| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
! $Id $ |
| 3 |
|
|
|
| 4 |
|
✗ |
SUBROUTINE isccp_cloud_types(debug, debugcol, npoints, sunlit, nlev, ncol, & |
| 5 |
|
✗ |
seed, pfull, phalf, qv, cc, conv, dtau_s, dtau_c, top_height, overlap, & |
| 6 |
|
✗ |
tautab, invtau, skt, emsfc_lw, at, dem_s, dem_c, fq_isccp, totalcldarea, & |
| 7 |
|
✗ |
meanptop, meantaucld, boxtau, boxptop) |
| 8 |
|
|
|
| 9 |
|
|
|
| 10 |
|
|
! Copyright Steve Klein and Mark Webb 2002 - all rights reserved. |
| 11 |
|
|
|
| 12 |
|
|
! This code is available without charge with the following conditions: |
| 13 |
|
|
|
| 14 |
|
|
! 1. The code is available for scientific purposes and is not for |
| 15 |
|
|
! commercial use. |
| 16 |
|
|
! 2. Any improvements you make to the code should be made available |
| 17 |
|
|
! to the to the authors for incorporation into a future release. |
| 18 |
|
|
! 3. The code should not be used in any way that brings the authors |
| 19 |
|
|
! or their employers into disrepute. |
| 20 |
|
|
|
| 21 |
|
|
IMPLICIT NONE |
| 22 |
|
|
|
| 23 |
|
|
! NOTE: the maximum number of levels and columns is set by |
| 24 |
|
|
! the following parameter statement |
| 25 |
|
|
|
| 26 |
|
|
INTEGER ncolprint |
| 27 |
|
|
|
| 28 |
|
|
! ----- |
| 29 |
|
|
! Input |
| 30 |
|
|
! ----- |
| 31 |
|
|
|
| 32 |
|
|
INTEGER npoints ! number of model points in the horizontal |
| 33 |
|
|
! PARAMETER(npoints=6722) |
| 34 |
|
|
INTEGER nlev ! number of model levels in column |
| 35 |
|
|
INTEGER ncol ! number of subcolumns |
| 36 |
|
|
|
| 37 |
|
|
INTEGER sunlit(npoints) ! 1 for day points, 0 for night time |
| 38 |
|
|
|
| 39 |
|
|
INTEGER seed(npoints) ! seed value for random number generator |
| 40 |
|
|
! ! ( see Numerical Recipes Chapter 7) |
| 41 |
|
|
! ! It is recommended that the seed is set |
| 42 |
|
|
! ! to a different value for each model |
| 43 |
|
|
! ! gridbox it is called on, as it is |
| 44 |
|
|
! ! possible that the choice of the samec |
| 45 |
|
|
! ! seed value every time may introduce some |
| 46 |
|
|
! ! statistical bias in the results, particularly |
| 47 |
|
|
! ! for low values of NCOL. |
| 48 |
|
|
|
| 49 |
|
|
REAL pfull(npoints, nlev) ! pressure of full model levels (Pascals) |
| 50 |
|
|
! ! pfull(npoints,1) is top level of model |
| 51 |
|
|
! ! pfull(npoints,nlev) is bottom level of model |
| 52 |
|
|
|
| 53 |
|
|
REAL phalf(npoints, nlev+1) ! pressure of half model levels (Pascals) |
| 54 |
|
|
! ! phalf(npoints,1) is top of model |
| 55 |
|
|
! ! phalf(npoints,nlev+1) is the surface pressure |
| 56 |
|
|
|
| 57 |
|
|
REAL qv(npoints, nlev) ! water vapor specific humidity (kg vapor/ kg air) |
| 58 |
|
|
! ! on full model levels |
| 59 |
|
|
|
| 60 |
|
|
REAL cc(npoints, nlev) ! input cloud cover in each model level (fraction) |
| 61 |
|
|
! ! NOTE: This is the HORIZONTAL area of each |
| 62 |
|
|
! ! grid box covered by clouds |
| 63 |
|
|
|
| 64 |
|
|
REAL conv(npoints, nlev) ! input convective cloud cover in each model level (fraction) |
| 65 |
|
|
! ! NOTE: This is the HORIZONTAL area of each |
| 66 |
|
|
! ! grid box covered by convective clouds |
| 67 |
|
|
|
| 68 |
|
|
REAL dtau_s(npoints, nlev) ! mean 0.67 micron optical depth of stratiform |
| 69 |
|
|
! ! clouds in each model level |
| 70 |
|
|
! ! NOTE: this the cloud optical depth of only the |
| 71 |
|
|
! ! cloudy part of the grid box, it is not weighted |
| 72 |
|
|
! ! with the 0 cloud optical depth of the clear |
| 73 |
|
|
! ! part of the grid box |
| 74 |
|
|
|
| 75 |
|
|
REAL dtau_c(npoints, nlev) ! mean 0.67 micron optical depth of convective |
| 76 |
|
|
! ! clouds in each |
| 77 |
|
|
! ! model level. Same note applies as in dtau_s. |
| 78 |
|
|
|
| 79 |
|
|
INTEGER overlap ! overlap type |
| 80 |
|
|
|
| 81 |
|
|
! 1=max |
| 82 |
|
|
|
| 83 |
|
|
! 2=rand |
| 84 |
|
|
! 3=max/rand |
| 85 |
|
|
|
| 86 |
|
|
INTEGER top_height ! 1 = adjust top height using both a computed |
| 87 |
|
|
! ! infrared brightness temperature and the visible |
| 88 |
|
|
! ! optical depth to adjust cloud top pressure. Note |
| 89 |
|
|
! ! that this calculation is most appropriate to compare |
| 90 |
|
|
! ! to ISCCP data during sunlit hours. |
| 91 |
|
|
! ! 2 = do not adjust top height, that is cloud top |
| 92 |
|
|
! ! pressure is the actual cloud top pressure |
| 93 |
|
|
! ! in the model |
| 94 |
|
|
! ! 3 = adjust top height using only the computed |
| 95 |
|
|
! ! infrared brightness temperature. Note that this |
| 96 |
|
|
! ! calculation is most appropriate to compare to ISCCP |
| 97 |
|
|
! ! IR only algortihm (i.e. you can compare to nighttime |
| 98 |
|
|
! ! ISCCP data with this option) |
| 99 |
|
|
|
| 100 |
|
|
REAL tautab(0:255) ! ISCCP table for converting count value to |
| 101 |
|
|
! ! optical thickness |
| 102 |
|
|
|
| 103 |
|
|
INTEGER invtau(-20:45000) ! ISCCP table for converting optical thickness |
| 104 |
|
|
! ! to count value |
| 105 |
|
|
|
| 106 |
|
|
! The following input variables are used only if top_height = 1 or |
| 107 |
|
|
! top_height = 3 |
| 108 |
|
|
|
| 109 |
|
|
REAL skt(npoints) ! skin Temperature (K) |
| 110 |
|
|
REAL emsfc_lw ! 10.5 micron emissivity of surface (fraction) |
| 111 |
|
|
REAL at(npoints, nlev) ! temperature in each model level (K) |
| 112 |
|
|
REAL dem_s(npoints, nlev) ! 10.5 micron longwave emissivity of stratiform |
| 113 |
|
|
! ! clouds in each |
| 114 |
|
|
! ! model level. Same note applies as in dtau_s. |
| 115 |
|
|
REAL dem_c(npoints, nlev) ! 10.5 micron longwave emissivity of convective |
| 116 |
|
|
! ! clouds in each |
| 117 |
|
|
! ! model level. Same note applies as in dtau_s. |
| 118 |
|
|
! IM reg.dyn BEG |
| 119 |
|
|
REAL t1, t2 |
| 120 |
|
|
! REAL w(npoints) !vertical wind at 500 hPa |
| 121 |
|
|
! LOGICAL pct_ocean(npoints) !TRUE if oceanic point, FALSE otherway |
| 122 |
|
|
! INTEGER iw(npoints) , nw |
| 123 |
|
|
! REAL wmin, pas_w |
| 124 |
|
|
! INTEGER k, l, iwmx |
| 125 |
|
|
! PARAMETER(wmin=-100.,pas_w=10.,iwmx=30) |
| 126 |
|
|
! REAL fq_dynreg(7,7,iwmx) |
| 127 |
|
|
! REAL nfq_dynreg(7,7,iwmx) |
| 128 |
|
|
! LOGICAL pctj(7,7,iwmx) |
| 129 |
|
|
! IM reg.dyn END |
| 130 |
|
|
! ------ |
| 131 |
|
|
! Output |
| 132 |
|
|
! ------ |
| 133 |
|
|
|
| 134 |
|
|
REAL fq_isccp(npoints, 7, 7) ! the fraction of the model grid box covered by |
| 135 |
|
|
! ! each of the 49 ISCCP D level cloud types |
| 136 |
|
|
|
| 137 |
|
|
REAL totalcldarea(npoints) ! the fraction of model grid box columns |
| 138 |
|
|
! ! with cloud somewhere in them. This should |
| 139 |
|
|
! ! equal the sum over all entries of fq_isccp |
| 140 |
|
|
|
| 141 |
|
|
|
| 142 |
|
|
! ! The following three means are averages over the cloudy areas only. If |
| 143 |
|
|
! no |
| 144 |
|
|
! ! clouds are in grid box all three quantities should equal zero. |
| 145 |
|
|
|
| 146 |
|
|
REAL meanptop(npoints) ! mean cloud top pressure (mb) - linear averaging |
| 147 |
|
|
! ! in cloud top pressure. |
| 148 |
|
|
|
| 149 |
|
|
REAL meantaucld(npoints) ! mean optical thickness |
| 150 |
|
|
! ! linear averaging in albedo performed. |
| 151 |
|
|
|
| 152 |
|
|
REAL boxtau(npoints, ncol) ! optical thickness in each column |
| 153 |
|
|
|
| 154 |
|
|
REAL boxptop(npoints, ncol) ! cloud top pressure (mb) in each column |
| 155 |
|
|
|
| 156 |
|
|
|
| 157 |
|
|
|
| 158 |
|
|
! ------ |
| 159 |
|
|
! Working variables added when program updated to mimic Mark Webb's PV-Wave |
| 160 |
|
|
! code |
| 161 |
|
|
! ------ |
| 162 |
|
|
|
| 163 |
|
✗ |
REAL frac_out(npoints, ncol, nlev) ! boxes gridbox divided up into |
| 164 |
|
|
! ! Equivalent of BOX in original version, but |
| 165 |
|
|
! ! indexed by column then row, rather than |
| 166 |
|
|
! ! by row then column |
| 167 |
|
|
|
| 168 |
|
✗ |
