| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Header$ |
| 3 |
|
|
! |
| 4 |
|
✗ |
SUBROUTINE limx(s0,sx,sm,pente_max) |
| 5 |
|
|
c |
| 6 |
|
|
c Auteurs: P.Le Van, F.Hourdin, F.Forget |
| 7 |
|
|
c |
| 8 |
|
|
c ******************************************************************** |
| 9 |
|
|
c Shema d'advection " pseudo amont " . |
| 10 |
|
|
c ******************************************************************** |
| 11 |
|
|
c nq,iq,q,pbaru,pbarv,w sont des arguments d'entree pour le s-pg .... |
| 12 |
|
|
c |
| 13 |
|
|
c |
| 14 |
|
|
c -------------------------------------------------------------------- |
| 15 |
|
|
IMPLICIT NONE |
| 16 |
|
|
c |
| 17 |
|
|
include "dimensions.h" |
| 18 |
|
|
include "paramet.h" |
| 19 |
|
|
include "comgeom.h" |
| 20 |
|
|
c |
| 21 |
|
|
c |
| 22 |
|
|
c Arguments: |
| 23 |
|
|
c ---------- |
| 24 |
|
|
real pente_max |
| 25 |
|
|
REAL s0(ip1jmp1,llm),sm(ip1jmp1,llm) |
| 26 |
|
|
real sx(ip1jmp1,llm) |
| 27 |
|
|
c |
| 28 |
|
|
c Local |
| 29 |
|
|
c --------- |
| 30 |
|
|
c |
| 31 |
|
|
INTEGER ij,l,j,i,iju,ijq,indu(ip1jmp1),niju |
| 32 |
|
|
integer n0,iadvplus(ip1jmp1,llm),nl(llm) |
| 33 |
|
|
c |
| 34 |
|
|
REAL q(ip1jmp1,llm) |
| 35 |
|
|
real dxq(ip1jmp1,llm) |
| 36 |
|
|
|
| 37 |
|
|
|
| 38 |
|
|
REAL new_m,zm |
| 39 |
|
|
real dxqu(ip1jmp1) |
| 40 |
|
|
real adxqu(ip1jmp1),dxqmax(ip1jmp1) |
| 41 |
|
|
|
| 42 |
|
|
Logical extremum,first |
| 43 |
|
|
save first |
| 44 |
|
|
|
| 45 |
|
|
REAL SSUM,CVMGP,CVMGT |
| 46 |
|
|
integer ismax,ismin |
| 47 |
|
|
EXTERNAL SSUM, ismin,ismax |
| 48 |
|
|
|
| 49 |
|
|
data first/.true./ |
| 50 |
|
|
|
| 51 |
|
|
|
| 52 |
|
✗ |
DO l = 1,llm |
| 53 |
|
✗ |
DO ij=1,ip1jmp1 |
| 54 |
|
✗ |
q(ij,l) = s0(ij,l) / sm ( ij,l ) |
| 55 |
|
✗ |
dxq(ij,l) = sx(ij,l) /sm(ij,l) |
| 56 |
|
|
ENDDO |
| 57 |
|
|
ENDDO |
| 58 |
|
|
|
| 59 |
|
|
c calcul de la pente a droite et a gauche de la maille |
| 60 |
|
|
|
| 61 |
|
✗ |
do l = 1, llm |
| 62 |
|
✗ |
do ij=iip2,ip1jm-1 |
| 63 |
|
✗ |
dxqu(ij)=q(ij+1,l)-q(ij,l) |
| 64 |
|
|
enddo |
| 65 |
|
✗ |
do ij=iip1+iip1,ip1jm,iip1 |
| 66 |
|
✗ |
dxqu(ij)=dxqu(ij-iim) |
| 67 |
|
|
enddo |
| 68 |
|
|
|
| 69 |
|
✗ |
do ij=iip2,ip1jm |
| 70 |
|
✗ |
adxqu(ij)=abs(dxqu(ij)) |
| 71 |
|
|
enddo |
| 72 |
|
|
|
| 73 |
|
|
c calcul de la pente maximum dans la maille en valeur absolue |
| 74 |
|
|
|
| 75 |
|
✗ |
do ij=iip2+1,ip1jm |
| 76 |
|
✗ |
dxqmax(ij)=pente_max*min(adxqu(ij-1),adxqu(ij)) |
| 77 |
|
|
enddo |
| 78 |
|
|
|
| 79 |
|
✗ |
do ij=iip1+iip1,ip1jm,iip1 |
| 80 |
|
✗ |
dxqmax(ij-iim)=dxqmax(ij) |
| 81 |
|
|
enddo |
| 82 |
|
|
|
| 83 |
|
|
c calcul de la pente avec limitation |
| 84 |
|
|
|
| 85 |
|
✗ |
do ij=iip2+1,ip1jm |
| 86 |
|
|
if( dxqu(ij-1)*dxqu(ij).gt.0. |
| 87 |
|
✗ |
& .and. dxq(ij,l)*dxqu(ij).gt.0.) then |
| 88 |
|
|
dxq(ij,l)= |
| 89 |
|
✗ |
& sign(min(abs(dxq(ij,l)),dxqmax(ij)),dxq(ij,l)) |
| 90 |
|
|
else |
| 91 |
|
|
c extremum local |
| 92 |
|
✗ |
dxq(ij,l)=0. |
| 93 |
|
|
endif |
| 94 |
|
|
enddo |
| 95 |
|
✗ |
do ij=iip1+iip1,ip1jm,iip1 |
| 96 |
|
✗ |
dxq(ij-iim,l)=dxq(ij,l) |
| 97 |
|
|
enddo |
| 98 |
|
|
|
| 99 |
|
✗ |
DO ij=1,ip1jmp1 |
| 100 |
|
✗ |
sx(ij,l) = dxq(ij,l)*sm(ij,l) |
| 101 |
|
|
ENDDO |
| 102 |
|
|
|
| 103 |
|
|
ENDDO |
| 104 |
|
|
|
| 105 |
|
✗ |
RETURN |
| 106 |
|
|
END |
| 107 |
|
|
|