| Line |
Branch |
Exec |
Source |
| 1 |
|
|
!> |
| 2 |
|
|
!! |
| 3 |
|
|
!! @brief Module MO_SIMPLE_PLUMES: provides anthropogenic aerosol optical properties as a function of lat, lon |
| 4 |
|
|
!! height, time, and wavelength |
| 5 |
|
|
!! |
| 6 |
|
|
!! @remarks |
| 7 |
|
|
!! |
| 8 |
|
|
!! @author Bjorn Stevens, Stephanie Fiedler and Karsten Peters MPI-Met, Hamburg (v1 release 2016-11-10) |
| 9 |
|
|
!! |
| 10 |
|
|
!! @change-log: |
| 11 |
|
|
!! - 2016-12-05: beta release (BS, SF and KP, MPI-Met) |
| 12 |
|
|
!! - 2016-09-28: revised representation of Twomey effect (SF, MPI-Met) |
| 13 |
|
|
!! - 2015-09-28: bug fixes (SF, MPI-Met) |
| 14 |
|
|
!! - 2016-10-12: revised maximum longitudinal extent of European plume (KP, SF, MPI-Met) |
| 15 |
|
|
!! $ID: n/a$ |
| 16 |
|
|
!! |
| 17 |
|
|
!! @par Origin |
| 18 |
|
|
!! Based on code originally developed at the MPI-Met by Karsten Peters, Bjorn Stevens, Stephanie Fiedler |
| 19 |
|
|
!! and Stefan Kinne with input from Thorsten Mauritsen and Robert Pincus |
| 20 |
|
|
!! |
| 21 |
|
|
!! @par Copyright |
| 22 |
|
|
!! |
| 23 |
|
|
! |
| 24 |
|
|
MODULE MO_SIMPLE_PLUMES |
| 25 |
|
|
|
| 26 |
|
|
USE netcdf |
| 27 |
|
|
|
| 28 |
|
|
IMPLICIT NONE |
| 29 |
|
|
|
| 30 |
|
|
INTEGER, PARAMETER :: & |
| 31 |
|
|
nplumes = 9 ,& !< Number of plumes |
| 32 |
|
|
nfeatures = 2 ,& !< Number of features per plume |
| 33 |
|
|
ntimes = 52 ,& !< Number of times resolved per year (52 => weekly resolution) |
| 34 |
|
|
nyears = 251 !< Number of years of available forcing |
| 35 |
|
|
|
| 36 |
|
|
LOGICAL, SAVE :: & |
| 37 |
|
|
sp_initialized = .FALSE. !< parameter determining whether input needs to be read |
| 38 |
|
|
!$OMP THREADPRIVATE(sp_initialized) |
| 39 |
|
|
|
| 40 |
|
|
REAL :: & |
| 41 |
|
|
plume_lat (nplumes) ,& !< latitude of plume center (AOD maximum) |
| 42 |
|
|
plume_lon (nplumes) ,& !< longitude of plume center (AOD maximum) |
| 43 |
|
|
beta_a (nplumes) ,& !< parameter a for beta function vertical profile |
| 44 |
|
|
beta_b (nplumes) ,& !< parameter b for beta function vertical profile |
| 45 |
|
|
aod_spmx (nplumes) ,& !< anthropogenic AOD maximum at 550 for plumes |
| 46 |
|
|
aod_fmbg (nplumes) ,& !< anthropogenic AOD at 550 for fine-mode natural background (idealized to mimic Twomey effect) |
| 47 |
|
|
asy550 (nplumes) ,& !< asymmetry parameter at 550nm for plume |
| 48 |
|
|
ssa550 (nplumes) ,& !< single scattering albedo at 550nm for plume |
| 49 |
|
|
angstrom (nplumes) ,& !< Angstrom parameter for plume |
| 50 |
|
|
sig_lon_E (nfeatures,nplumes) ,& !< Eastward extent of plume feature |
| 51 |
|
|
sig_lon_W (nfeatures,nplumes) ,& !< Westward extent of plume feature |
| 52 |
|
|
sig_lat_E (nfeatures,nplumes) ,& !< Southward extent of plume feature |
| 53 |
|
|
sig_lat_W (nfeatures,nplumes) ,& !< Northward extent of plume feature |
| 54 |
|
|
theta (nfeatures,nplumes) ,& !< Rotation angle of plume feature |
| 55 |
|
|
ftr_weight (nfeatures,nplumes) ,& !< Feature weights |
| 56 |
|
|
time_weight (nfeatures,nplumes) ,& !< Time weights |
| 57 |
|
|
time_weight_bg (nfeatures,nplumes) ,& !< as time_weight but for natural background in Twomey effect |
| 58 |
|
|