REAL tca(npoints, 0:nlev) ! total cloud cover in each model level (fraction) |
| 169 |
|
|
! ! with extra layer of zeroes on top |
| 170 |
|
|
! ! in this version this just contains the values input |
| 171 |
|
|
! ! from cc but with an extra level |
| 172 |
|
✗ |
REAL cca(npoints, nlev) ! convective cloud cover in each model level (fraction) |
| 173 |
|
|
! ! from conv |
| 174 |
|
|
|
| 175 |
|
✗ |
REAL threshold(npoints, ncol) ! pointer to position in gridbox |
| 176 |
|
✗ |
REAL maxocc(npoints, ncol) ! Flag for max overlapped conv cld |
| 177 |
|
✗ |
REAL maxosc(npoints, ncol) ! Flag for max overlapped strat cld |
| 178 |
|
|
|
| 179 |
|
✗ |
REAL boxpos(npoints, ncol) ! ordered pointer to position in gridbox |
| 180 |
|
|
|
| 181 |
|
✗ |
REAL threshold_min(npoints, ncol) ! minimum value to define range in with new threshold |
| 182 |
|
|
! ! is chosen |
| 183 |
|
|
|
| 184 |
|
✗ |
REAL dem(npoints, ncol), bb(npoints) ! working variables for 10.5 micron longwave |
| 185 |
|
|
! ! emissivity in part of |
| 186 |
|
|
! ! gridbox under consideration |
| 187 |
|
|
|
| 188 |
|
✗ |
REAL ran(npoints) ! vector of random numbers |
| 189 |
|
✗ |
REAL ptrop(npoints) |
| 190 |
|
✗ |
REAL attrop(npoints) |
| 191 |
|
✗ |
REAL attropmin(npoints) |
| 192 |
|
✗ |
REAL atmax(npoints) |
| 193 |
|
✗ |
REAL atmin(npoints) |
| 194 |
|
✗ |
REAL btcmin(npoints) |
| 195 |
|
✗ |
REAL transmax(npoints) |
| 196 |
|
|
|
| 197 |
|
✗ |
INTEGER i, j, ilev, ibox, itrop(npoints) |
| 198 |
|
✗ |
INTEGER ipres(npoints) |
| 199 |
|
✗ |
INTEGER itau(npoints), ilev2 |
| 200 |
|
|
INTEGER acc(nlev, ncol) |
| 201 |
|
✗ |
INTEGER match(npoints, nlev-1) |
| 202 |
|
✗ |
INTEGER nmatch(npoints) |
| 203 |
|
✗ |
INTEGER levmatch(npoints, ncol) |
| 204 |
|
|
|
| 205 |
|
|
! !variables needed for water vapor continuum absorption |
| 206 |
|
✗ |
REAL fluxtop_clrsky(npoints), trans_layers_above_clrsky(npoints) |
| 207 |
|
✗ |
REAL taumin(npoints) |
| 208 |
|
✗ |
REAL dem_wv(npoints, nlev), wtmair, wtmh20, navo, grav, pstd, t0 |
| 209 |
|
✗ |
REAL press(npoints), dpress(npoints), atmden(npoints) |
| 210 |
|
✗ |
REAL rvh20(npoints), wk(npoints), rhoave(npoints) |
| 211 |
|
✗ |
REAL rh20s(npoints), rfrgn(npoints) |
| 212 |
|
✗ |
REAL tmpexp(npoints), tauwv(npoints) |
| 213 |
|
|
|
| 214 |
|
|
CHARACTER *1 cchar(6), cchar_realtops(6) |
| 215 |
|
|
INTEGER icycle |
| 216 |
|
✗ |
REAL tau(npoints, ncol) |
| 217 |
|
✗ |
LOGICAL box_cloudy(npoints, ncol) |
| 218 |
|
✗ |
REAL tb(npoints, ncol) |
| 219 |
|
✗ |
REAL ptop(npoints, ncol) |
| 220 |
|
✗ |
REAL emcld(npoints, ncol) |
| 221 |
|
✗ |
REAL fluxtop(npoints, ncol) |
| 222 |
|
✗ |
REAL trans_layers_above(npoints, ncol) |
| 223 |
|
✗ |
REAL isccp_taumin, fluxtopinit(npoints), tauir(npoints) |
| 224 |
|
✗ |
REAL meanalbedocld(npoints) |
| 225 |
|
✗ |
REAL albedocld(npoints, ncol) |
| 226 |
|
|
REAL boxarea |
| 227 |
|
|
INTEGER debug ! set to non-zero value to print out inputs |
| 228 |
|
|
! ! with step debug |
| 229 |
|
|
INTEGER debugcol ! set to non-zero value to print out column |
| 230 |
|
|
! ! decomposition with step debugcol |
| 231 |
|
|
|
| 232 |
|
|
INTEGER index1(npoints), num1, jj |
| 233 |
|
|
REAL rec2p13, tauchk |
| 234 |
|
|
|
| 235 |
|
|
CHARACTER *10 ftn09 |
| 236 |
|
|
|
| 237 |
|
|
DATA isccp_taumin/0.3/ |
| 238 |
|
|
DATA cchar/' ', '-', '1', '+', 'I', '+'/ |
| 239 |
|
|
DATA cchar_realtops/' ', ' ', '1', '1', 'I', 'I'/ |
| 240 |
|
|
|
| 241 |
|
|
tauchk = -1.*log(0.9999999) |
| 242 |
|
|
rec2p13 = 1./2.13 |
| 243 |
|
|
|
| 244 |
|
|
ncolprint = 0 |
| 245 |
|
|
|
| 246 |
|
|
! IM |
| 247 |
|
|
! PRINT*,' isccp_cloud_types npoints=',npoints |
| 248 |
|
|
|
| 249 |
|
|
! if ( debug.ne.0 ) then |
| 250 |
|
|
! j=1 |
| 251 |
|
|
! write(6,'(a10)') 'j=' |
| 252 |
|
|
! write(6,'(8I10)') j |
| 253 |
|
|
! write(6,'(a10)') 'debug=' |
| 254 |
|
|
! write(6,'(8I10)') debug |
| 255 |
|
|
! write(6,'(a10)') 'debugcol=' |
| 256 |
|
|
! write(6,'(8I10)') debugcol |
| 257 |
|
|
! write(6,'(a10)') 'npoints=' |
| 258 |
|
|
! write(6,'(8I10)') npoints |
| 259 |
|
|
! write(6,'(a10)') 'nlev=' |
| 260 |
|
|
! write(6,'(8I10)') nlev |
| 261 |
|
|
! write(6,'(a10)') 'ncol=' |
| 262 |
|
|
! write(6,'(8I10)') ncol |
| 263 |
|
|
! write(6,'(a10)') 'top_height=' |
| 264 |
|
|
! write(6,'(8I10)') top_height |
| 265 |
|
|
! write(6,'(a10)') 'overlap=' |
| 266 |
|
|
! write(6,'(8I10)') overlap |
| 267 |
|
|
! write(6,'(a10)') 'emsfc_lw=' |
| 268 |
|
|
! write(6,'(8f10.2)') emsfc_lw |
| 269 |
|
|
! write(6,'(a10)') 'tautab=' |
| 270 |
|
|
! write(6,'(8f10.2)') tautab |
| 271 |
|
|
! write(6,'(a10)') 'invtau(1:100)=' |
| 272 |
|
|
! write(6,'(8i10)') (invtau(i),i=1,100) |
| 273 |
|
|
! do j=1,npoints,debug |
| 274 |
|
|
! write(6,'(a10)') 'j=' |
| 275 |
|
|
! write(6,'(8I10)') j |
| 276 |
|
|
! write(6,'(a10)') 'sunlit=' |
| 277 |
|
|
! write(6,'(8I10)') sunlit(j) |
| 278 |
|
|
! write(6,'(a10)') 'seed=' |
| 279 |
|
|
! write(6,'(8I10)') seed(j) |
| 280 |
|
|
! write(6,'(a10)') 'pfull=' |
| 281 |
|
|
! write(6,'(8f10.2)') (pfull(j,i),i=1,nlev) |
| 282 |
|
|
! write(6,'(a10)') 'phalf=' |
| 283 |
|
|
! write(6,'(8f10.2)') (phalf(j,i),i=1,nlev+1) |
| 284 |
|
|
! write(6,'(a10)') 'qv=' |
| 285 |
|
|
! write(6,'(8f10.3)') (qv(j,i),i=1,nlev) |
| 286 |
|
|
! write(6,'(a10)') 'cc=' |
| 287 |
|
|
! write(6,'(8f10.3)') (cc(j,i),i=1,nlev) |
| 288 |
|
|
! write(6,'(a10)') 'conv=' |
| 289 |
|
|
! write(6,'(8f10.2)') (conv(j,i),i=1,nlev) |
| 290 |
|
|
! write(6,'(a10)') 'dtau_s=' |
| 291 |
|
|
! write(6,'(8g12.5)') (dtau_s(j,i),i=1,nlev) |
| 292 |
|
|
! write(6,'(a10)') 'dtau_c=' |
| 293 |
|
|
! write(6,'(8f10.2)') (dtau_c(j,i),i=1,nlev) |
| 294 |
|
|
! write(6,'(a10)') 'skt=' |
| 295 |
|
|
! write(6,'(8f10.2)') skt(j) |
| 296 |
|
|
! write(6,'(a10)') 'at=' |
| 297 |
|
|
! write(6,'(8f10.2)') (at(j,i),i=1,nlev) |
| 298 |
|
|
! write(6,'(a10)') 'dem_s=' |
| 299 |
|
|
! write(6,'(8f10.3)') (dem_s(j,i),i=1,nlev) |
| 300 |
|
|
! write(6,'(a10)') 'dem_c=' |
| 301 |
|
|
! write(6,'(8f10.2)') (dem_c(j,i),i=1,nlev) |
| 302 |
|
|
! enddo |
| 303 |
|
|
! endif |
| 304 |
|
|
|
| 305 |
|
|
! ---------------------------------------------------! |
| 306 |
|
|
|
| 307 |
|
|
! assign 2d tca array using 1d input array cc |
| 308 |
|
|
|
| 309 |
|
✗ |
DO j = 1, npoints |
| 310 |
|
✗ |
tca(j, 0) = 0 |
| 311 |
|
|
END DO |
| 312 |
|
|
|
| 313 |
|
✗ |
DO ilev = 1, nlev |
| 314 |
|
✗ |
DO j = 1, npoints |
| 315 |
|
✗ |
tca(j, ilev) = cc(j, ilev) |
| 316 |
|
|
END DO |
| 317 |
|
|
END DO |
| 318 |
|
|
|
| 319 |
|
|
! assign 2d cca array using 1d input array conv |
| 320 |
|
|
|
| 321 |
|
✗ |
DO ilev = 1, nlev |
| 322 |
|
|
! IM pas besoin do ibox=1,ncol |
| 323 |
|
✗ |
DO j = 1, npoints |
| 324 |
|
✗ |
cca(j, ilev) = conv(j, ilev) |
| 325 |
|
|
END DO |
| 326 |
|
|
! IM enddo |
| 327 |
|
|
END DO |
| 328 |
|
|
|
| 329 |
|
|
! IM |
| 330 |
|
|
! do j=1, iwmx |
| 331 |
|
|
! do l=1, 7 |
| 332 |
|
|
! do k=1, 7 |
| 333 |
|
|
! fq_dynreg(k,l,j) =0. |
| 334 |
|
|
! nfq_dynreg(k,l,j) =0. |
| 335 |
|
|
! enddo !k |
| 336 |
|
|
! enddo !l |
| 337 |
|
|
! enddo !j |
| 338 |
|
|
! IM |
| 339 |
|
|
! IM |
| 340 |
|
|
! if (ncolprint.ne.0) then |
| 341 |
|
|
! do j=1,npoints,1000 |
| 342 |
|
|
! write(6,'(a10)') 'j=' |
| 343 |
|
|
! write(6,'(8I10)') j |
| 344 |
|
|
! write (6,'(a)') 'seed:' |
| 345 |
|
|
! write (6,'(I3.2)') seed(j) |
| 346 |
|
|
|
| 347 |
|
|
! write (6,'(a)') 'tca_pp_rev:' |
| 348 |
|
|
! write (6,'(8f5.2)') |
| 349 |
|
|
! & ((tca(j,ilev)), |
| 350 |
|
|
! & ilev=1,nlev) |
| 351 |
|
|
|
| 352 |
|
|
! write (6,'(a)') 'cca_pp_rev:' |
| 353 |
|
|
! write (6,'(8f5.2)') |
| 354 |
|
|
! & ((cca(j,ilev),ibox=1,ncolprint),ilev=1,nlev) |
| 355 |
|
|
! enddo |
| 356 |
|
|
! endif |
| 357 |
|
|
|
| 358 |
|
✗ |
IF (top_height==1 .OR. top_height==3) THEN |
| 359 |
|
|
|
| 360 |
|
✗ |
DO j = 1, npoints |
| 361 |
|
