| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! $Id: nuage.F90 2346 2015-08-21 15:13:46Z emillour $ |
| 2 |
|
|
|
| 3 |
|
✗ |
SUBROUTINE nuage(paprs, pplay, t, pqlwp, pclc, pcltau, pclemi, pch, pcl, pcm, & |
| 4 |
|
✗ |
pct, pctlwp, ok_aie, mass_solu_aero, mass_solu_aero_pi, bl95_b0, bl95_b1, & |
| 5 |
|
|
cldtaupi, re, fl) |
| 6 |
|
|
USE dimphy |
| 7 |
|
|
USE icefrac_lsc_mod ! computes ice fraction (JBM 3/14) |
| 8 |
|
|
IMPLICIT NONE |
| 9 |
|
|
! ====================================================================== |
| 10 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
| 11 |
|
|
! Objet: Calculer epaisseur optique et emmissivite des nuages |
| 12 |
|
|
! ====================================================================== |
| 13 |
|
|
! Arguments: |
| 14 |
|
|
! t-------input-R-temperature |
| 15 |
|
|
! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
| 16 |
|
|
! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
| 17 |
|
|
! ok_aie--input-L-apply aerosol indirect effect or not |
| 18 |
|
|
! mass_solu_aero-----input-R-total mass concentration for all soluble |
| 19 |
|
|
! aerosols[ug/m^3] |
| 20 |
|
|
! mass_solu_aero_pi--input-R-dito, pre-industrial value |
| 21 |
|
|
! bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
| 22 |
|
|
! bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
| 23 |
|
|
|
| 24 |
|
|
! cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
| 25 |
|
|
! needed for the diagnostics of the aerosol indirect |
| 26 |
|
|
! radiative forcing (see radlwsw) |
| 27 |
|
|
! re------output-R-Cloud droplet effective radius multiplied by fl [um] |
| 28 |
|
|
! fl------output-R-Denominator to re, introduced to avoid problems in |
| 29 |
|
|
! the averaging of the output. fl is the fraction of liquid |
| 30 |
|
|
! water clouds within a grid cell |
| 31 |
|
|
|
| 32 |
|
|
! pcltau--output-R-epaisseur optique des nuages |
| 33 |
|
|
! pclemi--output-R-emissivite des nuages (0 a 1) |
| 34 |
|
|
! ====================================================================== |
| 35 |
|
|
|
| 36 |
|
|
include "YOMCST.h" |
| 37 |
|
|
include "nuage.h" ! JBM 3/14 |
| 38 |
|
|
|
| 39 |
|
|
REAL paprs(klon, klev+1), pplay(klon, klev) |
| 40 |
|
|
REAL t(klon, klev) |
| 41 |
|
|
|
| 42 |
|
|
REAL pclc(klon, klev) |
| 43 |
|
|
REAL pqlwp(klon, klev) |
| 44 |
|
|
REAL pcltau(klon, klev), pclemi(klon, klev) |
| 45 |
|
|
|
| 46 |
|
|
REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
| 47 |
|
|
|
| 48 |
|
|