year_weight (nyears,nplumes) ,& !< Yearly weight for plume |
| 59 |
|
|
ann_cycle (nfeatures,ntimes,nplumes) !< annual cycle for plume feature |
| 60 |
|
|
!$OMP THREADPRIVATE(plume_lat,plume_lon,beta_a,beta_b,aod_spmx,aod_fmbg,asy550,ssa550,angstrom) |
| 61 |
|
|
!$OMP THREADPRIVATE(sig_lon_E,sig_lon_W,sig_lat_E,sig_lat_W,theta,ftr_weight,year_weight,ann_cycle) |
| 62 |
|
|
|
| 63 |
|
|
PUBLIC sp_aop_profile |
| 64 |
|
|
|
| 65 |
|
|
CONTAINS |
| 66 |
|
|
! |
| 67 |
|
|
! ------------------------------------------------------------------------------------------------------------------------ |
| 68 |
|
|
! SP_SETUP: This subroutine should be called at initialization to read the netcdf data that describes the simple plume |
| 69 |
|
|
! climatology. The information needs to be either read by each processor or distributed to processors. |
| 70 |
|
|
! |
| 71 |
|
✗ |
SUBROUTINE sp_setup |
| 72 |
|
|
! |
| 73 |
|
|
USE mod_phys_lmdz_mpi_data, ONLY: is_mpi_root |
| 74 |
|
|
USE mod_phys_lmdz_omp_data, ONLY: is_omp_root |
| 75 |
|
|
USE mod_phys_lmdz_transfert_para, ONLY: bcast |
| 76 |
|
|
! |
| 77 |
|
|
! ---------- |
| 78 |
|
|
! |
| 79 |
|
|
INTEGER :: iret, ncid, DimID, VarID, xdmy |
| 80 |
|
|
CHARACTER (len = 50) :: modname = 'mo_simple_plumes.sp_setup' |
| 81 |
|
|
CHARACTER (len = 80) :: abort_message |
| 82 |
|
|
|
| 83 |
|
|
! |
| 84 |
|
|
! ---------- |
| 85 |
|
|
!--only one processor reads the input data |
| 86 |
|
✗ |
IF (is_mpi_root.AND.is_omp_root) THEN |
| 87 |
|
|
! |
| 88 |
|
✗ |
iret = nf90_open("MACv2.0-SP_v1.nc", NF90_NOWRITE, ncid) |
| 89 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 90 |
|
✗ |
abort_message='NetCDF File not opened' |
| 91 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 92 |
|
|
ENDIF |
| 93 |
|
|
! |
| 94 |
|
|
! read dimensions and make sure file conforms to expected size |
| 95 |
|
|
! |
| 96 |
|
✗ |
iret = nf90_inq_dimid(ncid, "plume_number" , DimId) |
| 97 |
|
✗ |
iret = nf90_inquire_dimension(ncid, DimId, len = xdmy) |
| 98 |
|
✗ |
IF (xdmy /= nplumes) THEN |
| 99 |
|
✗ |
abort_message='NetCDF improperly dimensioned -- plume_number' |
| 100 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 101 |
|
|
ENDIF |
| 102 |
|
|
! |
| 103 |
|
✗ |
iret = nf90_inq_dimid(ncid, "plume_feature", DimId) |
| 104 |
|
✗ |
iret = nf90_inquire_dimension(ncid, DimId, len = xdmy) |
| 105 |
|
✗ |
IF (xdmy /= nfeatures) THEN |
| 106 |
|
✗ |
abort_message='NetCDF improperly dimensioned -- plume_feature' |
| 107 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 108 |
|
|
ENDIF |
| 109 |
|
|
! |
| 110 |
|
✗ |
iret = nf90_inq_dimid(ncid, "year_fr" , DimId) |
| 111 |
|
✗ |
iret = nf90_inquire_dimension(ncid, DimID, len = xdmy) |
| 112 |
|
✗ |
IF (xdmy /= ntimes) THEN |
| 113 |
|
✗ |
abort_message='NetCDF improperly dimensioned -- year_fr' |
| 114 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 115 |
|
|
ENDIF |
| 116 |
|
|
! |
| 117 |
|
✗ |
iret = nf90_inq_dimid(ncid, "years" , DimId) |
| 118 |
|
✗ |
iret = nf90_inquire_dimension(ncid, DimID, len = xdmy) |
| 119 |
|
✗ |
IF (xdmy /= nyears) THEN |
| 120 |
|
✗ |
abort_message='NetCDF improperly dimensioned -- years' |
| 121 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 122 |
