| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Header$ |
| 3 |
|
|
! |
| 4 |
|
✗ |
SUBROUTINE pentes_ini (q,w,masse,pbaru,pbarv,mode) |
| 5 |
|
|
|
| 6 |
|
|
USE comconst_mod, ONLY: pi, dtvr |
| 7 |
|
|
|
| 8 |
|
|
IMPLICIT NONE |
| 9 |
|
|
|
| 10 |
|
|
c======================================================================= |
| 11 |
|
|
c Adaptation LMDZ: A.Armengaud (LGGE) |
| 12 |
|
|
c ---------------- |
| 13 |
|
|
c |
| 14 |
|
|
c ******************************************************************** |
| 15 |
|
|
c Transport des traceurs par la methode des pentes |
| 16 |
|
|
c ******************************************************************** |
| 17 |
|
|
c Reference possible : Russel. G.L., Lerner J.A.: |
| 18 |
|
|
c A new Finite-Differencing Scheme for Traceur Transport |
| 19 |
|
|
c Equation , Journal of Applied Meteorology, pp 1483-1498,dec. 81 |
| 20 |
|
|
c ******************************************************************** |
| 21 |
|
|
c q,w,masse,pbaru et pbarv |
| 22 |
|
|
c sont des arguments d'entree pour le s-pg .... |
| 23 |
|
|
c |
| 24 |
|
|
c======================================================================= |
| 25 |
|
|
|
| 26 |
|
|
|
| 27 |
|
|
include "dimensions.h" |
| 28 |
|
|
include "paramet.h" |
| 29 |
|
|
include "comgeom2.h" |
| 30 |
|
|
|
| 31 |
|
|
c Arguments: |
| 32 |
|
|
c ---------- |
| 33 |
|
|
integer mode |
| 34 |
|
|
REAL pbaru( ip1jmp1,llm ),pbarv( ip1jm,llm ) |
| 35 |
|
|
REAL q( iip1,jjp1,llm,0:3) |
| 36 |
|
|
REAL w( ip1jmp1,llm ) |
| 37 |
|
|
REAL masse( iip1,jjp1,llm) |
| 38 |
|
|
c Local: |
| 39 |
|
|
c ------ |
| 40 |
|
|
LOGICAL limit |
| 41 |
|
|
REAL sm ( iip1,jjp1, llm ) |
| 42 |
|
|
REAL s0( iip1,jjp1,llm ), sx( iip1,jjp1,llm ) |
| 43 |
|
|
REAL sy( iip1,jjp1,llm ), sz( iip1,jjp1,llm ) |
| 44 |
|
|
real masn,mass,zz |
| 45 |
|
|
INTEGER i,j,l,iq |
| 46 |
|
|
|
| 47 |
|
|
c modif Fred 24 03 96 |
| 48 |
|
|
|
| 49 |
|
|
real sinlon(iip1),sinlondlon(iip1) |
| 50 |
|
|
real coslon(iip1),coslondlon(iip1) |
| 51 |
|
|
save sinlon,coslon,sinlondlon,coslondlon |
| 52 |
|
|
real dyn1,dyn2,dys1,dys2 |