✗ |
ptrop(j) = 5000. |
| 362 |
|
✗ |
atmin(j) = 400. |
| 363 |
|
✗ |
attropmin(j) = 400. |
| 364 |
|
✗ |
atmax(j) = 0. |
| 365 |
|
✗ |
attrop(j) = 120. |
| 366 |
|
✗ |
itrop(j) = 1 |
| 367 |
|
|
END DO |
| 368 |
|
|
|
| 369 |
|
✗ |
DO ilev = 1, nlev |
| 370 |
|
✗ |
DO j = 1, npoints |
| 371 |
|
✗ |
IF (pfull(j,ilev)<40000. .AND. pfull(j,ilev)>5000. .AND. & |
| 372 |
|
|
at(j,ilev)<attropmin(j)) THEN |
| 373 |
|
✗ |
ptrop(j) = pfull(j, ilev) |
| 374 |
|
✗ |
attropmin(j) = at(j, ilev) |
| 375 |
|
✗ |
attrop(j) = attropmin(j) |
| 376 |
|
✗ |
itrop(j) = ilev |
| 377 |
|
|
END IF |
| 378 |
|
✗ |
IF (at(j,ilev)>atmax(j)) atmax(j) = at(j, ilev) |
| 379 |
|
✗ |
IF (at(j,ilev)<atmin(j)) atmin(j) = at(j, ilev) |
| 380 |
|
|
END DO |
| 381 |
|
|
END DO |
| 382 |
|
|
|
| 383 |
|
|
END IF |
| 384 |
|
|
|
| 385 |
|
|
! -----------------------------------------------------! |
| 386 |
|
|
|
| 387 |
|
|
! ---------------------------------------------------! |
| 388 |
|
|
|
| 389 |
|
|
! IM |
| 390 |
|
|
! do 13 ilev=1,nlev |
| 391 |
|
|
! num1=0 |
| 392 |
|
|
! do j=1,npoints |
| 393 |
|
|
! if (cc(j,ilev) .lt. 0. .or. cc(j,ilev) .gt. 1.) then |
| 394 |
|
|
! num1=num1+1 |
| 395 |
|
|
! index1(num1)=j |
| 396 |
|
|
! end if |
| 397 |
|
|
! enddo |
| 398 |
|
|
! do jj=1,num1 |
| 399 |
|
|
! j=index1(jj) |
| 400 |
|
|
! write(6,*) ' error = cloud fraction less than zero' |
| 401 |
|
|
! write(6,*) ' or ' |
| 402 |
|
|
! write(6,*) ' error = cloud fraction greater than 1' |
| 403 |
|
|
! write(6,*) 'value at point ',j,' is ',cc(j,ilev) |
| 404 |
|
|
! write(6,*) 'level ',ilev |
| 405 |
|
|
! STOP |
| 406 |
|
|
! enddo |
| 407 |
|
|
! num1=0 |
| 408 |
|
|
! do j=1,npoints |
| 409 |
|
|
! if (conv(j,ilev) .lt. 0. .or. conv(j,ilev) .gt. 1.) then |
| 410 |
|
|
! num1=num1+1 |
| 411 |
|
|
! index1(num1)=j |
| 412 |
|
|
! end if |
| 413 |
|
|
! enddo |
| 414 |
|
|
! do jj=1,num1 |
| 415 |
|
|
! j=index1(jj) |
| 416 |
|
|
! write(6,*) |
| 417 |
|
|
! & ' error = convective cloud fraction less than zero' |
| 418 |
|
|
! write(6,*) ' or ' |
| 419 |
|
|
! write(6,*) |
| 420 |
|
|
! & ' error = convective cloud fraction greater than 1' |
| 421 |
|
|
! write(6,*) 'value at point ',j,' is ',conv(j,ilev) |
| 422 |
|
|
! write(6,*) 'level ',ilev |
| 423 |
|
|
! STOP |
| 424 |
|
|
! enddo |
| 425 |
|
|
|
| 426 |
|
|
! num1=0 |
| 427 |
|
|
! do j=1,npoints |
| 428 |
|
|
! if (dtau_s(j,ilev) .lt. 0.) then |
| 429 |
|
|
! num1=num1+1 |
| 430 |
|
|
! index1(num1)=j |
| 431 |
|
|
! end if |
| 432 |
|
|
! enddo |
| 433 |
|
|
! do jj=1,num1 |
| 434 |
|
|
! j=index1(jj) |
| 435 |
|
|
! write(6,*) |
| 436 |
|
|
! & ' error = stratiform cloud opt. depth less than zero' |
| 437 |
|
|
! write(6,*) 'value at point ',j,' is ',dtau_s(j,ilev) |
| 438 |
|
|
! write(6,*) 'level ',ilev |
| 439 |
|
|
! STOP |
| 440 |
|
|
! enddo |
| 441 |
|
|
! num1=0 |
| 442 |
|
|
! do j=1,npoints |
| 443 |
|
|
! if (dtau_c(j,ilev) .lt. 0.) then |
| 444 |
|
|
! num1=num1+1 |
| 445 |
|
|
! index1(num1)=j |
| 446 |
|
|
! end if |
| 447 |
|
|
! enddo |
| 448 |
|
|
! do jj=1,num1 |
| 449 |
|
|
! j=index1(jj) |
| 450 |
|
|
! write(6,*) |
| 451 |
|
|
! & ' error = convective cloud opt. depth less than zero' |
| 452 |
|
|
! write(6,*) 'value at point ',j,' is ',dtau_c(j,ilev) |
| 453 |
|
|
! write(6,*) 'level ',ilev |
| 454 |
|
|
! STOP |
| 455 |
|
|
! enddo |
| 456 |
|
|
|
| 457 |
|
|
! num1=0 |
| 458 |
|
|
! do j=1,npoints |
| 459 |
|
|
! if (dem_s(j,ilev) .lt. 0. .or. dem_s(j,ilev) .gt. 1.) then |
| 460 |
|
|
! num1=num1+1 |
| 461 |
|
|
! index1(num1)=j |
| 462 |
|
|
! end if |
| 463 |
|
|
! enddo |
| 464 |
|
|
! do jj=1,num1 |
| 465 |
|
|
! j=index1(jj) |
| 466 |
|
|
! write(6,*) |
| 467 |
|
|
! & ' error = stratiform cloud emissivity less than zero' |
| 468 |
|
|
! write(6,*)'or' |
| 469 |
|
|
! write(6,*) |
| 470 |
|
|
! & ' error = stratiform cloud emissivity greater than 1' |
| 471 |
|
|
! write(6,*) 'value at point ',j,' is ',dem_s(j,ilev) |
| 472 |
|
|
! write(6,*) 'level ',ilev |
| 473 |
|
|
! STOP |
| 474 |
|
|
! enddo |
| 475 |
|
|
|
| 476 |
|
|
! num1=0 |
| 477 |
|
|
! do j=1,npoints |
| 478 |
|
|
! if (dem_c(j,ilev) .lt. 0. .or. dem_c(j,ilev) .gt. 1.) then |
| 479 |
|
|
! num1=num1+1 |
| 480 |
|
|
! index1(num1)=j |
| 481 |
|
|
! end if |
| 482 |
|
|
! enddo |
| 483 |
|
|
! do jj=1,num1 |
| 484 |
|
|
! j=index1(jj) |
| 485 |
|
|
! write(6,*) |
| 486 |
|
|
! & ' error = convective cloud emissivity less than zero' |
| 487 |
|
|
! write(6,*)'or' |
| 488 |
|
|
! write(6,*) |
| 489 |
|
|
! & ' error = convective cloud emissivity greater than 1' |
| 490 |
|
|
! write (6,*) |
| 491 |
|
|
! & 'j=',j,'ilev=',ilev,'dem_c(j,ilev) =',dem_c(j,ilev) |
| 492 |
|
|
! STOP |
| 493 |
|
|
! enddo |
| 494 |
|
|
! 13 continue |
| 495 |
|
|
|
| 496 |
|
|
|
| 497 |
|
✗ |
DO ibox = 1, ncol |
| 498 |
|
✗ |
DO j = 1, npoints |
| 499 |
|
✗ |
boxpos(j, ibox) = (ibox-.5)/ncol |
| 500 |
|
|
END DO |
| 501 |
|
|
END DO |
| 502 |
|
|
|
| 503 |
|
|
! ---------------------------------------------------! |
| 504 |
|
|
! Initialise working variables |
| 505 |
|
|
! ---------------------------------------------------! |
| 506 |
|
|
|
| 507 |
|
|
! Initialised frac_out to zero |
| 508 |
|
|
|
| 509 |
|
✗ |
DO ilev = 1, nlev |
| 510 |
|
✗ |
DO ibox = 1, ncol |
| 511 |
|
✗ |
DO j = 1, npoints |
| 512 |
|
✗ |
frac_out(j, ibox, ilev) = 0.0 |
| 513 |
|
|
END DO |
| 514 |
|
|
END DO |
| 515 |
|
|
END DO |
| 516 |
|
|
|
| 517 |
|
|
! IM |
| 518 |
|
|
! if (ncolprint.ne.0) then |
| 519 |
|
|
! write (6,'(a)') 'frac_out_pp_rev:' |
| 520 |
|
|
! do j=1,npoints,1000 |
| 521 |
|
|
! write(6,'(a10)') 'j=' |
| 522 |
|
|
! write(6,'(8I10)') j |
| 523 |
|
|
! write (6,'(8f5.2)') |
| 524 |
|
|
! & ((frac_out(j,ibox,ilev),ibox=1,ncolprint),ilev=1,nlev) |
| 525 |
|
|
|
| 526 |
|
|
! enddo |
| 527 |
|
|
! write (6,'(a)') 'ncol:' |
| 528 |
|
|
! write (6,'(I3)') ncol |
| 529 |
|
|
! endif |
| 530 |
|
|
! if (ncolprint.ne.0) then |
| 531 |
|
|
! write (6,'(a)') 'last_frac_pp:' |
| 532 |
|
|
! do j=1,npoints,1000 |
| 533 |
|
|
! write(6,'(a10)') 'j=' |
| 534 |
|
|
! write(6,'(8I10)') j |
| 535 |
|
|
! write (6,'(8f5.2)') (tca(j,0)) |
| 536 |
|
|
! enddo |
| 537 |
|
|
! endif |
| 538 |
|
|
|
| 539 |
|
|
! ---------------------------------------------------! |
| 540 |
|
|
! ALLOCATE CLOUD INTO BOXES, FOR NCOLUMNS, NLEVELS |
| 541 |
|
|
! frac_out is the array that contains the information |
| 542 |
|
|
! where 0 is no cloud, 1 is a stratiform cloud and 2 is a |
| 543 |
|
|
! convective cloud |
| 544 |
|
|
|
| 545 |
|
|
!loop over vertical levels |
| 546 |
|
✗ |
DO ilev = 1, nlev |
| 547 |
|
|
|
| 548 |
|
|
! Initialise threshold |
| 549 |
|
|
|
| 550 |
|
✗ |
IF (ilev==1) THEN |
| 551 |
|
|
! If max overlap |
| 552 |
|
✗ |
IF (overlap==1) THEN |
| 553 |
|
|
! select pixels spread evenly |
| 554 |
|
|
! across the gridbox |
| 555 |
|
✗ |
DO ibox = 1, ncol |
| 556 |
|
✗ |
DO j = 1, npoints |
| 557 |
|
✗ |
threshold(j, ibox) = boxpos(j, ibox) |
| 558 |
|
|
END DO |
| 559 |
|
|
END DO |
| 560 |
|
|
ELSE |
| 561 |
|
✗ |
DO ibox = 1, ncol |
| 562 |
|
✗ |
CALL ran0_vec(npoints, seed, ran) |
| 563 |
|
|
! select random pixels from the non-convective |
| 564 |
|
|
! part the gridbox ( some will be converted into |
| 565 |
|
|
! convective pixels below ) |
| 566 |
|
✗ |
DO j = 1, npoints |
| 567 |
|
✗ |
threshold(j, ibox) = cca(j, ilev) + (1-cca(j,ilev))*ran(j) |
| 568 |
|
|
END DO |
| 569 |
|
|
END DO |
| 570 |
|
|
END IF |
| 571 |
|
|
! IM |
| 572 |
|
|
! IF (ncolprint.ne.0) then |
| 573 |
|
|
! write (6,'(a)') 'threshold_nsf2:' |
| 574 |
|
|
! do j=1,npoints,1000 |
| 575 |
|
|
! write(6,'(a10)') 'j=' |
| 576 |
|
|
! write(6,'(8I10)') j |
| 577 |
|
|
! write (6,'(8f5.2)') (threshold(j,ibox),ibox=1,ncolprint) |
| 578 |
|
|
! enddo |
| 579 |
|
|
! ENDIF |
| 580 |
|
|