|
|
ENDIF |
| 123 |
|
|
! |
| 124 |
|
|
! read variables that define the simple plume climatology |
| 125 |
|
|
! |
| 126 |
|
✗ |
iret = nf90_inq_varid(ncid, "plume_lat", VarId) |
| 127 |
|
✗ |
iret = nf90_get_var(ncid, VarID, plume_lat(:), start=(/1/),count=(/nplumes/)) |
| 128 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 129 |
|
✗ |
abort_message='NetCDF Error reading plume_lat' |
| 130 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 131 |
|
|
ENDIF |
| 132 |
|
✗ |
iret = nf90_inq_varid(ncid, "plume_lon", VarId) |
| 133 |
|
✗ |
iret = nf90_get_var(ncid, VarID, plume_lon(:), start=(/1/),count=(/nplumes/)) |
| 134 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 135 |
|
✗ |
abort_message='NetCDF Error reading plume_lon' |
| 136 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 137 |
|
|
ENDIF |
| 138 |
|
✗ |
iret = nf90_inq_varid(ncid, "beta_a" , VarId) |
| 139 |
|
✗ |
iret = nf90_get_var(ncid, VarID, beta_a(:) , start=(/1/),count=(/nplumes/)) |
| 140 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 141 |
|
✗ |
abort_message='NetCDF Error reading beta_a' |
| 142 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 143 |
|
|
ENDIF |
| 144 |
|
✗ |
iret = nf90_inq_varid(ncid, "beta_b" , VarId) |
| 145 |
|
✗ |
iret = nf90_get_var(ncid, VarID, beta_b(:) , start=(/1/),count=(/nplumes/)) |
| 146 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 147 |
|
✗ |
abort_message='NetCDF Error reading beta_b' |
| 148 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 149 |
|
|
ENDIF |
| 150 |
|
✗ |
iret = nf90_inq_varid(ncid, "aod_spmx" , VarId) |
| 151 |
|
✗ |
iret = nf90_get_var(ncid, VarID, aod_spmx(:) , start=(/1/),count=(/nplumes/)) |
| 152 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 153 |
|
✗ |
abort_message='NetCDF Error reading aod_spmx' |
| 154 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 155 |
|
|
ENDIF |
| 156 |
|
✗ |
iret = nf90_inq_varid(ncid, "aod_fmbg" , VarId) |
| 157 |
|
✗ |
iret = nf90_get_var(ncid, VarID, aod_fmbg(:) , start=(/1/),count=(/nplumes/)) |
| 158 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 159 |
|
✗ |
abort_message='NetCDF Error reading aod_fmbg' |
| 160 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 161 |
|
|
ENDIF |
| 162 |
|
✗ |
iret = nf90_inq_varid(ncid, "ssa550" , VarId) |
| 163 |
|
✗ |
iret = nf90_get_var(ncid, VarID, ssa550(:) , start=(/1/),count=(/nplumes/)) |
| 164 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 165 |
|
✗ |
abort_message='NetCDF Error reading ssa550' |
| 166 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 167 |
|
|
ENDIF |
| 168 |
|
✗ |
iret = nf90_inq_varid(ncid, "asy550" , VarId) |
| 169 |
|
✗ |
iret = nf90_get_var(ncid, VarID, asy550(:) , start=(/1/),count=(/nplumes/)) |
| 170 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 171 |
|
✗ |
abort_message='NetCDF Error reading asy550' |
| 172 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 173 |
|
|
ENDIF |
| 174 |
|
✗ |
iret = nf90_inq_varid(ncid, "angstrom" , VarId) |
| 175 |
|
✗ |
iret = nf90_get_var(ncid, VarID, angstrom(:), start=(/1/),count=(/nplumes/)) |
| 176 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 177 |
|
✗ |
abort_message='NetCDF Error reading angstrom' |
