GCC Code Coverage Report


Directory: ./
File: Ocean_skin/microlayer_m.f90
Date: 2022-01-11 19:19:34
Exec Total Coverage
Lines: 0 12 0.0%
Branches: 0 64 0.0%

Line Branch Exec Source
1 module Microlayer_m
2
3 Implicit none
4
5 contains
6
7 subroutine Microlayer(dter, dser, tkt, tks, hlb, tau, s_subskin, al, &
8 xlv, taur, rf, rain, qcol)
9
10 ! H. Bellenger 2016
11
12 use const, only: beta, cpw, grav, rhow
13 use fv_m, only: fv
14
15 real, intent(out):: dter(:)
16 ! Temperature variation in the diffusive microlayer, that is
17 ! ocean-air interface temperature minus subskin temperature. In K.
18
19 real, intent(out):: dser(:)
20 ! Salinity variation in the diffusive microlayer, that is ocean-air
21 ! interface salinity minus subskin salinity. In ppt.
22
23 real, intent(inout):: tkt(:)
24 ! thickness of cool skin (microlayer), in m
25
26 real, intent(inout):: tks(:)
27 ! thickness of mass diffusion layer (microlayer), in m
28
29 real, intent(in):: hlb(:)
30 ! latent heat flux at the surface, positive upward (W m-2)
31
32 real, intent(in):: tau(:) ! wind stress, turbulent part only, in Pa
33 real, intent(in):: s_subskin(:) ! subskin salinity, in ppt
34 real, intent(in):: al(:) ! water thermal expansion coefficient (in K-1)
35 real, intent(in):: xlv(:) ! latent heat of evaporation (J/kg)
36 real, intent(in):: taur(:) ! momentum flux due to rainfall, in Pa
37
38 real, intent(in):: rf(:)
39 ! sensible heat flux at the surface due to rainfall, in W m-2
40
41 real, intent(in):: rain(:) ! rain mass flux, in kg m-2 s-1
42
43 real, intent(in):: qcol(:)
44 ! net flux at the surface, without sensible heat flux due to rain, in W m-2
45
46 ! Local:
47
48 real, dimension(size(qcol)):: usrk, usrct, usrcs, alq
49 real xlamx(size(qcol)) ! Saunders coefficient
50 real, parameter:: visw = 1e-6
51 real, parameter:: tcw = 0.6 ! thermal conductivity of water
52
53 real, parameter:: mu = 0.0129e-7 ! in m2 / s
54 ! molecular salinity diffusivity, Kraus and Businger, page 47
55
56 real, parameter:: kappa = 1.49e-7 ! thermal diffusivity, in m2 / s
57
58 real, parameter:: afk = 4e-4
59 real, parameter:: bfk = 1.3
60 ! a and b coefficient for the power function fitting the TKE flux
61 ! carried by rain: Fk = a * R**b, derived form the exact solution
62 ! of Soloviev and Lukas 2006 (Schlussel et al 1997, Craeye and
63 ! Schlussel 1998)
64
65 !--------------------------------------------------------------------------
66
67 alq = al * (qcol + rf * (1 - fV(tkt, rain))) - beta * s_subskin * cpw &
68 * (hlb / xlv - rain * (1 - fV(tks, rain)))
69
70 usrk = (afk / rhow)**(1. / 3.) * (rain * 3600.)**(bfk / 3.)
71 ! Equivalent friction velocity due to the TKE input by the penetrating
72 ! raindrops Fk
73
74 ! Friction velocities in the air:
75 usrct = sqrt((tau + (1. - fV(tkt, rain)) * taur) / rhow &
76 + (fV(0., rain) - fV(tkt, rain)) * usrk**2)
77 usrcs = sqrt((tau + (1. - fV(tks, rain)) * taur) / rhow &
78 + (fV(0., rain) - fV(tks, rain)) * usrk**2)
79
80 where (alq > 0.)
81 ! Fairall 1996 982, equation (14):
82 xlamx = 6. * (1. + (16. * grav * cpw * rhow * visw**3 * alq &
83 / (tcw**2 * usrct**4 ))**0.75)**(- 1. / 3.)
84
85 ! Fairall 1996 982, equation (12):
86 tkt = xlamx * visw / usrct
87
88 tks = xlamx * mu * (kappa / mu)**(2. / 3.) &
89 * visw * cpw * rhow / ( tcw * usrcs)
90 ! From Saunders 1967 (4)
91 elsewhere
92 xlamx = 6. ! prevent excessive warm skins
93 tkt = min(.01, xlamx * visw / usrct) ! Limit tkt
94 tks = min(.001, xlamx * mu * (kappa / mu)**(2. / 3.) * visw * cpw &
95 * rhow / (tcw * usrcs))
96 end where
97
98 ! Fairall 1996 982, equation (13):
99 dter = - (qcol + rf * (1 - fV(tkt, rain))) * tkt / tcw
100
101 dser = s_subskin * (hlb / xlv - rain * (1 - fV(tks, rain))) * tks &
102 / (rhow * mu) ! eq. fresh skin
103
104 end subroutine Microlayer
105
106 end module Microlayer_m
107