LOGICAL lo |
| 49 |
|
|
|
| 50 |
|
|
REAL cetahb, cetamb |
| 51 |
|
|
PARAMETER (cetahb=0.45, cetamb=0.80) |
| 52 |
|
|
|
| 53 |
|
|
INTEGER i, k |
| 54 |
|
✗ |
REAL zflwp, zradef, zfice(klon), zmsac |
| 55 |
|
|
|
| 56 |
|
|
REAL radius, rad_chaud |
| 57 |
|
|
! JBM (3/14) parameters already defined in nuage.h: |
| 58 |
|
|
! REAL rad_froid, rad_chau1, rad_chau2 |
| 59 |
|
|
! PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
| 60 |
|
|
! cc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
| 61 |
|
|
! sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
| 62 |
|
|
REAL coef, coef_froi, coef_chau |
| 63 |
|
|
PARAMETER (coef_chau=0.13, coef_froi=0.09) |
| 64 |
|
|
REAL seuil_neb |
| 65 |
|
|
PARAMETER (seuil_neb=0.001) |
| 66 |
|
|
! JBM (3/14) nexpo is replaced by exposant_glace |
| 67 |
|
|
! REAL nexpo ! exponentiel pour glace/eau |
| 68 |
|
|
! PARAMETER (nexpo=6.) |
| 69 |
|
|
REAL, PARAMETER :: t_glace_min_old = 258. |
| 70 |
|
|
INTEGER, PARAMETER :: exposant_glace_old = 6 |
| 71 |
|
|
|
| 72 |
|
|
|
| 73 |
|
|
! jq for the aerosol indirect effect |
| 74 |
|
|
! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
| 75 |
|
|
! jq |
| 76 |
|
|
LOGICAL ok_aie ! Apply AIE or not? |
| 77 |
|
|
|
| 78 |
|
|
REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols[ug m-3] |
| 79 |
|
|
REAL mass_solu_aero_pi(klon, klev) ! - " - pre-industrial value |
| 80 |
|
✗ |
REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
| 81 |
|
|
REAL re(klon, klev) ! cloud droplet effective radius [um] |
| 82 |
|
✗ |
REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
| 83 |
|
|
REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
| 84 |
|
|
|
| 85 |
|
|
REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds |
| 86 |
|
|
! within the grid cell) |
| 87 |
|
|
|
| 88 |
|
|
REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
| 89 |
|
|
|
| 90 |
|
|
REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
| 91 |
|
|
! jq-end |
| 92 |
|
|
|
| 93 |
|
|
! cc PARAMETER (nexpo=1) |
| 94 |
|
|
|
| 95 |
|
|
! Calculer l'epaisseur optique et l'emmissivite des nuages |
| 96 |
|
|
|
| 97 |
|
✗ |
DO k = 1, klev |
| 98 |
|
✗ |
IF (iflag_t_glace.EQ.0) THEN |
| 99 |
|
✗ |
DO i = 1, klon |
| 100 |
|
✗ |
zfice(i) = 1.0 - (t(i,k)-t_glace_min_old)/(273.13-t_glace_min_old) |
| 101 |
|
✗ |
zfice(i) = min(max(zfice(i),0.0), 1.0) |
| 102 |
|
✗ |
zfice(i) = zfice(i)**exposant_glace_old |
| 103 |
|
|
ENDDO |
| 104 |
|
|
ELSE ! of IF (iflag_t_glace.EQ.0) |
