| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
! $Id: orografi.F90 2357 2015-08-31 16:25:19Z lguez $ |
| 3 |
|
|
|
| 4 |
|
✗ |
SUBROUTINE drag_noro(nlon, nlev, dtime, paprs, pplay, pmea, pstd, psig, pgam, & |
| 5 |
|
✗ |
pthe, ppic, pval, kgwd, kdx, ktest, t, u, v, pulow, pvlow, pustr, pvstr, & |
| 6 |
|
✗ |
d_t, d_u, d_v) |
| 7 |
|
|
|
| 8 |
|
|
USE dimphy |
| 9 |
|
|
IMPLICIT NONE |
| 10 |
|
|
! ====================================================================== |
| 11 |
|
|
! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
| 12 |
|
|
! Objet: Frottement de la montagne Interface |
| 13 |
|
|
! ====================================================================== |
| 14 |
|
|
! Arguments: |
| 15 |
|
|
! dtime---input-R- pas d'integration (s) |
| 16 |
|
|
! paprs---input-R-pression pour chaque inter-couche (en Pa) |
| 17 |
|
|
! pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
| 18 |
|
|
! t-------input-R-temperature (K) |
| 19 |
|
|
! u-------input-R-vitesse horizontale (m/s) |
| 20 |
|
|
! v-------input-R-vitesse horizontale (m/s) |
| 21 |
|
|
|
| 22 |
|
|
! d_t-----output-R-increment de la temperature |
| 23 |
|
|
! d_u-----output-R-increment de la vitesse u |
| 24 |
|
|
! d_v-----output-R-increment de la vitesse v |
| 25 |
|
|
! ====================================================================== |
| 26 |
|
|
include "YOMCST.h" |
| 27 |
|
|
|
| 28 |
|
|
! ARGUMENTS |
| 29 |
|
|
|
| 30 |
|
|
INTEGER nlon, nlev |
| 31 |
|
|
REAL dtime |
| 32 |
|
|
REAL paprs(klon, klev+1) |
| 33 |
|
|
REAL pplay(klon, klev) |
| 34 |
|
|
REAL pmea(nlon), pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon) |
| 35 |
|
|
REAL ppic(nlon), pval(nlon) |
| 36 |
|
|
REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
| 37 |
|
|
REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
| 38 |
|
|
REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
| 39 |
|
|
|
| 40 |
|
|
INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
| 41 |
|
|
|
| 42 |
|
|
! Variables locales: |
| 43 |
|
|
|
| 44 |
|
✗ |
REAL zgeom(klon, klev) |
| 45 |
|
✗ |
REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
| 46 |
|
✗ |
REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
| 47 |
|
✗ |
REAL papmf(klon, klev), papmh(klon, klev+1) |
| 48 |
|
|
|
| 49 |
|
|
! initialiser les variables de sortie (pour securite) |
| 50 |
|
|
|
| 51 |
|
✗ |
DO i = 1, klon |
| 52 |
|
✗ |
pulow(i) = 0.0 |
| 53 |
|
✗ |
pvlow(i) = 0.0 |
| 54 |
|
✗ |
pustr(i) = 0.0 |
| 55 |
|
✗ |
pvstr(i) = 0.0 |
| 56 |
|
|
END DO |
| 57 |
|
✗ |
DO k = 1, klev |
| 58 |
|
✗ |
DO i = 1, klon |
| 59 |
|
✗ |
d_t(i, k) = 0.0 |
| 60 |
|
✗ |
d_u(i, k) = 0.0 |
| 61 |
|
✗ |
d_v(i, k) = 0.0 |
| 62 |
|
✗ |
pdudt(i, k) = 0.0 |
| 63 |
|
✗ |
pdvdt(i, k) = 0.0 |
| 64 |
|
✗ |
pdtdt(i, k) = 0.0 |
| 65 |
|
|
END DO |
| 66 |
|
|
END DO |
| 67 |
|
|
|
| 68 |
|
|
! preparer les variables d'entree (attention: l'ordre des niveaux |
| 69 |
|
|
! verticaux augmente du haut vers le bas) |
| 70 |
|
|
|
| 71 |
|
✗ |
DO k = 1, klev |
| 72 |
|
✗ |
DO i = 1, klon |
| 73 |
|
✗ |
pt(i, k) = t(i, klev-k+1) |
| 74 |
|
✗ |
pu(i, k) = u(i, klev-k+1) |
| 75 |
|
✗ |
pv(i, k) = v(i, klev-k+1) |
| 76 |
|
✗ |
papmf(i, k) = pplay(i, klev-k+1) |
| 77 |
|
|
END DO |
| 78 |
|
|
END DO |
| 79 |
|
✗ |
DO k = 1, klev + 1 |
| 80 |
|
✗ |
DO i = 1, klon |
| 81 |
|
✗ |
papmh(i, k) = paprs(i, klev-k+2) |
| 82 |
|
|
END DO |
| 83 |
|
|
END DO |
| 84 |
|
✗ |
DO i = 1, klon |
| 85 |
|
✗ |
zgeom(i, klev) = rd*pt(i, klev)*log(papmh(i,klev+1)/papmf(i,klev)) |
| 86 |
|
|
END DO |
| 87 |
|
✗ |
DO k = klev - 1, 1, -1 |
| 88 |
|
✗ |
DO i = 1, klon |
| 89 |
|
|
zgeom(i, k) = zgeom(i, k+1) + rd*(pt(i,k)+pt(i,k+1))/2.0*log(papmf(i,k+ & |
| 90 |
|
✗ |
1)/papmf(i,k)) |
| 91 |
|
|
END DO |
| 92 |
|
|
END DO |
| 93 |
|
|
|
| 94 |
|
|
! appeler la routine principale |
| 95 |
|
|
|
| 96 |
|
|
CALL orodrag(klon, klev, kgwd, kdx, ktest, dtime, papmh, papmf, zgeom, pt, & |
| 97 |
|
|
pu, pv, pmea, pstd, psig, pgam, pthe, ppic, pval, pulow, pvlow, pdudt, & |
| 98 |
|
✗ |
pdvdt, pdtdt) |
| 99 |
|
|
|
| 100 |
|
✗ |
DO k = 1, klev |
| 101 |
|
✗ |
DO i = 1, klon |
| 102 |
|
✗ |
d_u(i, klev+1-k) = dtime*pdudt(i, k) |
| 103 |
|
✗ |
d_v(i, klev+1-k) = dtime*pdvdt(i, k) |
| 104 |
|
✗ |
d_t(i, klev+1-k) = dtime*pdtdt(i, k) |
| 105 |
|
|
pustr(i) = pustr(i) & ! IM BUG . |
| 106 |
|
|
! +rg*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
| 107 |
|
✗ |
+pdudt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
| 108 |
|
|
pvstr(i) = pvstr(i) & ! IM BUG . |
| 109 |
|
|
! +rg*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
| 110 |
|
✗ |
+pdvdt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
| 111 |
|
|
END DO |
| 112 |
|
|
END DO |
| 113 |
|
|
|
| 114 |
|
✗ |
RETURN |
| 115 |
|
|
END SUBROUTINE drag_noro |
| 116 |
|
✗ |
SUBROUTINE orodrag(nlon, nlev, kgwd, kdx, ktest, ptsphy, paphm1, papm1, & |
| 117 |
|
|
pgeom1, ptm1, pum1, pvm1, pmea, pstd, psig, pgamma, ptheta, ppic, pval & |
| 118 |
|
|
! outputs |
| 119 |
|
✗ |
, pulow, pvlow, pvom, pvol, pte) |
| 120 |
|
|
|
| 121 |
|
✗ |
USE dimphy |
| 122 |
|
|
IMPLICIT NONE |
| 123 |
|
|
|
| 124 |
|
|
|
| 125 |
|
|
|
| 126 |
|
|
! **** *gwdrag* - does the gravity wave parametrization. |
| 127 |
|
|
|
| 128 |
|
|
! purpose. |
| 129 |
|
|
! -------- |
| 130 |
|
|
|
| 131 |
|
|
! this routine computes the physical tendencies of the |
| 132 |
|
|
! prognostic variables u,v and t due to vertical transports by |
| 133 |
|
|
! subgridscale orographically excited gravity waves |
| 134 |
|
|
|
| 135 |
|
|
! ** interface. |
| 136 |
|
|
! ---------- |
| 137 |
|
|
! called from *callpar*. |
| 138 |
|
|
|
| 139 |
|
|
! the routine takes its input from the long-term storage: |
| 140 |
|
|
! u,v,t and p at t-1. |
| 141 |
|
|
|
| 142 |
|
|
! explicit arguments : |
| 143 |
|
|
! -------------------- |
| 144 |
|
|
! ==== inputs === |
| 145 |
|
|
! ==== outputs === |
| 146 |
|
|
|
| 147 |
|
|
! implicit arguments : none |
| 148 |
|
|
! -------------------- |
| 149 |
|
|
|
| 150 |
|
|
! implicit logical (l) |
| 151 |
|
|
|
| 152 |
|
|
! method. |
| 153 |
|
|
! ------- |
| 154 |
|
|
|
| 155 |
|
|
! externals. |
| 156 |
|
|
! ---------- |
| 157 |
|
|
INTEGER ismin, ismax |
| 158 |
|
|
EXTERNAL ismin, ismax |
| 159 |
|
|
|
| 160 |
|
|
! reference. |
| 161 |
|
|
! ---------- |
| 162 |
|
|
|
| 163 |
|
|
! author. |
| 164 |
|
|
! ------- |
| 165 |
|
|
! m.miller + b.ritter e.c.m.w.f. 15/06/86. |
| 166 |
|
|
|
| 167 |
|
|
! f.lott + m. miller e.c.m.w.f. 22/11/94 |
| 168 |
|
|
! ----------------------------------------------------------------------- |
| 169 |
|
|
|
| 170 |
|
|
|
| 171 |
|
|
include "YOMCST.h" |
| 172 |
|
|
include "YOEGWD.h" |
| 173 |
|
|
! ----------------------------------------------------------------------- |
| 174 |
|
|
|
| 175 |
|
|
! * 0.1 arguments |
| 176 |
|
|
! --------- |
| 177 |
|
|
|
| 178 |
|
|
|
| 179 |
|
|
! ym integer nlon, nlev, klevm1 |
| 180 |
|
|
INTEGER nlon, nlev |
| 181 |
|
|
INTEGER kgwd, jl, ilevp1, jk, ji |
| 182 |
|
|
REAL zdelp, ztemp, zforc, ztend |
| 183 |
|
|
REAL rover, zb, zc, zconb, zabsv |
| 184 |
|
|
REAL zzd1, ratio, zbet, zust, zvst, zdis |
| 185 |
|
|
REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(klon), & |
| 186 |
|
|
pvlow(klon) |
| 187 |
|
|
REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), pmea(nlon), & |
| 188 |
|
|
pstd(nlon), psig(nlon), pgamma(nlon), ptheta(nlon), ppic(nlon), & |
| 189 |
|
|
pval(nlon), pgeom1(nlon, nlev), papm1(nlon, nlev), paphm1(nlon, nlev+1) |
| 190 |
|
|
|
| 191 |
|
|
INTEGER kdx(nlon), ktest(nlon) |
| 192 |
|
|
! ----------------------------------------------------------------------- |
| 193 |
|
|
|
| 194 |
|
|
! * 0.2 local arrays |
| 195 |
|
|
! ------------ |
| 196 |
|
✗ |
INTEGER isect(klon), icrit(klon), ikcrith(klon), ikenvh(klon), iknu(klon), & |
| 197 |
|
✗ |
iknu2(klon), ikcrit(klon), ikhlim(klon) |
| 198 |
|
|
|
| 199 |
|
✗ |
REAL ztau(klon, klev+1), ztauf(klon, klev+1), zstab(klon, klev+1), & |
| 200 |
|
✗ |
zvph(klon, klev+1), zrho(klon, klev+1), zri(klon, klev+1), & |