END IF |
| 581 |
|
|
|
| 582 |
|
|
! IF (ncolprint.ne.0) then |
| 583 |
|
|
! write (6,'(a)') 'ilev:' |
| 584 |
|
|
! write (6,'(I2)') ilev |
| 585 |
|
|
! ENDIF |
| 586 |
|
|
|
| 587 |
|
✗ |
DO ibox = 1, ncol |
| 588 |
|
|
|
| 589 |
|
|
! All versions |
| 590 |
|
✗ |
DO j = 1, npoints |
| 591 |
|
✗ |
IF (boxpos(j,ibox)<=cca(j,ilev)) THEN |
| 592 |
|
|
! IM REAL maxocc(j,ibox) = 1 |
| 593 |
|
✗ |
maxocc(j, ibox) = 1.0 |
| 594 |
|
|
ELSE |
| 595 |
|
|
! IM REAL maxocc(j,ibox) = 0 |
| 596 |
|
✗ |
maxocc(j, ibox) = 0.0 |
| 597 |
|
|
END IF |
| 598 |
|
|
END DO |
| 599 |
|
|
|
| 600 |
|
|
! Max overlap |
| 601 |
|
✗ |
IF (overlap==1) THEN |
| 602 |
|
✗ |
DO j = 1, npoints |
| 603 |
|
✗ |
threshold_min(j, ibox) = cca(j, ilev) |
| 604 |
|
|
! IM REAL maxosc(j,ibox)=1 |
| 605 |
|
✗ |
maxosc(j, ibox) = 1.0 |
| 606 |
|
|
END DO |
| 607 |
|
|
END IF |
| 608 |
|
|
|
| 609 |
|
|
! Random overlap |
| 610 |
|
✗ |
IF (overlap==2) THEN |
| 611 |
|
✗ |
DO j = 1, npoints |
| 612 |
|
✗ |
threshold_min(j, ibox) = cca(j, ilev) |
| 613 |
|
|
! IM REAL maxosc(j,ibox)=0 |
| 614 |
|
✗ |
maxosc(j, ibox) = 0.0 |
| 615 |
|
|
END DO |
| 616 |
|
|
END IF |
| 617 |
|
|
|
| 618 |
|
|
! Max/Random overlap |
| 619 |
|
✗ |
IF (overlap==3) THEN |
| 620 |
|
✗ |
DO j = 1, npoints |
| 621 |
|
|
threshold_min(j, ibox) = max(cca(j,ilev), min(tca(j,ilev-1),tca(j, & |
| 622 |
|
✗ |
ilev))) |
| 623 |
|
|
IF (threshold(j,ibox)<min(tca(j,ilev-1),tca(j, & |
| 624 |
|
✗ |
ilev)) .AND. (threshold(j,ibox)>cca(j,ilev))) THEN |
| 625 |
|
|
! IM REAL maxosc(j,ibox)= 1 |
| 626 |
|
✗ |
maxosc(j, ibox) = 1.0 |
| 627 |
|
|
ELSE |
| 628 |
|
|
! IM REAL maxosc(j,ibox)= 0 |
| 629 |
|
✗ |
maxosc(j, ibox) = 0.0 |
| 630 |
|
|
END IF |
| 631 |
|
|
END DO |
| 632 |
|
|
END IF |
| 633 |
|
|
|
| 634 |
|
|
! Reset threshold |
| 635 |
|
✗ |
CALL ran0_vec(npoints, seed, ran) |
| 636 |
|
|
|
| 637 |
|
✗ |
DO j = 1, npoints |
| 638 |
|
|
threshold(j, ibox) = & !if max overlapped conv cloud |
| 639 |
|
|
maxocc(j, ibox)*(boxpos(j,ibox)) + & !else |
| 640 |
|
|
(1-maxocc(j,ibox))*( & !if max overlapped strat cloud |
| 641 |
|
|
(maxosc(j,ibox))*( & !threshold=boxpos |
| 642 |
|
|
threshold(j,ibox))+ & !else |
| 643 |
|
|
(1-maxosc(j,ibox))*( & !threshold_min=random[thrmin,1] |
| 644 |
|
✗ |
threshold_min(j,ibox)+(1-threshold_min(j,ibox))*ran(j))) |
| 645 |
|
|
END DO |
| 646 |
|
|
|
| 647 |
|
|
END DO ! ibox |
| 648 |
|
|
|
| 649 |
|
|
! Fill frac_out with 1's where tca is greater than the threshold |
| 650 |
|
|
|
| 651 |
|
✗ |
DO ibox = 1, ncol |
| 652 |
|
✗ |
DO j = 1, npoints |
| 653 |
|
✗ |
IF (tca(j,ilev)>threshold(j,ibox)) THEN |
| 654 |
|
|
! IM REAL frac_out(j,ibox,ilev)=1 |
| 655 |
|
✗ |
frac_out(j, ibox, ilev) = 1.0 |
| 656 |
|
|
ELSE |
| 657 |
|
|
! IM REAL frac_out(j,ibox,ilev)=0 |
| 658 |
|
✗ |
frac_out(j, ibox, ilev) = 0.0 |
| 659 |
|
|
END IF |
| 660 |
|
|
END DO |
| 661 |
|
|
END DO |
| 662 |
|
|
|
| 663 |
|
|
! Code to partition boxes into startiform and convective parts |
| 664 |
|
|
! goes here |
| 665 |
|
|
|
| 666 |
|
✗ |
DO ibox = 1, ncol |
| 667 |
|
✗ |
DO j = 1, npoints |
| 668 |
|
✗ |
IF (threshold(j,ibox)<=cca(j,ilev)) THEN |
| 669 |
|
|
! = 2 IF threshold le cca(j) |
| 670 |
|
|
! IM REAL frac_out(j,ibox,ilev) = 2 |
| 671 |
|
✗ |
frac_out(j, ibox, ilev) = 2.0 |
| 672 |
|
|
ELSE |
| 673 |
|
|
! = the same IF NOT threshold le cca(j) |
| 674 |
|
|
frac_out(j, ibox, ilev) = frac_out(j, ibox, ilev) |
| 675 |
|
|
END IF |
| 676 |
|
|
END DO |
| 677 |
|
|
END DO |
| 678 |
|
|
|
| 679 |
|
|
! Set last_frac to tca at this level, so as to be tca |
| 680 |
|
|
! from last level next time round |
| 681 |
|
|
|
| 682 |
|
|
! IM |
| 683 |
|
|
! if (ncolprint.ne.0) then |
| 684 |
|
|
|
| 685 |
|
|
! do j=1,npoints ,1000 |
| 686 |
|
|
! write(6,'(a10)') 'j=' |
| 687 |
|
|
! write(6,'(8I10)') j |
| 688 |
|
|
! write (6,'(a)') 'last_frac:' |
| 689 |
|
|
! write (6,'(8f5.2)') (tca(j,ilev-1)) |
| 690 |
|
|
|
| 691 |
|
|
! write (6,'(a)') 'cca:' |
| 692 |
|
|
! write (6,'(8f5.2)') (cca(j,ilev),ibox=1,ncolprint) |
| 693 |
|
|
|
| 694 |
|
|
! write (6,'(a)') 'max_overlap_cc:' |
| 695 |
|
|
! write (6,'(8f5.2)') (maxocc(j,ibox),ibox=1,ncolprint) |
| 696 |
|
|
|
| 697 |
|
|
! write (6,'(a)') 'max_overlap_sc:' |
| 698 |
|
|
! write (6,'(8f5.2)') (maxosc(j,ibox),ibox=1,ncolprint) |
| 699 |
|
|
|
| 700 |
|
|
! write (6,'(a)') 'threshold_min_nsf2:' |
| 701 |
|
|
! write (6,'(8f5.2)') (threshold_min(j,ibox),ibox=1,ncolprint) |
| 702 |
|
|
|
| 703 |
|
|
! write (6,'(a)') 'threshold_nsf2:' |
| 704 |
|
|
! write (6,'(8f5.2)') (threshold(j,ibox),ibox=1,ncolprint) |
| 705 |
|
|
|
| 706 |
|
|
! write (6,'(a)') 'frac_out_pp_rev:' |
| 707 |
|
|
! write (6,'(8f5.2)') |
| 708 |
|
|
! & ((frac_out(j,ibox,ilev2),ibox=1,ncolprint),ilev2=1,nlev) |
| 709 |
|
|
! enddo |
| 710 |
|
|
! endif |
| 711 |
|
|
|
| 712 |
|
|
|
| 713 |
|
|
END DO |
| 714 |
|
|
|
| 715 |
|
|
! ---------------------------------------------------! |
| 716 |
|
|
|
| 717 |
|
|
|
| 718 |
|
|
|
| 719 |
|
|
! ---------------------------------------------------! |
| 720 |
|
|
! COMPUTE CLOUD OPTICAL DEPTH FOR EACH COLUMN and |
| 721 |
|
|
! put into vector tau |
| 722 |
|
|
|
| 723 |
|
|
!initialize tau and albedocld to zero |
| 724 |
|
|
! loop over nlev |
| 725 |
|
✗ |
DO ibox = 1, ncol |
| 726 |
|
✗ |
DO j = 1, npoints |
| 727 |
|
✗ |
tau(j, ibox) = 0. |
| 728 |
|
✗ |
albedocld(j, ibox) = 0. |
| 729 |
|
✗ |
boxtau(j, ibox) = 0. |
| 730 |
|
✗ |
boxptop(j, ibox) = 0. |
| 731 |
|
✗ |
box_cloudy(j, ibox) = .FALSE. |
| 732 |
|
|
END DO |
| 733 |
|
|
END DO |
| 734 |
|
|
|
| 735 |
|
|
!compute total cloud optical depth for each column |
| 736 |
|
✗ |
DO ilev = 1, nlev |
| 737 |
|
|
!increment tau for each of the boxes |
| 738 |
|
✗ |
DO ibox = 1, ncol |
| 739 |
|
✗ |
DO j = 1, npoints |
| 740 |
|
|
! IM REAL if (frac_out(j,ibox,ilev).eq.1) then |
| 741 |
|
✗ |
IF (frac_out(j,ibox,ilev)==1.0) THEN |
| 742 |
|
✗ |
tau(j, ibox) = tau(j, ibox) + dtau_s(j, ilev) |
| 743 |
|
|
END IF |
| 744 |
|
|
! IM REAL if (frac_out(j,ibox,ilev).eq.2) then |
| 745 |
|
✗ |
IF (frac_out(j,ibox,ilev)==2.0) THEN |
| 746 |
|
✗ |
tau(j, ibox) = tau(j, ibox) + dtau_c(j, ilev) |
| 747 |
|
|
END IF |
| 748 |
|
|
END DO |
| 749 |
|
|
END DO ! ibox |
| 750 |
|
|
END DO ! ilev |
| 751 |
|
|
! IM |
| 752 |
|
|
! if (ncolprint.ne.0) then |
| 753 |
|
|
|
| 754 |
|
|
! do j=1,npoints ,1000 |
| 755 |
|
|
! write(6,'(a10)') 'j=' |
| 756 |
|
|
! write(6,'(8I10)') j |
| 757 |
|
|
! write(6,'(i2,1X,8(f7.2,1X))') |
| 758 |
|
|
! & ilev, |
| 759 |
|
|
! & (tau(j,ibox),ibox=1,ncolprint) |
| 760 |
|
|
! enddo |
| 761 |
|
|
! endif |
| 762 |
|
|
|
| 763 |
|
|
! ---------------------------------------------------! |
| 764 |
|
|
|
| 765 |
|
|
|
| 766 |
|
|
|
| 767 |
|
|
|
| 768 |
|
|
! ---------------------------------------------------! |
| 769 |
|
|
! COMPUTE INFRARED BRIGHTNESS TEMPERUATRES |
| 770 |
|
|
! AND CLOUD TOP TEMPERATURE SATELLITE SHOULD SEE |
| 771 |
|
|
|
| 772 |
|
|
! again this is only done if top_height = 1 or 3 |
| 773 |
|
|
|
| 774 |
|
|
! fluxtop is the 10.5 micron radiance at the top of the |
| 775 |
|
|
! atmosphere |
| 776 |
|
|
! trans_layers_above is the total transmissivity in the layers |
| 777 |
|
|
! above the current layer |
| 778 |
|
|
! fluxtop_clrsky(j) and trans_layers_above_clrsky(j) are the clear |
| 779 |
|
|
! sky versions of these quantities. |
| 780 |
|
|
|
| 781 |
|
✗ |
IF (top_height==1 .OR. top_height==3) THEN |
| 782 |
|
|
|
| 783 |
|
|
|
| 784 |
|
|
!---------------------------------------------------------------------- |
| 785 |
|
|
! |
| 786 |
|
|
! DO CLEAR SKY RADIANCE CALCULATION FIRST |
| 787 |
|
|
! |
| 788 |
|
|
!compute water vapor continuum emissivity |
| 789 |
|
|
!this treatment follows Schwarkzopf and Ramasamy |
| 790 |
|
|
!JGR 1999,vol 104, pages 9467-9499. |
