| Directory: | ./ |
|---|---|
| File: | phys/newmicro.f90 |
| Date: | 2022-01-11 19:19:34 |
| Exec | Total | Coverage | |
|---|---|---|---|
| Lines: | 120 | 223 | 53.8% |
| Branches: | 91 | 188 | 48.4% |
| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | ! $Id: newmicro.F90 3281 2018-03-16 18:26:14Z musat $ | ||
| 2 | |||
| 3 | 10396284 | SUBROUTINE newmicro(flag_aerosol, ok_cdnc, bl95_b0, bl95_b1, paprs, pplay, t, pqlwp, pclc, & | |
| 4 | 120 | pcltau, pclemi, pch, pcl, pcm, pct, pctlwp, xflwp, xfiwp, xflwc, xfiwc, & | |
| 5 | mass_solu_aero, mass_solu_aero_pi, pcldtaupi, re, fl, reliq, reice, & | ||
| 6 | reliq_pi, reice_pi) | ||
| 7 | |||
| 8 | USE dimphy | ||
| 9 | USE phys_local_var_mod, ONLY: scdnc, cldncl, reffclwtop, lcc, reffclws, & | ||
| 10 | reffclwc, cldnvi, lcc3d, lcc3dcon, lcc3dstra, icc3dcon, icc3dstra, & | ||
| 11 | zfice, dNovrN | ||
| 12 | USE phys_state_var_mod, ONLY: rnebcon, clwcon | ||
| 13 | USE icefrac_lsc_mod ! computes ice fraction (JBM 3/14) | ||
| 14 | USE ioipsl_getin_p_mod, ONLY : getin_p | ||
| 15 | USE print_control_mod, ONLY: lunout | ||
| 16 | |||
| 17 | |||
| 18 | IMPLICIT NONE | ||
| 19 | ! ====================================================================== | ||
| 20 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 | ||
| 21 | ! O. Boucher (LMD/CNRS) mise a jour en 201212 | ||
| 22 | ! I. Musat (LMD/CNRS) : prise en compte de la meme hypothese de recouvrement | ||
| 23 | ! pour les nuages que pour le rayonnement rrtm via | ||
| 24 | ! le parametre novlp de radopt.h : 20160721 | ||
| 25 | ! Objet: Calculer epaisseur optique et emmissivite des nuages | ||
| 26 | ! ====================================================================== | ||
| 27 | ! Arguments: | ||
| 28 | ! ok_cdnc-input-L-flag pour calculer les rayons a partir des aerosols | ||
| 29 | |||
| 30 | ! t-------input-R-temperature | ||
| 31 | ! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere dans la partie | ||
| 32 | ! nuageuse (kg/kg) | ||
| 33 | ! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) | ||
| 34 | ! mass_solu_aero-----input-R-total mass concentration for all soluble | ||
| 35 | ! aerosols[ug/m^3] | ||
| 36 | ! mass_solu_aero_pi--input-R-ditto, pre-industrial value | ||
| 37 | |||
| 38 | ! bl95_b0-input-R-a PARAMETER, may be varied for tests (s-sea, l-land) | ||
| 39 | ! bl95_b1-input-R-a PARAMETER, may be varied for tests ( -"- ) | ||
| 40 | |||
| 41 | ! re------output-R-Cloud droplet effective radius multiplied by fl [um] | ||
| 42 | ! fl------output-R-Denominator to re, introduced to avoid problems in | ||
| 43 | ! the averaging of the output. fl is the fraction of liquid | ||
| 44 | ! water clouds within a grid cell | ||
| 45 | |||
| 46 | ! pcltau--output-R-epaisseur optique des nuages | ||
| 47 | ! pclemi--output-R-emissivite des nuages (0 a 1) | ||
| 48 | ! pcldtaupi-output-R-pre-industrial value of cloud optical thickness, | ||
| 49 | |||
| 50 | ! pcl-output-R-2D low-level cloud cover | ||
| 51 | ! pcm-output-R-2D mid-level cloud cover | ||
| 52 | ! pch-output-R-2D high-level cloud cover | ||
| 53 | ! pct-output-R-2D total cloud cover | ||
| 54 | ! ====================================================================== | ||
| 55 | |||
| 56 | include "YOMCST.h" | ||
| 57 | include "nuage.h" | ||
| 58 | include "radepsi.h" | ||
| 59 | include "radopt.h" | ||
| 60 | |||
| 61 | ! choix de l'hypothese de recouvrement nuageuse via radopt.h (IM, 19.07.2016) | ||
| 62 | ! !novlp=1: max-random | ||
| 63 | ! !novlp=2: maximum | ||
| 64 | ! !novlp=3: random | ||
| 65 | ! LOGICAL random, maximum_random, maximum | ||
| 66 | ! PARAMETER (random=.FALSE., maximum_random=.TRUE., maximum=.FALSE.) | ||
| 67 | |||
| 68 | LOGICAL, SAVE :: first = .TRUE. | ||
| 69 | !$OMP THREADPRIVATE(FIRST) | ||
| 70 | INTEGER flag_max | ||
| 71 | |||
| 72 | ! threshold PARAMETERs | ||
| 73 | REAL thres_tau, thres_neb | ||
| 74 | PARAMETER (thres_tau=0.3, thres_neb=0.001) | ||
| 75 | |||
| 76 | 240 | REAL phase3d(klon, klev) | |
| 77 | 240 | REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) | |
| 78 | |||
| 79 | REAL paprs(klon, klev+1) | ||
| 80 | REAL pplay(klon, klev) | ||
| 81 | REAL t(klon, klev) | ||
| 82 | REAL pclc(klon, klev) | ||
| 83 | REAL pqlwp(klon, klev) | ||
