |
| 63 |
|
✗ |
psppm(i,j)=smass(i,j)/aire(i,j)*g*0.01 |
| 64 |
|
|
end do |
| 65 |
|
|
end do |
| 66 |
|
|
|
| 67 |
|
|
c RECONSTRUCTION DES CHAMPS CONTRAVARIANTS |
| 68 |
|
|
c Le programme ppm3d travaille avec les composantes |
| 69 |
|
|
c de vitesse et pas les flux, on doit donc passer de l'un � l'autre |
| 70 |
|
|
c Dans le m�me temps, on fait le changement d'orientation du vent en v |
| 71 |
|
✗ |
do l=1,llm |
| 72 |
|
✗ |
do j=1,jjm |
| 73 |
|
✗ |
do i=1,iip1 |
| 74 |
|
✗ |
vnat(i,j,l)=-pbarv(i,j,l)/masseby(i,j,l)*cv(i,j) |
| 75 |
|
|
enddo |
| 76 |
|
|
enddo |
| 77 |
|
✗ |
do i=1,iim |
| 78 |
|
✗ |
vnat(i,jjp1,l)=0. |
| 79 |
|
|
enddo |
| 80 |
|
✗ |
do j=1,jjp1 |
| 81 |
|
✗ |
do i=1,iip1 |
| 82 |
|
✗ |
unat(i,j,l)=pbaru(i,j,l)/massebx(i,j,l)*cu(i,j) |
| 83 |
|
|
enddo |
| 84 |
|
|
enddo |
| 85 |
|
|
enddo |
| 86 |
|
|
|
| 87 |
|
|
c CALCUL DU FLUX MASSIQUE VERTICAL |
| 88 |
|
|
c Flux en l=1 (sol) nul |
| 89 |
|
✗ |
fluxw=0. |
| 90 |
|
✗ |
do l=1,llm |
| 91 |
|
✗ |
do j=1,jjp1 |
| 92 |
|
✗ |
do i=1,iip1 |
| 93 |
|
✗ |
fluxw(i,j,l)=w(i,j,l)*g*0.01/aire(i,j) |
| 94 |
|
|
C print*,i,j,l,'fluxw(i,j,l)=',fluxw(i,j,l), |
| 95 |
|
|
C c 'w(i,j,l)=',w(i,j,l) |
| 96 |
|
|
enddo |
| 97 |
|
|
enddo |
| 98 |
|
|
enddo |
| 99 |
|
|
|
| 100 |
|
|
c INVERSION DES NIVEAUX |
| 101 |
|
|
c le programme ppm3d travaille avec une 3�me coordonn�e invers�e par rapport |
| 102 |
|
|
c de celle du LMDZ: z=1<=>niveau max, z=llm+1<=>surface |
| 103 |
|
|
c On passe donc des niveaux du LMDZ � ceux de Lin |
| 104 |
|
|
|
| 105 |
|
✗ |
do l=1,llm+1 |
| 106 |
|
✗ |
apppm(l)=ap(llm+2-l) |
| 107 |
|
✗ |
bpppm(l)=bp(llm+2-l) |
| 108 |
|
|
enddo |
| 109 |
|
|
|
| 110 |
|
✗ |
do l=1,llm |
| 111 |
|
✗ |
do j=1,jjp1 |
| 112 |
|
✗ |
do i=1,iim |
| 113 |
|
✗ |
unatppm(i,j,l)=unat(i,j,llm-l+1) |
| 114 |
|
✗ |
vnatppm(i,j,l)=vnat(i,j,llm-l+1) |
| 115 |
|
✗ |
fluxwppm(i,j,l)=fluxw(i,j,llm-l+1) |
| 116 |
|
✗ |
qppm(i,j,l)=q(i,j,llm-l+1) |
| 117 |
|
|
enddo |
| 118 |
|
|
enddo |
| 119 |
|
|
enddo |
| 120 |
|
|
|
| 121 |
|
✗ |
return |
| 122 |
|
|
end |
| 123 |
|
|
|
| 124 |
|
|
|
| 125 |
|
|
|
| 126 |
|
|
|
| 127 |
|
|
|
| 128 |
|
|
|
| 129 |
|
|
|