| 53 |
|
|
real qpn,qps,dqzpn,dqzps |
| 54 |
|
|
real smn,sms,s0n,s0s,sxn(iip1),sxs(iip1) |
| 55 |
|
|
real qmin,zq,pente_max |
| 56 |
|
|
c |
| 57 |
|
|
REAL SSUM |
| 58 |
|
|
integer ismax,ismin,lati,latf |
| 59 |
|
|
EXTERNAL SSUM, ismin,ismax |
| 60 |
|
|
logical first |
| 61 |
|
|
save first |
| 62 |
|
|
c fin modif |
| 63 |
|
|
|
| 64 |
|
|
c EXTERNAL masskg |
| 65 |
|
|
EXTERNAL advx |
| 66 |
|
|
EXTERNAL advy |
| 67 |
|
|
EXTERNAL advz |
| 68 |
|
|
|
| 69 |
|
|
c modif Fred 24 03 96 |
| 70 |
|
|
data first/.true./ |
| 71 |
|
|
|
| 72 |
|
✗ |
limit = .TRUE. |
| 73 |
|
✗ |
pente_max=2 |
| 74 |
|
|
c if (mode.eq.1.or.mode.eq.3) then |
| 75 |
|
|
c if (mode.eq.1) then |
| 76 |
|
✗ |
if (mode.ge.1) then |
| 77 |
|
✗ |
lati=2 |
| 78 |
|
✗ |
latf=jjm |
| 79 |
|
|
else |
| 80 |
|
✗ |
lati=1 |
| 81 |
|
✗ |
latf=jjp1 |
| 82 |
|
|
endif |
| 83 |
|
|
|
| 84 |
|
|
qmin=0.4995 |
| 85 |
|
|
qmin=0. |
| 86 |
|
✗ |
if(first) then |
| 87 |
|
✗ |
print*,'SCHEMA AMONT NOUVEAU' |
| 88 |
|
✗ |
first=.false. |
| 89 |
|
✗ |
do i=2,iip1 |
| 90 |
|
✗ |
coslon(i)=cos(rlonv(i)) |
| 91 |
|
✗ |
sinlon(i)=sin(rlonv(i)) |
| 92 |
|
✗ |
coslondlon(i)=coslon(i)*(rlonu(i)-rlonu(i-1))/pi |
| 93 |
|
✗ |
sinlondlon(i)=sinlon(i)*(rlonu(i)-rlonu(i-1))/pi |
| 94 |
|
✗ |
print*,coslondlon(i),sinlondlon(i) |
| 95 |
|
|
enddo |
| 96 |
|
✗ |
coslon(1)=coslon(iip1) |
| 97 |
|
✗ |
coslondlon(1)=coslondlon(iip1) |
| 98 |
|
✗ |
sinlon(1)=sinlon(iip1) |
| 99 |
|
✗ |
sinlondlon(1)=sinlondlon(iip1) |
| 100 |
|
✗ |
print*,'sum sinlondlon ',ssum(iim,sinlondlon,1)/sinlondlon(1) |
| 101 |
|
✗ |
print*,'sum coslondlon ',ssum(iim,coslondlon,1)/coslondlon(1) |
| 102 |
|
✗ |
DO l = 1,llm |
| 103 |
|
✗ |
DO j = 1,jjp1 |
| 104 |
|
✗ |
DO i = 1,iip1 |
| 105 |
|
✗ |
q ( i,j,l,1 )=0. |
| 106 |
|
✗ |
q ( i,j,l,2 )=0. |
| 107 |
|
✗ |
q ( i,j,l,3 )=0. |
| 108 |
|
|
ENDDO |
| 109 |
|
|
ENDDO |
| 110 |
|
|
ENDDO |
| 111 |
|
|
|
| 112 |
|
|
endif |
| 113 |
|
|
c Fin modif Fred |
| 114 |
|
|
|
| 115 |
|
|
c *** q contient les qqtes de traceur avant l'advection |
| 116 |
|
|
|
| 117 |
|
|