| 201 |
|
✗ |
zpsi(klon, klev+1), zzdep(klon, klev) |
| 202 |
|
✗ |
REAL zdudt(klon), zdvdt(klon), zdtdt(klon), zdedt(klon), zvidis(klon), & |
| 203 |
|
✗ |
znu(klon), zd1(klon), zd2(klon), zdmod(klon) |
| 204 |
|
|
REAL ztmst, ptsphy, zrtmst |
| 205 |
|
|
|
| 206 |
|
|
! ------------------------------------------------------------------ |
| 207 |
|
|
|
| 208 |
|
|
! * 1. initialization |
| 209 |
|
|
! -------------- |
| 210 |
|
|
|
| 211 |
|
|
|
| 212 |
|
|
! ------------------------------------------------------------------ |
| 213 |
|
|
|
| 214 |
|
|
! * 1.1 computational constants |
| 215 |
|
|
! ----------------------- |
| 216 |
|
|
|
| 217 |
|
|
|
| 218 |
|
|
! ztmst=twodt |
| 219 |
|
|
! if(nstep.eq.nstart) ztmst=0.5*twodt |
| 220 |
|
|
! ym klevm1=klev-1 |
| 221 |
|
✗ |
ztmst = ptsphy |
| 222 |
|
|
zrtmst = 1./ztmst |
| 223 |
|
|
|
| 224 |
|
|
! ------------------------------------------------------------------ |
| 225 |
|
|
|
| 226 |
|
|
! * 1.3 check whether row contains point for printing |
| 227 |
|
|
! --------------------------------------------- |
| 228 |
|
|
|
| 229 |
|
|
|
| 230 |
|
|
! ------------------------------------------------------------------ |
| 231 |
|
|
|
| 232 |
|
|
! * 2. precompute basic state variables. |
| 233 |
|
|
! * ---------- ----- ----- ---------- |
| 234 |
|
|
! * define low level wind, project winds in plane of |
| 235 |
|
|
! * low level wind, determine sector in which to take |
| 236 |
|
|
! * the variance and set indicator for critical levels. |
| 237 |
|
|
|
| 238 |
|
|
|
| 239 |
|
|
|
| 240 |
|
|
|
| 241 |
|
|
CALL orosetup(nlon, ktest, ikcrit, ikcrith, icrit, ikenvh, iknu, iknu2, & |
| 242 |
|
|
paphm1, papm1, pum1, pvm1, ptm1, pgeom1, pstd, zrho, zri, zstab, ztau, & |
| 243 |
|
|
zvph, zpsi, zzdep, pulow, pvlow, ptheta, pgamma, pmea, ppic, pval, znu, & |
| 244 |
|
✗ |
zd1, zd2, zdmod) |
| 245 |
|
|
|
| 246 |
|
|
! *********************************************************** |
| 247 |
|
|
|
| 248 |
|
|
|
| 249 |
|
|
! * 3. compute low level stresses using subcritical and |
| 250 |
|
|
! * supercritical forms.computes anisotropy coefficient |
| 251 |
|
|
! * as measure of orographic twodimensionality. |
| 252 |
|
|
|
| 253 |
|
|
|
| 254 |
|
|
CALL gwstress(nlon, nlev, ktest, icrit, ikenvh, iknu, zrho, zstab, zvph, & |
| 255 |
|
✗ |
pstd, psig, pmea, ppic, ztau, pgeom1, zdmod) |
| 256 |
|
|
|
| 257 |
|
|
! * 4. compute stress profile. |
| 258 |
|
|
! * ------- ------ -------- |
| 259 |
|
|
|
| 260 |
|
|
|
| 261 |
|
|
|
| 262 |
|
|
CALL gwprofil(nlon, nlev, kgwd, kdx, ktest, ikcrith, icrit, paphm1, zrho, & |
| 263 |
|
✗ |
zstab, zvph, zri, ztau, zdmod, psig, pstd) |
| 264 |
|
|
|
| 265 |
|
|
! * 5. compute tendencies. |
| 266 |
|
|
! * ------------------- |
| 267 |
|
|
|
| 268 |
|
|
|
| 269 |
|
|
! explicit solution at all levels for the gravity wave |
| 270 |
|
|
! implicit solution for the blocked levels |
| 271 |
|
|
|
| 272 |
|
✗ |
DO jl = kidia, kfdia |
| 273 |
|
✗ |
zvidis(jl) = 0.0 |
| 274 |
|
✗ |
zdudt(jl) = 0.0 |
| 275 |
|
✗ |
zdvdt(jl) = 0.0 |
| 276 |
|
✗ |
zdtdt(jl) = 0.0 |
| 277 |
|
|
END DO |
| 278 |
|
|
|
| 279 |
|
✗ |
ilevp1 = klev + 1 |
| 280 |
|
|
|
| 281 |
|
|
|
| 282 |
|
✗ |
DO jk = 1, klev |
| 283 |
|
|
|
| 284 |
|
|
|
| 285 |
|
|
! do 523 jl=1,kgwd |
| 286 |
|
|
! ji=kdx(jl) |
| 287 |
|
|
! Modif vectorisation 02/04/2004 |
| 288 |
|
✗ |
DO ji = kidia, kfdia |
| 289 |
|
✗ |
IF (ktest(ji)==1) THEN |
| 290 |
|
|
|
| 291 |
|
✗ |
zdelp = paphm1(ji, jk+1) - paphm1(ji, jk) |
| 292 |
|
✗ |
ztemp = -rg*(ztau(ji,jk+1)-ztau(ji,jk))/(zvph(ji,ilevp1)*zdelp) |
| 293 |
|
✗ |
zdudt(ji) = (pulow(ji)*zd1(ji)-pvlow(ji)*zd2(ji))*ztemp/zdmod(ji) |
| 294 |
|
✗ |
zdvdt(ji) = (pvlow(ji)*zd1(ji)+pulow(ji)*zd2(ji))*ztemp/zdmod(ji) |
| 295 |
|
|
|
| 296 |
|
|
! controle des overshoots: |
| 297 |
|
|
|
| 298 |
|
✗ |
zforc = sqrt(zdudt(ji)**2+zdvdt(ji)**2) + 1.E-12 |
| 299 |
|
✗ |
ztend = sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/ztmst + 1.E-12 |
| 300 |
|
|
rover = 0.25 |
| 301 |
|
✗ |
IF (zforc>=rover*ztend) THEN |
| 302 |
|
✗ |
zdudt(ji) = rover*ztend/zforc*zdudt(ji) |
| 303 |
|
✗ |
zdvdt(ji) = rover*ztend/zforc*zdvdt(ji) |
| 304 |
|
|
END IF |
| 305 |
|
|
|
| 306 |
|
|
! fin du controle des overshoots |
| 307 |
|
|
|
| 308 |
|
✗ |
IF (jk>=ikenvh(ji)) THEN |
| 309 |
|
✗ |
zb = 1.0 - 0.18*pgamma(ji) - 0.04*pgamma(ji)**2 |
| 310 |
|
✗ |
zc = 0.48*pgamma(ji) + 0.3*pgamma(ji)**2 |
| 311 |
|
✗ |
zconb = 2.*ztmst*gkwake*psig(ji)/(4.*pstd(ji)) |
| 312 |
|
✗ |
zabsv = sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/2. |
| 313 |
|
✗ |
zzd1 = zb*cos(zpsi(ji,jk))**2 + zc*sin(zpsi(ji,jk))**2 |
| 314 |
|
|
ratio = (cos(zpsi(ji,jk))**2+pgamma(ji)*sin(zpsi(ji, & |
| 315 |
|
✗ |
jk))**2)/(pgamma(ji)*cos(zpsi(ji,jk))**2+sin(zpsi(ji,jk))**2) |
| 316 |
|
✗ |
zbet = max(0., 2.-1./ratio)*zconb*zzdep(ji, jk)*zzd1*zabsv |
| 317 |
|
|
|
| 318 |
|
|
! simplement oppose au vent |
| 319 |
|
|
|
| 320 |
|
✗ |
zdudt(ji) = -pum1(ji, jk)/ztmst |
| 321 |
|
✗ |
zdvdt(ji) = -pvm1(ji, jk)/ztmst |
| 322 |
|
|
|
| 323 |
|
|
! projection dans la direction de l'axe principal de l'orographie |
| 324 |
|
|
! mod zdudt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
| 325 |
|
|
! mod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
| 326 |
|
|
! mod * *cos(ptheta(ji)*rpi/180.)/ztmst |
| 327 |
|
|
! mod zdvdt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
| 328 |
|
|
! mod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
| 329 |
|
|
! mod * *sin(ptheta(ji)*rpi/180.)/ztmst |
| 330 |
|
✗ |
zdudt(ji) = zdudt(ji)*(zbet/(1.+zbet)) |
| 331 |
|
✗ |
zdvdt(ji) = zdvdt(ji)*(zbet/(1.+zbet)) |
| 332 |
|
|
END IF |
| 333 |
|
✗ |
pvom(ji, jk) = zdudt(ji) |
| 334 |
|
✗ |
pvol(ji, jk) = zdvdt(ji) |
| 335 |
|
✗ |
zust = pum1(ji, jk) + ztmst*zdudt(ji) |
| 336 |
|
✗ |
zvst = pvm1(ji, jk) + ztmst*zdvdt(ji) |
| 337 |
|
✗ |
zdis = 0.5*(pum1(ji,jk)**2+pvm1(ji,jk)**2-zust**2-zvst**2) |
| 338 |
|
✗ |
zdedt(ji) = zdis/ztmst |
| 339 |
|
✗ |
zvidis(ji) = zvidis(ji) + zdis*zdelp |
| 340 |
|
✗ |
zdtdt(ji) = zdedt(ji)/rcpd |
| 341 |
|
|
! pte(ji,jk)=zdtdt(ji) |
| 342 |
|
|
|
| 343 |
|
|
! ENCORE UN TRUC POUR EVITER LES EXPLOSIONS |
| 344 |
|
|
|
| 345 |
|
✗ |
pte(ji, jk) = 0.0 |
| 346 |
|
|
|
| 347 |
|
|
END IF |
| 348 |
|
|
END DO |
| 349 |
|
|
|
| 350 |
|
|
END DO |
| 351 |
|
|
|
| 352 |
|
|
|
| 353 |
|
✗ |
RETURN |
| 354 |
|
|
END SUBROUTINE orodrag |
| 355 |
|
✗ |
SUBROUTINE orosetup(nlon, ktest, kkcrit, kkcrith, kcrit, kkenvh, kknu, kknu2, & |
| 356 |
|
✗ |
paphm1, papm1, pum1, pvm1, ptm1, pgeom1, pstd, prho, pri, pstab, ptau, & |
| 357 |
|
✗ |
pvph, ppsi, pzdep, pulow, pvlow, ptheta, pgamma, pmea, ppic, pval, pnu, & |
| 358 |
|
|
pd1, pd2, pdmod) |
| 359 |
|
|
|
| 360 |
|
|
! **** *gwsetup* |
| 361 |
|
|
|
| 362 |
|
|
! purpose. |
| 363 |
|
|
! -------- |
| 364 |
|
|
|
| 365 |
|
|
! ** interface. |
| 366 |
|
|
! ---------- |
| 367 |
|
|
! from *orodrag* |
| 368 |
|
|
|
| 369 |
|
|
! explicit arguments : |
| 370 |
|
|
! -------------------- |
| 371 |
|
|
! ==== inputs === |
| 372 |
|
|
! ==== outputs === |
| 373 |
|
|
|
| 374 |
|
|
! implicit arguments : none |
| 375 |
|
|
! -------------------- |
| 376 |
|
|
|
| 377 |
|
|
! method. |
| 378 |
|
|
! ------- |
| 379 |
|
|
|
| 380 |
|
|
|
| 381 |
|
|
! externals. |
| 382 |
|
|
! ---------- |
| 383 |
|
|
|
| 384 |
|
|
|
| 385 |
|
|
! reference. |
| 386 |
|
|
! ---------- |
| 387 |
|
|
|
| 388 |
|
|
! see ecmwf research department documentation of the "i.f.s." |
| 389 |
|
|
|
| 390 |
|
|
! author. |
| 391 |
|
|
! ------- |
| 392 |
|
|
|
| 393 |
|
|
! modifications. |
| 394 |
|
|
! -------------- |
| 395 |
|
|
! f.lott for the new-gwdrag scheme november 1993 |
| 396 |
|
|
|
| 397 |
|
|
! ----------------------------------------------------------------------- |
| 398 |
|
|
USE dimphy |
| 399 |
|
|
IMPLICIT NONE |
| 400 |
|
|
|
| 401 |
|
|
|
| 402 |
|
|
include "YOMCST.h" |
| 403 |
|
|
include "YOEGWD.h" |
| 404 |
|
|
|
| 405 |
|
|
! ----------------------------------------------------------------------- |