| 105 |
|
|
! JBM: icefrac_lsc is now a function contained in icefrac_lsc_mod |
| 106 |
|
|
! zfice(i) = icefrac_lsc(t(i,k), t_glace_min, & |
| 107 |
|
|
! t_glace_max, exposant_glace) |
| 108 |
|
✗ |
CALL icefrac_lsc(klon,t(:,k),pplay(:,k)/paprs(:,1),zfice(:)) |
| 109 |
|
|
ENDIF |
| 110 |
|
|
|
| 111 |
|
✗ |
DO i = 1, klon |
| 112 |
|
✗ |
rad_chaud = rad_chau1 |
| 113 |
|
✗ |
IF (k<=3) rad_chaud = rad_chau2 |
| 114 |
|
|
|
| 115 |
|
✗ |
pclc(i, k) = max(pclc(i,k), seuil_neb) |
| 116 |
|
✗ |
zflwp = 1000.*pqlwp(i, k)/rg/pclc(i, k)*(paprs(i,k)-paprs(i,k+1)) |
| 117 |
|
|
|
| 118 |
|
✗ |
IF (ok_aie) THEN |
| 119 |
|
|
! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
| 120 |
|
|
! |
| 121 |
|
|
cdnc(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero(i,k), & |
| 122 |
|
✗ |
1.E-4))/log(10.))*1.E6 !-m-3 |
| 123 |
|
|
! Cloud droplet number concentration (CDNC) is restricted |
| 124 |
|
|
! to be within [20, 1000 cm^3] |
| 125 |
|
|
! |
| 126 |
|
✗ |
cdnc(i, k) = min(1000.E6, max(20.E6,cdnc(i,k))) |
| 127 |
|
|
cdnc_pi(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero_pi(i,k), & |
| 128 |
|
✗ |
1.E-4))/log(10.))*1.E6 !-m-3 |
| 129 |
|
✗ |
cdnc_pi(i, k) = min(1000.E6, max(20.E6,cdnc_pi(i,k))) |
| 130 |
|
|
! |
| 131 |
|
|
! |
| 132 |
|
|
! air density: pplay(i,k) / (RD * zT(i,k)) |
| 133 |
|
|
! factor 1.1: derive effective radius from volume-mean radius |
| 134 |
|
|
! factor 1000 is the water density |
| 135 |
|
|
! _chaud means that this is the CDR for liquid water clouds |
| 136 |
|
|
! |
| 137 |
|
|
rad_chaud = 1.1*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3.*rpi*1000. & |
| 138 |
|
✗ |
*cdnc(i,k)))**(1./3.) |
| 139 |
|
|
! |
| 140 |
|
|
! Convert to um. CDR shall be at least 3 um. |
| 141 |
|
|
! |
| 142 |
|
✗ |
rad_chaud = max(rad_chaud*1.E6, 3.) |
| 143 |
|
|
|
| 144 |
|
|
! For output diagnostics |
| 145 |
|
|
! |
| 146 |
|
|
! Cloud droplet effective radius [um] |
| 147 |
|
|
! |
| 148 |
|
|
! we multiply here with f * xl (fraction of liquid water |
| 149 |
|
|
! clouds in the grid cell) to avoid problems in the |
| 150 |
|
|
! averaging of the output. |
| 151 |
|
|
! In the output of IOIPSL, derive the real cloud droplet |
| 152 |
|
|
! effective radius as re/fl |
| 153 |
|
|
! |
| 154 |
|
✗ |
fl(i, k) = pclc(i, k)*(1.-zfice(i)) |
| 155 |
|
✗ |
re(i, k) = rad_chaud*fl(i, k) |
| 156 |
|
|
|
| 157 |
|
|
! Pre-industrial cloud opt thickness |
| 158 |
|
|
! |
| 159 |
|
|
! "radius" is calculated as rad_chaud above (plus the |