c *** Affectation des tableaux S a partir de Q |
| 118 |
|
|
c *** Rem : utilisation de SCOPY ulterieurement |
| 119 |
|
|
|
| 120 |
|
✗ |
DO l = 1,llm |
| 121 |
|
✗ |
DO j = 1,jjp1 |
| 122 |
|
✗ |
DO i = 1,iip1 |
| 123 |
|
✗ |
s0( i,j,llm+1-l ) = q ( i,j,l,0 ) |
| 124 |
|
✗ |
sx( i,j,llm+1-l ) = q ( i,j,l,1 ) |
| 125 |
|
✗ |
sy( i,j,llm+1-l ) = q ( i,j,l,2 ) |
| 126 |
|
✗ |
sz( i,j,llm+1-l ) = q ( i,j,l,3 ) |
| 127 |
|
|
ENDDO |
| 128 |
|
|
ENDDO |
| 129 |
|
|
ENDDO |
| 130 |
|
|
|
| 131 |
|
|
c PRINT*,'----- S0 just before conversion -------' |
| 132 |
|
|
c PRINT*,'S0(16,12,1)=',s0(16,12,1) |
| 133 |
|
|
c PRINT*,'Q(16,12,1,4)=',q(16,12,1,4) |
| 134 |
|
|
|
| 135 |
|
|
c *** On calcule la masse d'air en kg |
| 136 |
|
|
|
| 137 |
|
✗ |
DO l = 1,llm |
| 138 |
|
✗ |
DO j = 1,jjp1 |
| 139 |
|
✗ |
DO i = 1,iip1 |
| 140 |
|
✗ |
sm ( i,j,llm+1-l)=masse( i,j,l ) |
| 141 |
|
|
ENDDO |
| 142 |
|
|
ENDDO |
| 143 |
|
|
ENDDO |
| 144 |
|
|
|
| 145 |
|
|
c *** On converti les champs S en atome (resp. kg) |
| 146 |
|
|
c *** Les routines d'advection traitent les champs |
| 147 |
|
|
c *** a advecter si ces derniers sont en atome (resp. kg) |
| 148 |
|
|
c *** A optimiser !!! |
| 149 |
|
|
|
| 150 |
|
✗ |
DO l = 1,llm |
| 151 |
|
✗ |
DO j = 1,jjp1 |
| 152 |
|
✗ |
DO i = 1,iip1 |
| 153 |
|
✗ |
s0(i,j,l) = s0(i,j,l) * sm ( i,j,l ) |
| 154 |
|
✗ |
sx(i,j,l) = sx(i,j,l) * sm ( i,j,l ) |
| 155 |
|
✗ |
sy(i,j,l) = sy(i,j,l) * sm ( i,j,l ) |
| 156 |
|
✗ |
sz(i,j,l) = sz(i,j,l) * sm ( i,j,l ) |
| 157 |
|
|
ENDDO |
| 158 |
|
|
ENDDO |
| 159 |
|
|
ENDDO |
| 160 |
|
|
|
| 161 |
|
|
c ss0 = 0. |
| 162 |
|
|
c DO l = 1,llm |
| 163 |
|
|
c DO j = 1,jjp1 |
| 164 |
|
|
c DO i = 1,iim |
| 165 |
|
|
c ss0 = ss0 + s0 ( i,j,l ) |
| 166 |
|
|
c ENDDO |
| 167 |
|
|
c ENDDO |
| 168 |
|
|
c ENDDO |
| 169 |
|
|
c PRINT*, 'valeur tot s0 avant advection=',ss0 |
| 170 |
|
|
|
| 171 |
|
|
c *** Appel des subroutines d'advection en X, en Y et en Z |
| 172 |
|
|
c *** Advection avec "time-splitting" |
| 173 |
|
|
|
| 174 |
|
|
c----------------------------------------------------------- |
| 175 |
|
|