| 406 |
|
|
|
| 407 |
|
|
! * 0.1 arguments |
| 408 |
|
|
! --------- |
| 409 |
|
|
|
| 410 |
|
|
INTEGER nlon |
| 411 |
|
|
INTEGER jl, jk |
| 412 |
|
|
REAL zdelp |
| 413 |
|
|
|
| 414 |
|
|
INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), ktest(nlon), kkenvh(nlon) |
| 415 |
|
|
|
| 416 |
|
|
|
| 417 |
|
|
REAL paphm1(nlon, klev+1), papm1(nlon, klev), pum1(nlon, klev), & |
| 418 |
|
|
pvm1(nlon, klev), ptm1(nlon, klev), pgeom1(nlon, klev), & |
| 419 |
|
|
prho(nlon, klev+1), pri(nlon, klev+1), pstab(nlon, klev+1), & |
| 420 |
|
|
ptau(nlon, klev+1), pvph(nlon, klev+1), ppsi(nlon, klev+1), & |
| 421 |
|
|
pzdep(nlon, klev) |
| 422 |
|
|
REAL pulow(nlon), pvlow(nlon), ptheta(nlon), pgamma(nlon), pnu(nlon), & |
| 423 |
|
|
pd1(nlon), pd2(nlon), pdmod(nlon) |
| 424 |
|
|
REAL pstd(nlon), pmea(nlon), ppic(nlon), pval(nlon) |
| 425 |
|
|
|
| 426 |
|
|
! ----------------------------------------------------------------------- |
| 427 |
|
|
|
| 428 |
|
|
! * 0.2 local arrays |
| 429 |
|
|
! ------------ |
| 430 |
|
|
|
| 431 |
|
|
|
| 432 |
|
|
INTEGER ilevm1, ilevm2, ilevh |
| 433 |
|
|
REAL zcons1, zcons2, zcons3, zhgeo |
| 434 |
|
|
REAL zu, zphi, zvt1, zvt2, zst, zvar, zdwind, zwind |
| 435 |
|
|
REAL zstabm, zstabp, zrhom, zrhop, alpha |
| 436 |
|
|
REAL zggeenv, zggeom1, zgvar |
| 437 |
|
|
LOGICAL lo |
| 438 |
|
✗ |
LOGICAL ll1(klon, klev+1) |
| 439 |
|
✗ |
INTEGER kknu(klon), kknu2(klon), kknub(klon), kknul(klon), kentp(klon), & |
| 440 |
|
✗ |
ncount(klon) |
| 441 |
|
|
|
| 442 |
|
✗ |
REAL zhcrit(klon, klev), zvpf(klon, klev), zdp(klon, klev) |
| 443 |
|
✗ |
REAL znorm(klon), zb(klon), zc(klon), zulow(klon), zvlow(klon), znup(klon), & |
| 444 |
|
✗ |
znum(klon) |
| 445 |
|
|
|
| 446 |
|
|
! ------------------------------------------------------------------ |
| 447 |
|
|
|
| 448 |
|
|
! * 1. initialization |
| 449 |
|
|
! -------------- |
| 450 |
|
|
|
| 451 |
|
|
! print *,' entree gwsetup' |
| 452 |
|
|
|
| 453 |
|
|
! ------------------------------------------------------------------ |
| 454 |
|
|
|
| 455 |
|
|
! * 1.1 computational constants |
| 456 |
|
|
! ----------------------- |
| 457 |
|
|
|
| 458 |
|
|
|
| 459 |
|
✗ |
ilevm1 = klev - 1 |
| 460 |
|
|
ilevm2 = klev - 2 |
| 461 |
|
✗ |
ilevh = klev/3 |
| 462 |
|
|
|
| 463 |
|
✗ |
zcons1 = 1./rd |
| 464 |
|
|
! old zcons2=g**2/cpd |
| 465 |
|
✗ |
zcons2 = rg**2/rcpd |
| 466 |
|
|
! old zcons3=1.5*api |
| 467 |
|
|
zcons3 = 1.5*rpi |
| 468 |
|
|
|
| 469 |
|
|
! ------------------------------------------------------------------ |
| 470 |
|
|
|
| 471 |
|
|
! * 2. |
| 472 |
|
|
! -------------- |
| 473 |
|
|
|
| 474 |
|
|
|
| 475 |
|
|
! ------------------------------------------------------------------ |
| 476 |
|
|
|
| 477 |
|
|
! * 2.1 define low level wind, project winds in plane of |
| 478 |
|
|
! * low level wind, determine sector in which to take |
| 479 |
|
|
! * the variance and set indicator for critical levels. |
| 480 |
|
|
|
| 481 |
|
|
|
| 482 |
|
|
|
| 483 |
|
✗ |
DO jl = kidia, kfdia |
| 484 |
|
✗ |
kknu(jl) = klev |
| 485 |
|
✗ |
kknu2(jl) = klev |
| 486 |
|
✗ |
kknub(jl) = klev |
| 487 |
|
✗ |
kknul(jl) = klev |
| 488 |
|
✗ |
pgamma(jl) = max(pgamma(jl), gtsec) |
| 489 |
|
✗ |
ll1(jl, klev+1) = .FALSE. |
| 490 |
|
|
END DO |
| 491 |
|
|
|
| 492 |
|
|
! Ajouter une initialisation (L. Li, le 23fev99): |
| 493 |
|
|
|
| 494 |
|
✗ |
DO jk = klev, ilevh, -1 |
| 495 |
|
✗ |
DO jl = kidia, kfdia |
| 496 |
|
✗ |
ll1(jl, jk) = .FALSE. |
| 497 |
|
|
END DO |
| 498 |
|
|
END DO |
| 499 |
|
|
|
| 500 |
|
|
! * define top of low level flow |
| 501 |
|
|
! ---------------------------- |
| 502 |
|
✗ |
DO jk = klev, ilevh, -1 |
| 503 |
|
✗ |
DO jl = kidia, kfdia |
| 504 |
|
✗ |
lo = (paphm1(jl,jk)/paphm1(jl,klev+1)) >= gsigcr |
| 505 |
|
✗ |
IF (lo) THEN |
| 506 |
|
✗ |
kkcrit(jl) = jk |
| 507 |
|
|
END IF |
| 508 |
|
✗ |
zhcrit(jl, jk) = ppic(jl) |
| 509 |
|
✗ |
zhgeo = pgeom1(jl, jk)/rg |
| 510 |
|
✗ |
ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
| 511 |
|
✗ |
IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
| 512 |
|
✗ |
kknu(jl) = jk |
| 513 |
|
|
END IF |
| 514 |
|
✗ |
IF (.NOT. ll1(jl,ilevh)) kknu(jl) = ilevh |
| 515 |
|
|
END DO |
| 516 |
|
|
END DO |
| 517 |
|
✗ |
DO jk = klev, ilevh, -1 |
| 518 |
|
✗ |
DO jl = kidia, kfdia |
| 519 |
|
✗ |
zhcrit(jl, jk) = ppic(jl) - pval(jl) |
| 520 |
|
✗ |
zhgeo = pgeom1(jl, jk)/rg |
| 521 |
|
✗ |
ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
| 522 |
|
✗ |
IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
| 523 |
|
✗ |
kknu2(jl) = jk |
| 524 |
|
|
END IF |
| 525 |
|
✗ |
IF (.NOT. ll1(jl,ilevh)) kknu2(jl) = ilevh |
| 526 |
|
|
END DO |
| 527 |
|
|
END DO |
| 528 |
|
✗ |
DO jk = klev, ilevh, -1 |
| 529 |
|
✗ |
DO jl = kidia, kfdia |
| 530 |
|
✗ |
zhcrit(jl, jk) = amax1(ppic(jl)-pmea(jl), pmea(jl)-pval(jl)) |
| 531 |
|
✗ |
zhgeo = pgeom1(jl, jk)/rg |
| 532 |
|
✗ |
ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
| 533 |
|
✗ |
IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
| 534 |
|
✗ |
kknub(jl) = jk |
| 535 |
|
|
END IF |
| 536 |
|
✗ |
IF (.NOT. ll1(jl,ilevh)) kknub(jl) = ilevh |
| 537 |
|
|
END DO |
| 538 |
|
|
END DO |
| 539 |
|
|
|
| 540 |
|
✗ |
DO jl = kidia, kfdia |
| 541 |
|
✗ |
kknu(jl) = min(kknu(jl), nktopg) |
| 542 |
|
✗ |
kknu2(jl) = min(kknu2(jl), nktopg) |
| 543 |
|
✗ |
kknub(jl) = min(kknub(jl), nktopg) |
| 544 |
|
✗ |
kknul(jl) = klev |
| 545 |
|
|
END DO |
| 546 |
|
|
|
| 547 |
|
|
! c* initialize various arrays |
| 548 |
|
|
|
| 549 |
|
✗ |
DO jl = kidia, kfdia |
| 550 |
|
✗ |
prho(jl, klev+1) = 0.0 |
| 551 |
|
✗ |
pstab(jl, klev+1) = 0.0 |
| 552 |
|
✗ |
pstab(jl, 1) = 0.0 |
| 553 |
|
✗ |
pri(jl, klev+1) = 9999.0 |
| 554 |
|
✗ |
ppsi(jl, klev+1) = 0.0 |
| 555 |
|
✗ |
pri(jl, 1) = 0.0 |
| 556 |
|
✗ |
pvph(jl, 1) = 0.0 |
| 557 |
|
✗ |
pulow(jl) = 0.0 |
| 558 |
|
✗ |
pvlow(jl) = 0.0 |
| 559 |
|
✗ |
zulow(jl) = 0.0 |
| 560 |
|
✗ |
zvlow(jl) = 0.0 |
| 561 |
|
✗ |
kkcrith(jl) = klev |
| 562 |
|
✗ |
kkenvh(jl) = klev |
| 563 |
|
✗ |
kentp(jl) = klev |
| 564 |
|
✗ |
kcrit(jl) = 1 |
| 565 |
|
✗ |
ncount(jl) = 0 |
| 566 |
|
✗ |
ll1(jl, klev+1) = .FALSE. |
| 567 |
|
|
END DO |
| 568 |
|
|
|
| 569 |
|
|
! * define low-level flow |
| 570 |
|
|
! --------------------- |
| 571 |
|
|
|
| 572 |
|
✗ |
DO jk = klev, 2, -1 |
| 573 |
|
✗ |
DO jl = kidia, kfdia |
| 574 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 575 |
|
✗ |
zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk-1) |
| 576 |
|
✗ |
prho(jl, jk) = 2.*paphm1(jl, jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
| 577 |
|
|
pstab(jl, jk) = 2.*zcons2/(ptm1(jl,jk)+ptm1(jl,jk-1))* & |
| 578 |
|
✗ |
(1.-rcpd*prho(jl,jk)*(ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
| 579 |
|
✗ |
pstab(jl, jk) = max(pstab(jl,jk), gssec) |
| 580 |
|
|
END IF |
| 581 |
|
|
END DO |
| 582 |
|
|
END DO |
| 583 |
|
|
|
| 584 |
|
|
! ******************************************************************** |
| 585 |
|
|
|
| 586 |
|
|
! * define blocked flow |
| 587 |
|
|
! ------------------- |
| 588 |
|
✗ |
DO jk = klev, ilevh, -1 |
| 589 |
|
✗ |
DO jl = kidia, kfdia |
| 590 |
|
✗ |
IF (jk>=kknub(jl) .AND. jk<=kknul(jl)) THEN |
| 591 |
|
✗ |
pulow(jl) = pulow(jl) + pum1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
| 592 |
|
✗ |
pvlow(jl) = pvlow(jl) + pvm1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
| 593 |
|
|
END IF |
| 594 |
|
|
END DO |
| 595 |
|
|
END DO |
| 596 |
|
✗ |
DO jl = kidia, kfdia |
| 597 |
|
✗ |
pulow(jl) = pulow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknub(jl))) |
| 598 |
|
✗ |
pvlow(jl) = pvlow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknub(jl))) |
| 599 |
|
✗ |
znorm(jl) = max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
| 600 |
|
✗ |
pvph(jl, klev+1) = znorm(jl) |
| 601 |
|
|
END DO |
| 602 |
|
|
|
| 603 |
|
|
! ******* setup orography axes and define plane of profiles ******* |
| 604 |
|
|
|
| 605 |
|
✗ |
DO jl = kidia, kfdia |
| 606 |
|
✗ |
lo = (pulow(jl)<gvsec) .AND. (pulow(jl)>=-gvsec) |