| 160 |
|
|
! ice cloud contribution) but using cdnc_pi instead of |
| 161 |
|
|
! cdnc. |
| 162 |
|
|
radius = max(1.1E6*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3.*rpi* & |
| 163 |
|
✗ |
1000.*cdnc_pi(i,k)))**(1./3.), 3.)*(1.-zfice(i)) + rad_froid*zfice(i) |
| 164 |
|
✗ |
cldtaupi(i, k) = 3.0/2.0*zflwp/radius |
| 165 |
|
|
END IF ! ok_aie |
| 166 |
|
|
|
| 167 |
|
✗ |
radius = rad_chaud*(1.-zfice(i)) + rad_froid*zfice(i) |
| 168 |
|
✗ |
coef = coef_chau*(1.-zfice(i)) + coef_froi*zfice(i) |
| 169 |
|
✗ |
pcltau(i, k) = 3.0/2.0*zflwp/radius |
| 170 |
|
✗ |
pclemi(i, k) = 1.0 - exp(-coef*zflwp) |
| 171 |
|
|
lo = (pclc(i,k)<=seuil_neb) |
| 172 |
|
✗ |
IF (lo) pclc(i, k) = 0.0 |
| 173 |
|
✗ |
IF (lo) pcltau(i, k) = 0.0 |
| 174 |
|
✗ |
IF (lo) pclemi(i, k) = 0.0 |
| 175 |
|
|
|
| 176 |
|
✗ |
IF (.NOT. ok_aie) cldtaupi(i, k) = pcltau(i, k) |
| 177 |
|
|
END DO |
| 178 |
|
|
END DO |
| 179 |
|
|
! cc DO k = 1, klev |
| 180 |
|
|
! cc DO i = 1, klon |
| 181 |
|
|
! cc t(i,k) = t(i,k) |
| 182 |
|
|
! cc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
| 183 |
|
|
! cc lo = pclc(i,k) .GT. (2.*1.e-5) |
| 184 |
|
|
! cc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
| 185 |
|
|
! cc . /(rg*pclc(i,k)) |
| 186 |
|
|
! cc zradef = 10.0 + (1.-sigs(k))*45.0 |
| 187 |
|
|
! cc pcltau(i,k) = 1.5 * zflwp / zradef |
| 188 |
|
|
! cc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
| 189 |
|
|
! cc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
| 190 |
|
|
! cc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
| 191 |
|
|
! cc if (.NOT.lo) pclc(i,k) = 0.0 |
| 192 |
|
|
! cc if (.NOT.lo) pcltau(i,k) = 0.0 |
| 193 |
|
|
! cc if (.NOT.lo) pclemi(i,k) = 0.0 |
| 194 |
|
|
! cc ENDDO |
| 195 |
|
|
! cc ENDDO |
| 196 |
|
|
! ccccc print*, 'pas de nuage dans le rayonnement' |
| 197 |
|
|
! ccccc DO k = 1, klev |
| 198 |
|
|
! ccccc DO i = 1, klon |
| 199 |
|
|
! ccccc pclc(i,k) = 0.0 |
| 200 |
|
|
! ccccc pcltau(i,k) = 0.0 |
| 201 |
|
|
! ccccc pclemi(i,k) = 0.0 |
| 202 |
|
|
! ccccc ENDDO |
| 203 |
|
|
! ccccc ENDDO |
| 204 |
|
|
|
| 205 |
|
|
! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
| 206 |
|
|
|
| 207 |
|
✗ |
DO i = 1, klon |
| 208 |
|
✗ |
pct(i) = 1.0 |
| 209 |
|
✗ |
pch(i) = 1.0 |
| 210 |
|
✗ |
pcm(i) = 1.0 |
| 211 |
|
✗ |
pcl(i) = 1.0 |
| 212 |
|
✗ |
pctlwp(i) = 0.0 |
| 213 |
|
|
END DO |
| 214 |
|
|
|
| 215 |
|
✗ |
DO k = klev, 1, -1 |
| 216 |
|
✗ |
DO i = 1, klon |
| 217 |
|
✗ |