c PRINT*,'----- S0 just before ADVX -------' |
| 176 |
|
|
c PRINT*,'S0(16,12,1)=',s0(16,12,1) |
| 177 |
|
|
|
| 178 |
|
|
c----------------------------------------------------------- |
| 179 |
|
|
c do l=1,llm |
| 180 |
|
|
c do j=1,jjp1 |
| 181 |
|
|
c do i=1,iip1 |
| 182 |
|
|
c zq=s0(i,j,l)/sm(i,j,l) |
| 183 |
|
|
c if(zq.lt.qmin) |
| 184 |
|
|
c , print*,'avant advx1, s0(',i,',',j,',',l,')=',zq |
| 185 |
|
|
c enddo |
| 186 |
|
|
c enddo |
| 187 |
|
|
c enddo |
| 188 |
|
|
CCC |
| 189 |
|
✗ |
if(mode.eq.2) then |
| 190 |
|
✗ |
do l=1,llm |
| 191 |
|
|
s0s=0. |
| 192 |
|
|
s0n=0. |
| 193 |
|
|
dyn1=0. |
| 194 |
|
|
dys1=0. |
| 195 |
|
|
dyn2=0. |
| 196 |
|
|
dys2=0. |
| 197 |
|
|
smn=0. |
| 198 |
|
|
sms=0. |
| 199 |
|
✗ |
do i=1,iim |
| 200 |
|
✗ |
smn=smn+sm(i,1,l) |
| 201 |
|
✗ |
sms=sms+sm(i,jjp1,l) |
| 202 |
|
✗ |
s0n=s0n+s0(i,1,l) |
| 203 |
|
✗ |
s0s=s0s+s0(i,jjp1,l) |
| 204 |
|
✗ |
zz=sy(i,1,l)/sm(i,1,l) |
| 205 |
|
✗ |
dyn1=dyn1+sinlondlon(i)*zz |
| 206 |
|
✗ |
dyn2=dyn2+coslondlon(i)*zz |
| 207 |
|
✗ |
zz=sy(i,jjp1,l)/sm(i,jjp1,l) |
| 208 |
|
✗ |
dys1=dys1+sinlondlon(i)*zz |
| 209 |
|
✗ |
dys2=dys2+coslondlon(i)*zz |
| 210 |
|
|
enddo |
| 211 |
|
✗ |
do i=1,iim |
| 212 |
|
✗ |
sy(i,1,l)=dyn1*sinlon(i)+dyn2*coslon(i) |
| 213 |
|
✗ |
sy(i,jjp1,l)=dys1*sinlon(i)+dys2*coslon(i) |
| 214 |
|
|
enddo |
| 215 |
|
✗ |
do i=1,iim |
| 216 |
|
✗ |
s0(i,1,l)=s0n/smn+sy(i,1,l) |
| 217 |
|
✗ |
s0(i,jjp1,l)=s0s/sms-sy(i,jjp1,l) |
| 218 |
|
|
enddo |
| 219 |
|
|
|
| 220 |
|
✗ |
s0(iip1,1,l)=s0(1,1,l) |
| 221 |
|
✗ |
s0(iip1,jjp1,l)=s0(1,jjp1,l) |
| 222 |
|
|
|
| 223 |
|
✗ |
do i=1,iim |
| 224 |
|
✗ |
sxn(i)=s0(i+1,1,l)-s0(i,1,l) |
| 225 |
|
✗ |
sxs(i)=s0(i+1,jjp1,l)-s0(i,jjp1,l) |
| 226 |
|
|
c on rerentre les masses |
| 227 |
|
|
enddo |
| 228 |
|
✗ |
do i=1,iim |
| 229 |
|
✗ |
sy(i,1,l)=sy(i,1,l)*sm(i,1,l) |
| 230 |
|
✗ |
sy(i,jjp1,l)=sy(i,jjp1,l)*sm(i,jjp1,l) |
| 231 |
|
✗ |
s0(i,1,l)=s0(i,1,l)*sm(i,1,l) |
| 232 |
|
✗ |
s0(i,jjp1,l)=s0(i,jjp1,l)*sm(i,jjp1,l) |
| 233 |
|
|
enddo |
| 234 |
|
✗ |
sxn(iip1)=sxn(1) |
| 235 |
|
✗ |
sxs(iip1)=sxs(1) |
| 236 |
|
✗ |
do i=1,iim |