| 178 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 179 |
|
|
ENDIF |
| 180 |
|
|
! |
| 181 |
|
✗ |
iret = nf90_inq_varid(ncid, "sig_lat_W" , VarId) |
| 182 |
|
✗ |
iret = nf90_get_var(ncid, VarID, sig_lat_W(:,:) , start=(/1,1/),count=(/nfeatures,nplumes/)) |
| 183 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 184 |
|
✗ |
abort_message='NetCDF Error reading sig_lat_W' |
| 185 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 186 |
|
|
ENDIF |
| 187 |
|
✗ |
iret = nf90_inq_varid(ncid, "sig_lat_E" , VarId) |
| 188 |
|
✗ |
iret = nf90_get_var(ncid, VarID, sig_lat_E(:,:) , start=(/1,1/),count=(/nfeatures,nplumes/)) |
| 189 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 190 |
|
✗ |
abort_message='NetCDF Error reading sig_lat_E' |
| 191 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 192 |
|
|
ENDIF |
| 193 |
|
✗ |
iret = nf90_inq_varid(ncid, "sig_lon_E" , VarId) |
| 194 |
|
✗ |
iret = nf90_get_var(ncid, VarID, sig_lon_E(:,:) , start=(/1,1/),count=(/nfeatures,nplumes/)) |
| 195 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 196 |
|
✗ |
abort_message='NetCDF Error reading sig_lon_E' |
| 197 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 198 |
|
|
ENDIF |
| 199 |
|
✗ |
iret = nf90_inq_varid(ncid, "sig_lon_W" , VarId) |
| 200 |
|
✗ |
iret = nf90_get_var(ncid, VarID, sig_lon_W(:,:) , start=(/1,1/),count=(/nfeatures,nplumes/)) |
| 201 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 202 |
|
✗ |
abort_message='NetCDF Error reading sig_lon_W' |
| 203 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 204 |
|
|
ENDIF |
| 205 |
|
✗ |
iret = nf90_inq_varid(ncid, "theta" , VarId) |
| 206 |
|
✗ |
iret = nf90_get_var(ncid, VarID, theta(:,:) , start=(/1,1/),count=(/nfeatures,nplumes/)) |
| 207 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 208 |
|
✗ |
abort_message='NetCDF Error reading theta' |
| 209 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 210 |
|
|
ENDIF |
| 211 |
|
✗ |
iret = nf90_inq_varid(ncid, "ftr_weight" , VarId) |
| 212 |
|
✗ |
iret = nf90_get_var(ncid, VarID, ftr_weight(:,:) , start=(/1,1/),count=(/nfeatures,nplumes/)) |
| 213 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 214 |
|
✗ |
abort_message='NetCDF Error reading plume_lat' |
| 215 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 216 |
|
|
ENDIF |
| 217 |
|
✗ |
iret = nf90_inq_varid(ncid, "year_weight" , VarId) |
| 218 |
|
✗ |
iret = nf90_get_var(ncid, VarID, year_weight(:,:) , start=(/1,1/),count=(/nyears,nplumes /)) |
| 219 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 220 |
|
✗ |
abort_message='NetCDF Error reading year_weight' |
| 221 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 222 |
|
|
ENDIF |
| 223 |
|
✗ |
iret = nf90_inq_varid(ncid, "ann_cycle" , VarId) |
| 224 |
|
✗ |
iret = nf90_get_var(ncid, VarID, ann_cycle(:,:,:) , start=(/1,1,1/),count=(/nfeatures,ntimes,nplumes/)) |
| 225 |
|
✗ |
IF (iret /= NF90_NOERR) THEN |
| 226 |
|
✗ |
abort_message='NetCDF Error reading ann_cycle' |
| 227 |
|
✗ |
CALL abort_physic(modname,abort_message,1) |
| 228 |
|
|
ENDIF |
| 229 |
|
|
! |
| 230 |
|
✗ |
iret = nf90_close(ncid) |
| 231 |
|
|
! |
| 232 |
|
|
ENDIF !--root processor |