| 791 |
|
|
!the emissivity is calculated at a wavenumber of 955 cm-1, |
| 792 |
|
|
!or 10.47 microns |
| 793 |
|
|
wtmair = 28.9644 |
| 794 |
|
|
wtmh20 = 18.01534 |
| 795 |
|
|
navo = 6.023E+23 |
| 796 |
|
|
grav = 9.806650E+02 |
| 797 |
|
|
pstd = 1.013250E+06 |
| 798 |
|
|
t0 = 296. |
| 799 |
|
|
! IM |
| 800 |
|
|
! if (ncolprint .ne. 0) |
| 801 |
|
|
! & write(6,*) 'ilev pw (kg/m2) tauwv(j) dem_wv' |
| 802 |
|
✗ |
DO ilev = 1, nlev |
| 803 |
|
✗ |
DO j = 1, npoints |
| 804 |
|
|
!press and dpress are dyne/cm2 = Pascals *10 |
| 805 |
|
✗ |
press(j) = pfull(j, ilev)*10. |
| 806 |
|
✗ |
dpress(j) = (phalf(j,ilev+1)-phalf(j,ilev))*10 |
| 807 |
|
|
!atmden = g/cm2 = kg/m2 / 10 |
| 808 |
|
✗ |
atmden(j) = dpress(j)/grav |
| 809 |
|
✗ |
rvh20(j) = qv(j, ilev)*wtmair/wtmh20 |
| 810 |
|
✗ |
wk(j) = rvh20(j)*navo*atmden(j)/wtmair |
| 811 |
|
✗ |
rhoave(j) = (press(j)/pstd)*(t0/at(j,ilev)) |
| 812 |
|
✗ |
rh20s(j) = rvh20(j)*rhoave(j) |
| 813 |
|
✗ |
rfrgn(j) = rhoave(j) - rh20s(j) |
| 814 |
|
✗ |
tmpexp(j) = exp(-0.02*(at(j,ilev)-t0)) |
| 815 |
|
|
tauwv(j) = wk(j)*1.E-20*((0.0224697*rh20s(j)*tmpexp(j))+(3.41817E-7* & |
| 816 |
|
✗ |
rfrgn(j)))*0.98 |
| 817 |
|
✗ |
dem_wv(j, ilev) = 1. - exp(-1.*tauwv(j)) |
| 818 |
|
|
END DO |
| 819 |
|
|
! IM |
| 820 |
|
|
! if (ncolprint .ne. 0) then |
| 821 |
|
|
! do j=1,npoints ,1000 |
| 822 |
|
|
! write(6,'(a10)') 'j=' |
| 823 |
|
|
! write(6,'(8I10)') j |
| 824 |
|
|
! write(6,'(i2,1X,3(f8.3,3X))') ilev, |
| 825 |
|
|
! & qv(j,ilev)*(phalf(j,ilev+1)-phalf(j,ilev))/(grav/100.), |
| 826 |
|
|
! & tauwv(j),dem_wv(j,ilev) |
| 827 |
|
|
! enddo |
| 828 |
|
|
! endif |
| 829 |
|
|
END DO |
| 830 |
|
|
|
| 831 |
|
|
!initialize variables |
| 832 |
|
✗ |
DO j = 1, npoints |
| 833 |
|
✗ |
fluxtop_clrsky(j) = 0. |
| 834 |
|
✗ |
trans_layers_above_clrsky(j) = 1. |
| 835 |
|
|
END DO |
| 836 |
|
|
|
| 837 |
|
✗ |
DO ilev = 1, nlev |
| 838 |
|
✗ |
DO j = 1, npoints |
| 839 |
|
|
|
| 840 |
|
|
! Black body emission at temperature of the layer |
| 841 |
|
|
|
| 842 |
|
✗ |
bb(j) = 1/(exp(1307.27/at(j,ilev))-1.) |
| 843 |
|
|
!bb(j)= 5.67e-8*at(j,ilev)**4 |
| 844 |
|
|
|
| 845 |
|
|
! increase TOA flux by flux emitted from layer |
| 846 |
|
|
! times total transmittance in layers above |
| 847 |
|
|
|
| 848 |
|
|
fluxtop_clrsky(j) = fluxtop_clrsky(j) + dem_wv(j, ilev)*bb(j)* & |
| 849 |
|
✗ |
trans_layers_above_clrsky(j) |
| 850 |
|
|
|
| 851 |
|
|
! update trans_layers_above with transmissivity |
| 852 |
|
|
! from this layer for next time around loop |
| 853 |
|
|
|
| 854 |
|
|
trans_layers_above_clrsky(j) = trans_layers_above_clrsky(j)* & |
| 855 |
|
✗ |
(1.-dem_wv(j,ilev)) |
| 856 |
|
|
|
| 857 |
|
|
|
| 858 |
|
|
END DO |
| 859 |
|
|
! IM |
| 860 |
|
|
! if (ncolprint.ne.0) then |
| 861 |
|
|
! do j=1,npoints ,1000 |
| 862 |
|
|
! write(6,'(a10)') 'j=' |
| 863 |
|
|
! write(6,'(8I10)') j |
| 864 |
|
|
! write (6,'(a)') 'ilev:' |
| 865 |
|
|
! write (6,'(I2)') ilev |
| 866 |
|
|
|
| 867 |
|
|
! write (6,'(a)') |
| 868 |
|
|
! & 'emiss_layer,100.*bb(j),100.*f,total_trans:' |
| 869 |
|
|
! write (6,'(4(f7.2,1X))') dem_wv(j,ilev),100.*bb(j), |
| 870 |
|
|
! & 100.*fluxtop_clrsky(j),trans_layers_above_clrsky(j) |
| 871 |
|
|
! enddo |
| 872 |
|
|
! endif |
| 873 |
|
|
|
| 874 |
|
|
END DO !loop over level |
| 875 |
|
|
|
| 876 |
|
✗ |
DO j = 1, npoints |
| 877 |
|
|
!add in surface emission |
| 878 |
|
✗ |
bb(j) = 1/(exp(1307.27/skt(j))-1.) |
| 879 |
|
|
!bb(j)=5.67e-8*skt(j)**4 |
| 880 |
|
|
|
| 881 |
|
|
fluxtop_clrsky(j) = fluxtop_clrsky(j) + emsfc_lw*bb(j)* & |
| 882 |
|
✗ |
trans_layers_above_clrsky(j) |
| 883 |
|
|
END DO |
| 884 |
|
|
|
| 885 |
|
|
! IM |
| 886 |
|
|
! if (ncolprint.ne.0) then |
| 887 |
|
|
! do j=1,npoints ,1000 |
| 888 |
|
|
! write(6,'(a10)') 'j=' |
| 889 |
|
|
! write(6,'(8I10)') j |
| 890 |
|
|
! write (6,'(a)') 'id:' |
| 891 |
|
|
! write (6,'(a)') 'surface' |
| 892 |
|
|
|
| 893 |
|
|
! write (6,'(a)') 'emsfc,100.*bb(j),100.*f,total_trans:' |
| 894 |
|
|
! write (6,'(4(f7.2,1X))') emsfc_lw,100.*bb(j), |
| 895 |
|
|
! & 100.*fluxtop_clrsky(j), |
| 896 |
|
|
! & trans_layers_above_clrsky(j) |
| 897 |
|
|
! enddo |
| 898 |
|
|
! endif |
| 899 |
|
|
|
| 900 |
|
|
|
| 901 |
|
|
! |
| 902 |
|
|
! END OF CLEAR SKY CALCULATION |
| 903 |
|
|
! |
| 904 |
|
|
!---------------------------------------------------------------- |
| 905 |
|
|
|
| 906 |
|
|
|
| 907 |
|
|
! IM |
| 908 |
|
|
! if (ncolprint.ne.0) then |
| 909 |
|
|
|
| 910 |
|
|
! do j=1,npoints ,1000 |
| 911 |
|
|
! write(6,'(a10)') 'j=' |
| 912 |
|
|
! write(6,'(8I10)') j |
| 913 |
|
|
! write (6,'(a)') 'ts:' |
| 914 |
|
|
! write (6,'(8f7.2)') (skt(j),ibox=1,ncolprint) |
| 915 |
|
|
|
| 916 |
|
|
! write (6,'(a)') 'ta_rev:' |
| 917 |
|
|
! write (6,'(8f7.2)') |
| 918 |
|
|
! & ((at(j,ilev2),ibox=1,ncolprint),ilev2=1,nlev) |
| 919 |
|
|
|
| 920 |
|
|
! enddo |
| 921 |
|
|
! endif |
| 922 |
|
|
!loop over columns |
| 923 |
|
✗ |
DO ibox = 1, ncol |
| 924 |
|
✗ |
DO j = 1, npoints |
| 925 |
|
✗ |
fluxtop(j, ibox) = 0. |
| 926 |
|
✗ |
trans_layers_above(j, ibox) = 1. |
| 927 |
|
|
END DO |
| 928 |
|
|
END DO |
| 929 |
|
|
|
| 930 |
|
✗ |
DO ilev = 1, nlev |
| 931 |
|
✗ |
DO j = 1, npoints |
| 932 |
|
|
! Black body emission at temperature of the layer |
| 933 |
|
|
|
| 934 |
|
✗ |
bb(j) = 1/(exp(1307.27/at(j,ilev))-1.) |
| 935 |
|
|
!bb(j)= 5.67e-8*at(j,ilev)**4 |
| 936 |
|
|
END DO |
| 937 |
|
|
|
| 938 |
|
✗ |
DO ibox = 1, ncol |
| 939 |
|
✗ |
DO j = 1, npoints |
| 940 |
|
|
|
| 941 |
|
|
! emissivity for point in this layer |
| 942 |
|
|
! IM REAL if (frac_out(j,ibox,ilev).eq.1) then |
| 943 |
|
✗ |
IF (frac_out(j,ibox,ilev)==1.0) THEN |
| 944 |
|
✗ |
dem(j, ibox) = 1. - ((1.-dem_wv(j,ilev))*(1.-dem_s(j,ilev))) |
| 945 |
|
|
! IM REAL else if (frac_out(j,ibox,ilev).eq.2) then |
| 946 |
|
✗ |
ELSE IF (frac_out(j,ibox,ilev)==2.0) THEN |
| 947 |
|
✗ |
dem(j, ibox) = 1. - ((1.-dem_wv(j,ilev))*(1.-dem_c(j,ilev))) |
| 948 |
|
|
ELSE |
| 949 |
|
✗ |
dem(j, ibox) = dem_wv(j, ilev) |
| 950 |
|
|
END IF |
| 951 |
|
|
|
| 952 |
|
|
|
| 953 |
|
|
! increase TOA flux by flux emitted from layer |
| 954 |
|
|
! times total transmittance in layers above |
| 955 |
|
|
|
| 956 |
|
|
fluxtop(j, ibox) = fluxtop(j, ibox) + dem(j, ibox)*bb(j)* & |
| 957 |
|
✗ |
trans_layers_above(j, ibox) |
| 958 |
|
|
|
| 959 |
|
|
! update trans_layers_above with transmissivity |
| 960 |
|
|
! from this layer for next time around loop |
| 961 |
|
|
|
| 962 |
|
|
trans_layers_above(j, ibox) = trans_layers_above(j, ibox)* & |
| 963 |
|
✗ |
(1.-dem(j,ibox)) |
| 964 |
|
|
|
| 965 |
|
|
END DO ! j |
| 966 |
|
|
END DO ! ibox |
| 967 |
|
|
|
| 968 |
|
|
! IM |
| 969 |
|
|
! if (ncolprint.ne.0) then |
| 970 |
|
|
! do j=1,npoints,1000 |
| 971 |
|
|
! write (6,'(a)') 'ilev:' |
| 972 |
|
|
! write (6,'(I2)') ilev |
| 973 |
|
|
|
| 974 |
|
|
! write(6,'(a10)') 'j=' |
| 975 |
|
|
! write(6,'(8I10)') j |
| 976 |
|
|
! write (6,'(a)') 'emiss_layer:' |
| 977 |
|
|
! write (6,'(8f7.2)') (dem(j,ibox),ibox=1,ncolprint) |
| 978 |
|
|
|
| 979 |
|
|
! write (6,'(a)') '100.*bb(j):' |
| 980 |
|
|
! write (6,'(8f7.2)') (100.*bb(j),ibox=1,ncolprint) |
| 981 |
|
|
|
| 982 |
|
|
! write (6,'(a)') '100.*f:' |
| 983 |
|
|
! write (6,'(8f7.2)') |
| 984 |
|
|
! & (100.*fluxtop(j,ibox),ibox=1,ncolprint) |
| 985 |
|
|
|
| 986 |
|
|
! write (6,'(a)') 'total_trans:' |
| 987 |
|
|
! write (6,'(8f7.2)') |
| 988 |
|
|
! & (trans_layers_above(j,ibox),ibox=1,ncolprint) |
| 989 |
|
|
! enddo |
| 990 |
|
|
! endif |
| 991 |
|
|
|
| 992 |
|
|
END DO ! ilev |
| 993 |
|
|
|
| 994 |
|
|
|
| 995 |
|
✗ |
DO j = 1, npoints |
| 996 |
|
|
!add in surface emission |
| 997 |
|
✗ |
bb(j) = 1/(exp(1307.27/skt(j))-1.) |
| 998 |
|
|
!bb(j)=5.67e-8*skt(j)**4 |
| 999 |
|
|
END DO |
| 1000 |
|
|
|
| 1001 |
|
✗ |