| 607 |
|
|
IF (lo) THEN |
| 608 |
|
✗ |
zu = pulow(jl) + 2.*gvsec |
| 609 |
|
|
ELSE |
| 610 |
|
|
zu = pulow(jl) |
| 611 |
|
|
END IF |
| 612 |
|
✗ |
zphi = atan(pvlow(jl)/zu) |
| 613 |
|
✗ |
ppsi(jl, klev+1) = ptheta(jl)*rpi/180. - zphi |
| 614 |
|
✗ |
zb(jl) = 1. - 0.18*pgamma(jl) - 0.04*pgamma(jl)**2 |
| 615 |
|
✗ |
zc(jl) = 0.48*pgamma(jl) + 0.3*pgamma(jl)**2 |
| 616 |
|
✗ |
pd1(jl) = zb(jl) - (zb(jl)-zc(jl))*(sin(ppsi(jl,klev+1))**2) |
| 617 |
|
✗ |
pd2(jl) = (zb(jl)-zc(jl))*sin(ppsi(jl,klev+1))*cos(ppsi(jl,klev+1)) |
| 618 |
|
✗ |
pdmod(jl) = sqrt(pd1(jl)**2+pd2(jl)**2) |
| 619 |
|
|
END DO |
| 620 |
|
|
|
| 621 |
|
|
! ************ define flow in plane of lowlevel stress ************* |
| 622 |
|
|
|
| 623 |
|
✗ |
DO jk = 1, klev |
| 624 |
|
✗ |
DO jl = kidia, kfdia |
| 625 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 626 |
|
✗ |
zvt1 = pulow(jl)*pum1(jl, jk) + pvlow(jl)*pvm1(jl, jk) |
| 627 |
|
✗ |
zvt2 = -pvlow(jl)*pum1(jl, jk) + pulow(jl)*pvm1(jl, jk) |
| 628 |
|
✗ |
zvpf(jl, jk) = (zvt1*pd1(jl)+zvt2*pd2(jl))/(znorm(jl)*pdmod(jl)) |
| 629 |
|
|
END IF |
| 630 |
|
✗ |
ptau(jl, jk) = 0.0 |
| 631 |
|
✗ |
pzdep(jl, jk) = 0.0 |
| 632 |
|
✗ |
ppsi(jl, jk) = 0.0 |
| 633 |
|
✗ |
ll1(jl, jk) = .FALSE. |
| 634 |
|
|
END DO |
| 635 |
|
|
END DO |
| 636 |
|
✗ |
DO jk = 2, klev |
| 637 |
|
✗ |
DO jl = kidia, kfdia |
| 638 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 639 |
|
✗ |
zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk-1) |
| 640 |
|
|
pvph(jl, jk) = ((paphm1(jl,jk)-papm1(jl,jk-1))*zvpf(jl,jk)+(papm1(jl, & |
| 641 |
|
✗ |
jk)-paphm1(jl,jk))*zvpf(jl,jk-1))/zdp(jl, jk) |
| 642 |
|
✗ |
IF (pvph(jl,jk)<gvsec) THEN |
| 643 |
|
✗ |
pvph(jl, jk) = gvsec |
| 644 |
|
✗ |
kcrit(jl) = jk |
| 645 |
|
|
END IF |
| 646 |
|
|
END IF |
| 647 |
|
|
END DO |
| 648 |
|
|
END DO |
| 649 |
|
|
|
| 650 |
|
|
! * 2.2 brunt-vaisala frequency and density at half levels. |
| 651 |
|
|
|
| 652 |
|
|
|
| 653 |
|
✗ |
DO jk = ilevh, klev |
| 654 |
|
✗ |
DO jl = kidia, kfdia |
| 655 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 656 |
|
✗ |
IF (jk>=(kknub(jl)+1) .AND. jk<=kknul(jl)) THEN |
| 657 |
|
|
zst = zcons2/ptm1(jl, jk)*(1.-rcpd*prho(jl,jk)*(ptm1(jl, & |
| 658 |
|
✗ |
jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
| 659 |
|
✗ |
pstab(jl, klev+1) = pstab(jl, klev+1) + zst*zdp(jl, jk) |
| 660 |
|
✗ |
pstab(jl, klev+1) = max(pstab(jl,klev+1), gssec) |
| 661 |
|
|
prho(jl, klev+1) = prho(jl, klev+1) + paphm1(jl, jk)*2.*zdp(jl, jk) & |
| 662 |
|
✗ |
*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
| 663 |
|
|
END IF |
| 664 |
|
|
END IF |
| 665 |
|
|
END DO |
| 666 |
|
|
END DO |
| 667 |
|
|
|
| 668 |
|
✗ |
DO jl = kidia, kfdia |
| 669 |
|
|
pstab(jl, klev+1) = pstab(jl, klev+1)/(papm1(jl,kknul(jl))-papm1(jl,kknub & |
| 670 |
|
✗ |
(jl))) |
| 671 |
|
|
prho(jl, klev+1) = prho(jl, klev+1)/(papm1(jl,kknul(jl))-papm1(jl,kknub( & |
| 672 |
|
✗ |
jl))) |
| 673 |
|
✗ |
zvar = pstd(jl) |
| 674 |
|
|
END DO |
| 675 |
|
|
|
| 676 |
|
|
! * 2.3 mean flow richardson number. |
| 677 |
|
|
! * and critical height for froude layer |
| 678 |
|
|
|
| 679 |
|
|
|
| 680 |
|
✗ |
DO jk = 2, klev |
| 681 |
|
✗ |
DO jl = kidia, kfdia |
| 682 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 683 |
|
✗ |
zdwind = max(abs(zvpf(jl,jk)-zvpf(jl,jk-1)), gvsec) |
| 684 |
|
✗ |
pri(jl, jk) = pstab(jl, jk)*(zdp(jl,jk)/(rg*prho(jl,jk)*zdwind))**2 |
| 685 |
|
✗ |
pri(jl, jk) = max(pri(jl,jk), grcrit) |
| 686 |
|
|
END IF |
| 687 |
|
|
END DO |
| 688 |
|
|
END DO |
| 689 |
|
|
|
| 690 |
|
|
|
| 691 |
|
|
|
| 692 |
|
|
! * define top of 'envelope' layer |
| 693 |
|
|
! ---------------------------- |
| 694 |
|
|
|
| 695 |
|
✗ |
DO jl = kidia, kfdia |
| 696 |
|
✗ |
pnu(jl) = 0.0 |
| 697 |
|
✗ |
znum(jl) = 0.0 |
| 698 |
|
|
END DO |
| 699 |
|
|
|
| 700 |
|
✗ |
DO jk = 2, klev - 1 |
| 701 |
|
✗ |
DO jl = kidia, kfdia |
| 702 |
|
|
|
| 703 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 704 |
|
|
|
| 705 |
|
✗ |
IF (jk>=kknub(jl)) THEN |
| 706 |
|
|
|
| 707 |
|
✗ |
znum(jl) = pnu(jl) |
| 708 |
|
|
zwind = (pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
| 709 |
|
✗ |
max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
| 710 |
|
✗ |
zwind = max(sqrt(zwind**2), gvsec) |
| 711 |
|
✗ |
zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
| 712 |
|
✗ |
zstabm = sqrt(max(pstab(jl,jk),gssec)) |
| 713 |
|
✗ |
zstabp = sqrt(max(pstab(jl,jk+1),gssec)) |
| 714 |
|
✗ |
zrhom = prho(jl, jk) |
| 715 |
|
✗ |
zrhop = prho(jl, jk+1) |
| 716 |
|
|
pnu(jl) = pnu(jl) + (zdelp/rg)*((zstabp/zrhop+zstabm/zrhom)/2.)/ & |
| 717 |
|
✗ |
zwind |
| 718 |
|
✗ |
IF ((znum(jl)<=gfrcrit) .AND. (pnu(jl)>gfrcrit) .AND. (kkenvh( & |
| 719 |
|
✗ |
jl)==klev)) kkenvh(jl) = jk |
| 720 |
|
|
|
| 721 |
|
|
END IF |
| 722 |
|
|
|
| 723 |
|
|
END IF |
| 724 |
|
|
|
| 725 |
|
|
END DO |
| 726 |
|
|
END DO |
| 727 |
|
|
|
| 728 |
|
|
! calculation of a dynamical mixing height for the breaking |
| 729 |
|
|
! of gravity waves: |
| 730 |
|
|
|
| 731 |
|
|
|
| 732 |
|
✗ |
DO jl = kidia, kfdia |
| 733 |
|
✗ |
znup(jl) = 0.0 |
| 734 |
|
✗ |
znum(jl) = 0.0 |
| 735 |
|
|
END DO |
| 736 |
|
|
|
| 737 |
|
✗ |
DO jk = klev - 1, 2, -1 |
| 738 |
|
✗ |
DO jl = kidia, kfdia |
| 739 |
|
|
|
| 740 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 741 |
|
|
|
| 742 |
|
✗ |
znum(jl) = znup(jl) |
| 743 |
|
|
zwind = (pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
| 744 |
|
✗ |
max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
| 745 |
|
✗ |
zwind = max(sqrt(zwind**2), gvsec) |
| 746 |
|
✗ |
zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
| 747 |
|
✗ |
zstabm = sqrt(max(pstab(jl,jk),gssec)) |
| 748 |
|
✗ |
zstabp = sqrt(max(pstab(jl,jk+1),gssec)) |
| 749 |
|
✗ |
zrhom = prho(jl, jk) |
| 750 |
|
✗ |
zrhop = prho(jl, jk+1) |
| 751 |
|
|
znup(jl) = znup(jl) + (zdelp/rg)*((zstabp/zrhop+zstabm/zrhom)/2.)/ & |
| 752 |
|
✗ |
zwind |
| 753 |
|
✗ |
IF ((znum(jl)<=rpi/2.) .AND. (znup(jl)>rpi/2.) .AND. (kkcrith( & |
| 754 |
|
✗ |
jl)==klev)) kkcrith(jl) = jk |
| 755 |
|
|
|
| 756 |
|
|
END IF |
| 757 |
|
|
|
| 758 |
|
|
END DO |
| 759 |
|
|
END DO |
| 760 |
|
|
|
| 761 |
|
✗ |
DO jl = kidia, kfdia |
| 762 |
|
✗ |
kkcrith(jl) = min0(kkcrith(jl), kknu2(jl)) |
| 763 |
|
✗ |
kkcrith(jl) = max0(kkcrith(jl), ilevh*2) |
| 764 |
|
|
END DO |
| 765 |
|
|
|
| 766 |
|
|
! directional info for flow blocking ************************* |
| 767 |
|
|
|
| 768 |
|
✗ |
DO jk = ilevh, klev |
| 769 |
|
✗ |
DO jl = kidia, kfdia |
| 770 |
|
✗ |
IF (jk>=kkenvh(jl)) THEN |
| 771 |
|
✗ |
lo = (pum1(jl,jk)<gvsec) .AND. (pum1(jl,jk)>=-gvsec) |
| 772 |
|
|
IF (lo) THEN |
| 773 |
|
✗ |
zu = pum1(jl, jk) + 2.*gvsec |
| 774 |
|
|
ELSE |
| 775 |
|
|
zu = pum1(jl, jk) |
| 776 |
|
|
END IF |
| 777 |
|
✗ |
zphi = atan(pvm1(jl,jk)/zu) |
| 778 |
|
✗ |
ppsi(jl, jk) = ptheta(jl)*rpi/180. - zphi |
| 779 |
|
|
END IF |
| 780 |
|
|
END DO |
| 781 |
|
|
END DO |
| 782 |
|
|
! forms the vertical 'leakiness' ************************** |
| 783 |
|
|
|
| 784 |
|
|
alpha = 3. |
| 785 |
|
|
|
| 786 |
|
✗ |
DO jk = ilevh, klev |
| 787 |
|
✗ |
DO jl = kidia, kfdia |
| 788 |
|
✗ |
IF (jk>=kkenvh(jl)) THEN |
| 789 |
|
|
zggeenv = amax1(1., (pgeom1(jl,kkenvh(jl))+pgeom1(jl, & |
| 790 |
|
✗ |
kkenvh(jl)-1))/2.) |
| 791 |
|
✗ |
zggeom1 = amax1(pgeom1(jl,jk), 1.) |
| 792 |
|
|
zgvar = amax1(pstd(jl)*rg, 1.) |
| 793 |
|
|
! mod pzdep(jl,jk)=sqrt((zggeenv-zggeom1)/(zggeom1+zgvar)) |
| 794 |
|
|
pzdep(jl, jk) = (pgeom1(jl,kkenvh(jl)-1)-pgeom1(jl,jk))/ & |
| 795 |
|
✗ |
(pgeom1(jl,kkenvh(jl)-1)-pgeom1(jl,klev)) |
| 796 |
|
|
END IF |
| 797 |
|
|
END DO |
| 798 |
|
|
END DO |
| 799 |
|
|
|
| 800 |
|
✗ |
RETURN |
| 801 |
|
|
END SUBROUTINE orosetup |
| 802 |
|
✗ |
SUBROUTINE gwstress(nlon, nlev, ktest, kcrit, kkenvh, kknu, prho, pstab, & |
| 803 |
|
✗ |
pvph, pstd, psig, pmea, ppic, ptau, pgeom1, pdmod) |
| 804 |
|
|
|
| 805 |
|
|
! **** *gwstress* |
| 806 |
|
|
|
| 807 |
|
|
! purpose. |
| 808 |
|
|
! -------- |
| 809 |
|
|
|
| 810 |
|
|