| 237 |
|
✗ |
sx(i+1,1,l)=0.25*(sxn(i)+sxn(i+1))*sm(i+1,1,l) |
| 238 |
|
✗ |
sx(i+1,jjp1,l)=0.25*(sxs(i)+sxs(i+1))*sm(i+1,jjp1,l) |
| 239 |
|
|
enddo |
| 240 |
|
✗ |
s0(iip1,1,l)=s0(1,1,l) |
| 241 |
|
✗ |
s0(iip1,jjp1,l)=s0(1,jjp1,l) |
| 242 |
|
✗ |
sy(iip1,1,l)=sy(1,1,l) |
| 243 |
|
✗ |
sy(iip1,jjp1,l)=sy(1,jjp1,l) |
| 244 |
|
✗ |
sx(1,1,l)=sx(iip1,1,l) |
| 245 |
|
✗ |
sx(1,jjp1,l)=sx(iip1,jjp1,l) |
| 246 |
|
|
enddo |
| 247 |
|
|
endif |
| 248 |
|
|
|
| 249 |
|
✗ |
if (mode.eq.4) then |
| 250 |
|
✗ |
do l=1,llm |
| 251 |
|
✗ |
do i=1,iip1 |
| 252 |
|
✗ |
sx(i,1,l)=0. |
| 253 |
|
✗ |
sx(i,jjp1,l)=0. |
| 254 |
|
✗ |
sy(i,1,l)=0. |
| 255 |
|
✗ |
sy(i,jjp1,l)=0. |
| 256 |
|
|
enddo |
| 257 |
|
|
enddo |
| 258 |
|
|
endif |
| 259 |
|
✗ |
call limx(s0,sx,sm,pente_max) |
| 260 |
|
|
c call minmaxq(zq,1.e33,-1.e33,'avant advx ') |
| 261 |
|
✗ |
call advx( limit,.5*dtvr,pbaru,sm,s0,sx,sy,sz,lati,latf) |
| 262 |
|
|
c call minmaxq(zq,1.e33,-1.e33,'avant advy ') |
| 263 |
|
✗ |
if (mode.eq.4) then |
| 264 |
|
✗ |
do l=1,llm |
| 265 |
|
✗ |
do i=1,iip1 |
| 266 |
|
✗ |
sx(i,1,l)=0. |
| 267 |
|
✗ |
sx(i,jjp1,l)=0. |
| 268 |
|
✗ |
sy(i,1,l)=0. |
| 269 |
|
✗ |
sy(i,jjp1,l)=0. |
| 270 |
|
|
enddo |
| 271 |
|
|
enddo |
| 272 |
|
|
endif |
| 273 |
|
✗ |
call limy(s0,sy,sm,pente_max) |
| 274 |
|
✗ |
call advy( limit,.5*dtvr,pbarv,sm,s0,sx,sy,sz ) |
| 275 |
|
|
c call minmaxq(zq,1.e33,-1.e33,'avant advz ') |
| 276 |
|
✗ |
do j=1,jjp1 |
| 277 |
|
✗ |
do i=1,iip1 |
| 278 |
|
✗ |
sz(i,j,1)=0. |
| 279 |
|
✗ |
sz(i,j,llm)=0. |
| 280 |
|
|
enddo |
| 281 |
|
|
enddo |
| 282 |
|
✗ |
call limz(s0,sz,sm,pente_max) |
| 283 |
|
✗ |
call advz( limit,dtvr,w,sm,s0,sx,sy,sz ) |
| 284 |
|
✗ |
if (mode.eq.4) then |
| 285 |
|
✗ |
do l=1,llm |
| 286 |
|
✗ |
do i=1,iip1 |
| 287 |
|
✗ |
sx(i,1,l)=0. |
| 288 |
|
✗ |
sx(i,jjp1,l)=0. |
| 289 |
|
✗ |
sy(i,1,l)=0. |
| 290 |
|
✗ |
sy(i,jjp1,l)=0. |
| 291 |
|
|
enddo |
| 292 |
|
|
enddo |
| 293 |
|
|
endif |
| 294 |
|
✗ |
call limy(s0,sy,sm,pente_max) |
| 295 |
|
✗ |
call advy( limit,.5*dtvr,pbarv,sm,s0,sx,sy,sz ) |
| 296 |
|
✗ |
do l=1,llm |
| 297 |