| 84 | REAL pcltau(klon, klev) | ||
| 85 | REAL pclemi(klon, klev) | ||
| 86 | REAL pcldtaupi(klon, klev) | ||
| 87 | |||
| 88 | REAL pct(klon) | ||
| 89 | REAL pcl(klon) | ||
| 90 | REAL pcm(klon) | ||
| 91 | REAL pch(klon) | ||
| 92 | REAL pctlwp(klon) | ||
| 93 | |||
| 94 | LOGICAL lo | ||
| 95 | |||
| 96 | ! !Abderr modif JL mail du 19.01.2011 18:31 | ||
| 97 | ! REAL cetahb, cetamb | ||
| 98 | ! PARAMETER (cetahb = 0.45, cetamb = 0.80) | ||
| 99 | ! Remplacer | ||
| 100 | ! cetahb*paprs(i,1) par prmhc | ||
| 101 | ! cetamb*paprs(i,1) par prlmc | ||
| 102 | REAL prmhc ! Pressure between medium and high level cloud in Pa | ||
| 103 | REAL prlmc ! Pressure between low and medium level cloud in Pa | ||
| 104 | PARAMETER (prmhc=440.*100., prlmc=680.*100.) | ||
| 105 | |||
| 106 | INTEGER i, k | ||
| 107 | REAL xflwp(klon), xfiwp(klon) | ||
| 108 | REAL xflwc(klon, klev), xfiwc(klon, klev) | ||
| 109 | |||
| 110 | REAL radius | ||
| 111 | |||
| 112 | REAL coef_froi, coef_chau | ||
| 113 | PARAMETER (coef_chau=0.13, coef_froi=0.09) | ||
| 114 | |||
| 115 | REAL seuil_neb | ||
| 116 | PARAMETER (seuil_neb=0.001) | ||
| 117 | |||
| 118 | ! JBM (3/14) nexpo is replaced by exposant_glace | ||
| 119 | ! INTEGER nexpo ! exponentiel pour glace/eau | ||
| 120 | ! PARAMETER (nexpo=6) | ||
| 121 | ! PARAMETER (nexpo=1) | ||
| 122 | ! if iflag_t_glace=0, the old values are used: | ||
| 123 | REAL, PARAMETER :: t_glace_min_old = 258. | ||
| 124 | REAL, PARAMETER :: t_glace_max_old = 273.13 | ||
| 125 | |||
| 126 | REAL rel, tc, rei | ||
| 127 | REAL k_ice0, k_ice, df | ||
| 128 | PARAMETER (k_ice0=0.005) ! units=m2/g | ||
| 129 | PARAMETER (df=1.66) ! diffusivity factor | ||
| 130 | |||
| 131 | ! jq for the aerosol indirect effect | ||
| 132 | ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 | ||
| 133 | ! jq | ||
| 134 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] | ||
| 135 | REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) | ||
| 136 | 240 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] | |
| 137 | REAL re(klon, klev) ! cloud droplet effective radius [um] | ||
| 138 | 240 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) | |
| 139 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) | ||
| 140 | |||
| 141 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds | ||
| 142 | ! within the grid cell) | ||
| 143 | |||
| 144 | INTEGER flag_aerosol | ||
| 145 | LOGICAL ok_cdnc | ||
| 146 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula | ||
| 147 | |||
| 148 | ! jq-end | ||
| 149 | ! IM cf. CR:parametres supplementaires | ||
| 150 | 240 | REAL zclear(klon) | |
| 151 | 240 | REAL zcloud(klon) | |
| 152 | 240 | REAL zcloudh(klon) | |
| 153 | 240 | REAL zcloudm(klon) | |
| 154 | 240 | REAL zcloudl(klon) | |
| 155 | 240 | REAL rhodz(klon, klev) !--rho*dz pour la couche | |
| 156 | 240 | REAL zrho(klon, klev) !--rho pour la couche | |
| 157 | 240 | REAL dh(klon, klev) !--dz pour la couche | |
| 158 | 240 | REAL rad_chaud(klon, klev) !--rayon pour les nuages chauds | |
| 159 | 240 | REAL rad_chaud_pi(klon, klev) !--rayon pour les nuages chauds pre-industriels | |
| 160 | REAL zflwp_var, zfiwp_var | ||
| 161 | REAL d_rei_dt | ||
| 162 | |||
| 163 | ! Abderrahmane oct 2009 | ||
| 164 | REAL reliq(klon, klev), reice(klon, klev) | ||
| 165 | REAL reliq_pi(klon, klev), reice_pi(klon, klev) | ||
| 166 | |||
| 167 | REAL,SAVE :: cdnc_min=-1. | ||
| 168 | REAL,SAVE :: cdnc_min_m3 | ||
| 169 | !$OMP THREADPRIVATE(cdnc_min,cdnc_min_m3) | ||
| 170 | REAL,SAVE :: cdnc_max=-1. | ||
| 171 | REAL,SAVE :: cdnc_max_m3 | ||
| 172 | !$OMP THREADPRIVATE(cdnc_max,cdnc_max_m3) | ||
| 173 | |||
| 174 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
| 175 | ! FH : 2011/05/24 | ||
| 176 | |||
| 177 | ! rei = ( rei_max - rei_min ) * T(°C) / 81.4 + rei_max | ||
| 178 | ! to be used for a temperature in celcius T(°C) < 0 | ||
| 179 | ! rei=rei_min for T(°C) < -81.4 | ||
| 180 | |||
| 181 | ! Calcul de la pente de la relation entre rayon effective des cristaux | ||
| 182 | ! et la température. | ||
| 183 | ! Pour retrouver les résultats numériques de la version d'origine, | ||
| 184 | ! on impose 0.71 quand on est proche de 0.71 | ||
| 185 | |||
| 186 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 119 times.