! ** interface. |
| 811 |
|
|
! ---------- |
| 812 |
|
|
! call *gwstress* from *gwdrag* |
| 813 |
|
|
|
| 814 |
|
|
! explicit arguments : |
| 815 |
|
|
! -------------------- |
| 816 |
|
|
! ==== inputs === |
| 817 |
|
|
! ==== outputs === |
| 818 |
|
|
|
| 819 |
|
|
! implicit arguments : none |
| 820 |
|
|
! -------------------- |
| 821 |
|
|
|
| 822 |
|
|
! method. |
| 823 |
|
|
! ------- |
| 824 |
|
|
|
| 825 |
|
|
|
| 826 |
|
|
! externals. |
| 827 |
|
|
! ---------- |
| 828 |
|
|
|
| 829 |
|
|
|
| 830 |
|
|
! reference. |
| 831 |
|
|
! ---------- |
| 832 |
|
|
|
| 833 |
|
|
! see ecmwf research department documentation of the "i.f.s." |
| 834 |
|
|
|
| 835 |
|
|
! author. |
| 836 |
|
|
! ------- |
| 837 |
|
|
|
| 838 |
|
|
! modifications. |
| 839 |
|
|
! -------------- |
| 840 |
|
|
! f. lott put the new gwd on ifs 22/11/93 |
| 841 |
|
|
|
| 842 |
|
|
! ----------------------------------------------------------------------- |
| 843 |
|
✗ |
USE dimphy |
| 844 |
|
|
IMPLICIT NONE |
| 845 |
|
|
include "YOMCST.h" |
| 846 |
|
|
include "YOEGWD.h" |
| 847 |
|
|
|
| 848 |
|
|
! ----------------------------------------------------------------------- |
| 849 |
|
|
|
| 850 |
|
|
! * 0.1 arguments |
| 851 |
|
|
! --------- |
| 852 |
|
|
|
| 853 |
|
|
INTEGER nlon, nlev |
| 854 |
|
|
INTEGER kcrit(nlon), ktest(nlon), kkenvh(nlon), kknu(nlon) |
| 855 |
|
|
|
| 856 |
|
|
REAL prho(nlon, nlev+1), pstab(nlon, nlev+1), ptau(nlon, nlev+1), & |
| 857 |
|
|
pvph(nlon, nlev+1), pgeom1(nlon, nlev), pstd(nlon) |
| 858 |
|
|
|
| 859 |
|
|
REAL psig(nlon) |
| 860 |
|
|
REAL pmea(nlon), ppic(nlon) |
| 861 |
|
|
REAL pdmod(nlon) |
| 862 |
|
|
|
| 863 |
|
|
! ----------------------------------------------------------------------- |
| 864 |
|
|
|
| 865 |
|
|
! * 0.2 local arrays |
| 866 |
|
|
! ------------ |
| 867 |
|
|
INTEGER jl |
| 868 |
|
|
REAL zblock, zvar, zeff |
| 869 |
|
|
LOGICAL lo |
| 870 |
|
|
|
| 871 |
|
|
! ----------------------------------------------------------------------- |
| 872 |
|
|
|
| 873 |
|
|
! * 0.3 functions |
| 874 |
|
|
! --------- |
| 875 |
|
|
! ------------------------------------------------------------------ |
| 876 |
|
|
|
| 877 |
|
|
! * 1. initialization |
| 878 |
|
|
! -------------- |
| 879 |
|
|
|
| 880 |
|
|
|
| 881 |
|
|
! * 3.1 gravity wave stress. |
| 882 |
|
|
|
| 883 |
|
|
|
| 884 |
|
|
|
| 885 |
|
✗ |
DO jl = kidia, kfdia |
| 886 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 887 |
|
|
|
| 888 |
|
|
! effective mountain height above the blocked flow |
| 889 |
|
|
|
| 890 |
|
✗ |
IF (kkenvh(jl)==klev) THEN |
| 891 |
|
|
zblock = 0.0 |
| 892 |
|
|
ELSE |
| 893 |
|
✗ |
zblock = (pgeom1(jl,kkenvh(jl))+pgeom1(jl,kkenvh(jl)+1))/2./rg |
| 894 |
|
|
END IF |
| 895 |
|
|
|
| 896 |
|
✗ |
zvar = ppic(jl) - pmea(jl) |
| 897 |
|
✗ |
zeff = amax1(0., zvar-zblock) |
| 898 |
|
|
|
| 899 |
|
|
ptau(jl, klev+1) = prho(jl, klev+1)*gkdrag*psig(jl)*zeff**2/4./ & |
| 900 |
|
✗ |
pstd(jl)*pvph(jl, klev+1)*pdmod(jl)*sqrt(pstab(jl,klev+1)) |
| 901 |
|
|
|
| 902 |
|
|
! too small value of stress or low level flow include critical level |
| 903 |
|
|
! or low level flow: gravity wave stress nul. |
| 904 |
|
|
|
| 905 |
|
|
lo = (ptau(jl,klev+1)<gtsec) .OR. (kcrit(jl)>=kknu(jl)) .OR. & |
| 906 |
|
|
(pvph(jl,klev+1)<gvcrit) |
| 907 |
|
|
! if(lo) ptau(jl,klev+1)=0.0 |
| 908 |
|
|
|
| 909 |
|
|
ELSE |
| 910 |
|
|
|
| 911 |
|
✗ |
ptau(jl, klev+1) = 0.0 |
| 912 |
|
|
|
| 913 |
|
|
END IF |
| 914 |
|
|
|
| 915 |
|
|
END DO |
| 916 |
|
|
|
| 917 |
|
✗ |
RETURN |
| 918 |
|
|
END SUBROUTINE gwstress |
| 919 |
|
✗ |
SUBROUTINE gwprofil(nlon, nlev, kgwd, kdx, ktest, kkcrith, kcrit, paphm1, & |
| 920 |
|
✗ |
prho, pstab, pvph, pri, ptau, pdmod, psig, pvar) |
| 921 |
|
|
|
| 922 |
|
|
! **** *GWPROFIL* |
| 923 |
|
|
|
| 924 |
|
|
! PURPOSE. |
| 925 |
|
|
! -------- |
| 926 |
|
|
|
| 927 |
|
|
! ** INTERFACE. |
| 928 |
|
|
! ---------- |
| 929 |
|
|
! FROM *GWDRAG* |
| 930 |
|
|
|
| 931 |
|
|
! EXPLICIT ARGUMENTS : |
| 932 |
|
|
! -------------------- |
| 933 |
|
|
! ==== INPUTS === |
| 934 |
|
|
! ==== OUTPUTS === |
| 935 |
|
|
|
| 936 |
|
|
! IMPLICIT ARGUMENTS : NONE |
| 937 |
|
|
! -------------------- |
| 938 |
|
|
|
| 939 |
|
|
! METHOD: |
| 940 |
|
|
! ------- |
| 941 |
|
|
! THE STRESS PROFILE FOR GRAVITY WAVES IS COMPUTED AS FOLLOWS: |
| 942 |
|
|
! IT IS CONSTANT (NO GWD) AT THE LEVELS BETWEEN THE GROUND |
| 943 |
|
|
! AND THE TOP OF THE BLOCKED LAYER (KKENVH). |
| 944 |
|
|
! IT DECREASES LINEARLY WITH HEIGHTS FROM THE TOP OF THE |
| 945 |
|
|
! BLOCKED LAYER TO 3*VAROR (kKNU), TO SIMULATES LEE WAVES OR |
| 946 |
|
|
! NONLINEAR GRAVITY WAVE BREAKING. |
| 947 |
|
|
! ABOVE IT IS CONSTANT, EXCEPT WHEN THE WAVE ENCOUNTERS A CRITICAL |
| 948 |
|
|
! LEVEL (KCRIT) OR WHEN IT BREAKS. |
| 949 |
|
|
|
| 950 |
|
|
|
| 951 |
|
|
|
| 952 |
|
|
! EXTERNALS. |
| 953 |
|
|
! ---------- |
| 954 |
|
|
|
| 955 |
|
|
|
| 956 |
|
|
! REFERENCE. |
| 957 |
|
|
! ---------- |
| 958 |
|
|
|
| 959 |
|
|
! SEE ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE "I.F.S." |
| 960 |
|
|
|
| 961 |
|
|
! AUTHOR. |
| 962 |
|
|
! ------- |
| 963 |
|
|
|
| 964 |
|
|
! MODIFICATIONS. |
| 965 |
|
|
! -------------- |
| 966 |
|
|
! PASSAGE OF THE NEW GWDRAG TO I.F.S. (F. LOTT, 22/11/93) |
| 967 |
|
|
! ----------------------------------------------------------------------- |
| 968 |
|
✗ |
USE dimphy |
| 969 |
|
|
IMPLICIT NONE |
| 970 |
|
|
|
| 971 |
|
|
|
| 972 |
|
|
|
| 973 |
|
|
|
| 974 |
|
|
include "YOMCST.h" |
| 975 |
|
|
include "YOEGWD.h" |
| 976 |
|
|
|
| 977 |
|
|
! ----------------------------------------------------------------------- |
| 978 |
|
|
|
| 979 |
|
|
! * 0.1 ARGUMENTS |
| 980 |
|
|
! --------- |
| 981 |
|
|
|
| 982 |
|
|
INTEGER nlon, nlev |
| 983 |
|
|
INTEGER kkcrith(nlon), kcrit(nlon), kdx(nlon), ktest(nlon) |
| 984 |
|
|
|
| 985 |
|
|
|
| 986 |
|
|
REAL paphm1(nlon, nlev+1), pstab(nlon, nlev+1), prho(nlon, nlev+1), & |
| 987 |
|
|
pvph(nlon, nlev+1), pri(nlon, nlev+1), ptau(nlon, nlev+1) |
| 988 |
|
|
|
| 989 |
|
|
REAL pdmod(nlon), psig(nlon), pvar(nlon) |
| 990 |
|
|
|
| 991 |
|
|
! ----------------------------------------------------------------------- |
| 992 |
|
|
|
| 993 |
|
|
! * 0.2 LOCAL ARRAYS |
| 994 |
|
|
! ------------ |
| 995 |
|
|
|
| 996 |
|
|
INTEGER ilevh, ji, kgwd, jl, jk |
| 997 |
|
|
REAL zsqr, zalfa, zriw, zdel, zb, zalpha, zdz2n |
| 998 |
|
|
REAL zdelp, zdelpt |
| 999 |
|
✗ |
REAL zdz2(klon, klev), znorm(klon), zoro(klon) |
| 1000 |
|
✗ |
REAL ztau(klon, klev+1) |
| 1001 |
|
|
|
| 1002 |
|
|
! ----------------------------------------------------------------------- |
| 1003 |
|
|
|
| 1004 |
|
|
! * 1. INITIALIZATION |
| 1005 |
|
|
! -------------- |
| 1006 |
|
|
|
| 1007 |
|
|
! print *,' entree gwprofil' |
| 1008 |
|
|
|
| 1009 |
|
|
|
| 1010 |
|
|
! * COMPUTATIONAL CONSTANTS. |
| 1011 |
|
|
! ------------- ---------- |
| 1012 |
|
|
|
| 1013 |
|
|
ilevh = klev/3 |
| 1014 |
|
|
|
| 1015 |
|
|
! DO 400 ji=1,kgwd |
| 1016 |
|
|
! jl=kdx(ji) |
| 1017 |
|
|
! Modif vectorisation 02/04/2004 |
| 1018 |
|
✗ |
DO jl = kidia, kfdia |
| 1019 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1020 |
|
✗ |
zoro(jl) = psig(jl)*pdmod(jl)/4./max(pvar(jl), 1.0) |
| 1021 |
|
✗ |
ztau(jl, klev+1) = ptau(jl, klev+1) |
| 1022 |
|
|
END IF |
| 1023 |
|
|
END DO |
| 1024 |
|
|
|
| 1025 |
|
|
|
| 1026 |
|
✗ |
DO jk = klev, 2, -1 |
| 1027 |
|
|
|
| 1028 |
|
|
! * 4.1 CONSTANT WAVE STRESS UNTIL TOP OF THE |
| 1029 |
|
|
! BLOCKING LAYER. |
| 1030 |
|
|
|
| 1031 |
|
|
! DO 411 ji=1,kgwd |
| 1032 |
|
|
! jl=kdx(ji) |
| 1033 |
|
|
! Modif vectorisation 02/04/2004 |
| 1034 |
|
✗ |
DO jl = kidia, kfdia |
| 1035 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1036 |
|
✗ |
IF (jk>kkcrith(jl)) THEN |
| 1037 |
|
✗ |
ptau(jl, jk) = ztau(jl, klev+1) |
| 1038 |
|
|
! ENDIF |
| 1039 |
|
|
! IF(JK.EQ.KKCRITH(JL)) THEN |
| 1040 |
|
|
ELSE |
| 1041 |
|
✗ |
ptau(jl, jk) = grahilo*ztau(jl, klev+1) |
| 1042 |
|
|
END IF |
| 1043 |
|
|
END IF |
| 1044 |
|
|
END DO |
| 1045 |