DO ibox = 1, ncol |
| 1002 |
|
✗ |
DO j = 1, npoints |
| 1003 |
|
|
|
| 1004 |
|
|
!add in surface emission |
| 1005 |
|
|
|
| 1006 |
|
|
fluxtop(j, ibox) = fluxtop(j, ibox) + emsfc_lw*bb(j)* & |
| 1007 |
|
✗ |
trans_layers_above(j, ibox) |
| 1008 |
|
|
|
| 1009 |
|
|
END DO |
| 1010 |
|
|
END DO |
| 1011 |
|
|
|
| 1012 |
|
|
! IM |
| 1013 |
|
|
! if (ncolprint.ne.0) then |
| 1014 |
|
|
|
| 1015 |
|
|
! do j=1,npoints ,1000 |
| 1016 |
|
|
! write(6,'(a10)') 'j=' |
| 1017 |
|
|
! write(6,'(8I10)') j |
| 1018 |
|
|
! write (6,'(a)') 'id:' |
| 1019 |
|
|
! write (6,'(a)') 'surface' |
| 1020 |
|
|
|
| 1021 |
|
|
! write (6,'(a)') 'emiss_layer:' |
| 1022 |
|
|
! write (6,'(8f7.2)') (dem(1,ibox),ibox=1,ncolprint) |
| 1023 |
|
|
|
| 1024 |
|
|
! write (6,'(a)') '100.*bb(j):' |
| 1025 |
|
|
! write (6,'(8f7.2)') (100.*bb(j),ibox=1,ncolprint) |
| 1026 |
|
|
|
| 1027 |
|
|
! write (6,'(a)') '100.*f:' |
| 1028 |
|
|
! write (6,'(8f7.2)') (100.*fluxtop(j,ibox),ibox=1,ncolprint) |
| 1029 |
|
|
! end do |
| 1030 |
|
|
! endif |
| 1031 |
|
|
|
| 1032 |
|
|
!now that you have the top of atmosphere radiance account |
| 1033 |
|
|
!for ISCCP procedures to determine cloud top temperature |
| 1034 |
|
|
|
| 1035 |
|
|
!account for partially transmitting cloud recompute flux |
| 1036 |
|
|
!ISCCP would see assuming a single layer cloud |
| 1037 |
|
|
!note choice here of 2.13, as it is primarily ice |
| 1038 |
|
|
!clouds which have partial emissivity and need the |
| 1039 |
|
|
!adjustment performed in this section |
| 1040 |
|
|
! |
| 1041 |
|
|
!If it turns out that the cloud brightness temperature |
| 1042 |
|
|
!is greater than 260K, then the liquid cloud conversion |
| 1043 |
|
|
!factor of 2.56 is used. |
| 1044 |
|
|
! |
| 1045 |
|
|
!Note that this is discussed on pages 85-87 of |
| 1046 |
|
|
!the ISCCP D level documentation (Rossow et al. 1996) |
| 1047 |
|
|
|
| 1048 |
|
✗ |
DO j = 1, npoints |
| 1049 |
|
|
!compute minimum brightness temperature and optical depth |
| 1050 |
|
✗ |
btcmin(j) = 1./(exp(1307.27/(attrop(j)-5.))-1.) |
| 1051 |
|
|
END DO |
| 1052 |
|
✗ |
DO ibox = 1, ncol |
| 1053 |
|
✗ |
DO j = 1, npoints |
| 1054 |
|
|
transmax(j) = (fluxtop(j,ibox)-btcmin(j))/(fluxtop_clrsky(j)-btcmin(j & |
| 1055 |
|
✗ |
)) |
| 1056 |
|
|
!note that the initial setting of tauir(j) is needed so that |
| 1057 |
|
|
!tauir(j) has a realistic value should the next if block be |
| 1058 |
|
|
!bypassed |
| 1059 |
|
✗ |
tauir(j) = tau(j, ibox)*rec2p13 |
| 1060 |
|
✗ |
taumin(j) = -1.*log(max(min(transmax(j),0.9999999),0.001)) |
| 1061 |
|
|
|
| 1062 |
|
|
END DO |
| 1063 |
|
|
|
| 1064 |
|
✗ |
IF (top_height==1) THEN |
| 1065 |
|
✗ |
DO j = 1, npoints |
| 1066 |
|
✗ |
IF (transmax(j)>0.001 .AND. transmax(j)<=0.9999999) THEN |
| 1067 |
|
✗ |
fluxtopinit(j) = fluxtop(j, ibox) |
| 1068 |
|
✗ |
tauir(j) = tau(j, ibox)*rec2p13 |
| 1069 |
|
|
END IF |
| 1070 |
|
|
END DO |
| 1071 |
|
✗ |
DO icycle = 1, 2 |
| 1072 |
|
✗ |
DO j = 1, npoints |
| 1073 |
|
✗ |
IF (tau(j,ibox)>(tauchk)) THEN |
| 1074 |
|
✗ |
IF (transmax(j)>0.001 .AND. transmax(j)<=0.9999999) THEN |
| 1075 |
|
✗ |
emcld(j, ibox) = 1. - exp(-1.*tauir(j)) |
| 1076 |
|
|
fluxtop(j, ibox) = fluxtopinit(j) - ((1.-emcld(j, & |
| 1077 |
|
✗ |
ibox))*fluxtop_clrsky(j)) |
| 1078 |
|
|
fluxtop(j, ibox) = max(1.E-06, (fluxtop(j,ibox)/emcld(j, & |
| 1079 |
|
✗ |
ibox))) |
| 1080 |
|
✗ |
tb(j, ibox) = 1307.27/(log(1.+(1./fluxtop(j,ibox)))) |
| 1081 |
|
✗ |
IF (tb(j,ibox)>260.) THEN |
| 1082 |
|
✗ |
tauir(j) = tau(j, ibox)/2.56 |
| 1083 |
|
|
END IF |
| 1084 |
|
|
END IF |
| 1085 |
|
|
END IF |
| 1086 |
|
|
END DO |
| 1087 |
|
|
END DO |
| 1088 |
|
|
|
| 1089 |
|
|
END IF |
| 1090 |
|
|
|
| 1091 |
|
✗ |
DO j = 1, npoints |
| 1092 |
|
✗ |
IF (tau(j,ibox)>(tauchk)) THEN |
| 1093 |
|
|
!cloudy box |
| 1094 |
|
✗ |
tb(j, ibox) = 1307.27/(log(1.+(1./fluxtop(j,ibox)))) |
| 1095 |
|
✗ |
IF (top_height==1 .AND. tauir(j)<taumin(j)) THEN |
| 1096 |
|
✗ |
tb(j, ibox) = attrop(j) - 5. |
| 1097 |
|
✗ |
tau(j, ibox) = 2.13*taumin(j) |
| 1098 |
|
|
END IF |
| 1099 |
|
|
ELSE |
| 1100 |
|
|
!clear sky brightness temperature |
| 1101 |
|
✗ |
tb(j, ibox) = 1307.27/(log(1.+(1./fluxtop_clrsky(j)))) |
| 1102 |
|
|
END IF |
| 1103 |
|
|
END DO ! j |
| 1104 |
|
|
END DO ! ibox |
| 1105 |
|
|
|
| 1106 |
|
|
! IM |
| 1107 |
|
|
! if (ncolprint.ne.0) then |
| 1108 |
|
|
|
| 1109 |
|
|
! do j=1,npoints,1000 |
| 1110 |
|
|
! write(6,'(a10)') 'j=' |
| 1111 |
|
|
! write(6,'(8I10)') j |
| 1112 |
|
|
|
| 1113 |
|
|
! write (6,'(a)') 'attrop:' |
| 1114 |
|
|
! write (6,'(8f7.2)') (attrop(j)) |
| 1115 |
|
|
|
| 1116 |
|
|
! write (6,'(a)') 'btcmin:' |
| 1117 |
|
|
! write (6,'(8f7.2)') (btcmin(j)) |
| 1118 |
|
|
|
| 1119 |
|
|
! write (6,'(a)') 'fluxtop_clrsky*100:' |
| 1120 |
|
|
! write (6,'(8f7.2)') |
| 1121 |
|
|
! & (100.*fluxtop_clrsky(j)) |
| 1122 |
|
|
|
| 1123 |
|
|
! write (6,'(a)') '100.*f_adj:' |
| 1124 |
|
|
! write (6,'(8f7.2)') (100.*fluxtop(j,ibox),ibox=1,ncolprint) |
| 1125 |
|
|
|
| 1126 |
|
|
! write (6,'(a)') 'transmax:' |
| 1127 |
|
|
! write (6,'(8f7.2)') (transmax(ibox),ibox=1,ncolprint) |
| 1128 |
|
|
|
| 1129 |
|
|
! write (6,'(a)') 'tau:' |
| 1130 |
|
|
! write (6,'(8f7.2)') (tau(j,ibox),ibox=1,ncolprint) |
| 1131 |
|
|
|
| 1132 |
|
|
! write (6,'(a)') 'emcld:' |
| 1133 |
|
|
! write (6,'(8f7.2)') (emcld(j,ibox),ibox=1,ncolprint) |
| 1134 |
|
|
|
| 1135 |
|
|
! write (6,'(a)') 'total_trans:' |
| 1136 |
|
|
! write (6,'(8f7.2)') |
| 1137 |
|
|
! & (trans_layers_above(j,ibox),ibox=1,ncolprint) |
| 1138 |
|
|
|
| 1139 |
|
|
! write (6,'(a)') 'total_emiss:' |
| 1140 |
|
|
! write (6,'(8f7.2)') |
| 1141 |
|
|
! & (1.0-trans_layers_above(j,ibox),ibox=1,ncolprint) |
| 1142 |
|
|
|
| 1143 |
|
|
! write (6,'(a)') 'total_trans:' |
| 1144 |
|
|
! write (6,'(8f7.2)') |
| 1145 |
|
|
! & (trans_layers_above(j,ibox),ibox=1,ncolprint) |
| 1146 |
|
|
|
| 1147 |
|
|
! write (6,'(a)') 'ppout:' |
| 1148 |
|
|
! write (6,'(8f7.2)') (tb(j,ibox),ibox=1,ncolprint) |
| 1149 |
|
|
! enddo ! j |
| 1150 |
|
|
! endif |
| 1151 |
|
|
|
| 1152 |
|
|
END IF |
| 1153 |
|
|
|
| 1154 |
|
|
! ---------------------------------------------------! |
| 1155 |
|
|
|
| 1156 |
|
|
|
| 1157 |
|
|
! ---------------------------------------------------! |
| 1158 |
|
|
! DETERMINE CLOUD TOP PRESSURE |
| 1159 |
|
|
|
| 1160 |
|
|
! again the 2 methods differ according to whether |
| 1161 |
|
|
! or not you use the physical cloud top pressure (top_height = 2) |
| 1162 |
|
|
! or the radiatively determined cloud top pressure (top_height = 1 or 3) |
| 1163 |
|
|
|
| 1164 |
|
|
|
| 1165 |
|
|
!compute cloud top pressure |
| 1166 |
|
✗ |
DO ibox = 1, ncol |
| 1167 |
|
|
!segregate according to optical thickness |
| 1168 |
|
✗ |
IF (top_height==1 .OR. top_height==3) THEN |
| 1169 |
|
|
!find level whose temperature |
| 1170 |
|
|
!most closely matches brightness temperature |
| 1171 |
|
✗ |
DO j = 1, npoints |
| 1172 |
|
✗ |
nmatch(j) = 0 |
| 1173 |
|
|
END DO |
| 1174 |
|
✗ |
DO ilev = 1, nlev - 1 |
| 1175 |
|
|
! cdir nodep |
| 1176 |
|
✗ |
DO j = 1, npoints |
| 1177 |
|
|
IF ((at(j,ilev)>=tb(j,ibox) .AND. at(j,ilev+1)<tb(j, & |
| 1178 |
|
✗ |
ibox)) .OR. (at(j,ilev)<=tb(j,ibox) .AND. at(j,ilev+1)>tb(j, & |
| 1179 |
|
✗ |
ibox))) THEN |
| 1180 |
|
|
|
| 1181 |
|
✗ |
nmatch(j) = nmatch(j) + 1 |
| 1182 |
|
✗ |
IF (abs(at(j,ilev)-tb(j,ibox))<abs(at(j,ilev+1)-tb(j,ibox))) THEN |
| 1183 |
|
✗ |
match(j, nmatch(j)) = ilev |
| 1184 |
|
|
ELSE |
| 1185 |
|
✗ |
match(j, nmatch(j)) = ilev + 1 |
| 1186 |
|
|
END IF |
| 1187 |
|
|
END IF |
| 1188 |
|
|
END DO |
| 1189 |
|
|
END DO |
| 1190 |
|
|
|
| 1191 |
|
✗ |
DO j = 1, npoints |
| 1192 |
|
✗ |
IF (nmatch(j)>=1) THEN |
| 1193 |
|
✗ |
ptop(j, ibox) = pfull(j, match(j,nmatch(j))) |
| 1194 |
|
✗ |
levmatch(j, ibox) = match(j, nmatch(j)) |