|
120 | if (first) THEN |
| 187 | 1 | call getin_p('cdnc_min',cdnc_min) | |
| 188 | 1 | cdnc_min_m3=cdnc_min*1.E6 | |
| 189 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | IF (cdnc_min_m3<0.) cdnc_min_m3=20.E6 ! astuce pour retrocompatibilite |
| 190 | 1 | write(lunout,*)'cdnc_min=', cdnc_min_m3/1.E6 | |
| 191 | 1 | call getin_p('cdnc_max',cdnc_max) | |
| 192 | 1 | cdnc_max_m3=cdnc_max*1.E6 | |
| 193 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | IF (cdnc_max_m3<0.) cdnc_max_m3=1000.E6 ! astuce pour retrocompatibilite |
| 194 | 1 | write(lunout,*)'cdnc_max=', cdnc_max_m3/1.E6 | |
| 195 | ENDIF | ||
| 196 | |||
| 197 | 120 | d_rei_dt = (rei_max-rei_min)/81.4 | |
| 198 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 120 times.
|
120 | IF (abs(d_rei_dt-0.71)<1.E-4) d_rei_dt = 0.71 |
| 199 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
| 200 | |||
| 201 | ! Calculer l'epaisseur optique et l'emmissivite des nuages | ||
| 202 | ! IM inversion des DO | ||
| 203 | |||
| 204 |
2/2✓ Branch 0 taken 119280 times.
✓ Branch 1 taken 120 times.
|
119400 | xflwp = 0.D0 |
| 205 |
2/2✓ Branch 0 taken 119280 times.
✓ Branch 1 taken 120 times.
|
119400 | xfiwp = 0.D0 |
| 206 |
4/4✓ Branch 0 taken 4680 times.
✓ Branch 1 taken 120 times.
✓ Branch 2 taken 4651920 times.
✓ Branch 3 taken 4680 times.
|
4656720 | xflwc = 0.D0 |
| 207 |
4/4✓ Branch 0 taken 4680 times.
✓ Branch 1 taken 120 times.
✓ Branch 2 taken 4651920 times.
✓ Branch 3 taken 4680 times.
|
4656720 | xfiwc = 0.D0 |
| 208 | |||
| 209 |
4/4✓ Branch 0 taken 4680 times.
✓ Branch 1 taken 120 times.
✓ Branch 2 taken 4651920 times.
✓ Branch 3 taken 4680 times.
|
4656720 | reliq = 0. |
| 210 |
4/4✓ Branch 0 taken 4680 times.
✓ Branch 1 taken 120 times.
✓ Branch 2 taken 4651920 times.
✓ Branch 3 taken 4680 times.
|
4656720 | reice = 0. |
| 211 |
4/4✓ Branch 0 taken 4680 times.
✓ Branch 1 taken 120 times.
✓ Branch 2 taken 4651920 times.
✓ Branch 3 taken 4680 times.
|
4656720 | reliq_pi = 0. |
| 212 |
4/4✓ Branch 0 taken 4680 times.
✓ Branch 1 taken 120 times.
✓ Branch 2 taken 4651920 times.
✓ Branch 3 taken 4680 times.
|
4656720 | reice_pi = 0. |
| 213 | |||
| 214 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 120 times.
|
120 | IF (iflag_t_glace.EQ.0) THEN |
| 215 | ✗ | DO k = 1, klev | |
| 216 | ✗ | DO i = 1, klon | |
| 217 | ! -layer calculation | ||
| 218 | ✗ | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 | |
| 219 | ✗ | zrho(i, k) = pplay(i, k)/t(i, k)/rd ! kg/m3 | |
| 220 | ✗ | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m | |
| 221 | ! -Fraction of ice in cloud using a linear transition | ||
| 222 | ✗ | zfice(i, k) = 1.0 - (t(i,k)-t_glace_min_old)/(t_glace_max_old-t_glace_min_old) | |
| 223 | ✗ | zfice(i, k) = min(max(zfice(i,k),0.0), 1.0) | |
| 224 | ! -IM Total Liquid/Ice water content | ||
| 225 | ✗ | xflwc(i, k) = (1.-zfice(i,k))*pqlwp(i, k) | |
| 226 | ✗ | xfiwc(i, k) = zfice(i, k)*pqlwp(i, k) | |
| 227 | ENDDO | ||
| 228 | ENDDO | ||
| 229 | ELSE ! of IF (iflag_t_glace.EQ.0) | ||
| 230 |
2/2✓ Branch 0 taken 120 times.
✓ Branch 1 taken 4680 times.
|
4800 | DO k = 1, klev |
| 231 |
3/4✓ Branch 0 taken 4680 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 4651920 times.
✓ Branch 3 taken 4680 times.
|
4656600 | CALL icefrac_lsc(klon,t(:,k),pplay(:,k)/paprs(:,1),zfice(:,k)) |
| 232 | |||
| 233 | |||
| 234 | ! JBM: icefrac_lsc is now contained icefrac_lsc_mod | ||
| 235 | ! zfice(i, k) = icefrac_lsc(t(i,k), t_glace_min, & | ||
| 236 | ! t_glace_max, exposant_glace) | ||
| 237 |
2/2✓ Branch 0 taken 4651920 times.
✓ Branch 1 taken 4680 times.
|
4656720 | DO i = 1, klon |
| 238 | ! -layer calculation | ||
| 239 | 4651920 | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 | |
| 240 | 4651920 | zrho(i, k) = pplay(i, k)/t(i, k)/rd ! kg/m3 | |
| 241 | 4651920 | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m | |
| 242 | ! -IM Total Liquid/Ice water content | ||
| 243 | 4651920 | xflwc(i, k) = (1.-zfice(i,k))*pqlwp(i, k) | |
| 244 | 4656600 | xfiwc(i, k) = zfice(i, k)*pqlwp(i, k) | |
| 245 | ENDDO | ||
| 246 | ENDDO | ||
| 247 | ENDIF | ||
| 248 | |||
| 249 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 120 times.
