| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Header$ |
| 3 |
|
|
! |
| 4 |
|
✗ |
SUBROUTINE prather (q,w,masse,pbaru,pbarv,nt,dt) |
| 5 |
|
|
|
| 6 |
|
|
USE comconst_mod, ONLY: pi |
| 7 |
|
|
|
| 8 |
|
|
IMPLICIT NONE |
| 9 |
|
|
|
| 10 |
|
|
c======================================================================= |
| 11 |
|
|
c Adaptation LMDZ: A.Armengaud (LGGE) |
| 12 |
|
|
c ---------------- |
| 13 |
|
|
c |
| 14 |
|
|
c ************************************************ |
| 15 |
|
|
c Transport des traceurs par la methode de prather |
| 16 |
|
|
c Ref : |
| 17 |
|
|
c |
| 18 |
|
|
c ************************************************ |
| 19 |
|
|
c q,w,pext,pbaru et pbarv : arguments d'entree pour le s-pg |
| 20 |
|
|
c |
| 21 |
|
|
c======================================================================= |
| 22 |
|
|
|
| 23 |
|
|
|
| 24 |
|
|
include "dimensions.h" |
| 25 |
|
|
include "paramet.h" |
| 26 |
|
|
include "comgeom2.h" |
| 27 |
|
|
|
| 28 |
|
|
c Arguments: |
| 29 |
|
|
c ---------- |
| 30 |
|
|
INTEGER iq,nt |
| 31 |
|
|
REAL pbaru( ip1jmp1,llm ),pbarv( ip1jm,llm ) |
| 32 |
|
|
REAL masse(iip1,jjp1,llm) |
| 33 |
|
|
REAL q( iip1,jjp1,llm,0:9) |
| 34 |
|
|
REAL w( ip1jmp1,llm ) |
| 35 |
|
|
integer ordre,ilim |
| 36 |
|
|
|
| 37 |
|
|
c Local: |
| 38 |
|
|
c ------ |
| 39 |
|
|
LOGICAL limit |
| 40 |
|
|
real zq(iip1,jjp1,llm) |
| 41 |
|
|
REAL sm ( iip1,jjp1, llm ) |
| 42 |
|
|
REAL s0( iip1,jjp1,llm ), sx( iip1,jjp1,llm ) |
| 43 |
|
|
REAL sy( iip1,jjp1,llm ), sz( iip1,jjp1,llm ) |
| 44 |
|
|
REAL sxx( iip1,jjp1,llm) |
| 45 |
|
|
REAL sxy( iip1,jjp1,llm) |
| 46 |
|
|
REAL sxz( iip1,jjp1,llm) |
| 47 |
|
|
REAL syy( iip1,jjp1,llm ) |
| 48 |
|
|
REAL syz( iip1,jjp1,llm ) |
| 49 |
|
|
REAL szz( iip1,jjp1,llm ),zz |
| 50 |
|
|
INTEGER i,j,l,indice |
| 51 |
|
|
real sxn(iip1),sxs(iip1) |
| 52 |
|
|
|
| 53 |
|
|
real sinlon(iip1),sinlondlon(iip1) |
| 54 |
|
|
real coslon(iip1),coslondlon(iip1) |
| 55 |
|
|
real qmin,qmax |
| 56 |
|
|
save qmin,qmax |
| 57 |
|
|
save sinlon,coslon,sinlondlon,coslondlon |
| 58 |
|
|
real dyn1,dyn2,dys1,dys2,qpn,qps,dqzpn,dqzps |
| 59 |
|
|
real masn,mass |
| 60 |
|
|
c |
| 61 |
|
|
REAL SSUM |
| 62 |
|
|
integer ismax,ismin |
| 63 |
|
|
EXTERNAL SSUM, ismin,ismax |
| 64 |
|
|
logical first |
| 65 |
|
|
save first |
| 66 |
|