pctlwp(i) = pctlwp(i) + pqlwp(i, k)*(paprs(i,k)-paprs(i,k+1))/rg |
| 218 |
|
✗ |
pct(i) = pct(i)*(1.0-pclc(i,k)) |
| 219 |
|
✗ |
IF (pplay(i,k)<=cetahb*paprs(i,1)) pch(i) = pch(i)*(1.0-pclc(i,k)) |
| 220 |
|
✗ |
IF (pplay(i,k)>cetahb*paprs(i,1) .AND. pplay(i,k)<=cetamb*paprs(i,1)) & |
| 221 |
|
✗ |
pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
| 222 |
|
✗ |
IF (pplay(i,k)>cetamb*paprs(i,1)) pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
| 223 |
|
|
END DO |
| 224 |
|
|
END DO |
| 225 |
|
|
|
| 226 |
|
✗ |
DO i = 1, klon |
| 227 |
|
✗ |
pct(i) = 1. - pct(i) |
| 228 |
|
✗ |
pch(i) = 1. - pch(i) |
| 229 |
|
✗ |
pcm(i) = 1. - pcm(i) |
| 230 |
|
✗ |
pcl(i) = 1. - pcl(i) |
| 231 |
|
|
END DO |
| 232 |
|
|
|
| 233 |
|
✗ |
RETURN |
| 234 |
|
|
END SUBROUTINE nuage |
| 235 |
|
✗ |
SUBROUTINE diagcld1(paprs, pplay, rain, snow, kbot, ktop, diafra, dialiq) |
| 236 |
|
|
USE dimphy |
| 237 |
|
|
IMPLICIT NONE |
| 238 |
|
|
|
| 239 |
|
|
! Laurent Li (LMD/CNRS), le 12 octobre 1998 |
| 240 |
|
|
! (adaptation du code ECMWF) |
| 241 |
|
|
|
| 242 |
|
|
! Dans certains cas, le schema pronostique des nuages n'est |
| 243 |
|
|
! pas suffisament performant. On a donc besoin de diagnostiquer |
| 244 |
|
|
! ces nuages. Je dois avouer que c'est une frustration. |
| 245 |
|
|
|
| 246 |
|
|
include "YOMCST.h" |
| 247 |
|
|
|
| 248 |
|
|
! Arguments d'entree: |
| 249 |
|
|
REAL paprs(klon, klev+1) ! pression (Pa) a inter-couche |
| 250 |
|
|
REAL pplay(klon, klev) ! pression (Pa) au milieu de couche |
| 251 |
|
|
REAL t(klon, klev) ! temperature (K) |
| 252 |
|
|
REAL q(klon, klev) ! humidite specifique (Kg/Kg) |
| 253 |
|
|
REAL rain(klon) ! pluie convective (kg/m2/s) |
| 254 |
|
|
REAL snow(klon) ! neige convective (kg/m2/s) |
| 255 |
|
|
INTEGER ktop(klon) ! sommet de la convection |
| 256 |
|
|
INTEGER kbot(klon) ! bas de la convection |
| 257 |
|
|
|
| 258 |
|
|
! Arguments de sortie: |
| 259 |
|
|
REAL diafra(klon, klev) ! fraction nuageuse diagnostiquee |
| 260 |
|
|
REAL dialiq(klon, klev) ! eau liquide nuageuse |
| 261 |
|
|
|
| 262 |
|
|
! Constantes ajustables: |
| 263 |
|
|
REAL canva, canvb, canvh |
| 264 |
|
|
PARAMETER (canva=2.0, canvb=0.3, canvh=0.4) |
| 265 |
|
|
REAL cca, ccb, ccc |
| 266 |
|
|
PARAMETER (cca=0.125, ccb=1.5, ccc=0.8) |
| 267 |
|
|
REAL ccfct, ccscal |
| 268 |
|
|
PARAMETER (ccfct=0.400) |
| 269 |
|
|
PARAMETER (ccscal=1.0E+11) |
| 270 |
|
|
REAL cetahb, cetamb |
| 271 |
|
|
PARAMETER (cetahb=0.45, cetamb=0.80) |
| 272 |
|
|
REAL cclwmr |