|
|
|
| 1046 |
|
|
! * 4.15 CONSTANT SHEAR STRESS UNTIL THE TOP OF THE |
| 1047 |
|
|
! LOW LEVEL FLOW LAYER. |
| 1048 |
|
|
|
| 1049 |
|
|
|
| 1050 |
|
|
! * 4.2 WAVE DISPLACEMENT AT NEXT LEVEL. |
| 1051 |
|
|
|
| 1052 |
|
|
|
| 1053 |
|
|
! DO 421 ji=1,kgwd |
| 1054 |
|
|
! jl=kdx(ji) |
| 1055 |
|
|
! Modif vectorisation 02/04/2004 |
| 1056 |
|
✗ |
DO jl = kidia, kfdia |
| 1057 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1058 |
|
✗ |
IF (jk<kkcrith(jl)) THEN |
| 1059 |
|
|
znorm(jl) = gkdrag*prho(jl, jk)*sqrt(pstab(jl,jk))*pvph(jl, jk)* & |
| 1060 |
|
✗ |
zoro(jl) |
| 1061 |
|
✗ |
zdz2(jl, jk) = ptau(jl, jk+1)/max(znorm(jl), gssec) |
| 1062 |
|
|
END IF |
| 1063 |
|
|
END IF |
| 1064 |
|
|
END DO |
| 1065 |
|
|
|
| 1066 |
|
|
! * 4.3 WAVE RICHARDSON NUMBER, NEW WAVE DISPLACEMENT |
| 1067 |
|
|
! * AND STRESS: BREAKING EVALUATION AND CRITICAL |
| 1068 |
|
|
! LEVEL |
| 1069 |
|
|
|
| 1070 |
|
|
|
| 1071 |
|
|
! DO 431 ji=1,kgwd |
| 1072 |
|
|
! jl=Kdx(ji) |
| 1073 |
|
|
! Modif vectorisation 02/04/2004 |
| 1074 |
|
✗ |
DO jl = kidia, kfdia |
| 1075 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1076 |
|
|
|
| 1077 |
|
✗ |
IF (jk<kkcrith(jl)) THEN |
| 1078 |
|
✗ |
IF ((ptau(jl,jk+1)<gtsec) .OR. (jk<=kcrit(jl))) THEN |
| 1079 |
|
✗ |
ptau(jl, jk) = 0.0 |
| 1080 |
|
|
ELSE |
| 1081 |
|
✗ |
zsqr = sqrt(pri(jl,jk)) |
| 1082 |
|
✗ |
zalfa = sqrt(pstab(jl,jk)*zdz2(jl,jk))/pvph(jl, jk) |
| 1083 |
|
✗ |
zriw = pri(jl, jk)*(1.-zalfa)/(1+zalfa*zsqr)**2 |
| 1084 |
|
✗ |
IF (zriw<grcrit) THEN |
| 1085 |
|
✗ |
zdel = 4./zsqr/grcrit + 1./grcrit**2 + 4./grcrit |
| 1086 |
|
✗ |
zb = 1./grcrit + 2./zsqr |
| 1087 |
|
✗ |
zalpha = 0.5*(-zb+sqrt(zdel)) |
| 1088 |
|
✗ |
zdz2n = (pvph(jl,jk)*zalpha)**2/pstab(jl, jk) |
| 1089 |
|
✗ |
ptau(jl, jk) = znorm(jl)*zdz2n |
| 1090 |
|
|
ELSE |
| 1091 |
|
✗ |
ptau(jl, jk) = znorm(jl)*zdz2(jl, jk) |
| 1092 |
|
|
END IF |
| 1093 |
|
✗ |
ptau(jl, jk) = min(ptau(jl,jk), ptau(jl,jk+1)) |
| 1094 |
|
|
END IF |
| 1095 |
|
|
END IF |
| 1096 |
|
|
END IF |
| 1097 |
|
|
END DO |
| 1098 |
|
|
|
| 1099 |
|
|
END DO |
| 1100 |
|
|
|
| 1101 |
|
|
! REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
| 1102 |
|
|
|
| 1103 |
|
|
! DO 530 ji=1,kgwd |
| 1104 |
|
|
! jl=kdx(ji) |
| 1105 |
|
|
! Modif vectorisation 02/04/2004 |
| 1106 |
|
✗ |
DO jl = kidia, kfdia |
| 1107 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1108 |
|
✗ |
ztau(jl, kkcrith(jl)) = ptau(jl, kkcrith(jl)) |
| 1109 |
|
✗ |
ztau(jl, nstra) = ptau(jl, nstra) |
| 1110 |
|
|
END IF |
| 1111 |
|
|
END DO |
| 1112 |
|
|
|
| 1113 |
|
✗ |
DO jk = 1, klev |
| 1114 |
|
|
|
| 1115 |
|
|
! DO 532 ji=1,kgwd |
| 1116 |
|
|
! jl=kdx(ji) |
| 1117 |
|
|
! Modif vectorisation 02/04/2004 |
| 1118 |
|
✗ |
DO jl = kidia, kfdia |
| 1119 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1120 |
|
|
|
| 1121 |
|
|
|
| 1122 |
|
✗ |
IF (jk>kkcrith(jl)) THEN |
| 1123 |
|
|
|
| 1124 |
|
✗ |
zdelp = paphm1(jl, jk) - paphm1(jl, klev+1) |
| 1125 |
|
✗ |
zdelpt = paphm1(jl, kkcrith(jl)) - paphm1(jl, klev+1) |
| 1126 |
|
|
ptau(jl, jk) = ztau(jl, klev+1) + (ztau(jl,kkcrith(jl))-ztau(jl, & |
| 1127 |
|
✗ |
klev+1))*zdelp/zdelpt |
| 1128 |
|
|
|
| 1129 |
|
|
END IF |
| 1130 |
|
|
|
| 1131 |
|
|
END IF |
| 1132 |
|
|
END DO |
| 1133 |
|
|
|
| 1134 |
|
|
! REORGANISATION IN THE STRATOSPHERE |
| 1135 |
|
|
|
| 1136 |
|
|
! DO 533 ji=1,kgwd |
| 1137 |
|
|
! jl=kdx(ji) |
| 1138 |
|
|
! Modif vectorisation 02/04/2004 |
| 1139 |
|
✗ |
DO jl = kidia, kfdia |
| 1140 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1141 |
|
|
|
| 1142 |
|
|
|
| 1143 |
|
✗ |
IF (jk<nstra) THEN |
| 1144 |
|
|
|
| 1145 |
|
✗ |
zdelp = paphm1(jl, nstra) |
| 1146 |
|
✗ |
zdelpt = paphm1(jl, jk) |
| 1147 |
|
✗ |
ptau(jl, jk) = ztau(jl, nstra)*zdelpt/zdelp |
| 1148 |
|
|
|
| 1149 |
|
|
END IF |
| 1150 |
|
|
|
| 1151 |
|
|
END IF |
| 1152 |
|
|
END DO |
| 1153 |
|
|
|
| 1154 |
|
|
! REORGANISATION IN THE TROPOSPHERE |
| 1155 |
|
|
|
| 1156 |
|
|
! DO 534 ji=1,kgwd |
| 1157 |
|
|
! jl=kdx(ji) |
| 1158 |
|
|
! Modif vectorisation 02/04/2004 |
| 1159 |
|
✗ |
DO jl = kidia, kfdia |
| 1160 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1161 |
|
|
|
| 1162 |
|
|
|
| 1163 |
|
✗ |
IF (jk<kkcrith(jl) .AND. jk>nstra) THEN |
| 1164 |
|
|
|
| 1165 |
|
✗ |
zdelp = paphm1(jl, jk) - paphm1(jl, kkcrith(jl)) |
| 1166 |
|
✗ |
zdelpt = paphm1(jl, nstra) - paphm1(jl, kkcrith(jl)) |
| 1167 |
|
|
ptau(jl, jk) = ztau(jl, kkcrith(jl)) + (ztau(jl,nstra)-ztau(jl, & |
| 1168 |
|
✗ |
kkcrith(jl)))*zdelp/zdelpt |
| 1169 |
|
|
|
| 1170 |
|
|
END IF |
| 1171 |
|
|
END IF |
| 1172 |
|
|
END DO |
| 1173 |
|
|
|
| 1174 |
|
|
|
| 1175 |
|
|
END DO |
| 1176 |
|
|
|
| 1177 |
|
|
|
| 1178 |
|
✗ |
RETURN |
| 1179 |
|
|
END SUBROUTINE gwprofil |
| 1180 |
|
✗ |
SUBROUTINE lift_noro(nlon, nlev, dtime, paprs, pplay, plat, pmea, pstd, ppic, & |
| 1181 |
|
✗ |
ktest, t, u, v, pulow, pvlow, pustr, pvstr, d_t, d_u, d_v) |
| 1182 |
|
|
|
| 1183 |
|
|
USE dimphy |
| 1184 |
|
|
IMPLICIT NONE |
| 1185 |
|
|
! ====================================================================== |
| 1186 |
|
|
! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
| 1187 |
|
|
! Objet: Frottement de la montagne Interface |
| 1188 |
|
|
! ====================================================================== |
| 1189 |
|
|
! Arguments: |
| 1190 |
|
|
! dtime---input-R- pas d'integration (s) |
| 1191 |
|
|
! paprs---input-R-pression pour chaque inter-couche (en Pa) |
| 1192 |
|
|
! pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
| 1193 |
|
|
! t-------input-R-temperature (K) |
| 1194 |
|
|
! u-------input-R-vitesse horizontale (m/s) |
| 1195 |
|
|
! v-------input-R-vitesse horizontale (m/s) |
| 1196 |
|
|
|
| 1197 |
|
|
! d_t-----output-R-increment de la temperature |
| 1198 |
|
|
! d_u-----output-R-increment de la vitesse u |
| 1199 |
|
|
! d_v-----output-R-increment de la vitesse v |
| 1200 |
|
|
! ====================================================================== |
| 1201 |
|
|
include "YOMCST.h" |
| 1202 |
|
|
|
| 1203 |
|
|
! ARGUMENTS |
| 1204 |
|
|
|
| 1205 |
|
|
INTEGER nlon, nlev |
| 1206 |
|
|
REAL dtime |
| 1207 |
|
|
REAL paprs(klon, klev+1) |
| 1208 |
|
|
REAL pplay(klon, klev) |
| 1209 |
|
|
REAL plat(nlon), pmea(nlon) |
| 1210 |
|
|
REAL pstd(nlon) |
| 1211 |
|
|
REAL ppic(nlon) |
| 1212 |
|
|
REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
| 1213 |
|
|
REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
| 1214 |
|
|
REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
| 1215 |
|
|
|
| 1216 |
|
|
INTEGER i, k, ktest(nlon) |
| 1217 |
|
|
|
| 1218 |
|
|
! Variables locales: |
| 1219 |
|
|
|
| 1220 |
|
✗ |
REAL zgeom(klon, klev) |
| 1221 |
|
✗ |
REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
| 1222 |
|
✗ |
REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
| 1223 |
|
✗ |
REAL papmf(klon, klev), papmh(klon, klev+1) |
| 1224 |
|
|
|
| 1225 |
|
|
! initialiser les variables de sortie (pour securite) |
| 1226 |
|
|
|
| 1227 |
|
✗ |
DO i = 1, klon |
| 1228 |
|
✗ |
pulow(i) = 0.0 |
| 1229 |
|
✗ |
pvlow(i) = 0.0 |
| 1230 |
|
✗ |
pustr(i) = 0.0 |
| 1231 |
|
✗ |
pvstr(i) = 0.0 |
| 1232 |
|
|
END DO |
| 1233 |
|
✗ |
DO k = 1, klev |
| 1234 |
|
✗ |
DO i = 1, klon |
| 1235 |
|
✗ |
d_t(i, k) = 0.0 |
| 1236 |
|
✗ |
d_u(i, k) = 0.0 |
| 1237 |
|
✗ |
d_v(i, k) = 0.0 |
| 1238 |
|
✗ |
pdudt(i, k) = 0.0 |
| 1239 |
|
✗ |
pdvdt(i, k) = 0.0 |
| 1240 |
|
✗ |
pdtdt(i, k) = 0.0 |
| 1241 |
|
|
END DO |
| 1242 |
|
|
END DO |
| 1243 |
|
|
|
| 1244 |
|
|
! preparer les variables d'entree (attention: l'ordre des niveaux |
| 1245 |
|
|
! verticaux augmente du haut vers le bas) |
| 1246 |
|
|
|
| 1247 |
|
✗ |
DO k = 1, klev |
| 1248 |
|
✗ |
DO i = 1, klon |
| 1249 |
|
✗ |
pt(i, k) = t(i, klev-k+1) |
| 1250 |
|
✗ |
pu(i, k) = u(i, klev-k+1) |
| 1251 |
|
✗ |
pv(i, k) = v(i, klev-k+1) |
| 1252 |
|
✗ |
papmf(i, k) = pplay(i, klev-k+1) |
| 1253 |
|
|
END DO |
| 1254 |
|
|
END DO |
| 1255 |
|
✗ |
DO k = 1, klev + 1 |
| 1256 |
|
✗ |
DO i = 1, klon |
| 1257 |
|
✗ |