|
120 | IF (ok_cdnc) THEN |
| 250 | |||
| 251 | ! --we compute cloud properties as a function of the aerosol load | ||
| 252 | |||
| 253 | ✗ | DO k = 1, klev | |
| 254 | ✗ | DO i = 1, klon | |
| 255 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 | ||
| 256 | ! Cloud droplet number concentration (CDNC) is restricted | ||
| 257 | ! to be within [20, 1000 cm^3] | ||
| 258 | |||
| 259 | ! --pre-industrial case | ||
| 260 | cdnc_pi(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero_pi(i,k), & | ||
| 261 | ✗ | 1.E-4))/log(10.))*1.E6 !-m-3 | |
| 262 | ✗ | cdnc_pi(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc_pi(i,k))) | |
| 263 | |||
| 264 | ENDDO | ||
| 265 | ENDDO | ||
| 266 | |||
| 267 | !--flag_aerosol=7 => MACv2SP climatology | ||
| 268 | !--in this case there is an enhancement factor | ||
| 269 | ✗ | IF (flag_aerosol .EQ. 7) THEN | |
| 270 | |||
| 271 | !--present-day | ||
| 272 | ✗ | DO k = 1, klev | |
| 273 | ✗ | DO i = 1, klon | |
| 274 | ✗ | cdnc(i, k) = cdnc_pi(i,k)*dNovrN(i) | |
| 275 | ENDDO | ||
| 276 | ENDDO | ||
| 277 | |||
| 278 | !--standard case | ||
| 279 | ELSE | ||
| 280 | |||
| 281 | ✗ | DO k = 1, klev | |
| 282 | ✗ | DO i = 1, klon | |
| 283 | |||
| 284 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 | ||
| 285 | ! Cloud droplet number concentration (CDNC) is restricted | ||
| 286 | ! to be within [20, 1000 cm^3] | ||
| 287 | |||
| 288 | ! --present-day case | ||
| 289 | cdnc(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero(i,k), & | ||
| 290 | ✗ | 1.E-4))/log(10.))*1.E6 !-m-3 | |
| 291 | ✗ | cdnc(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc(i,k))) | |
| 292 | |||
| 293 | ENDDO | ||
| 294 | ENDDO | ||
| 295 | |||
| 296 | ENDIF !--flag_aerosol | ||
| 297 | |||
| 298 | !--computing cloud droplet size | ||
| 299 | ✗ | DO k = 1, klev | |
| 300 | ✗ | DO i = 1, klon | |
| 301 | |||
| 302 | ! --present-day case | ||
| 303 | rad_chaud(i, k) = 1.1*((pqlwp(i,k)*pplay(i, & | ||
| 304 | ✗ | k)/(rd*t(i,k)))/(4./3*rpi*1000.*cdnc(i,k)))**(1./3.) | |
| 305 | ✗ | rad_chaud(i, k) = max(rad_chaud(i,k)*1.E6, 5.) | |
| 306 | |||
| 307 | ! --pre-industrial case | ||
| 308 | rad_chaud_pi(i, k) = 1.1*((pqlwp(i,k)*pplay(i, & | ||
| 309 | ✗ | k)/(rd*t(i,k)))/(4./3.*rpi*1000.*cdnc_pi(i,k)))**(1./3.) | |
| 310 | ✗ | rad_chaud_pi(i, k) = max(rad_chaud_pi(i,k)*1.E6, 5.) | |
| 311 | |||
| 312 | ! --pre-industrial case | ||
| 313 | ! --liquid/ice cloud water paths: | ||
| 314 | ✗ | IF (pclc(i,k)<=seuil_neb) THEN | |
| 315 | |||
| 316 | ✗ | pcldtaupi(i, k) = 0.0 | |
| 317 | |||
| 318 | ELSE | ||
| 319 | |||
| 320 | zflwp_var = 1000.*(1.-zfice(i,k))*pqlwp(i, k)/pclc(i, k)* & | ||
| 321 | ✗ | rhodz(i, k) | |
| 322 | ✗ | zfiwp_var = 1000.*zfice(i, k)*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) | |
| 323 | ✗ | tc = t(i, k) - 273.15 | |
| 324 | ✗ | rei = d_rei_dt*tc + rei_max | |
| 325 | ✗ | IF (tc<=-81.4) rei = rei_min | |
| 326 | |||
| 327 | ! -- cloud optical thickness : | ||
| 328 | ! [for liquid clouds, traditional formula, | ||
| 329 | ! for ice clouds, Ebert & Curry (1992)] | ||
| 330 | |||
| 331 | ✗ | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. | |
| 332 | pcldtaupi(i, k) = 3.0/2.0*zflwp_var/rad_chaud_pi(i, k) + & | ||
| 333 | ✗ | zfiwp_var*(3.448E-03+2.431/rei) | |
| 334 | |||
| 335 | ENDIF | ||
| 336 | |||
| 337 | ENDDO | ||
| 338 | ENDDO | ||
| 339 | |||
| 340 | ELSE !--not ok_cdnc | ||
| 341 | |||
| 342 | ! -prescribed cloud droplet radius | ||
| 343 | |||
| 344 |
2/2✓ Branch 0 taken 360 times.
✓ Branch 1 taken 120 times.
|
480 | DO k = 1, min(3, klev) |
| 345 |
2/2✓ Branch 0 taken 357840 times.
✓ Branch 1 taken 360 times.
|
358320 | DO i = 1, klon |
| 346 | 357840 | rad_chaud(i, k) = rad_chau2 | |
| 347 | 358200 | rad_chaud_pi(i, k) = rad_chau2 | |
| 348 | ENDDO | ||
| 349 | ENDDO | ||
| 350 |
2/2✓ Branch 0 taken 120 times.
✓ Branch 1 taken 4320 times.
|
4440 | DO k = min(3, klev) + 1, klev |
| 351 |
2/2✓ Branch 0 taken 4294080 times.
✓ Branch 1 taken 4320 times.
|
4298520 | DO i = 1, klon |
| 352 | 4294080 | rad_chaud(i, k) = rad_chau1 | |
| 353 | 4298400 | rad_chaud_pi(i, k) = rad_chau1 | |
| 354 | ENDDO | ||
| 355 | ENDDO | ||
| 356 | |||
| 357 | ENDIF !--ok_cdnc | ||
| 358 | |||
| 359 | ! --computation of cloud optical depth and emissivity | ||
| 360 | ! --in the general case | ||
| 361 | |||
| 362 |
2/2✓ Branch 0 taken 4680 times.