| 233 |
|
|
! |
| 234 |
|
✗ |
CALL bcast(plume_lat) |
| 235 |
|
✗ |
CALL bcast(plume_lon) |
| 236 |
|
✗ |
CALL bcast(beta_a) |
| 237 |
|
✗ |
CALL bcast(beta_b) |
| 238 |
|
✗ |
CALL bcast(aod_spmx) |
| 239 |
|
✗ |
CALL bcast(aod_fmbg) |
| 240 |
|
✗ |
CALL bcast(asy550) |
| 241 |
|
✗ |
CALL bcast(ssa550) |
| 242 |
|
✗ |
CALL bcast(angstrom) |
| 243 |
|
✗ |
CALL bcast(sig_lon_E) |
| 244 |
|
✗ |
CALL bcast(sig_lon_W) |
| 245 |
|
✗ |
CALL bcast(sig_lat_E) |
| 246 |
|
✗ |
CALL bcast(sig_lat_W) |
| 247 |
|
✗ |
CALL bcast(theta) |
| 248 |
|
✗ |
CALL bcast(ftr_weight) |
| 249 |
|
✗ |
CALL bcast(year_weight) |
| 250 |
|
✗ |
CALL bcast(ann_cycle) |
| 251 |
|
|
! |
| 252 |
|
✗ |
sp_initialized = .TRUE. |
| 253 |
|
|
! |
| 254 |
|
✗ |
RETURN |
| 255 |
|
|
! |
| 256 |
|
|
END SUBROUTINE sp_setup |
| 257 |
|
|
! |
| 258 |
|
|
! ------------------------------------------------------------------------------------------------------------------------ |
| 259 |
|
|
! SET_TIME_WEIGHT: The simple plume model assumes that meteorology constrains plume shape and that only source strength |
| 260 |
|
|
! influences the amplitude of a plume associated with a given source region. This routine retrieves the temporal weights |
| 261 |
|
|
! for the plumes. Each plume feature has its own temporal weights which varies yearly. The annual cycle is indexed by |
| 262 |
|
|
! week in the year and superimposed on the yearly mean value of the weight. |
| 263 |
|
|
! |
| 264 |
|
✗ |
SUBROUTINE set_time_weight(year_fr) |
| 265 |
|
|
! |
| 266 |
|
|
! ---------- |
| 267 |
|
|
! |
| 268 |
|
|
REAL, INTENT(IN) :: & |
| 269 |
|
|
year_fr !< Fractional Year (1850.0 - 2100.99) |
| 270 |
|
|
|
| 271 |
|
|
INTEGER :: & |
| 272 |
|
|
iyear ,& !< Integer year values between 1 and 156 (1850-2100) |
| 273 |
|
|
iweek ,& !< Integer index (between 1 and ntimes); for ntimes=52 this corresponds to weeks (roughly) |
| 274 |
|
|
iplume ! plume number |
| 275 |
|
|
! |
| 276 |
|
|
! ---------- |
| 277 |
|
|
! |
| 278 |
|
✗ |
iyear = FLOOR(year_fr) - 1849 |
| 279 |
|
✗ |
iweek = FLOOR((year_fr - FLOOR(year_fr)) * ntimes) + 1 |
| 280 |
|
|
|
| 281 |
|
✗ |
IF ((iweek > ntimes) .OR. (iweek < 1) .OR. (iyear > nyears) .OR. (iyear < 1)) THEN |
| 282 |
|
✗ |
CALL abort_physic('set_time_weight','Time out of bounds') |
| 283 |
|
|
ENDIF |
| 284 |
|
|
|
| 285 |
|
✗ |
DO iplume=1,nplumes |
| 286 |
|
✗ |
time_weight(1,iplume) = year_weight(iyear,iplume) * ann_cycle(1,iweek,iplume) |
| 287 |
|
✗ |
time_weight(2,iplume) = year_weight(iyear,iplume) * ann_cycle(2,iweek,iplume) |
| 288 |
|
✗ |
time_weight_bg(1,iplume) = ann_cycle(1,iweek,iplume) |
| 289 |
|
✗ |
time_weight_bg(2,iplume) = ann_cycle(2,iweek,iplume) |
| 290 |
|
|
END DO |
| 291 |
|
|
|
| 292 |
|
✗ |
RETURN |
| 293 |
|
|
END SUBROUTINE set_time_weight |
| 294 |
|
|
! |
| 295 |
|
|
! ------------------------------------------------------------------------------------------------------------------------ |
| 296 |
|
|
! SP_AOP_PROFILE: This subroutine calculates the simple plume aerosol and cloud active optical properties based on the |
| 297 |
|
|
! the simple plume fit to the MPI Aerosol Climatology (Version 2). It sums over nplumes to provide a profile of aerosol |