| 1195 |
|
|
ELSE |
| 1196 |
|
✗ |
IF (tb(j,ibox)<atmin(j)) THEN |
| 1197 |
|
✗ |
ptop(j, ibox) = ptrop(j) |
| 1198 |
|
✗ |
levmatch(j, ibox) = itrop(j) |
| 1199 |
|
|
END IF |
| 1200 |
|
✗ |
IF (tb(j,ibox)>atmax(j)) THEN |
| 1201 |
|
✗ |
ptop(j, ibox) = pfull(j, nlev) |
| 1202 |
|
✗ |
levmatch(j, ibox) = nlev |
| 1203 |
|
|
END IF |
| 1204 |
|
|
END IF |
| 1205 |
|
|
END DO ! j |
| 1206 |
|
|
|
| 1207 |
|
|
ELSE ! if (top_height .eq. 1 .or. top_height .eq. 3) |
| 1208 |
|
|
|
| 1209 |
|
✗ |
DO j = 1, npoints |
| 1210 |
|
✗ |
ptop(j, ibox) = 0. |
| 1211 |
|
|
END DO |
| 1212 |
|
✗ |
DO ilev = 1, nlev |
| 1213 |
|
✗ |
DO j = 1, npoints |
| 1214 |
|
|
IF ((ptop(j,ibox)==0.) & ! IM & |
| 1215 |
|
|
! .and.(frac_out(j,ibox,ilev) .ne. 0)) |
| 1216 |
|
|
! then |
| 1217 |
|
✗ |
.AND. (frac_out(j,ibox,ilev)/=0.0)) THEN |
| 1218 |
|
✗ |
ptop(j, ibox) = pfull(j, ilev) |
| 1219 |
|
✗ |
levmatch(j, ibox) = ilev |
| 1220 |
|
|
END IF |
| 1221 |
|
|
END DO |
| 1222 |
|
|
END DO |
| 1223 |
|
|
END IF |
| 1224 |
|
|
|
| 1225 |
|
✗ |
DO j = 1, npoints |
| 1226 |
|
✗ |
IF (tau(j,ibox)<=(tauchk)) THEN |
| 1227 |
|
✗ |
ptop(j, ibox) = 0. |
| 1228 |
|
✗ |
levmatch(j, ibox) = 0 |
| 1229 |
|
|
END IF |
| 1230 |
|
|
END DO |
| 1231 |
|
|
|
| 1232 |
|
|
END DO |
| 1233 |
|
|
|
| 1234 |
|
|
|
| 1235 |
|
|
|
| 1236 |
|
|
! ---------------------------------------------------! |
| 1237 |
|
|
|
| 1238 |
|
|
|
| 1239 |
|
|
|
| 1240 |
|
|
! ---------------------------------------------------! |
| 1241 |
|
|
! DETERMINE ISCCP CLOUD TYPE FREQUENCIES |
| 1242 |
|
|
|
| 1243 |
|
|
! Now that ptop and tau have been determined, |
| 1244 |
|
|
! determine amount of each of the 49 ISCCP cloud |
| 1245 |
|
|
! types |
| 1246 |
|
|
|
| 1247 |
|
|
! Also compute grid box mean cloud top pressure and |
| 1248 |
|
|
! optical thickness. The mean cloud top pressure and |
| 1249 |
|
|
! optical thickness are averages over the cloudy |
| 1250 |
|
|
! area only. The mean cloud top pressure is a linear |
| 1251 |
|
|
! average of the cloud top pressures. The mean cloud |
| 1252 |
|
|
! optical thickness is computed by converting optical |
| 1253 |
|
|
! thickness to an albedo, averaging in albedo units, |
| 1254 |
|
|
! then converting the average albedo back to a mean |
| 1255 |
|
|
! optical thickness. |
| 1256 |
|
|
|
| 1257 |
|
|
|
| 1258 |
|
|
!compute isccp frequencies |
| 1259 |
|
|
|
| 1260 |
|
|
!reset frequencies |
| 1261 |
|
✗ |
DO ilev = 1, 7 |
| 1262 |
|
✗ |
DO ilev2 = 1, 7 |
| 1263 |
|
✗ |
DO j = 1, npoints ! |
| 1264 |
|
✗ |
fq_isccp(j, ilev, ilev2) = 0. |
| 1265 |
|
|
END DO |
| 1266 |
|
|
END DO |
| 1267 |
|
|
END DO |
| 1268 |
|
|
|
| 1269 |
|
|
!reset variables need for averaging cloud properties |
| 1270 |
|
✗ |
DO j = 1, npoints |
| 1271 |
|
✗ |
totalcldarea(j) = 0. |
| 1272 |
|
✗ |
meanalbedocld(j) = 0. |
| 1273 |
|
✗ |
meanptop(j) = 0. |
| 1274 |
|
✗ |
meantaucld(j) = 0. |
| 1275 |
|
|
END DO ! j |
| 1276 |
|
|
|
| 1277 |
|
✗ |
boxarea = 1./real(ncol) |
| 1278 |
|
|
|
| 1279 |
|
|
!determine optical depth category |
| 1280 |
|
|
! IM do 39 j=1,npoints |
| 1281 |
|
|
! IM do ibox=1,ncol |
| 1282 |
|
✗ |
DO ibox = 1, ncol |
| 1283 |
|
✗ |
DO j = 1, npoints |
| 1284 |
|
|
|
| 1285 |
|
|
! IM |
| 1286 |
|
|
! CALL CPU_time(t1) |
| 1287 |
|
|
! IM |
| 1288 |
|
|
|
| 1289 |
|
✗ |
IF (tau(j,ibox)>(tauchk) .AND. ptop(j,ibox)>0.) THEN |
| 1290 |
|
✗ |
box_cloudy(j, ibox) = .TRUE. |
| 1291 |
|
|
END IF |
| 1292 |
|
|
|
| 1293 |
|
|
! IM |
| 1294 |
|
|
! CALL CPU_time(t2) |
| 1295 |
|
|
! print*,'IF tau t2 - t1',t2 - t1 |
| 1296 |
|
|
|
| 1297 |
|
|
! CALL CPU_time(t1) |
| 1298 |
|
|
! IM |
| 1299 |
|
|
|
| 1300 |
|
✗ |
IF (box_cloudy(j,ibox)) THEN |
| 1301 |
|
|
|
| 1302 |
|
|
! totalcldarea always diagnosed day or night |
| 1303 |
|
✗ |
totalcldarea(j) = totalcldarea(j) + boxarea |
| 1304 |
|
|
|
| 1305 |
|
✗ |
IF (sunlit(j)==1) THEN |
| 1306 |
|
|
|
| 1307 |
|
|
! tau diagnostics only with sunlight |
| 1308 |
|
|
|
| 1309 |
|
✗ |
boxtau(j, ibox) = tau(j, ibox) |
| 1310 |
|
|
|
| 1311 |
|
|
!convert optical thickness to albedo |
| 1312 |
|
|
albedocld(j, ibox) = real(invtau(min(nint(100.*tau(j,ibox)), & |
| 1313 |
|
✗ |
45000))) |
| 1314 |
|
|
|
| 1315 |
|
|
!contribute to averaging |
| 1316 |
|
✗ |
meanalbedocld(j) = meanalbedocld(j) + albedocld(j, ibox)*boxarea |
| 1317 |
|
|
|
| 1318 |
|
|
END IF |
| 1319 |
|
|
|
| 1320 |
|
|
END IF |
| 1321 |
|
|
|
| 1322 |
|
|
! IM |
| 1323 |
|
|
! CALL CPU_time(t2) |
| 1324 |
|
|
! print*,'IF box_cloudy t2 - t1',t2 - t1 |
| 1325 |
|
|
|
| 1326 |
|
|
! CALL CPU_time(t1) |
| 1327 |
|
|
! IM BEG |
| 1328 |
|
|
! IM !convert ptop to millibars |
| 1329 |
|
✗ |
ptop(j, ibox) = ptop(j, ibox)/100. |
| 1330 |
|
|
|
| 1331 |
|
|
! IM !save for output cloud top pressure and optical |
| 1332 |
|
|
! thickness |
| 1333 |
|
✗ |
boxptop(j, ibox) = ptop(j, ibox) |
| 1334 |
|
|
! IM END |
| 1335 |
|
|
|
| 1336 |
|
|
! IM BEG |
| 1337 |
|
|
!reset itau(j), ipres(j) |
| 1338 |
|
✗ |
itau(j) = 0 |
| 1339 |
|
✗ |
ipres(j) = 0 |
| 1340 |
|
|
|
| 1341 |
|
✗ |
IF (tau(j,ibox)<isccp_taumin) THEN |
| 1342 |
|
✗ |
itau(j) = 1 |
| 1343 |
|
✗ |
ELSE IF (tau(j,ibox)>=isccp_taumin .AND. tau(j,ibox)<1.3) THEN |
| 1344 |
|
✗ |
itau(j) = 2 |
| 1345 |
|
✗ |
ELSE IF (tau(j,ibox)>=1.3 .AND. tau(j,ibox)<3.6) THEN |
| 1346 |
|
✗ |
itau(j) = 3 |
| 1347 |
|
✗ |
ELSE IF (tau(j,ibox)>=3.6 .AND. tau(j,ibox)<9.4) THEN |
| 1348 |
|
✗ |
itau(j) = 4 |
| 1349 |
|
✗ |
ELSE IF (tau(j,ibox)>=9.4 .AND. tau(j,ibox)<23.) THEN |
| 1350 |
|
✗ |
itau(j) = 5 |
| 1351 |
|
✗ |
ELSE IF (tau(j,ibox)>=23. .AND. tau(j,ibox)<60.) THEN |
| 1352 |
|
✗ |
itau(j) = 6 |
| 1353 |
|
✗ |
ELSE IF (tau(j,ibox)>=60.) THEN |
| 1354 |
|
✗ |
itau(j) = 7 |
| 1355 |
|
|
END IF |
| 1356 |
|
|
|
| 1357 |
|
|
!determine cloud top pressure category |
| 1358 |
|
✗ |
IF (ptop(j,ibox)>0. .AND. ptop(j,ibox)<180.) THEN |
| 1359 |
|
✗ |
ipres(j) = 1 |
| 1360 |
|
✗ |
ELSE IF (ptop(j,ibox)>=180. .AND. ptop(j,ibox)<310.) THEN |
| 1361 |
|
✗ |
ipres(j) = 2 |
| 1362 |
|
✗ |
ELSE IF (ptop(j,ibox)>=310. .AND. ptop(j,ibox)<440.) THEN |
| 1363 |
|
✗ |
ipres(j) = 3 |
| 1364 |
|
✗ |
ELSE IF (ptop(j,ibox)>=440. .AND. ptop(j,ibox)<560.) THEN |
| 1365 |
|
✗ |
ipres(j) = 4 |
| 1366 |
|
✗ |
ELSE IF (ptop(j,ibox)>=560. .AND. ptop(j,ibox)<680.) THEN |
| 1367 |
|
✗ |
ipres(j) = 5 |
| 1368 |
|
✗ |
ELSE IF (ptop(j,ibox)>=680. .AND. ptop(j,ibox)<800.) THEN |
| 1369 |
|
✗ |
ipres(j) = 6 |
| 1370 |
|
✗ |
ELSE IF (ptop(j,ibox)>=800.) THEN |
| 1371 |
|
✗ |
ipres(j) = 7 |
| 1372 |
|
|
END IF |
| 1373 |
|
|
! IM END |
| 1374 |
|
|
|
| 1375 |
|
✗ |
IF (sunlit(j)==1 .OR. top_height==3) THEN |
| 1376 |
|
|
|
| 1377 |
|
|
! IM !convert ptop to millibars |
| 1378 |
|
|
! IM ptop(j,ibox)=ptop(j,ibox) / 100. |
| 1379 |
|
|
|
| 1380 |
|
|
! IM !save for output cloud top pressure and optical |
| 1381 |
|
|
! thickness |
| 1382 |
|
|
! IM boxptop(j,ibox) = ptop(j,ibox) |
| 1383 |
|
|
|
| 1384 |
|
✗ |
IF (box_cloudy(j,ibox)) THEN |
| 1385 |
|
|
|
| 1386 |
|
✗ |
meanptop(j) = meanptop(j) + ptop(j, ibox)*boxarea |
| 1387 |
|
|
|
| 1388 |
|
|
! IM !reset itau(j), ipres(j) |
| 1389 |
|
|
! IM itau(j) = 0 |
| 1390 |
|
|
! IM ipres(j) = 0 |
| 1391 |
|
|
|
| 1392 |
|
|
! if (tau(j,ibox) .lt. isccp_taumin) then |
| 1393 |
|
|
! itau(j)=1 |
| 1394 |
|
|
! else if (tau(j,ibox) .ge. isccp_taumin |
| 1395 |
|
|
! & |
| 1396 |
|
|
! & .and. tau(j,ibox) .lt. 1.3) then |
| 1397 |
|
|
! itau(j)=2 |
| 1398 |
|
|
! else if (tau(j,ibox) .ge. 1.3 |
| 1399 |
|
|
! & .and. tau(j,ibox) .lt. 3.6) then |
| 1400 |
|
|
! itau(j)=3 |
| 1401 |
|
|
! else if (tau(j,ibox) .ge. 3.6 |
| 1402 |
|
|
! & .and. tau(j,ibox) .lt. 9.4) then |
| 1403 |
|
|
! itau(j)=4 |
| 1404 |
|
|
! else if (tau(j,ibox) .ge. 9.4 |
| 1405 |
|
|
! & .and. tau(j,ibox) .lt. 23.) then |
| 1406 |
|
|
! itau(j)=5 |
| 1407 |