papmh(i, k) = paprs(i, klev-k+2) |
| 1258 |
|
|
END DO |
| 1259 |
|
|
END DO |
| 1260 |
|
✗ |
DO i = 1, klon |
| 1261 |
|
✗ |
zgeom(i, klev) = rd*pt(i, klev)*log(papmh(i,klev+1)/papmf(i,klev)) |
| 1262 |
|
|
END DO |
| 1263 |
|
✗ |
DO k = klev - 1, 1, -1 |
| 1264 |
|
✗ |
DO i = 1, klon |
| 1265 |
|
|
zgeom(i, k) = zgeom(i, k+1) + rd*(pt(i,k)+pt(i,k+1))/2.0*log(papmf(i,k+ & |
| 1266 |
|
✗ |
1)/papmf(i,k)) |
| 1267 |
|
|
END DO |
| 1268 |
|
|
END DO |
| 1269 |
|
|
|
| 1270 |
|
|
! appeler la routine principale |
| 1271 |
|
|
|
| 1272 |
|
|
CALL orolift(klon, klev, ktest, dtime, papmh, zgeom, pt, pu, pv, plat, & |
| 1273 |
|
✗ |
pmea, pstd, ppic, pulow, pvlow, pdudt, pdvdt, pdtdt) |
| 1274 |
|
|
|
| 1275 |
|
✗ |
DO k = 1, klev |
| 1276 |
|
✗ |
DO i = 1, klon |
| 1277 |
|
✗ |
d_u(i, klev+1-k) = dtime*pdudt(i, k) |
| 1278 |
|
✗ |
d_v(i, klev+1-k) = dtime*pdvdt(i, k) |
| 1279 |
|
✗ |
d_t(i, klev+1-k) = dtime*pdtdt(i, k) |
| 1280 |
|
|
pustr(i) = pustr(i) & ! IM BUG . |
| 1281 |
|
|
! +RG*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
| 1282 |
|
✗ |
+pdudt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
| 1283 |
|
|
pvstr(i) = pvstr(i) & ! IM BUG . |
| 1284 |
|
|
! +RG*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
| 1285 |
|
✗ |
+pdvdt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
| 1286 |
|
|
END DO |
| 1287 |
|
|
END DO |
| 1288 |
|
|
|
| 1289 |
|
✗ |
RETURN |
| 1290 |
|
|
END SUBROUTINE lift_noro |
| 1291 |
|
✗ |
SUBROUTINE orolift(nlon, nlev, ktest, ptsphy, paphm1, pgeom1, ptm1, pum1, & |
| 1292 |
|
|
pvm1, plat, pmea, pvaror, ppic & ! OUTPUTS |
| 1293 |
|
✗ |
, pulow, pvlow, pvom, pvol, pte) |
| 1294 |
|
|
|
| 1295 |
|
|
|
| 1296 |
|
|
! **** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
| 1297 |
|
|
|
| 1298 |
|
|
! PURPOSE. |
| 1299 |
|
|
! -------- |
| 1300 |
|
|
|
| 1301 |
|
|
! ** INTERFACE. |
| 1302 |
|
|
! ---------- |
| 1303 |
|
|
! CALLED FROM *lift_noro |
| 1304 |
|
|
! ---------- |
| 1305 |
|
|
|
| 1306 |
|
|
! AUTHOR. |
| 1307 |
|
|
! ------- |
| 1308 |
|
|
! F.LOTT LMD 22/11/95 |
| 1309 |
|
|
|
| 1310 |
|
|
USE dimphy |
| 1311 |
|
|
IMPLICIT NONE |
| 1312 |
|
|
|
| 1313 |
|
|
|
| 1314 |
|
|
include "YOMCST.h" |
| 1315 |
|
|
include "YOEGWD.h" |
| 1316 |
|
|
! ----------------------------------------------------------------------- |
| 1317 |
|
|
|
| 1318 |
|
|
! * 0.1 ARGUMENTS |
| 1319 |
|
|
! --------- |
| 1320 |
|
|
|
| 1321 |
|
|
|
| 1322 |
|
|
INTEGER nlon, nlev |
| 1323 |
|
|
REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(nlon), & |
| 1324 |
|
|
pvlow(nlon) |
| 1325 |
|
|
REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), plat(nlon), & |
| 1326 |
|
|
pmea(nlon), pvaror(nlon), ppic(nlon), pgeom1(nlon, nlev), & |
| 1327 |
|
|
paphm1(nlon, nlev+1) |
| 1328 |
|
|
|
| 1329 |
|
|
INTEGER ktest(nlon) |
| 1330 |
|
|
REAL ptsphy |
| 1331 |
|
|
! ----------------------------------------------------------------------- |
| 1332 |
|
|
|
| 1333 |
|
|
! * 0.2 LOCAL ARRAYS |
| 1334 |
|
|
! ------------ |
| 1335 |
|
|
LOGICAL lifthigh |
| 1336 |
|
|
! ym integer klevm1, jl, ilevh, jk |
| 1337 |
|
|
INTEGER jl, ilevh, jk |
| 1338 |
|
|
REAL zcons1, ztmst, zrtmst, zpi, zhgeo |
| 1339 |
|
|
REAL zdelp, zslow, zsqua, zscav, zbet |
| 1340 |
|
✗ |
INTEGER iknub(klon), iknul(klon) |
| 1341 |
|
✗ |
LOGICAL ll1(klon, klev+1) |
| 1342 |
|
|
|
| 1343 |
|
✗ |
REAL ztau(klon, klev+1), ztav(klon, klev+1), zrho(klon, klev+1) |
| 1344 |
|
✗ |
REAL zdudt(klon), zdvdt(klon) |
| 1345 |
|
✗ |
REAL zhcrit(klon, klev) |
| 1346 |
|
|
CHARACTER (LEN=20) :: modname = 'orografi' |
| 1347 |
|
|
CHARACTER (LEN=80) :: abort_message |
| 1348 |
|
|
! ----------------------------------------------------------------------- |
| 1349 |
|
|
|
| 1350 |
|
|
! * 1.1 INITIALIZATIONS |
| 1351 |
|
|
! --------------- |
| 1352 |
|
|
|
| 1353 |
|
|
lifthigh = .FALSE. |
| 1354 |
|
|
|
| 1355 |
|
✗ |
IF (nlon/=klon .OR. nlev/=klev) THEN |
| 1356 |
|
✗ |
abort_message = 'pb dimension' |
| 1357 |
|
✗ |
CALL abort_physic(modname, abort_message, 1) |
| 1358 |
|
|
END IF |
| 1359 |
|
✗ |
zcons1 = 1./rd |
| 1360 |
|
|
! ym KLEVM1=KLEV-1 |
| 1361 |
|
✗ |
ztmst = ptsphy |
| 1362 |
|
|
zrtmst = 1./ztmst |
| 1363 |
|
|
zpi = acos(-1.) |
| 1364 |
|
|
|
| 1365 |
|
✗ |
DO jl = kidia, kfdia |
| 1366 |
|
✗ |
zrho(jl, klev+1) = 0.0 |
| 1367 |
|
✗ |
pulow(jl) = 0.0 |
| 1368 |
|
✗ |
pvlow(jl) = 0.0 |
| 1369 |
|
✗ |
iknub(jl) = klev |
| 1370 |
|
✗ |
iknul(jl) = klev |
| 1371 |
|
|
ilevh = klev/3 |
| 1372 |
|
✗ |
ll1(jl, klev+1) = .FALSE. |
| 1373 |
|
✗ |
DO jk = 1, klev |
| 1374 |
|
✗ |
pvom(jl, jk) = 0.0 |
| 1375 |
|
✗ |
pvol(jl, jk) = 0.0 |
| 1376 |
|
✗ |
pte(jl, jk) = 0.0 |
| 1377 |
|
|
END DO |
| 1378 |
|
|
END DO |
| 1379 |
|
|
|
| 1380 |
|
|
|
| 1381 |
|
|
! * 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
| 1382 |
|
|
! * LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
| 1383 |
|
|
! * THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
| 1384 |
|
|
|
| 1385 |
|
|
|
| 1386 |
|
|
|
| 1387 |
|
✗ |
DO jk = klev, 1, -1 |
| 1388 |
|
✗ |
DO jl = kidia, kfdia |
| 1389 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1390 |
|
✗ |
zhcrit(jl, jk) = amax1(ppic(jl)-pmea(jl), 100.) |
| 1391 |
|
✗ |
zhgeo = pgeom1(jl, jk)/rg |
| 1392 |
|
✗ |
ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
| 1393 |
|
✗ |
IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
| 1394 |
|
✗ |
iknub(jl) = jk |
| 1395 |
|
|
END IF |
| 1396 |
|
|
END IF |
| 1397 |
|
|
END DO |
| 1398 |
|
|
END DO |
| 1399 |
|
|
|
| 1400 |
|
✗ |
DO jl = kidia, kfdia |
| 1401 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1402 |
|
✗ |
iknub(jl) = max(iknub(jl), klev/2) |
| 1403 |
|
✗ |
iknul(jl) = max(iknul(jl), 2*klev/3) |
| 1404 |
|
✗ |
IF (iknub(jl)>nktopg) iknub(jl) = nktopg |
| 1405 |
|
✗ |
IF (iknub(jl)==nktopg) iknul(jl) = klev |
| 1406 |
|
✗ |
IF (iknub(jl)==iknul(jl)) iknub(jl) = iknul(jl) - 1 |
| 1407 |
|
|
END IF |
| 1408 |
|
|
END DO |
| 1409 |
|
|
|
| 1410 |
|
|
! do 2011 jl=kidia,kfdia |
| 1411 |
|
|
! IF(KTEST(JL).EQ.1) THEN |
| 1412 |
|
|
! print *,' iknul= ',iknul(jl),' iknub=',iknub(jl) |
| 1413 |
|
|
! ENDIF |
| 1414 |
|
|
! 2011 continue |
| 1415 |
|
|
|
| 1416 |
|
|
! PRINT *,' DANS OROLIFT: 2010' |
| 1417 |
|
|
|
| 1418 |
|
✗ |
DO jk = klev, 2, -1 |
| 1419 |
|
✗ |
DO jl = kidia, kfdia |
| 1420 |
|
✗ |
zrho(jl, jk) = 2.*paphm1(jl, jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
| 1421 |
|
|
END DO |
| 1422 |
|
|
END DO |
| 1423 |
|
|
! PRINT *,' DANS OROLIFT: 223' |
| 1424 |
|
|
|
| 1425 |
|
|
! ******************************************************************** |
| 1426 |
|
|
|
| 1427 |
|
|
! * DEFINE LOW LEVEL FLOW |
| 1428 |
|
|
! ------------------- |
| 1429 |
|
✗ |
DO jk = klev, 1, -1 |
| 1430 |
|
✗ |
DO jl = kidia, kfdia |
| 1431 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1432 |
|
✗ |
IF (jk>=iknub(jl) .AND. jk<=iknul(jl)) THEN |
| 1433 |
|
|
pulow(jl) = pulow(jl) + pum1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
| 1434 |
|
✗ |
) |
| 1435 |
|
|
pvlow(jl) = pvlow(jl) + pvm1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
| 1436 |
|
✗ |
) |
| 1437 |
|
|
zrho(jl, klev+1) = zrho(jl, klev+1) + zrho(jl, jk)*(paphm1(jl,jk+1) & |
| 1438 |
|
✗ |
-paphm1(jl,jk)) |
| 1439 |
|
|
END IF |
| 1440 |
|
|
END IF |
| 1441 |
|
|
END DO |
| 1442 |
|
|
END DO |
| 1443 |
|
✗ |
DO jl = kidia, kfdia |
| 1444 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1445 |
|
✗ |
pulow(jl) = pulow(jl)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
| 1446 |
|
✗ |
pvlow(jl) = pvlow(jl)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
| 1447 |
|
|
zrho(jl, klev+1) = zrho(jl, klev+1)/(paphm1(jl,iknul(jl)+1)-paphm1(jl, & |
| 1448 |
|
✗ |
iknub(jl))) |
| 1449 |
|
|
END IF |
| 1450 |
|
|
END DO |
| 1451 |
|
|
|
| 1452 |
|
|
! *********************************************************** |
| 1453 |
|
|
|
| 1454 |
|
|
! * 3. COMPUTE MOUNTAIN LIFT |
| 1455 |
|
|
|
| 1456 |
|
|
|
| 1457 |
|
✗ |
DO jl = kidia, kfdia |
| 1458 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1459 |