| 298 |
|
|
! optical properties on a host models vertical grid. |
| 299 |
|
|
! |
| 300 |
|
✗ |
SUBROUTINE sp_aop_profile ( & |
| 301 |
|
✗ |
nlevels ,ncol ,lambda ,oro ,lon ,lat , & |
| 302 |
|
✗ |
year_fr ,z ,dz ,dNovrN ,aod_prof ,ssa_prof , & |
| 303 |
|
|
asy_prof ) |
| 304 |
|
|
! |
| 305 |
|
|
! ---------- |
| 306 |
|
|
! |
| 307 |
|
|
INTEGER, INTENT(IN) :: & |
| 308 |
|
|
nlevels, & !< number of levels |
| 309 |
|
|
ncol !< number of columns |
| 310 |
|
|
|
| 311 |
|
|
REAL, INTENT(IN) :: & |
| 312 |
|
|
lambda, & !< wavelength |
| 313 |
|
|
year_fr, & !< Fractional Year (1903.0 is the 0Z on the first of January 1903, Gregorian) |
| 314 |
|
|
oro(ncol), & !< orographic height (m) |
| 315 |
|
|
lon(ncol), & !< longitude |
| 316 |
|
|
lat(ncol), & !< latitude |
| 317 |
|
|
z (ncol,nlevels), & !< height above sea-level (m) |
| 318 |
|
|
dz(ncol,nlevels) !< level thickness (difference between half levels) (m) |
| 319 |
|
|
|
| 320 |
|
|
REAL, INTENT(OUT) :: & |
| 321 |
|
|
dNovrN(ncol) , & !< anthropogenic increase in cloud drop number concentration (factor) |
| 322 |
|
|
aod_prof(ncol,nlevels) , & !< profile of aerosol optical depth |
| 323 |
|
|
ssa_prof(ncol,nlevels) , & !< profile of single scattering albedo |
| 324 |
|
|
asy_prof(ncol,nlevels) !< profile of asymmetry parameter |
| 325 |
|
|
|
| 326 |
|
|
INTEGER :: iplume, icol, k |
| 327 |
|
|
|
| 328 |
|
|
REAL :: & |
| 329 |
|
✗ |
eta(ncol,nlevels), & !< normalized height (by 15 km) |
| 330 |
|
✗ |
z_beta(ncol,nlevels), & !< profile for scaling column optical depth |
| 331 |
|
✗ |
prof(ncol,nlevels), & !< scaled profile (by beta function) |
| 332 |
|
✗ |
beta_sum(ncol), & !< vertical sum of beta function |
| 333 |
|
✗ |
ssa(ncol), & !< single scattering albedo |
| 334 |
|
✗ |
asy(ncol), & !< asymmetry parameter |
| 335 |
|
✗ |
cw_an(ncol), & !< column weight for simple plume (anthropogenic) AOD at 550 nm |
| 336 |
|
✗ |
cw_bg(ncol), & !< column weight for fine-mode natural background AOD at 550 nm |
| 337 |
|
✗ |
caod_sp(ncol), & !< column simple plume anthropogenic AOD at 550 nm |
| 338 |
|
✗ |
caod_bg(ncol), & !< column fine-mode natural background AOD at 550 nm |
| 339 |
|
|
a_plume1, & !< gaussian longitude factor for feature 1 |
| 340 |
|
|
a_plume2, & !< gaussian longitude factor for feature 2 |
| 341 |
|
|
b_plume1, & !< gaussian latitude factor for feature 1 |
| 342 |
|
|
b_plume2, & !< gaussian latitude factor for feature 2 |
| 343 |
|
|
delta_lat, & !< latitude offset |
| 344 |
|
|
delta_lon, & !< longitude offset |
| 345 |
|
|
delta_lon_t, & !< threshold for maximum longitudinal plume extent used in transition from 360 to 0 degrees |
| 346 |
|
|
lon1, & !< rotated longitude for feature 1 |
| 347 |
|
|
lat1, & !< rotated latitude for feature 2 |
| 348 |
|
|
lon2, & !< rotated longitude for feature 1 |
| 349 |
|
|
lat2, & !< rotated latitude for feature 2 |
| 350 |
|
|
f1, & !< contribution from feature 1 |
| 351 |
|
|
f2, & !< contribution from feature 2 |
| 352 |
|
|
f3, & !< contribution from feature 1 in natural background of Twomey effect |
| 353 |
|
|
f4, & !< contribution from feature 2 in natural background of Twomey effect |
| 354 |
|
|
