GCC Code Coverage Report


Directory: ./
File: Ocean_skin/near_surface_m.f90
Date: 2022-01-11 19:19:34
Exec Total Coverage
Lines: 0 36 0.0%
Branches: 0 118 0.0%

Line Branch Exec Source
1 module Near_Surface_m
2
3 Implicit none
4
5 real, parameter:: depth = 3.
6 ! diurnal warm layer and fresh water lens depth, in m (Zeng and Beljaars 2005)
7
8 contains
9
10 subroutine near_surface(al, t_subskin, s_subskin, ds_ns, dt_ns, tau, taur, &
11 hlb, rhoa, xlv, dtime, t_ocean_1, s1, rain, q_pwp)
12
13 ! Hugo Bellenger, 2016
14
15 use config_ocean_skin_m, only: depth_1
16 use const, only: beta, cpw, grav, rhow, von
17 use Phiw_m, only: Phiw
18 use therm_expans_m, only: therm_expans
19
20 real, intent(out):: al(:) ! water thermal expansion coefficient (in K-1)
21 real, intent(out):: t_subskin(:) ! subskin temperature, in K
22 real, intent(out):: s_subskin(:) ! subskin salinity, in ppt
23
24 real, intent(inout):: ds_ns(:)
25 ! "delta salinity near surface". Salinity variation in the
26 ! near-surface turbulent layer. That is subskin salinity minus
27 ! foundation salinity. In ppt.
28
29 real, intent(inout):: dt_ns(:)
30 ! "delta temperature near surface". Temperature variation in the
31 ! near-surface turbulent layer. That is subskin temperature minus
32 ! foundation temperature. (Can be negative.) In K.
33
34 real, intent(in):: tau(:)
35 ! wind stress at the surface, turbulent part only, in Pa
36
37 real, intent(in):: taur(:) ! momentum flux due to rainfall, in Pa
38 real, intent(in):: hlb(:) ! latent heat flux, turbulent part only, in W / m2
39 real, intent(in):: rhoa(:) ! density of moist air (kg / m3)
40 real, intent(in):: xlv(:) ! latent heat of evaporation (J/kg)
41 real, intent(in):: dtime ! time step (s)
42 real, intent(in):: t_ocean_1(:) ! input sea temperature, at depth_1, in K
43 real, intent(in):: S1(:) ! salinity at depth_1, in ppt
44 real, intent(in):: rain(:) ! rain mass flux, in kg m-2 s-1
45
46 real, intent(in):: q_pwp(:)
47 ! net flux absorbed by the warm layer (part of the solar flux
48 ! absorbed at "depth"), minus surface fluxes, in W m-2
49
50 ! Local:
51
52 real, parameter:: khor = 1. / 1.5e4
53 ! Parameter for the lens spread, in m-1. Inverse of the size of
54 ! the lens.
55
56 real, parameter:: umax = 15.
57 real, parameter:: fact = 1.
58 real buoyf(size(t_ocean_1)) ! buoyancy flux
59 real usrc(size(t_ocean_1))
60 real drho(size(t_ocean_1)) ! rho(- delta) - rho(- d)
61 real Lmo(size(t_ocean_1)) ! Monin-Obukhov length
62
63 real u(size(t_ocean_1))
64 ! Wind speed at 15 m relative to the sea surface, i. e. taking
65 ! current vector into account. In m s-1.
66
67 real, dimension(size(t_ocean_1)):: At, Bt, As, Bs, correction
68
69 real eta(size(t_ocean_1))
70 ! exponent in the function giving T(z) and S(z), equation (11) in
71 ! Bellenger et al. 2017 JGR
72
73 real t_fnd(size(t_ocean_1)) ! foundation temperature, in K
74 real s_fnd(size(t_ocean_1)) ! foundation salinity, in ppt
75
76 !----------------------------------------------------------------------
77
78 ! Temperature and salinity profiles change with wind:
79
80 u = 28. * sqrt(tau / rhoa)
81
82 where (dt_ns < 0.)
83 where (u >= umax)
84 eta = 1. / fact
85 elsewhere (u <= 2.)
86 eta = 2. / (fact * umax)
87 elsewhere
88 ! {u > 2. .and. u < umax}
89 eta = u / (fact * umax)
90 end where
91 elsewhere
92 eta = 0.3
93 end where
94
95 if (depth_1 < depth) then
96 correction = 1. - (depth_1 / depth)**eta
97 ! (neglecting microlayer thickness compared to depth_1 and depth)
98
99 t_fnd = t_ocean_1 - dt_ns * correction
100 s_fnd = s1 - ds_ns * correction
101 else
102 t_fnd = t_ocean_1
103 s_fnd = s1
104 end if
105
106 al = therm_expans(t_fnd)
107
108 ! Bellenger 2017 k0976, equation (13):
109 buoyf = Al * grav / (rhow * cpw) * q_pwp &
110 - beta * S_FND * grav * (hlb / xlv - rain) / rhow
111
112 usrc = sqrt((tau + taur) / rhow)
113 drho = rhow * (- al * dt_ns + beta * ds_ns)
114
115 ! Case of stable stratification and negative flux, Bellenger 2017
116 ! k0976, equation (15):
117 where (buoyf < 0. .and. drho < 0.)
118 buoyf = sqrt(- eta * grav / (5. * depth * rhow) * drho) * usrc**2
119 elsewhere (buoyf == 0.)
120 buoyf = tiny(0.)
121 end where
122
123
124 Lmo = usrc**3 / (von * buoyf)
125
126 ! Equation (14) for temperature. Implicit scheme for time integration:
127 ! \Delta T_{i + 1} - \Delta T_i = \delta t (Bt + At \Delta T_{i + 1})
128 At = - (eta + 1.) * von * usrc / (depth * Phiw(depth / Lmo))
129
130 ! Lens horizontal spreading:
131 where (drho < 0. .and. ds_ns < 0.) At = At &
132 - (eta + 1.) * khor * sqrt(depth * grav * abs(drho) / rhow)
133
134 Bt = q_pwp / (depth * rhow * cpw * eta / (eta + 1.))
135 dt_ns = (dtime * Bt + dt_ns) / (1 - dtime * At)
136
137 ! Equation (14) for salinity:
138 ! \frac{\partial \Delta S}{\partial t}
139 ! = (\Delta S + S_\mathrm{fnd}) B_S + A_S \Delta S
140 As = - (eta + 1.) * von * usrc / (depth * Phiw(depth / Lmo))
141
142 ! Lens horizontal spreading:
143 where (drho < 0. .and. ds_ns < 0.) As = As &
144 - (eta + 1.) * khor * sqrt(depth * grav * abs(drho) / rhow)
145
146 Bs = (hlb / xlv - rain) * (eta + 1.) / (depth * rhow * eta)
147
148 ! Implicit scheme for time integration:
149 ds_ns = (dtime * Bs * S_fnd + ds_ns) / (1 - dtime * (As + bs))
150
151 t_subskin = t_fnd + dt_ns
152 s_subskin = s_fnd + ds_ns
153
154 end subroutine Near_Surface
155
156 end module Near_Surface_m
157