| 273 |
|
|
PARAMETER (cclwmr=1.E-04) |
| 274 |
|
|
REAL zepscr |
| 275 |
|
|
PARAMETER (zepscr=1.0E-10) |
| 276 |
|
|
|
| 277 |
|
|
! Variables locales: |
| 278 |
|
|
INTEGER i, k |
| 279 |
|
✗ |
REAL zcc(klon) |
| 280 |
|
|
|
| 281 |
|
|
! Initialisation: |
| 282 |
|
|
|
| 283 |
|
✗ |
DO k = 1, klev |
| 284 |
|
✗ |
DO i = 1, klon |
| 285 |
|
✗ |
diafra(i, k) = 0.0 |
| 286 |
|
✗ |
dialiq(i, k) = 0.0 |
| 287 |
|
|
END DO |
| 288 |
|
|
END DO |
| 289 |
|
|
|
| 290 |
|
✗ |
DO i = 1, klon ! Calculer la fraction nuageuse |
| 291 |
|
✗ |
zcc(i) = 0.0 |
| 292 |
|
✗ |
IF ((rain(i)+snow(i))>0.) THEN |
| 293 |
|
✗ |
zcc(i) = cca*log(max(zepscr,(rain(i)+snow(i))*ccscal)) - ccb |
| 294 |
|
✗ |
zcc(i) = min(ccc, max(0.0,zcc(i))) |
| 295 |
|
|
END IF |
| 296 |
|
|
END DO |
| 297 |
|
|
|
| 298 |
|
✗ |
DO i = 1, klon ! pour traiter les enclumes |
| 299 |
|
✗ |
diafra(i, ktop(i)) = max(diafra(i,ktop(i)), zcc(i)*ccfct) |
| 300 |
|
✗ |
IF ((zcc(i)>=canvh) .AND. (pplay(i,ktop(i))<=cetahb*paprs(i, & |
| 301 |
|
|
1))) diafra(i, ktop(i)) = max(diafra(i,ktop(i)), max(zcc( & |
| 302 |
|
✗ |
i)*ccfct,canva*(zcc(i)-canvb))) |
| 303 |
|
✗ |
dialiq(i, ktop(i)) = cclwmr*diafra(i, ktop(i)) |
| 304 |
|
|
END DO |
| 305 |
|
|
|
| 306 |
|
✗ |
DO k = 1, klev ! nuages convectifs (sauf enclumes) |
| 307 |
|
✗ |
DO i = 1, klon |
| 308 |
|
✗ |
IF (k<ktop(i) .AND. k>=kbot(i)) THEN |
| 309 |
|
✗ |
diafra(i, k) = max(diafra(i,k), zcc(i)*ccfct) |
| 310 |
|
✗ |
dialiq(i, k) = cclwmr*diafra(i, k) |
| 311 |
|
|
END IF |
| 312 |
|
|
END DO |
| 313 |
|
|
END DO |
| 314 |
|
|
|
| 315 |
|
✗ |
RETURN |
| 316 |
|
|
END SUBROUTINE diagcld1 |
| 317 |
|
✗ |
SUBROUTINE diagcld2(paprs, pplay, t, q, diafra, dialiq) |
| 318 |
|
|
USE dimphy |
| 319 |
|
|
IMPLICIT NONE |
| 320 |
|
|
|
| 321 |
|
|
include "YOMCST.h" |
| 322 |
|
|
|
| 323 |
|
|
! Arguments d'entree: |
| 324 |
|
|
REAL paprs(klon, klev+1) ! pression (Pa) a inter-couche |
| 325 |
|
|
REAL pplay(klon, klev) ! pression (Pa) au milieu de couche |
| 326 |
|
|
REAL t(klon, klev) ! temperature (K) |
| 327 |
|
|
REAL q(klon, klev) ! humidite specifique (Kg/Kg) |
| 328 |
|
|
|
| 329 |
|
|
! Arguments de sortie: |
| 330 |
|
|
REAL diafra(klon, klev) ! fraction nuageuse diagnostiquee |
| 331 |
|
|
REAL dialiq(klon, klev) ! eau liquide nuageuse |
| 332 |
|
|
|
| 333 |
|
|
REAL cetamb |
| 334 |
|
|
PARAMETER (cetamb=0.80) |
| 335 |
|
|
REAL cloia, cloib, cloic, cloid |
| 336 |
|
|
PARAMETER (cloia=1.0E+02, cloib=-10.00, cloic=-0.6, cloid=5.0) |
