| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Header$ |
| 3 |
|
|
! |
| 4 |
|
✗ |
SUBROUTINE pbar ( pext, pbarx, pbary, pbarxy ) |
| 5 |
|
|
IMPLICIT NONE |
| 6 |
|
|
|
| 7 |
|
|
c======================================================================= |
| 8 |
|
|
c |
| 9 |
|
|
c Auteur: P. Le Van |
| 10 |
|
|
c ------- |
| 11 |
|
|
c |
| 12 |
|
|
c Objet: |
| 13 |
|
|
c ------ |
| 14 |
|
|
c |
| 15 |
|
|
c ********************************************************************** |
| 16 |
|
|
c calcul des moyennes en x et en y de (pression au sol*aire variable) .. |
| 17 |
|
|
c ********************************************************************* |
| 18 |
|
|
c |
| 19 |
|
|
c pext est un argum. d'entree pour le s-pg .. |
| 20 |
|
|
c pbarx,pbary et pbarxy sont des argum. de sortie pour le s-pg .. |
| 21 |
|
|
c |
| 22 |
|
|
c Methode: |
| 23 |
|
|
c -------- |
| 24 |
|
|
c |
| 25 |
|
|
c A chaque point scalaire P (i,j) est affecte 4 coefficients d'aires |
| 26 |
|
|
c alpha1(i,j) calcule au point ( i+1/4,j-1/4 ) |
| 27 |
|
|
c alpha2(i,j) calcule au point ( i+1/4,j+1/4 ) |
| 28 |
|
|
c alpha3(i,j) calcule au point ( i-1/4,j+1/4 ) |
| 29 |
|
|
c alpha4(i,j) calcule au point ( i-1/4,j-1/4 ) |
| 30 |
|
|
c |
| 31 |
|
|
c Avec alpha1(i,j) = aire(i+1/4,j-1/4)/ aire(i,j) |
| 32 |
|
|
c |
| 33 |
|
|
c N.B . Pour plus de details, voir s-pg ... iniconst ... |
| 34 |
|
|
c |
| 35 |
|
|
c |
| 36 |
|
|
c |
| 37 |
|
|
c alpha4 . . alpha1 . alpha4 |
| 38 |
|
|
c (i,j) (i,j) (i+1,j) |
| 39 |
|
|
c |
| 40 |
|
|
c P . U . . P |
| 41 |
|
|
c (i,j) (i,j) (i+1,j) |
| 42 |
|
|
c |
| 43 |
|
|
c alpha3 . . alpha2 .alpha3 |
| 44 |
|
|
c (i,j) (i,j) (i+1,j) |
| 45 |
|
|
c |
| 46 |
|
|
c V . Z . . V |
| 47 |
|
|
c (i,j) |
| 48 |
|
|
c |
| 49 |
|
|
c alpha4 . . alpha1 .alpha4 |
| 50 |
|
|
c (i,j+1) (i,j+1) (i+1,j+1) |
| 51 |
|
|
c |
| 52 |
|
|
c P . U . . P |
| 53 |
|
|
c (i,j+1) (i+1,j+1) |
| 54 |
|
|
c |
| 55 |
|
|
c |
| 56 |
|
|
c |
| 57 |
|
|
c |
| 58 |
|
|
c On a : |
| 59 |
|
|
c |
| 60 |
|
|
c pbarx(i,j) = Pext(i ,j) * ( alpha1(i ,j) + alpha2(i,j)) + |
| 61 |
|
|
c Pext(i+1,j) * ( alpha3(i+1,j) + alpha4(i+1,j) ) |
| 62 |
|
|
c localise au point ... U (i,j) ... |
| 63 |
|
|
c |
| 64 |
|
|
c pbary(i,j) = Pext(i,j ) * ( alpha2(i,j ) + alpha3(i,j ) + |
| 65 |
|
|
c Pext(i,j+1) * ( alpha1(i,j+1) + alpha4(i,j+1) |
| 66 |
|
|
c localise au point ... V (i,j) ... |
| 67 |
|
|
c |
| 68 |
|
|
c pbarxy(i,j)= Pext(i,j) *alpha2(i,j) + Pext(i+1,j) *alpha3(i+1,j) + |
| 69 |
|
|
c Pext(i,j+1)*alpha1(i,j+1)+ Pext(i+1,j+1)*alpha4(i+1,j+1) |
| 70 |
|
|
c localise au point ... Z (i,j) ... |
| 71 |
|
|
c |
| 72 |
|
|
c |
| 73 |
|
|
c |
| 74 |
|