|
|
ztau(jl, klev+1) = -gklift*zrho(jl, klev+1)*2.*romega* & ! * |
| 1460 |
|
|
! (2*PVAROR(JL)+PMEA(JL))* |
| 1461 |
|
✗ |
2*pvaror(jl)*sin(zpi/180.*plat(jl))*pvlow(jl) |
| 1462 |
|
|
ztav(jl, klev+1) = gklift*zrho(jl, klev+1)*2.*romega* & ! * |
| 1463 |
|
|
! (2*PVAROR(JL)+PMEA(JL))* |
| 1464 |
|
✗ |
2*pvaror(jl)*sin(zpi/180.*plat(jl))*pulow(jl) |
| 1465 |
|
|
ELSE |
| 1466 |
|
✗ |
ztau(jl, klev+1) = 0.0 |
| 1467 |
|
✗ |
ztav(jl, klev+1) = 0.0 |
| 1468 |
|
|
END IF |
| 1469 |
|
|
END DO |
| 1470 |
|
|
|
| 1471 |
|
|
! * 4. COMPUTE LIFT PROFILE |
| 1472 |
|
|
! * -------------------- |
| 1473 |
|
|
|
| 1474 |
|
|
|
| 1475 |
|
|
|
| 1476 |
|
✗ |
DO jk = 1, klev |
| 1477 |
|
✗ |
DO jl = kidia, kfdia |
| 1478 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1479 |
|
✗ |
ztau(jl, jk) = ztau(jl, klev+1)*paphm1(jl, jk)/paphm1(jl, klev+1) |
| 1480 |
|
✗ |
ztav(jl, jk) = ztav(jl, klev+1)*paphm1(jl, jk)/paphm1(jl, klev+1) |
| 1481 |
|
|
ELSE |
| 1482 |
|
✗ |
ztau(jl, jk) = 0.0 |
| 1483 |
|
✗ |
ztav(jl, jk) = 0.0 |
| 1484 |
|
|
END IF |
| 1485 |
|
|
END DO |
| 1486 |
|
|
END DO |
| 1487 |
|
|
|
| 1488 |
|
|
|
| 1489 |
|
|
! * 5. COMPUTE TENDENCIES. |
| 1490 |
|
|
! * ------------------- |
| 1491 |
|
|
IF (lifthigh) THEN |
| 1492 |
|
|
! PRINT *,' DANS OROLIFT: 500' |
| 1493 |
|
|
|
| 1494 |
|
|
! EXPLICIT SOLUTION AT ALL LEVELS |
| 1495 |
|
|
|
| 1496 |
|
|
DO jk = 1, klev |
| 1497 |
|
|
DO jl = kidia, kfdia |
| 1498 |
|
|
IF (ktest(jl)==1) THEN |
| 1499 |
|
|
zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
| 1500 |
|
|
zdudt(jl) = -rg*(ztau(jl,jk+1)-ztau(jl,jk))/zdelp |
| 1501 |
|
|
zdvdt(jl) = -rg*(ztav(jl,jk+1)-ztav(jl,jk))/zdelp |
| 1502 |
|
|
END IF |
| 1503 |
|
|
END DO |
| 1504 |
|
|
END DO |
| 1505 |
|
|
|
| 1506 |
|
|
! PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
| 1507 |
|
|
|
| 1508 |
|
|
DO jk = 1, klev |
| 1509 |
|
|
DO jl = kidia, kfdia |
| 1510 |
|
|
IF (ktest(jl)==1) THEN |
| 1511 |
|
|
|
| 1512 |
|
|
zslow = sqrt(pulow(jl)**2+pvlow(jl)**2) |
| 1513 |
|
|
zsqua = amax1(sqrt(pum1(jl,jk)**2+pvm1(jl,jk)**2), gvsec) |
| 1514 |
|
|
zscav = -zdudt(jl)*pvm1(jl, jk) + zdvdt(jl)*pum1(jl, jk) |
| 1515 |
|
|
IF (zsqua>gvsec) THEN |
| 1516 |
|
|
pvom(jl, jk) = -zscav*pvm1(jl, jk)/zsqua**2 |
| 1517 |
|
|
pvol(jl, jk) = zscav*pum1(jl, jk)/zsqua**2 |
| 1518 |
|
|
ELSE |
| 1519 |
|
|
pvom(jl, jk) = 0.0 |
| 1520 |
|
|
pvol(jl, jk) = 0.0 |
| 1521 |
|
|
END IF |
| 1522 |
|
|
zsqua = sqrt(pum1(jl,jk)**2+pum1(jl,jk)**2) |
| 1523 |
|
|
IF (zsqua<zslow) THEN |
| 1524 |
|
|
pvom(jl, jk) = zsqua/zslow*pvom(jl, jk) |
| 1525 |
|
|
pvol(jl, jk) = zsqua/zslow*pvol(jl, jk) |
| 1526 |
|
|
END IF |
| 1527 |
|
|
|
| 1528 |
|
|
END IF |
| 1529 |
|
|
END DO |
| 1530 |
|
|
END DO |
| 1531 |
|
|
|
| 1532 |
|
|
! 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
| 1533 |
|
|
! ---------------------------------- |
| 1534 |
|
|
|
| 1535 |
|
|
ELSE |
| 1536 |
|
|
|
| 1537 |
|
✗ |
DO jl = kidia, kfdia |
| 1538 |
|
✗ |
IF (ktest(jl)==1) THEN |
| 1539 |
|
✗ |
DO jk = klev, iknub(jl), -1 |
| 1540 |
|
|
zbet = gklift*2.*romega*sin(zpi/180.*plat(jl))*ztmst* & |
| 1541 |
|
|
(pgeom1(jl,iknub(jl)-1)-pgeom1(jl,jk))/ & |
| 1542 |
|
✗ |
(pgeom1(jl,iknub(jl)-1)-pgeom1(jl,klev)) |
| 1543 |
|
✗ |
zdudt(jl) = -pum1(jl, jk)/ztmst/(1+zbet**2) |
| 1544 |
|
✗ |
zdvdt(jl) = -pvm1(jl, jk)/ztmst/(1+zbet**2) |
| 1545 |
|
✗ |
pvom(jl, jk) = zbet**2*zdudt(jl) - zbet*zdvdt(jl) |
| 1546 |
|
✗ |
pvol(jl, jk) = zbet*zdudt(jl) + zbet**2*zdvdt(jl) |
| 1547 |
|
|
END DO |
| 1548 |
|
|
END IF |
| 1549 |
|
|
END DO |
| 1550 |
|
|
|
| 1551 |
|
|
END IF |
| 1552 |
|
|
|
| 1553 |
|
✗ |
RETURN |
| 1554 |
|
|
END SUBROUTINE orolift |
| 1555 |
|
|
|
| 1556 |
|
|
|
| 1557 |
|
✗ |
SUBROUTINE sugwd(nlon, nlev, paprs, pplay) |
| 1558 |
|
|
USE dimphy |
| 1559 |
|
|
USE mod_phys_lmdz_para |
| 1560 |
|
|
USE mod_grid_phy_lmdz |
| 1561 |
|
|
! USE parallel |
| 1562 |
|
|
|
| 1563 |
|
|
! **** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
| 1564 |
|
|
|
| 1565 |
|
|
! PURPOSE. |
| 1566 |
|
|
! -------- |
| 1567 |
|
|
! INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
| 1568 |
|
|
! GRAVITY WAVE DRAG PARAMETRIZATION. |
| 1569 |
|
|
|
| 1570 |
|
|
! ** INTERFACE. |
| 1571 |
|
|
! ---------- |
| 1572 |
|
|
! CALL *SUGWD* FROM *SUPHEC* |
| 1573 |
|
|
! ----- ------ |
| 1574 |
|
|
|
| 1575 |
|
|
! EXPLICIT ARGUMENTS : |
| 1576 |
|
|
! -------------------- |
| 1577 |
|
|
! PSIG : VERTICAL COORDINATE TABLE |
| 1578 |
|
|
! NLEV : NUMBER OF MODEL LEVELS |
| 1579 |
|
|
|
| 1580 |
|
|
! IMPLICIT ARGUMENTS : |
| 1581 |
|
|
! -------------------- |
| 1582 |
|
|
! COMMON YOEGWD |
| 1583 |
|
|
|
| 1584 |
|
|
! METHOD. |
| 1585 |
|
|
! ------- |
| 1586 |
|
|
! SEE DOCUMENTATION |
| 1587 |
|
|
|
| 1588 |
|
|
! EXTERNALS. |
| 1589 |
|
|
! ---------- |
| 1590 |
|
|
! NONE |
| 1591 |
|
|
|
| 1592 |
|
|
! REFERENCE. |
| 1593 |
|
|
! ---------- |
| 1594 |
|
|
! ECMWF Research Department documentation of the IFS |
| 1595 |
|
|
|
| 1596 |
|
|
! AUTHOR. |
| 1597 |
|
|
! ------- |
| 1598 |
|
|
! MARTIN MILLER *ECMWF* |
| 1599 |
|
|
|
| 1600 |
|
|
! MODIFICATIONS. |
| 1601 |
|
|
! -------------- |
| 1602 |
|
|
! ORIGINAL : 90-01-01 |
| 1603 |
|
|
! ------------------------------------------------------------------ |
| 1604 |
|
|
IMPLICIT NONE |
| 1605 |
|
|
|
| 1606 |
|
|
! ----------------------------------------------------------------- |
| 1607 |
|
|
include "YOEGWD.h" |
| 1608 |
|
|
! ---------------------------------------------------------------- |
| 1609 |
|
|
|
| 1610 |
|
|
INTEGER nlon, nlev, jk |
| 1611 |
|
|
REAL paprs(nlon, nlev+1) |
| 1612 |
|
|
REAL pplay(nlon, nlev) |
| 1613 |
|
|
REAL zpr, zstra, zsigt, zpm1r |
| 1614 |
|
✗ |
REAL :: pplay_glo(klon_glo, nlev) |
| 1615 |
|
✗ |
REAL :: paprs_glo(klon_glo, nlev+1) |
| 1616 |
|
|
|
| 1617 |
|
|
! * 1. SET THE VALUES OF THE PARAMETERS |
| 1618 |
|
|
! -------------------------------- |
| 1619 |
|
|
|
| 1620 |
|
|
|
| 1621 |
|
✗ |
PRINT *, ' DANS SUGWD NLEV=', nlev |
| 1622 |
|
✗ |
ghmax = 10000. |
| 1623 |
|
|
|
| 1624 |
|
|
zpr = 100000. |
| 1625 |
|
|
zstra = 0.1 |
| 1626 |
|
|
zsigt = 0.94 |
| 1627 |
|
|
! old ZPR=80000. |
| 1628 |
|
|
! old ZSIGT=0.85 |
| 1629 |
|
|
|
| 1630 |
|
|
|
| 1631 |
|
✗ |
CALL gather(pplay, pplay_glo) |
| 1632 |
|
✗ |
CALL bcast(pplay_glo) |
| 1633 |
|
✗ |
CALL gather(paprs, paprs_glo) |
| 1634 |
|
✗ |
CALL bcast(paprs_glo) |
| 1635 |
|
|
|
| 1636 |
|
|
|
| 1637 |
|
✗ |
DO jk = 1, nlev |
| 1638 |
|
✗ |
zpm1r = pplay_glo((klon_glo/2)+1, jk)/paprs_glo((klon_glo/2)+1, 1) |
| 1639 |
|
✗ |
IF (zpm1r>=zsigt) THEN |
| 1640 |
|
✗ |
nktopg = jk |
| 1641 |
|
|
END IF |
| 1642 |
|
|
zpm1r = pplay_glo((klon_glo/2)+1, jk)/paprs_glo((klon_glo/2)+1, 1) |
| 1643 |
|
✗ |
IF (zpm1r>=zstra) THEN |
| 1644 |
|
✗ |
nstra = jk |
| 1645 |
|
|
END IF |
| 1646 |
|
|
END DO |
| 1647 |
|
|
|
| 1648 |
|
|
|
| 1649 |
|
|
|
| 1650 |
|
|
! inversion car dans orodrag on compte les niveaux a l'envers |
| 1651 |
|
✗ |
nktopg = nlev - nktopg + 1 |
| 1652 |
|
✗ |
nstra = nlev - nstra |
| 1653 |
|
✗ |
PRINT *, ' DANS SUGWD nktopg=', nktopg |
| 1654 |
|
✗ |
PRINT *, ' DANS SUGWD nstra=', nstra |
| 1655 |
|
|
|
| 1656 |
|
✗ |
gsigcr = 0.80 |
| 1657 |
|
|
|
| 1658 |
|
|
! Values now specified in run.def, or conf_phys_m.F90 |
| 1659 |
|
|
! gkdrag = 0.2 |
| 1660 |
|
|
! grahilo = 1. |
| 1661 |
|
|
! grcrit = 0.01 |
| 1662 |
|
|
! gfrcrit = 1.0 |
| 1663 |
|
|
! gkwake = 0.50 |
| 1664 |
|
|
! gklift = 0.50 |
| 1665 |
|
✗ |
gvcrit = 0.0 |
| 1666 |
|
|
|
| 1667 |
|
|
! ---------------------------------------------------------------- |
| 1668 |
|
|
|
| 1669 |
|
|
! * 2. SET VALUES OF SECURITY PARAMETERS |
| 1670 |
|
|
! --------------------------------- |
| 1671 |
|
|
|
| 1672 |
|
|
|
| 1673 |
|
✗ |
gvsec = 0.10 |
| 1674 |
|
✗ |
gssec = 1.E-12 |
| 1675 |
|
|
|
| 1676 |
|
✗ |
gtsec = 1.E-07 |
| 1677 |
|
|
|
| 1678 |
|
|
! ---------------------------------------------------------------- |
| 1679 |
|
|
|
| 1680 |
|
✗ |
RETURN |
| 1681 |
|
|
END SUBROUTINE sugwd |
| 1682 |
|
|
|