✓ Branch 1 taken 120 times.
|
4800 | DO k = 1, klev |
| 363 |
2/2✓ Branch 0 taken 4651920 times.
✓ Branch 1 taken 4680 times.
|
4656720 | DO i = 1, klon |
| 364 | |||
| 365 |
2/2✓ Branch 0 taken 3559836 times.
✓ Branch 1 taken 1092084 times.
|
4651920 | IF (pclc(i,k)<=seuil_neb) THEN |
| 366 | |||
| 367 | ! effective cloud droplet radius (microns) for liquid water clouds: | ||
| 368 | ! For output diagnostics cloud droplet effective radius [um] | ||
| 369 | ! we multiply here with f * xl (fraction of liquid water | ||
| 370 | ! clouds in the grid cell) to avoid problems in the averaging of the | ||
| 371 | ! output. | ||
| 372 | ! In the output of IOIPSL, derive the REAL cloud droplet | ||
| 373 | ! effective radius as re/fl | ||
| 374 | |||
| 375 | 3559836 | fl(i, k) = seuil_neb*(1.-zfice(i,k)) | |
| 376 | 3559836 | re(i, k) = rad_chaud(i, k)*fl(i, k) | |
| 377 | rel = 0. | ||
| 378 | rei = 0. | ||
| 379 | 3559836 | pclc(i, k) = 0.0 | |
| 380 | 3559836 | pcltau(i, k) = 0.0 | |
| 381 | 3559836 | pclemi(i, k) = 0.0 | |
| 382 | |||
| 383 | ELSE | ||
| 384 | |||
| 385 | ! -- liquid/ice cloud water paths: | ||
| 386 | |||
| 387 | 1092084 | zflwp_var = 1000.*(1.-zfice(i,k))*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) | |
| 388 | 1092084 | zfiwp_var = 1000.*zfice(i, k)*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) | |
| 389 | |||
| 390 | ! effective cloud droplet radius (microns) for liquid water clouds: | ||
| 391 | ! For output diagnostics cloud droplet effective radius [um] | ||
| 392 | ! we multiply here with f * xl (fraction of liquid water | ||
| 393 | ! clouds in the grid cell) to avoid problems in the averaging of the | ||
| 394 | ! output. | ||
| 395 | ! In the output of IOIPSL, derive the REAL cloud droplet | ||
| 396 | ! effective radius as re/fl | ||
| 397 | |||
| 398 | 1092084 | fl(i, k) = pclc(i, k)*(1.-zfice(i,k)) | |
| 399 | 1092084 | re(i, k) = rad_chaud(i, k)*fl(i, k) | |
| 400 | |||
| 401 | rel = rad_chaud(i, k) | ||
| 402 | |||
| 403 | ! for ice clouds: as a function of the ambiant temperature | ||
| 404 | ! [formula used by Iacobellis and Somerville (2000), with an | ||
| 405 | ! asymptotical value of 3.5 microns at T<-81.4 C added to be | ||
| 406 | ! consistent with observations of Heymsfield et al. 1986]: | ||
| 407 | ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as | ||
| 408 | ! rei_max=61.29 | ||
| 409 | |||
| 410 | 1092084 | tc = t(i, k) - 273.15 | |
| 411 | 1092084 | rei = d_rei_dt*tc + rei_max | |
| 412 |
2/2✓ Branch 0 taken 293 times.
✓ Branch 1 taken 1091791 times.
|
1092084 | IF (tc<=-81.4) rei = rei_min |
| 413 | |||
| 414 | ! -- cloud optical thickness : | ||
| 415 | ! [for liquid clouds, traditional formula, | ||
| 416 | ! for ice clouds, Ebert & Curry (1992)] | ||
| 417 | |||
| 418 |
2/2✓ Branch 0 taken 553219 times.
✓ Branch 1 taken 538865 times.
|
1092084 | IF (zflwp_var==0.) rel = 1. |
| 419 |
3/4✓ Branch 0 taken 923912 times.
✓ Branch 1 taken 168172 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 923912 times.
|
1092084 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
| 420 | pcltau(i, k) = 3.0/2.0*(zflwp_var/rel) + zfiwp_var*(3.448E-03+2.431/ & | ||
| 421 | 1092084 | rei) | |
| 422 | |||
| 423 | ! -- cloud infrared emissivity: | ||
| 424 | ! [the broadband infrared absorption coefficient is PARAMETERized | ||
| 425 | ! as a function of the effective cld droplet radius] | ||
| 426 | ! Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): | ||
| 427 | |||
| 428 | 1092084 | k_ice = k_ice0 + 1.0/rei | |
| 429 | |||
| 430 | 1092084 | pclemi(i, k) = 1.0 - exp(-coef_chau*zflwp_var-df*k_ice*zfiwp_var) | |
| 431 | |||
| 432 | ENDIF | ||
| 433 | |||
| 434 | 4651920 | reice(i, k) = rei | |
| 435 | |||
| 436 | 4651920 | xflwp(i) = xflwp(i) + xflwc(i, k)*rhodz(i, k) | |
| 437 | 4656600 | xfiwp(i) = xfiwp(i) + xfiwc(i, k)*rhodz(i, k) | |
| 438 | |||
| 439 | ENDDO | ||
| 440 | ENDDO | ||
| 441 | |||
| 442 | ! --if cloud droplet radius is fixed, then pcldtaupi=pcltau | ||
| 443 | |||
| 444 |
1/2✓ Branch 0 taken 120 times.
✗ Branch 1 not taken.
|
120 | IF (.NOT. ok_cdnc) THEN |
| 445 |
2/2✓ Branch 0 taken 120 times.