| 337 |
|
|
! cc PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.9, CLOID=5.0) |
| 338 |
|
|
REAL rgammas |
| 339 |
|
|
PARAMETER (rgammas=0.05) |
| 340 |
|
|
REAL crhl |
| 341 |
|
|
PARAMETER (crhl=0.15) |
| 342 |
|
|
! cc PARAMETER (CRHL=0.70) |
| 343 |
|
|
REAL t_coup |
| 344 |
|
|
PARAMETER (t_coup=234.0) |
| 345 |
|
|
|
| 346 |
|
|
! Variables locales: |
| 347 |
|
✗ |
INTEGER i, k, kb, invb(klon) |
| 348 |
|
✗ |
REAL zqs, zrhb, zcll, zdthmin(klon), zdthdp |
| 349 |
|
|
REAL zdelta, zcor |
| 350 |
|
|
|
| 351 |
|
|
! Fonctions thermodynamiques: |
| 352 |
|
|
include "YOETHF.h" |
| 353 |
|
|
include "FCTTRE.h" |
| 354 |
|
|
|
| 355 |
|
|
! Initialisation: |
| 356 |
|
|
|
| 357 |
|
✗ |
DO k = 1, klev |
| 358 |
|
✗ |
DO i = 1, klon |
| 359 |
|
✗ |
diafra(i, k) = 0.0 |
| 360 |
|
✗ |
dialiq(i, k) = 0.0 |
| 361 |
|
|
END DO |
| 362 |
|
|
END DO |
| 363 |
|
|
|
| 364 |
|
✗ |
DO i = 1, klon |
| 365 |
|
✗ |
invb(i) = klev |
| 366 |
|
✗ |
zdthmin(i) = 0.0 |
| 367 |
|
|
END DO |
| 368 |
|
|
|
| 369 |
|
✗ |
DO k = 2, klev/2 - 1 |
| 370 |
|
✗ |
DO i = 1, klon |
| 371 |
|
|
zdthdp = (t(i,k)-t(i,k+1))/(pplay(i,k)-pplay(i,k+1)) - & |
| 372 |
|
✗ |
rd*0.5*(t(i,k)+t(i,k+1))/rcpd/paprs(i, k+1) |
| 373 |
|
✗ |
zdthdp = zdthdp*cloia |
| 374 |
|
✗ |
IF (pplay(i,k)>cetamb*paprs(i,1) .AND. zdthdp<zdthmin(i)) THEN |
| 375 |
|
✗ |
zdthmin(i) = zdthdp |
| 376 |
|
✗ |
invb(i) = k |
| 377 |
|
|
END IF |
| 378 |
|
|
END DO |
| 379 |
|
|
END DO |
| 380 |
|
|
|
| 381 |
|
✗ |
DO i = 1, klon |
| 382 |
|
✗ |
kb = invb(i) |
| 383 |
|
|
IF (thermcep) THEN |
| 384 |
|
✗ |
zdelta = max(0., sign(1.,rtt-t(i,kb))) |
| 385 |
|
✗ |
zqs = r2es*foeew(t(i,kb), zdelta)/pplay(i, kb) |
| 386 |
|
✗ |
zqs = min(0.5, zqs) |
| 387 |
|
✗ |
zcor = 1./(1.-retv*zqs) |
| 388 |
|
✗ |
zqs = zqs*zcor |
| 389 |
|
|
ELSE |
| 390 |
|
|
IF (t(i,kb)<t_coup) THEN |
| 391 |
|
|
zqs = qsats(t(i,kb))/pplay(i, kb) |
| 392 |
|
|
ELSE |
| 393 |
|
|
zqs = qsatl(t(i,kb))/pplay(i, kb) |
| 394 |
|
|
END IF |
| 395 |
|
|
END IF |
| 396 |
|
✗ |
zcll = cloib*zdthmin(i) + cloic |
| 397 |
|
✗ |
zcll = min(1.0, max(0.0,zcll)) |
| 398 |
|
✗ |
zrhb = q(i, kb)/zqs |
| 399 |
|
✗ |
IF (zcll>0.0 .AND. zrhb<crhl) zcll = zcll*(1.-(crhl-zrhb)*cloid) |
| 400 |
|
✗ |
zcll = min(1.0, max(0.0,zcll)) |
| 401 |
|
✗ |
diafra(i, kb) = max(diafra(i,kb), zcll) |
| 402 |
|
✗ |
dialiq(i, kb) = diafra(i, kb)*rgammas*zqs |
| 403 |
|
|
END DO |
| 404 |
|
|
|
| 405 |
|
✗ |
RETURN |
| 406 |
|
|
END SUBROUTINE diagcld2 |
| 407 |
|
|
|