|
✗ |
do j=1,jjp1 |
| 298 |
|
✗ |
sm(iip1,j,l)=sm(1,j,l) |
| 299 |
|
✗ |
s0(iip1,j,l)=s0(1,j,l) |
| 300 |
|
✗ |
sx(iip1,j,l)=sx(1,j,l) |
| 301 |
|
✗ |
sy(iip1,j,l)=sy(1,j,l) |
| 302 |
|
✗ |
sz(iip1,j,l)=sz(1,j,l) |
| 303 |
|
|
enddo |
| 304 |
|
|
enddo |
| 305 |
|
|
|
| 306 |
|
|
|
| 307 |
|
|
c call minmaxq(zq,1.e33,-1.e33,'avant advx ') |
| 308 |
|
✗ |
if (mode.eq.4) then |
| 309 |
|
✗ |
do l=1,llm |
| 310 |
|
✗ |
do i=1,iip1 |
| 311 |
|
✗ |
sx(i,1,l)=0. |
| 312 |
|
✗ |
sx(i,jjp1,l)=0. |
| 313 |
|
✗ |
sy(i,1,l)=0. |
| 314 |
|
✗ |
sy(i,jjp1,l)=0. |
| 315 |
|
|
enddo |
| 316 |
|
|
enddo |
| 317 |
|
|
endif |
| 318 |
|
✗ |
call limx(s0,sx,sm,pente_max) |
| 319 |
|
✗ |
call advx( limit,.5*dtvr,pbaru,sm,s0,sx,sy,sz,lati,latf) |
| 320 |
|
|
c call minmaxq(zq,1.e33,-1.e33,'apres advx ') |
| 321 |
|
|
c do l=1,llm |
| 322 |
|
|
c do j=1,jjp1 |
| 323 |
|
|
c do i=1,iip1 |
| 324 |
|
|
c zq=s0(i,j,l)/sm(i,j,l) |
| 325 |
|
|
c if(zq.lt.qmin) |
| 326 |
|
|
c , print*,'apres advx2, s0(',i,',',j,',',l,')=',zq |
| 327 |
|
|
c enddo |
| 328 |
|
|
c enddo |
| 329 |
|
|
c enddo |
| 330 |
|
|
c *** On repasse les S dans la variable q directement 14/10/94 |
| 331 |
|
|
c On revient a des rapports de melange en divisant par la masse |
| 332 |
|
|
|
| 333 |
|
|
c En dehors des poles: |
| 334 |
|
|
|
| 335 |
|
✗ |
DO l = 1,llm |
| 336 |
|
✗ |
DO j = 1,jjp1 |
| 337 |
|
✗ |
DO i = 1,iim |
| 338 |
|
✗ |
q(i,j,llm+1-l,0)=s0(i,j,l)/sm(i,j,l) |
| 339 |
|
✗ |
q(i,j,llm+1-l,1)=sx(i,j,l)/sm(i,j,l) |
| 340 |
|
✗ |
q(i,j,llm+1-l,2)=sy(i,j,l)/sm(i,j,l) |
| 341 |
|
✗ |
q(i,j,llm+1-l,3)=sz(i,j,l)/sm(i,j,l) |
| 342 |
|
|
ENDDO |
| 343 |
|
|
ENDDO |
| 344 |
|
|
ENDDO |
| 345 |
|
|
|
| 346 |
|
|
c Traitements specifiques au pole |
| 347 |
|
|
|
| 348 |
|
✗ |
if(mode.ge.1) then |
| 349 |
|
✗ |
DO l=1,llm |
| 350 |
|
|
c filtrages aux poles |
| 351 |
|
✗ |
masn=ssum(iim,sm(1,1,l),1) |
| 352 |
|
✗ |
mass=ssum(iim,sm(1,jjp1,l),1) |
| 353 |
|
✗ |
qpn=ssum(iim,s0(1,1,l),1)/masn |
| 354 |
|
✗ |
qps=ssum(iim,s0(1,jjp1,l),1)/mass |
| 355 |
|
✗ |
dqzpn=ssum(iim,sz(1,1,l),1)/masn |
| 356 |
|
✗ |