aod_550, & !< aerosol optical depth at 550nm |
| 355 |
|
|
aod_lmd, & !< aerosol optical depth at input wavelength |
| 356 |
|
|
lfactor !< factor to compute wavelength dependence of optical properties |
| 357 |
|
|
! |
| 358 |
|
|
! ---------- |
| 359 |
|
|
! |
| 360 |
|
|
! initialize input data (by calling setup at first instance) |
| 361 |
|
|
! |
| 362 |
|
✗ |
IF (.NOT.sp_initialized) CALL sp_setup |
| 363 |
|
|
! |
| 364 |
|
|
! get time weights |
| 365 |
|
|
! |
| 366 |
|
✗ |
CALL set_time_weight(year_fr) |
| 367 |
|
|
! |
| 368 |
|
|
! initialize variables, including output |
| 369 |
|
|
! |
| 370 |
|
✗ |
DO k=1,nlevels |
| 371 |
|
✗ |
DO icol=1,ncol |
| 372 |
|
✗ |
aod_prof(icol,k) = 0.0 |
| 373 |
|
✗ |
ssa_prof(icol,k) = 0.0 |
| 374 |
|
✗ |
asy_prof(icol,k) = 0.0 |
| 375 |
|
✗ |
z_beta(icol,k) = MERGE(1.0, 0.0, z(icol,k) >= oro(icol)) |
| 376 |
|
✗ |
eta(icol,k) = MAX(0.0,MIN(1.0,z(icol,k)/15000.)) |
| 377 |
|
|
END DO |
| 378 |
|
|
END DO |
| 379 |
|
✗ |
DO icol=1,ncol |
| 380 |
|
✗ |
dNovrN(icol) = 1.0 |
| 381 |
|
✗ |
caod_sp(icol) = 0.0 |
| 382 |
|
✗ |
caod_bg(icol) = 0.02 |
| 383 |
|
|
END DO |
| 384 |
|
|
! |
| 385 |
|
|
! sum contribution from plumes to construct composite profiles of aerosol optical properties |
| 386 |
|
|
! |
| 387 |
|
✗ |
DO iplume=1,nplumes |
| 388 |
|
|
! |
| 389 |
|
|
! calculate vertical distribution function from parameters of beta distribution |
| 390 |
|
|
! |
| 391 |
|
✗ |
DO icol=1,ncol |
| 392 |
|
✗ |
beta_sum(icol) = 0. |
| 393 |
|
|
END DO |
| 394 |
|
✗ |
DO k=1,nlevels |
| 395 |
|
✗ |
DO icol=1,ncol |
| 396 |
|
✗ |
prof(icol,k) = (eta(icol,k)**(beta_a(iplume)-1.) * (1.-eta(icol,k))**(beta_b(iplume)-1.)) * dz(icol,k) |
| 397 |
|
✗ |
beta_sum(icol) = beta_sum(icol) + prof(icol,k) |
| 398 |
|
|
END DO |
| 399 |
|
|
END DO |
| 400 |
|
✗ |
DO k=1,nlevels |
| 401 |
|
✗ |
DO icol=1,ncol |
| 402 |
|
✗ |
prof(icol,k) = ( prof(icol,k) / beta_sum(icol) ) * z_beta(icol,k) |
| 403 |
|
|
END DO |
| 404 |
|
|
END DO |
| 405 |
|
|
! |
| 406 |
|
|
! calculate plume weights |
| 407 |
|
|
! |
| 408 |
|
✗ |
DO icol=1,ncol |
| 409 |
|
|
! |
| 410 |
|
|
! get plume-center relative spatial parameters for specifying amplitude of plume at given lat and lon |
| 411 |
|
|
! |
| 412 |
|
✗ |
delta_lat = lat(icol) - plume_lat(iplume) |
| 413 |
|
✗ |
delta_lon = lon(icol) - plume_lon(iplume) |
| 414 |
|
✗ |
delta_lon_t = MERGE (260., 180., iplume == 1) |
| 415 |
|
✗ |
delta_lon = MERGE ( delta_lon-SIGN(360.,delta_lon) , delta_lon , ABS(delta_lon) > delta_lon_t) |
| 416 |
|
|
|
| 417 |
|
✗ |
a_plume1 = 0.5 / (MERGE(sig_lon_E(1,iplume), sig_lon_W(1,iplume), delta_lon > 0)**2) |
| 418 |
|
✗ |
b_plume1 = 0.5 / (MERGE(sig_lat_E(1,iplume), sig_lat_W(1,iplume), delta_lon > 0)**2) |
| 419 |
|
✗ |
a_plume2 = 0.5 / (MERGE(sig_lon_E(2,iplume), sig_lon_W(2,iplume), delta_lon > 0)**2) |
| 420 |
|
✗ |
b_plume2 = 0.5 / (MERGE(sig_lat_E(2,iplume), sig_lat_W(2,iplume), delta_lon > 0)**2) |
| 421 |
|
|
! |
| 422 |
|
|
! adjust for a plume specific rotation which helps match plume state to climatology. |
| 423 |
|
|
! |
| 424 |
|
✗ |
lon1 = COS(theta(1,iplume))*(delta_lon) + SIN(theta(1,iplume))*(delta_lat) |
| 425 |
|
✗ |