|
c======================================================================= |
| 75 |
|
|
|
| 76 |
|
|
|
| 77 |
|
|
!----------------------------------------------------------------------- |
| 78 |
|
|
! INCLUDE 'dimensions.h' |
| 79 |
|
|
! |
| 80 |
|
|
! dimensions.h contient les dimensions du modele |
| 81 |
|
|
! ndm est tel que iim=2**ndm |
| 82 |
|
|
!----------------------------------------------------------------------- |
| 83 |
|
|
|
| 84 |
|
|
INTEGER iim,jjm,llm,ndm |
| 85 |
|
|
|
| 86 |
|
|
PARAMETER (iim= 32,jjm=32,llm=39,ndm=1) |
| 87 |
|
|
|
| 88 |
|
|
!----------------------------------------------------------------------- |
| 89 |
|
|
! |
| 90 |
|
|
! $Header$ |
| 91 |
|
|
! |
| 92 |
|
|
! |
| 93 |
|
|
! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre |
| 94 |
|
|
! veillez n'utiliser que des ! pour les commentaires |
| 95 |
|
|
! et bien positionner les & des lignes de continuation |
| 96 |
|
|
! (les placer en colonne 6 et en colonne 73) |
| 97 |
|
|
! |
| 98 |
|
|
! |
| 99 |
|
|
!----------------------------------------------------------------------- |
| 100 |
|
|
! INCLUDE 'paramet.h' |
| 101 |
|
|
|
| 102 |
|
|
INTEGER iip1,iip2,iip3,jjp1,llmp1,llmp2,llmm1 |
| 103 |
|
|
INTEGER kftd,ip1jm,ip1jmp1,ip1jmi1,ijp1llm |
| 104 |
|
|
INTEGER ijmllm,mvar |
| 105 |
|
|
INTEGER jcfil,jcfllm |
| 106 |
|
|
|
| 107 |
|
|
PARAMETER( iip1= iim+1,iip2=iim+2,iip3=iim+3 & |
| 108 |
|
|
& ,jjp1=jjm+1-1/jjm) |
| 109 |
|
|
PARAMETER( llmp1 = llm+1, llmp2 = llm+2, llmm1 = llm-1 ) |
| 110 |
|
|
PARAMETER( kftd = iim/2 -ndm ) |
| 111 |
|
|
PARAMETER( ip1jm = iip1*jjm, ip1jmp1= iip1*jjp1 ) |
| 112 |
|
|
PARAMETER( ip1jmi1= ip1jm - iip1 ) |
| 113 |
|
|
PARAMETER( ijp1llm= ip1jmp1 * llm, ijmllm= ip1jm * llm ) |
| 114 |
|
|
PARAMETER( mvar= ip1jmp1*( 2*llm+1) + ijmllm ) |
| 115 |
|
|
PARAMETER( jcfil=jjm/2+5, jcfllm=jcfil*llm ) |
| 116 |
|
|
|
| 117 |
|
|
!----------------------------------------------------------------------- |
| 118 |
|
|
|
| 119 |
|
|
! |
| 120 |
|
|
! $Header$ |
| 121 |
|
|
! |
| 122 |
|
|
!CDK comgeom |
| 123 |
|
|
COMMON/comgeom/ & |
| 124 |
|
|
& cu(ip1jmp1),cv(ip1jm),unscu2(ip1jmp1),unscv2(ip1jm), & |
| 125 |
|
|
& aire(ip1jmp1),airesurg(ip1jmp1),aireu(ip1jmp1), & |
| 126 |
|
|
& airev(ip1jm),unsaire(ip1jmp1),apoln,apols, & |
| 127 |
|
|
& unsairez(ip1jm),airuscv2(ip1jm),airvscu2(ip1jm), & |
| 128 |
|
|
& aireij1(ip1jmp1),aireij2(ip1jmp1),aireij3(ip1jmp1), & |
| 129 |
|
|
& aireij4(ip1jmp1),alpha1(ip1jmp1),alpha2(ip1jmp1), & |
| 130 |
|
|
& alpha3(ip1jmp1),alpha4(ip1jmp1),alpha1p2(ip1jmp1), & |
| 131 |
|
|
& alpha1p4(ip1jmp1),alpha2p3(ip1jmp1),alpha3p4(ip1jmp1), & |
| 132 |
|
|