dqzps=ssum(iim,sz(1,jjp1,l),1)/mass |
| 357 |
|
✗ |
do i=1,iip1 |
| 358 |
|
✗ |
q( i,1,llm+1-l,3)=dqzpn |
| 359 |
|
✗ |
q( i,jjp1,llm+1-l,3)=dqzps |
| 360 |
|
✗ |
q( i,1,llm+1-l,0)=qpn |
| 361 |
|
✗ |
q( i,jjp1,llm+1-l,0)=qps |
| 362 |
|
|
enddo |
| 363 |
|
✗ |
if(mode.eq.3) then |
| 364 |
|
|
dyn1=0. |
| 365 |
|
|
dys1=0. |
| 366 |
|
|
dyn2=0. |
| 367 |
|
|
dys2=0. |
| 368 |
|
✗ |
do i=1,iim |
| 369 |
|
✗ |
dyn1=dyn1+sinlondlon(i)*sy(i,1,l)/sm(i,1,l) |
| 370 |
|
✗ |
dyn2=dyn2+coslondlon(i)*sy(i,1,l)/sm(i,1,l) |
| 371 |
|
✗ |
dys1=dys1+sinlondlon(i)*sy(i,jjp1,l)/sm(i,jjp1,l) |
| 372 |
|
✗ |
dys2=dys2+coslondlon(i)*sy(i,jjp1,l)/sm(i,jjp1,l) |
| 373 |
|
|
enddo |
| 374 |
|
✗ |
do i=1,iim |
| 375 |
|
|
q(i,1,llm+1-l,2)= |
| 376 |
|
✗ |
s (sinlon(i)*dyn1+coslon(i)*dyn2) |
| 377 |
|
✗ |
q(i,1,llm+1-l,0)=q(i,1,llm+1-l,0)+q(i,1,llm+1-l,2) |
| 378 |
|
|
q(i,jjp1,llm+1-l,2)= |
| 379 |
|
✗ |
s (sinlon(i)*dys1+coslon(i)*dys2) |
| 380 |
|
|
q(i,jjp1,llm+1-l,0)=q(i,jjp1,llm+1-l,0) |
| 381 |
|
✗ |
s -q(i,jjp1,llm+1-l,2) |
| 382 |
|
|
enddo |
| 383 |
|
|
endif |
| 384 |
|
✗ |
if(mode.eq.1) then |
| 385 |
|
|
c on filtre les valeurs au bord de la "grande maille pole" |
| 386 |
|
|
dyn1=0. |
| 387 |
|
|
dys1=0. |
| 388 |
|
|
dyn2=0. |
| 389 |
|
|
dys2=0. |
| 390 |
|
✗ |
do i=1,iim |
| 391 |
|
✗ |
zz=s0(i,2,l)/sm(i,2,l)-q(i,1,llm+1-l,0) |
| 392 |
|
✗ |
dyn1=dyn1+sinlondlon(i)*zz |
| 393 |
|
✗ |
dyn2=dyn2+coslondlon(i)*zz |
| 394 |
|
✗ |
zz=q(i,jjp1,llm+1-l,0)-s0(i,jjm,l)/sm(i,jjm,l) |
| 395 |
|
✗ |
dys1=dys1+sinlondlon(i)*zz |
| 396 |
|
✗ |
dys2=dys2+coslondlon(i)*zz |
| 397 |
|
|
enddo |
| 398 |
|
✗ |
do i=1,iim |
| 399 |
|
|
q(i,1,llm+1-l,2)= |
| 400 |
|
✗ |
s (sinlon(i)*dyn1+coslon(i)*dyn2)/2. |
| 401 |
|
✗ |
q(i,1,llm+1-l,0)=q(i,1,llm+1-l,0)+q(i,1,llm+1-l,2) |
| 402 |
|
|
q(i,jjp1,llm+1-l,2)= |
| 403 |
|
✗ |
s (sinlon(i)*dys1+coslon(i)*dys2)/2. |
| 404 |
|
|
q(i,jjp1,llm+1-l,0)=q(i,jjp1,llm+1-l,0) |
| 405 |
|
✗ |
s -q(i,jjp1,llm+1-l,2) |
| 406 |
|
|
enddo |
| 407 |
|
✗ |
q(iip1,1,llm+1-l,0)=q(1,1,llm+1-l,0) |
| 408 |
|
✗ |
q(iip1,jjp1,llm+1-l,0)=q(1,jjp1,llm+1-l,0) |
| 409 |