✓ Branch 1 taken 4680 times.
|
4800 | DO k = 1, klev |
| 446 |
2/2✓ Branch 0 taken 4651920 times.
✓ Branch 1 taken 4680 times.
|
4656720 | DO i = 1, klon |
| 447 | 4651920 | pcldtaupi(i, k) = pcltau(i, k) | |
| 448 | 4656600 | reice_pi(i, k) = reice(i, k) | |
| 449 | ENDDO | ||
| 450 | ENDDO | ||
| 451 | ENDIF | ||
| 452 | |||
| 453 |
2/2✓ Branch 0 taken 4680 times.
✓ Branch 1 taken 120 times.
|
4800 | DO k = 1, klev |
| 454 |
2/2✓ Branch 0 taken 4651920 times.
✓ Branch 1 taken 4680 times.
|
4656720 | DO i = 1, klon |
| 455 | 4651920 | reliq(i, k) = rad_chaud(i, k) | |
| 456 | 4651920 | reliq_pi(i, k) = rad_chaud_pi(i, k) | |
| 457 | 4656600 | reice_pi(i, k) = reice(i, k) | |
| 458 | ENDDO | ||
| 459 | ENDDO | ||
| 460 | |||
| 461 | ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS | ||
| 462 | ! IM cf. CR:test: calcul prenant ou non en compte le recouvrement | ||
| 463 | ! initialisations | ||
| 464 | |||
| 465 |
2/2✓ Branch 0 taken 119280 times.
✓ Branch 1 taken 120 times.
|
119400 | DO i = 1, klon |
| 466 | 119280 | zclear(i) = 1. | |
| 467 | 119280 | zcloud(i) = 0. | |
| 468 | 119280 | zcloudh(i) = 0. | |
| 469 | 119280 | zcloudm(i) = 0. | |
| 470 | 119280 | zcloudl(i) = 0. | |
| 471 | 119280 | pch(i) = 1.0 | |
| 472 | 119280 | pcm(i) = 1.0 | |
| 473 | 119280 | pcl(i) = 1.0 | |
| 474 | 119400 | pctlwp(i) = 0.0 | |
| 475 | ENDDO | ||
| 476 | |||
| 477 | ! --calculation of liquid water path | ||
| 478 | |||
| 479 |
2/2✓ Branch 0 taken 4680 times.
✓ Branch 1 taken 120 times.
|
4800 | DO k = klev, 1, -1 |
| 480 |
2/2✓ Branch 0 taken 4651920 times.
✓ Branch 1 taken 4680 times.
|
4656720 | DO i = 1, klon |
| 481 | 4656600 | pctlwp(i) = pctlwp(i) + pqlwp(i, k)*rhodz(i, k) | |
| 482 | ENDDO | ||
| 483 | ENDDO | ||
| 484 | |||
| 485 | ! --calculation of cloud properties with cloud overlap | ||
| 486 | |||
| 487 | IF (novlp==1) THEN | ||
| 488 |
2/2✓ Branch 0 taken 4680 times.
✓ Branch 1 taken 120 times.
|
4800 | DO k = klev, 1, -1 |
| 489 |
2/2✓ Branch 0 taken 4651920 times.
✓ Branch 1 taken 4680 times.
|
4656720 | DO i = 1, klon |
| 490 | zclear(i) = zclear(i)*(1.-max(pclc(i,k),zcloud(i)))/(1.-min(real( & | ||
| 491 | 4651920 | zcloud(i),kind=8),1.-zepsec)) | |
| 492 | 4651920 | pct(i) = 1. - zclear(i) | |
| 493 |
2/2✓ Branch 0 taken 3116400 times.
✓ Branch 1 taken 1535520 times.
|
4651920 | IF (paprs(i,k)<prmhc) THEN |
| 494 | pch(i) = pch(i)*(1.-max(pclc(i,k),zcloudh(i)))/(1.-min(real(zcloudh & | ||
| 495 | 3116400 | (i),kind=8),1.-zepsec)) | |
| 496 | 3116400 | zcloudh(i) = pclc(i, k) | |
| 497 |
3/4✓ Branch 0 taken 1535520 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 412339 times.
✓ Branch 3 taken 1123181 times.
|
1535520 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
| 498 | pcm(i) = pcm(i)*(1.-max(pclc(i,k),zcloudm(i)))/(1.-min(real(zcloudm & | ||
| 499 | 412339 | (i),kind=8),1.-zepsec)) | |
| 500 | 412339 | zcloudm(i) = pclc(i, k) | |
| 501 |
1/2✓ Branch 0 taken 1123181 times.
✗ Branch 1 not taken.
|
1123181 | ELSE IF (paprs(i,k)>=prlmc) THEN |
| 502 | pcl(i) = pcl(i)*(1.-max(pclc(i,k),zcloudl(i)))/(1.-min(real(zcloudl & | ||
| 503 | 1123181 | (i),kind=8),1.-zepsec)) | |
| 504 | 1123181 | zcloudl(i) = pclc(i, k) | |
| 505 | ENDIF | ||
| 506 | 4656600 | zcloud(i) = pclc(i, k) | |
| 507 | ENDDO | ||
| 508 | ENDDO | ||
| 509 | ELSE IF (novlp==2) THEN | ||
| 510 | DO k = klev, 1, -1 | ||
| 511 | DO i = 1, klon | ||
| 512 | zcloud(i) = max(pclc(i,k), zcloud(i)) | ||
| 513 | pct(i) = zcloud(i) | ||
| 514 | IF (paprs(i,k)<prmhc) THEN | ||
| 515 | pch(i) = min(pclc(i,k), pch(i)) | ||
| 516 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN | ||
| 517 | pcm(i) = min(pclc(i,k), pcm(i)) | ||
| 518 | ELSE IF (paprs(i,k)>=prlmc) THEN | ||
| 519 | pcl(i) = min(pclc(i,k), pcl(i)) | ||
| 520 | ENDIF | ||
| 521 | ENDDO | ||
| 522 | ENDDO | ||
| 523 | ELSE IF (novlp==3) THEN | ||
| 524 | DO k = klev, 1, -1 | ||
| 525 | DO i = 1, klon | ||
| 526 | zclear(i) = zclear(i)*(1.-pclc(i,k)) | ||
| 527 | pct(i) = 1 - zclear(i) | ||
| 528 | IF (paprs(i,k)<prmhc) THEN | ||
| 529 | pch(i) = pch(i)*(1.0-pclc(i,k)) | ||
| 530 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN | ||
| 531 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) | ||
| 532 | ELSE IF (paprs(i,k)>=prlmc) THEN | ||
| 533 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) | ||
| 534 | ENDIF | ||
| 535 | ENDDO | ||
| 536 | ENDDO | ||
| 537 | ENDIF | ||
| 538 | |||
| 539 |
2/2✓ Branch 0 taken 119280 times.