& fext(ip1jm),constang(ip1jmp1),rlatu(jjp1),rlatv(jjm), & |
| 133 |
|
|
& rlonu(iip1),rlonv(iip1),cuvsurcv(ip1jm),cvsurcuv(ip1jm), & |
| 134 |
|
|
& cvusurcu(ip1jmp1),cusurcvu(ip1jmp1),cuvscvgam1(ip1jm), & |
| 135 |
|
|
& cuvscvgam2(ip1jm),cvuscugam1(ip1jmp1), & |
| 136 |
|
|
& cvuscugam2(ip1jmp1),cvscuvgam(ip1jm),cuscvugam(ip1jmp1), & |
| 137 |
|
|
& unsapolnga1,unsapolnga2,unsapolsga1,unsapolsga2, & |
| 138 |
|
|
& unsair_gam1(ip1jmp1),unsair_gam2(ip1jmp1),unsairz_gam(ip1jm), & |
| 139 |
|
|
& aivscu2gam(ip1jm),aiuscv2gam(ip1jm),xprimu(iip1),xprimv(iip1) |
| 140 |
|
|
|
| 141 |
|
|
! |
| 142 |
|
|
REAL & |
| 143 |
|
|
& cu,cv,unscu2,unscv2,aire,airesurg,aireu,airev,unsaire,apoln ,& |
| 144 |
|
|
& apols,unsairez,airuscv2,airvscu2,aireij1,aireij2,aireij3,aireij4,& |
| 145 |
|
|
& alpha1,alpha2,alpha3,alpha4,alpha1p2,alpha1p4,alpha2p3,alpha3p4 ,& |
| 146 |
|
|
& fext,constang,rlatu,rlatv,rlonu,rlonv,cuvscvgam1,cuvscvgam2 ,& |
| 147 |
|
|
& cvuscugam1,cvuscugam2,cvscuvgam,cuscvugam,unsapolnga1,unsapolnga2& |
| 148 |
|
|
& ,unsapolsga1,unsapolsga2,unsair_gam1,unsair_gam2,unsairz_gam ,& |
| 149 |
|
|
& aivscu2gam ,aiuscv2gam,cuvsurcv,cvsurcuv,cvusurcu,cusurcvu,xprimu& |
| 150 |
|
|
& , xprimv |
| 151 |
|
|
! |
| 152 |
|
|
|
| 153 |
|
|
REAL pext( ip1jmp1 ), pbarx ( ip1jmp1 ) |
| 154 |
|
|
REAL pbary( ip1jm ), pbarxy( ip1jm ) |
| 155 |
|
|
|
| 156 |
|
|
INTEGER ij |
| 157 |
|
|
|
| 158 |
|
|
|
| 159 |
|
|
|
| 160 |
|
✗ |
DO 1 ij = 1, ip1jmp1 - 1 |
| 161 |
|
✗ |
pbarx( ij ) = pext(ij) * alpha1p2(ij) + pext(ij+1)*alpha3p4(ij+1) |
| 162 |
|
✗ |
1 CONTINUE |
| 163 |
|
|
|
| 164 |
|
|
c .... correction pour pbarx( iip1,j) ..... |
| 165 |
|
|
|
| 166 |
|
|
c ... pbarx(iip1,j)= pbarx(1,j) ... |
| 167 |
|
|
CDIR$ IVDEP |
| 168 |
|
✗ |
DO 2 ij = iip1, ip1jmp1, iip1 |
| 169 |
|
✗ |
pbarx( ij ) = pbarx( ij - iim ) |
| 170 |
|
✗ |
2 CONTINUE |
| 171 |
|
|
|
| 172 |
|
|
|
| 173 |
|
✗ |
DO 3 ij = 1,ip1jm |
| 174 |
|
|
pbary( ij ) = pext( ij ) * alpha2p3( ij ) + |
| 175 |
|
✗ |
* pext( ij+iip1 ) * alpha1p4( ij+iip1 ) |
| 176 |
|
✗ |
3 CONTINUE |
| 177 |
|
|
|
| 178 |
|
|
|
| 179 |
|
✗ |
DO 5 ij = 1, ip1jm - 1 |
| 180 |
|
|
pbarxy( ij ) = pext(ij)*alpha2(ij) + pext(ij+1)*alpha3(ij+1) + |
| 181 |
|
✗ |
* pext(ij+iip1)*alpha1(ij+iip1) + pext(ij+iip2)*alpha4(ij+iip2) |
| 182 |
|
✗ |
5 CONTINUE |
| 183 |
|
|
|
| 184 |
|
|
|
| 185 |
|
|
c .... correction pour pbarxy( iip1,j ) ........ |
| 186 |
|
|
|
| 187 |
|
|
CDIR$ IVDEP |
| 188 |
|
|
|
| 189 |
|
✗ |
DO 7 ij = iip1, ip1jm, iip1 |
| 190 |
|
✗ |
pbarxy( ij ) = pbarxy( ij - iim ) |
| 191 |
|
✗ |
7 CONTINUE |
| 192 |
|
|
|
| 193 |
|
|
|
| 194 |
|
✗ |
RETURN |
| 195 |
|
|
END |
| 196 |
|
|
|