lat1 = - SIN(theta(1,iplume))*(delta_lon) + COS(theta(1,iplume))*(delta_lat) |
| 426 |
|
✗ |
lon2 = COS(theta(2,iplume))*(delta_lon) + SIN(theta(2,iplume))*(delta_lat) |
| 427 |
|
✗ |
lat2 = - SIN(theta(2,iplume))*(delta_lon) + COS(theta(2,iplume))*(delta_lat) |
| 428 |
|
|
! |
| 429 |
|
|
! calculate contribution to plume from its different features, to get a column weight for the anthropogenic |
| 430 |
|
|
! (cw_an) and the fine-mode natural background aerosol (cw_bg) |
| 431 |
|
|
! |
| 432 |
|
✗ |
f1 = time_weight(1,iplume) * ftr_weight(1,iplume) * EXP(-1.* (a_plume1 * ((lon1)**2) + (b_plume1 * ((lat1)**2)))) |
| 433 |
|
✗ |
f2 = time_weight(2,iplume) * ftr_weight(2,iplume) * EXP(-1.* (a_plume2 * ((lon2)**2) + (b_plume2 * ((lat2)**2)))) |
| 434 |
|
✗ |
f3 = time_weight_bg(1,iplume) * ftr_weight(1,iplume) * EXP(-1.* (a_plume1 * ((lon1)**2) + (b_plume1 * ((lat1)**2)))) |
| 435 |
|
✗ |
f4 = time_weight_bg(2,iplume) * ftr_weight(2,iplume) * EXP(-1.* (a_plume2 * ((lon2)**2) + (b_plume2 * ((lat2)**2)))) |
| 436 |
|
|
|
| 437 |
|
✗ |
cw_an(icol) = f1 * aod_spmx(iplume) + f2 * aod_spmx(iplume) |
| 438 |
|
✗ |
cw_bg(icol) = f3 * aod_fmbg(iplume) + f4 * aod_fmbg(iplume) |
| 439 |
|
|
! |
| 440 |
|
|
! calculate wavelength-dependent scattering properties |
| 441 |
|
|
! |
| 442 |
|
✗ |
lfactor = MIN(1.0,700.0/lambda) |
| 443 |
|
✗ |
ssa(icol) = (ssa550(iplume) * lfactor**4) / ((ssa550(iplume) * lfactor**4) + ((1-ssa550(iplume)) * lfactor)) |
| 444 |
|
✗ |
asy(icol) = asy550(iplume) * SQRT(lfactor) |
| 445 |
|
|
END DO |
| 446 |
|
|
! |
| 447 |
|
|
! distribute plume optical properties across its vertical profile weighting by optical depth and scaling for |
| 448 |
|
|
! wavelength using the angstrom parameter. |
| 449 |
|
|
! |
| 450 |
|
✗ |
lfactor = EXP(-angstrom(iplume) * LOG(lambda/550.0)) |
| 451 |
|
✗ |
DO k=1,nlevels |
| 452 |
|
✗ |
DO icol = 1,ncol |
| 453 |
|
✗ |
aod_550 = prof(icol,k) * cw_an(icol) |
| 454 |
|
✗ |
aod_lmd = aod_550 * lfactor |
| 455 |
|
✗ |
caod_sp(icol) = caod_sp(icol) + aod_550 |
| 456 |
|
✗ |
caod_bg(icol) = caod_bg(icol) + prof(icol,k) * cw_bg(icol) |
| 457 |
|
✗ |
asy_prof(icol,k) = asy_prof(icol,k) + aod_lmd * ssa(icol) * asy(icol) |
| 458 |
|
✗ |
ssa_prof(icol,k) = ssa_prof(icol,k) + aod_lmd * ssa(icol) |
| 459 |
|
✗ |
aod_prof(icol,k) = aod_prof(icol,k) + aod_lmd |
| 460 |
|
|
END DO |
| 461 |
|
|
END DO |
| 462 |
|
|
END DO |
| 463 |
|
|
! |
| 464 |
|
|
! complete optical depth weighting |
| 465 |
|
|
! |
| 466 |
|
✗ |
DO k=1,nlevels |
| 467 |
|
✗ |
DO icol = 1,ncol |
| 468 |
|
✗ |
asy_prof(icol,k) = MERGE(asy_prof(icol,k)/ssa_prof(icol,k), 0.0, ssa_prof(icol,k) > TINY(1.)) |
| 469 |
|
✗ |
ssa_prof(icol,k) = MERGE(ssa_prof(icol,k)/aod_prof(icol,k), 1.0, aod_prof(icol,k) > TINY(1.)) |
| 470 |
|
|
END DO |
| 471 |
|
|
END DO |
| 472 |
|
|
! |
| 473 |
|
|
! calculate effective radius normalization (divisor) factor |
| 474 |
|
|
! |
| 475 |
|
✗ |
DO icol=1,ncol |
| 476 |
|
✗ |
dNovrN(icol) = LOG((1000.0 * (caod_sp(icol) + caod_bg(icol))) + 1.0)/LOG((1000.0 * caod_bg(icol)) + 1.0) |
| 477 |
|
|
END DO |
| 478 |
|
|
|
| 479 |
|
✗ |
RETURN |
| 480 |
|
|
END SUBROUTINE sp_aop_profile |
| 481 |
|
|
|
| 482 |
|
|
END MODULE MO_SIMPLE_PLUMES |
| 483 |
|
|
|