✓ Branch 1 taken 120 times.
|
119400 | DO i = 1, klon |
| 540 | 119280 | pch(i) = 1. - pch(i) | |
| 541 | 119280 | pcm(i) = 1. - pcm(i) | |
| 542 | 119400 | pcl(i) = 1. - pcl(i) | |
| 543 | ENDDO | ||
| 544 | |||
| 545 | ! ======================================================== | ||
| 546 | ! DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL | ||
| 547 | ! ======================================================== | ||
| 548 | ! change by Nicolas Yan (LSCE) | ||
| 549 | ! Cloud Droplet Number Concentration (CDNC) : 3D variable | ||
| 550 | ! Fractionnal cover by liquid water cloud (LCC3D) : 3D variable | ||
| 551 | ! Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable | ||
| 552 | ! Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable | ||
| 553 | ! Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable | ||
| 554 | |||
| 555 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 120 times.
|
120 | IF (ok_cdnc) THEN |
| 556 | |||
| 557 | ✗ | DO k = 1, klev | |
| 558 | ✗ | DO i = 1, klon | |
| 559 | ✗ | phase3d(i, k) = 1 - zfice(i, k) | |
| 560 | ✗ | IF (pclc(i,k)<=seuil_neb) THEN | |
| 561 | ✗ | lcc3d(i, k) = seuil_neb*phase3d(i, k) | |
| 562 | ELSE | ||
| 563 | ✗ | lcc3d(i, k) = pclc(i, k)*phase3d(i, k) | |
| 564 | ENDIF | ||
| 565 | ✗ | scdnc(i, k) = lcc3d(i, k)*cdnc(i, k) ! m-3 | |
| 566 | ENDDO | ||
| 567 | ENDDO | ||
| 568 | |||
| 569 | ✗ | DO i = 1, klon | |
| 570 | ✗ | lcc(i) = 0. | |
| 571 | ✗ | reffclwtop(i) = 0. | |
| 572 | ✗ | cldncl(i) = 0. | |
| 573 | ✗ | IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. | |
| 574 | ✗ | IF (novlp.EQ.2) tcc(i) = 0. | |
| 575 | ENDDO | ||
| 576 | |||
| 577 | ✗ | DO i = 1, klon | |
| 578 | ✗ | DO k = klev - 1, 1, -1 !From TOA down | |
| 579 | |||
| 580 | ! Test, if the cloud optical depth exceeds the necessary | ||
| 581 | ! threshold: | ||
| 582 | |||
| 583 | ✗ | IF (pcltau(i,k)>thres_tau .AND. pclc(i,k)>thres_neb) THEN | |
| 584 | |||
| 585 | IF (novlp.EQ.2) THEN | ||
| 586 | IF (first) THEN | ||
| 587 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM' | ||
| 588 | first = .FALSE. | ||
| 589 | ENDIF | ||
| 590 | flag_max = -1. | ||
| 591 | ftmp(i) = max(tcc(i), pclc(i,k)) | ||
| 592 | ENDIF | ||
| 593 | |||
| 594 | IF (novlp.EQ.3) THEN | ||
| 595 | IF (first) THEN | ||
| 596 | WRITE (*, *) 'Hypothese de recouvrement: RANDOM' | ||
| 597 | first = .FALSE. | ||
| 598 | ENDIF | ||
| 599 | flag_max = 1. | ||
| 600 | ftmp(i) = tcc(i)*(1-pclc(i,k)) | ||
| 601 | ENDIF | ||
| 602 | |||
| 603 | IF (novlp.EQ.1) THEN | ||
| 604 | ✗ | IF (first) THEN | |
| 605 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM_ & | ||
| 606 | & & | ||
| 607 | ✗ | & RANDOM' | |
| 608 | ✗ | first = .FALSE. | |
| 609 | ENDIF | ||
| 610 | flag_max = 1. | ||
| 611 | ftmp(i) = tcc(i)*(1.-max(pclc(i,k),pclc(i,k+1)))/(1.-min(pclc(i, & | ||
| 612 | ✗ | k+1),1.-thres_neb)) | |
| 613 | ENDIF | ||
| 614 | ! Effective radius of cloud droplet at top of cloud (m) | ||
| 615 | reffclwtop(i) = reffclwtop(i) + rad_chaud(i, k)*1.0E-06*phase3d(i, & | ||
| 616 | ✗ | k)*(tcc(i)-ftmp(i))*flag_max | |
| 617 | ! CDNC at top of cloud (m-3) | ||
| 618 | cldncl(i) = cldncl(i) + cdnc(i, k)*phase3d(i, k)*(tcc(i)-ftmp(i))* & | ||
| 619 | ✗ | flag_max | |
| 620 | ! Liquid Cloud Content at top of cloud | ||
| 621 | ✗ | lcc(i) = lcc(i) + phase3d(i, k)*(tcc(i)-ftmp(i))*flag_max | |
| 622 | ! Total Cloud Content at top of cloud | ||
| 623 | ✗ | tcc(i) = ftmp(i) | |
| 624 | |||
| 625 | ENDIF ! is there a visible, not-too-small cloud? | ||
| 626 | ENDDO ! loop over k | ||