|
|
! else if (tau(j,ibox) .ge. 23. |
| 1408 |
|
|
! & .and. tau(j,ibox) .lt. 60.) then |
| 1409 |
|
|
! itau(j)=6 |
| 1410 |
|
|
! else if (tau(j,ibox) .ge. 60.) then |
| 1411 |
|
|
! itau(j)=7 |
| 1412 |
|
|
! end if |
| 1413 |
|
|
|
| 1414 |
|
|
! !determine cloud top pressure category |
| 1415 |
|
|
! if ( ptop(j,ibox) .gt. 0. |
| 1416 |
|
|
! & .and.ptop(j,ibox) .lt. 180.) then |
| 1417 |
|
|
! ipres(j)=1 |
| 1418 |
|
|
! else if(ptop(j,ibox) .ge. 180. |
| 1419 |
|
|
! & .and.ptop(j,ibox) .lt. 310.) then |
| 1420 |
|
|
! ipres(j)=2 |
| 1421 |
|
|
! else if(ptop(j,ibox) .ge. 310. |
| 1422 |
|
|
! & .and.ptop(j,ibox) .lt. 440.) then |
| 1423 |
|
|
! ipres(j)=3 |
| 1424 |
|
|
! else if(ptop(j,ibox) .ge. 440. |
| 1425 |
|
|
! & .and.ptop(j,ibox) .lt. 560.) then |
| 1426 |
|
|
! ipres(j)=4 |
| 1427 |
|
|
! else if(ptop(j,ibox) .ge. 560. |
| 1428 |
|
|
! & .and.ptop(j,ibox) .lt. 680.) then |
| 1429 |
|
|
! ipres(j)=5 |
| 1430 |
|
|
! else if(ptop(j,ibox) .ge. 680. |
| 1431 |
|
|
! & .and.ptop(j,ibox) .lt. 800.) then |
| 1432 |
|
|
! ipres(j)=6 |
| 1433 |
|
|
! else if(ptop(j,ibox) .ge. 800.) then |
| 1434 |
|
|
! ipres(j)=7 |
| 1435 |
|
|
! end if |
| 1436 |
|
|
|
| 1437 |
|
|
!update frequencies |
| 1438 |
|
✗ |
IF (ipres(j)>0 .AND. itau(j)>0) THEN |
| 1439 |
|
|
fq_isccp(j, itau(j), ipres(j)) = fq_isccp(j, itau(j), ipres(j)) + & |
| 1440 |
|
✗ |
boxarea |
| 1441 |
|
|
END IF |
| 1442 |
|
|
|
| 1443 |
|
|
! IM calcul stats regime dynamique BEG |
| 1444 |
|
|
! iw(j) = int((w(j)-wmin)/pas_w) +1 |
| 1445 |
|
|
! pctj(itau(j),ipres(j),iw(j))=.FALSE. |
| 1446 |
|
|
! !update frequencies W500 |
| 1447 |
|
|
! if (pct_ocean(j)) then |
| 1448 |
|
|
! if (ipres(j) .gt. 0.and.itau(j) .gt. 0) then |
| 1449 |
|
|
! if (iw(j) .gt. int(wmin).and.iw(j) .le. iwmx) then |
| 1450 |
|
|
! print*,' ISCCP iw=',iw(j),j |
| 1451 |
|
|
! fq_dynreg(itau(j),ipres(j),iw(j))= |
| 1452 |
|
|
! & fq_dynreg(itau(j),ipres(j),iw(j))+ |
| 1453 |
|
|
! & boxarea |
| 1454 |
|
|
! & fq_isccp(j,itau(j),ipres(j)) |
| 1455 |
|
|
! pctj(itau(j),ipres(j),iw(j))=.TRUE. |
| 1456 |
|
|
! nfq_dynreg(itau(j),ipres(j),iw(j))= |
| 1457 |
|
|
! & nfq_dynreg(itau(j),ipres(j),iw(j))+1. |
| 1458 |
|
|
! end if |
| 1459 |
|
|
! end if |
| 1460 |
|
|
! end if |
| 1461 |
|
|
! IM calcul stats regime dynamique END |
| 1462 |
|
|
END IF !IM boxcloudy |
| 1463 |
|
|
|
| 1464 |
|
|
END IF !IM sunlit |
| 1465 |
|
|
|
| 1466 |
|
|
! IM |
| 1467 |
|
|
! CALL CPU_time(t2) |
| 1468 |
|
|
! print*,'IF sunlit boxcloudy t2 - t1',t2 - t1 |
| 1469 |
|
|
! IM |
| 1470 |
|
|
END DO !IM ibox/j |
| 1471 |
|
|
|
| 1472 |
|
|
|
| 1473 |
|
|
! IM ajout stats s/ W500 BEG |
| 1474 |
|
|
! IM ajout stats s/ W500 END |
| 1475 |
|
|
|
| 1476 |
|
|
! if(j.EQ.6722) then |
| 1477 |
|
|
! print*,' ISCCP',w(j),iw(j),ipres(j),itau(j) |
| 1478 |
|
|
! endif |
| 1479 |
|
|
|
| 1480 |
|
|
! if (pct_ocean(j)) then |
| 1481 |
|
|
! if (ipres(j) .gt. 0.and.itau(j) .gt. 0) then |
| 1482 |
|
|
! if (iw(j) .gt. int(wmin).and.iw(j) .le. iwmx) then |
| 1483 |
|
|
! if(pctj(itau(j),ipres(j),iw(j))) THEN |
| 1484 |
|
|
! nfq_dynreg(itau(j),ipres(j),iw(j))= |
| 1485 |
|
|
! & nfq_dynreg(itau(j),ipres(j),iw(j))+1. |
| 1486 |
|
|
! if(itau(j).EQ.4.AND.ipres(j).EQ.2.AND. |
| 1487 |
|
|
! & iw(j).EQ.10) then |
| 1488 |
|
|
! PRINT*,' isccp AVANT', |
| 1489 |
|
|
! & nfq_dynreg(itau(j),ipres(j),iw(j)), |
| 1490 |
|
|
! & fq_dynreg(itau(j),ipres(j),iw(j)) |
| 1491 |
|
|
! endif |
| 1492 |
|
|
! endif |
| 1493 |
|
|
! endif |
| 1494 |
|
|
! endif |
| 1495 |
|
|
! endif |
| 1496 |
|
|
|
| 1497 |
|
|
END DO |
| 1498 |
|
|
!compute mean cloud properties |
| 1499 |
|
|
! IM j/ibox |
| 1500 |
|
✗ |
DO j = 1, npoints |
| 1501 |
|
✗ |
IF (totalcldarea(j)>0.) THEN |
| 1502 |
|
✗ |
meanptop(j) = meanptop(j)/totalcldarea(j) |
| 1503 |
|
✗ |
IF (sunlit(j)==1) THEN |
| 1504 |
|
✗ |
meanalbedocld(j) = meanalbedocld(j)/totalcldarea(j) |
| 1505 |
|
✗ |
meantaucld(j) = tautab(min(255,max(1,nint(meanalbedocld(j))))) |
| 1506 |
|
|
END IF |
| 1507 |
|
|
END IF |
| 1508 |
|
|
END DO ! j |
| 1509 |
|
|
|
| 1510 |
|
|
! IM ajout stats s/ W500 BEG |
| 1511 |
|
|
! do nw = 1, iwmx |
| 1512 |
|
|
! do l = 1, 7 |
| 1513 |
|
|
! do k = 1, 7 |
| 1514 |
|
|
! if (nfq_dynreg(k,l,nw).GT.0.) then |
| 1515 |
|
|
! fq_dynreg(k,l,nw) = fq_dynreg(k,l,nw)/nfq_dynreg(k,l,nw) |
| 1516 |
|
|
! if(k.EQ.4.AND.l.EQ.2.AND.nw.EQ.10) then |
| 1517 |
|
|
! print*,' isccp APRES',nfq_dynreg(k,l,nw), |
| 1518 |
|
|
! & fq_dynreg(k,l,nw) |
| 1519 |
|
|
! endif |
| 1520 |
|
|
! else |
| 1521 |
|
|
! if(fq_dynreg(k,l,nw).NE.0.) then |
| 1522 |
|
|
! print*,'nfq_dynreg = 0 tau,pc,nw',k,l,nw,fq_dynreg(k,l,nw) |
| 1523 |
|
|
! endif |
| 1524 |
|
|
! fq_dynreg(k,l,nw) = -1.E+20 |
| 1525 |
|
|
! nfq_dynreg(k,l,nw) = 1.E+20 |
| 1526 |
|
|
! end if |
| 1527 |
|
|
! enddo !k |
| 1528 |
|
|
! enddo !l |
| 1529 |
|
|
! enddo !nw |
| 1530 |
|
|
! IM ajout stats s/ W500 END |
| 1531 |
|
|
! ---------------------------------------------------! |
| 1532 |
|
|
|
| 1533 |
|
|
! ---------------------------------------------------! |
| 1534 |
|
|
! OPTIONAL PRINTOUT OF DATA TO CHECK PROGRAM |
| 1535 |
|
|
|
| 1536 |
|
|
! cIM |
| 1537 |
|
|
! if (debugcol.ne.0) then |
| 1538 |
|
|
|
| 1539 |
|
|
! do j=1,npoints,debugcol |
| 1540 |
|
|
|
| 1541 |
|
|
! !produce character output |
| 1542 |
|
|
! do ilev=1,nlev |
| 1543 |
|
|
! do ibox=1,ncol |
| 1544 |
|
|
! acc(ilev,ibox)=0 |
| 1545 |
|
|
! enddo |
| 1546 |
|
|
! enddo |
| 1547 |
|
|
|
| 1548 |
|
|
! do ilev=1,nlev |
| 1549 |
|
|
! do ibox=1,ncol |
| 1550 |
|
|
! acc(ilev,ibox)=frac_out(j,ibox,ilev)*2 |
| 1551 |
|
|
! if (levmatch(j,ibox) .eq. ilev) |
| 1552 |
|
|
! & acc(ilev,ibox)=acc(ilev,ibox)+1 |
| 1553 |
|
|
! enddo |
| 1554 |
|
|
! enddo |
| 1555 |
|
|
|
| 1556 |
|
|
!print test |
| 1557 |
|
|
|
| 1558 |
|
|
! write(ftn09,11) j |
| 1559 |
|
|
! 11 format('ftn09.',i4.4) |
| 1560 |
|
|
! open(9, FILE=ftn09, FORM='FORMATTED') |
| 1561 |
|
|
|
| 1562 |
|
|
! write(9,'(a1)') ' ' |
| 1563 |
|
|
! write(9,'(10i5)') |
| 1564 |
|
|
! & (ilev,ilev=5,nlev,5) |
| 1565 |
|
|
! write(9,'(a1)') ' ' |
| 1566 |
|
|
|
| 1567 |
|
|
! do ibox=1,ncol |
| 1568 |
|
|
! write(9,'(40(a1),1x,40(a1))') |
| 1569 |
|
|
! & (cchar_realtops(acc(ilev,ibox)+1),ilev=1,nlev) |
| 1570 |
|
|
! & ,(cchar(acc(ilev,ibox)+1),ilev=1,nlev) |
| 1571 |
|
|
! end do |
| 1572 |
|
|
! close(9) |
| 1573 |
|
|
|
| 1574 |
|
|
! IM |
| 1575 |
|
|
! if (ncolprint.ne.0) then |
| 1576 |
|
|
! write(6,'(a1)') ' ' |
| 1577 |
|
|
! write(6,'(a2,1X,5(a7,1X),a50)') |
| 1578 |
|
|
! & 'ilev', |
| 1579 |
|
|
! & 'pfull','at', |
| 1580 |
|
|
! & 'cc*100','dem_s','dtau_s', |
| 1581 |
|
|
! & 'cchar' |
| 1582 |
|
|
|
| 1583 |
|
|
! do 4012 ilev=1,nlev |
| 1584 |
|
|
! write(6,'(60i2)') (box(i,ilev),i=1,ncolprint) |
| 1585 |
|
|
! write(6,'(i2,1X,5(f7.2,1X),50(a1))') |
| 1586 |
|
|
! & ilev, |
| 1587 |
|
|
! & pfull(j,ilev)/100.,at(j,ilev), |
| 1588 |
|
|
! & cc(j,ilev)*100.0,dem_s(j,ilev),dtau_s(j,ilev) |
| 1589 |
|
|
! & ,(cchar(acc(ilev,ibox)+1),ibox=1,ncolprint) |
| 1590 |
|
|
! 4012 continue |
| 1591 |
|
|
! write (6,'(a)') 'skt(j):' |
| 1592 |
|
|
! write (6,'(8f7.2)') skt(j) |
| 1593 |
|
|
|
| 1594 |
|
|
! write (6,'(8I7)') (ibox,ibox=1,ncolprint) |
| 1595 |
|
|
|
| 1596 |
|
|
! write (6,'(a)') 'tau:' |
| 1597 |
|
|
! write (6,'(8f7.2)') (tau(j,ibox),ibox=1,ncolprint) |
| 1598 |
|
|
|
| 1599 |
|
|
! write (6,'(a)') 'tb:' |
| 1600 |
|
|
! write (6,'(8f7.2)') (tb(j,ibox),ibox=1,ncolprint) |
| 1601 |
|
|
|
| 1602 |
|
|
! write (6,'(a)') 'ptop:' |
| 1603 |
|
|
! write (6,'(8f7.2)') (ptop(j,ibox),ibox=1,ncolprint) |
| 1604 |
|
|
! endif |
| 1605 |
|
|
|
| 1606 |
|
|
! enddo |
| 1607 |
|
|
|
| 1608 |
|
|
! end if |
| 1609 |
|
|
|
| 1610 |
|
✗ |
RETURN |
| 1611 |
|
|
END SUBROUTINE isccp_cloud_types |
| 1612 |
|
|
|