|
|
|
| 410 |
|
✗ |
do i=1,iim |
| 411 |
|
✗ |
sxn(i)=q(i+1,1,llm+1-l,0)-q(i,1,llm+1-l,0) |
| 412 |
|
✗ |
sxs(i)=q(i+1,jjp1,llm+1-l,0)-q(i,jjp1,llm+1-l,0) |
| 413 |
|
|
enddo |
| 414 |
|
✗ |
sxn(iip1)=sxn(1) |
| 415 |
|
✗ |
sxs(iip1)=sxs(1) |
| 416 |
|
✗ |
do i=1,iim |
| 417 |
|
✗ |
q(i+1,1,llm+1-l,1)=0.25*(sxn(i)+sxn(i+1)) |
| 418 |
|
✗ |
q(i+1,jjp1,llm+1-l,1)=0.25*(sxs(i)+sxs(i+1)) |
| 419 |
|
|
enddo |
| 420 |
|
✗ |
q(1,1,llm+1-l,1)=q(iip1,1,llm+1-l,1) |
| 421 |
|
✗ |
q(1,jjp1,llm+1-l,1)=q(iip1,jjp1,llm+1-l,1) |
| 422 |
|
|
|
| 423 |
|
|
endif |
| 424 |
|
|
|
| 425 |
|
|
ENDDO |
| 426 |
|
|
endif |
| 427 |
|
|
|
| 428 |
|
|
c bouclage en longitude |
| 429 |
|
✗ |
do iq=0,3 |
| 430 |
|
✗ |
do l=1,llm |
| 431 |
|
✗ |
do j=1,jjp1 |
| 432 |
|
✗ |
q(iip1,j,l,iq)=q(1,j,l,iq) |
| 433 |
|
|
enddo |
| 434 |
|
|
enddo |
| 435 |
|
|
enddo |
| 436 |
|
|
|
| 437 |
|
|
c PRINT*, ' SORTIE DE PENTES --- ca peut glisser ....' |
| 438 |
|
|
|
| 439 |
|
✗ |
DO l = 1,llm |
| 440 |
|
✗ |
DO j = 1,jjp1 |
| 441 |
|
✗ |
DO i = 1,iip1 |
| 442 |
|
✗ |
IF (q(i,j,l,0).lt.0.) THEN |
| 443 |
|
|
c PRINT*,'------------ BIP-----------' |
| 444 |
|
|
c PRINT*,'Q0(',i,j,l,')=',q(i,j,l,0) |
| 445 |
|
|
c PRINT*,'QX(',i,j,l,')=',q(i,j,l,1) |
| 446 |
|
|
c PRINT*,'QY(',i,j,l,')=',q(i,j,l,2) |
| 447 |
|
|
c PRINT*,'QZ(',i,j,l,')=',q(i,j,l,3) |
| 448 |
|
|
c PRINT*,' PBL EN SORTIE DE PENTES' |
| 449 |
|
✗ |
q(i,j,l,0)=0. |
| 450 |
|
|
c STOP |
| 451 |
|
|
ENDIF |
| 452 |
|
|
ENDDO |
| 453 |
|
|
ENDDO |
| 454 |
|
|
ENDDO |
| 455 |
|
|
|
| 456 |
|
|
c PRINT*, '-------------------------------------------' |
| 457 |
|
|
|
| 458 |
|
✗ |
do l=1,llm |
| 459 |
|
✗ |
do j=1,jjp1 |
| 460 |
|
✗ |
do i=1,iip1 |
| 461 |
|
✗ |
if(q(i,j,l,0).lt.qmin) |
| 462 |
|
✗ |
, print*,'apres pentes, s0(',i,',',j,',',l,')=',q(i,j,l,0) |
| 463 |
|
|
enddo |
| 464 |
|
|
enddo |
| 465 |
|
|
enddo |
| 466 |
|
✗ |
RETURN |
| 467 |
|
|
END |
| 468 |
|
|
|
| 469 |
|
|
|
| 470 |
|
|
|
| 471 |
|
|
|
| 472 |
|
|
|
| 473 |
|
|
|
| 474 |
|
|
|
| 475 |
|
|
|
| 476 |
|
|
|
| 477 |
|
|
|
| 478 |
|
|
|
| 479 |
|
|
|
| 480 |
|
|
|