| 627 | |||
| 628 | ✗ | IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. - tcc(i) | |
| 629 | |||
| 630 | ENDDO ! loop over i | ||
| 631 | |||
| 632 | ! ! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC | ||
| 633 | ! REFFCLWS) | ||
| 634 | ✗ | DO i = 1, klon | |
| 635 | ✗ | DO k = 1, klev | |
| 636 | ! Weight to be used for outputs: eau_liquide*couverture nuageuse | ||
| 637 | ✗ | lcc3dcon(i, k) = rnebcon(i, k)*phase3d(i, k)*clwcon(i, k) ! eau liquide convective | |
| 638 | ✗ | lcc3dstra(i, k) = pclc(i, k)*pqlwp(i, k)*phase3d(i, k) | |
| 639 | ✗ | lcc3dstra(i, k) = lcc3dstra(i, k) - lcc3dcon(i, k) ! eau liquide stratiforme | |
| 640 | ✗ | lcc3dstra(i, k) = max(lcc3dstra(i,k), 0.0) | |
| 641 | !FC pour la glace (CAUSES) | ||
| 642 | ✗ | icc3dcon(i, k) = rnebcon(i, k)*(1-phase3d(i, k))*clwcon(i, k) ! glace convective | |
| 643 | ✗ | icc3dstra(i, k)= pclc(i, k)*pqlwp(i, k)*(1-phase3d(i, k)) | |
| 644 | ✗ | icc3dstra(i, k) = icc3dstra(i, k) - icc3dcon(i, k) ! glace stratiforme | |
| 645 | ✗ | icc3dstra(i, k) = max( icc3dstra(i, k), 0.0) | |
| 646 | !FC (CAUSES) | ||
| 647 | |||
| 648 | ! Compute cloud droplet radius as above in meter | ||
| 649 | radius = 1.1*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3*rpi*1000.* & | ||
| 650 | ✗ | cdnc(i,k)))**(1./3.) | |
| 651 | ✗ | radius = max(radius, 5.E-6) | |
| 652 | ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D | ||
| 653 | ✗ | reffclwc(i, k) = radius | |
| 654 | ✗ | reffclwc(i, k) = reffclwc(i, k)*lcc3dcon(i, k) | |
| 655 | ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D | ||
| 656 | ✗ | reffclws(i, k) = radius | |
| 657 | ✗ | reffclws(i, k) = reffclws(i, k)*lcc3dstra(i, k) | |
| 658 | ENDDO !klev | ||
| 659 | ENDDO !klon | ||
| 660 | |||
| 661 | ! Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D | ||
| 662 | |||
| 663 | ✗ | DO i = 1, klon | |
| 664 | ✗ | cldnvi(i) = 0. | |
| 665 | ✗ | lcc_integrat(i) = 0. | |
| 666 | ✗ | height(i) = 0. | |
| 667 | ✗ | DO k = 1, klev | |
| 668 | ✗ | cldnvi(i) = cldnvi(i) + cdnc(i, k)*lcc3d(i, k)*dh(i, k) | |
| 669 | ✗ | lcc_integrat(i) = lcc_integrat(i) + lcc3d(i, k)*dh(i, k) | |
| 670 | ✗ | height(i) = height(i) + dh(i, k) | |
| 671 | ENDDO ! klev | ||
| 672 | ✗ | lcc_integrat(i) = lcc_integrat(i)/height(i) | |
| 673 | ✗ | IF (lcc_integrat(i)<=1.0E-03) THEN | |
| 674 | ✗ | cldnvi(i) = cldnvi(i)*lcc(i)/seuil_neb | |
| 675 | ELSE | ||
| 676 | ✗ | cldnvi(i) = cldnvi(i)*lcc(i)/lcc_integrat(i) | |
| 677 | ENDIF | ||
| 678 | ENDDO ! klon | ||
| 679 | |||
| 680 | ✗ | DO i = 1, klon | |
| 681 | ✗ | DO k = 1, klev | |
| 682 | ✗ | IF (scdnc(i,k)<=0.0) scdnc(i, k) = 0.0 | |
| 683 | ✗ | IF (reffclws(i,k)<=0.0) reffclws(i, k) = 0.0 | |
| 684 | ✗ | IF (reffclwc(i,k)<=0.0) reffclwc(i, k) = 0.0 | |
| 685 | ✗ | IF (lcc3d(i,k)<=0.0) lcc3d(i, k) = 0.0 | |
| 686 | ✗ | IF (lcc3dcon(i,k)<=0.0) lcc3dcon(i, k) = 0.0 | |
| 687 | ✗ | IF (lcc3dstra(i,k)<=0.0) lcc3dstra(i, k) = 0.0 | |
| 688 | !FC (CAUSES) | ||
| 689 | ✗ | IF (icc3dcon(i,k)<=0.0) icc3dcon(i, k) = 0.0 | |
| 690 | ✗ | IF (icc3dstra(i,k)<=0.0) icc3dstra(i, k) = 0.0 | |
| 691 | !FC (CAUSES) | ||
| 692 | ENDDO | ||
| 693 | ✗ | IF (reffclwtop(i)<=0.0) reffclwtop(i) = 0.0 | |
| 694 | ✗ | IF (cldncl(i)<=0.0) cldncl(i) = 0.0 | |
| 695 | ✗ | IF (cldnvi(i)<=0.0) cldnvi(i) = 0.0 | |
| 696 | ✗ | IF (lcc(i)<=0.0) lcc(i) = 0.0 | |
| 697 | ENDDO | ||
| 698 | |||
| 699 | ENDIF !ok_cdnc | ||
| 700 | |||
| 701 | 120 | first=.false. !to be sure | |
| 702 | |||
| 703 | 120 | RETURN | |
| 704 | |||
| 705 | END SUBROUTINE newmicro | ||
| 706 |