|
EXTERNAL advxp,advyp,advzp |
| 67 |
|
|
|
| 68 |
|
|
|
| 69 |
|
|
data first/.true./ |
| 70 |
|
|
data qmin,qmax/-1.e33,1.e33/ |
| 71 |
|
|
|
| 72 |
|
|
|
| 73 |
|
|
c========================================================================== |
| 74 |
|
|
c========================================================================== |
| 75 |
|
|
c MODIFICATION POUR PAS DE TEMPS ADAPTATIF, dtvr remplace par dt |
| 76 |
|
|
c========================================================================== |
| 77 |
|
|
c========================================================================== |
| 78 |
|
|
REAL dt |
| 79 |
|
|
c========================================================================== |
| 80 |
|
✗ |
limit = .TRUE. |
| 81 |
|
|
|
| 82 |
|
✗ |
if(first) then |
| 83 |
|
✗ |
print*,'SCHEMA PRATHER' |
| 84 |
|
✗ |
first=.false. |
| 85 |
|
✗ |
do i=2,iip1 |
| 86 |
|
✗ |
coslon(i)=cos(rlonv(i)) |
| 87 |
|
✗ |
sinlon(i)=sin(rlonv(i)) |
| 88 |
|
✗ |
coslondlon(i)=coslon(i)*(rlonu(i)-rlonu(i-1))/pi |
| 89 |
|
✗ |
sinlondlon(i)=sinlon(i)*(rlonu(i)-rlonu(i-1))/pi |
| 90 |
|
|
enddo |
| 91 |
|
✗ |
coslon(1)=coslon(iip1) |
| 92 |
|
✗ |
coslondlon(1)=coslondlon(iip1) |
| 93 |
|
✗ |
sinlon(1)=sinlon(iip1) |
| 94 |
|
✗ |
sinlondlon(1)=sinlondlon(iip1) |
| 95 |
|
|
|
| 96 |
|
✗ |
DO l = 1,llm |
| 97 |
|
✗ |
DO j = 1,jjp1 |
| 98 |
|
✗ |
DO i = 1,iip1 |
| 99 |
|
✗ |
q( i,j,l,1 )=0. |
| 100 |
|
✗ |
q( i,j,l,2)=0. |
| 101 |
|
✗ |
q( i,j,l,3)=0. |
| 102 |
|
✗ |
q( i,j,l,4)=0. |
| 103 |
|
✗ |
q( i,j,l,5)=0. |
| 104 |
|
✗ |
q( i,j,l,6)=0. |
| 105 |
|
✗ |
q( i,j,l,7)=0. |
| 106 |
|
✗ |
q( i,j,l,8)=0. |
| 107 |
|
✗ |
q( i,j,l,9)=0. |
| 108 |
|
|
ENDDO |
| 109 |
|
|
ENDDO |
| 110 |
|
|
ENDDO |
| 111 |
|
|
endif |
| 112 |
|
|
c Fin modif Fred |
| 113 |
|
|
|
| 114 |
|
|
c *** On calcule la masse d'air en kg |
| 115 |
|
|
|
| 116 |
|
✗ |
DO l = 1,llm |
| 117 |
|
✗ |
DO j = 1,jjp1 |
| 118 |
|
✗ |
DO i = 1,iip1 |
| 119 |
|
✗ |
sm( i,j,llm+1-l ) =masse(i,j,l) |
| 120 |
|
|
ENDDO |
| 121 |
|
|
ENDDO |
| 122 |
|
|
ENDDO |
| 123 |
|
|
|
| 124 |
|
|
c *** q contient les qqtes de traceur avant l'advection |
| 125 |
|
|
|
| 126 |
|
|
c *** Affectation des tableaux S a partir de Q |
| 127 |
|
|
|
| 128 |
|
✗ |
DO l = 1,llm |
| 129 |
|
✗ |
DO j = 1,jjp1 |
| 130 |
|
✗ |
DO i = 1,iip1 |
| 131 |
|
✗ |
s0( i,j,l) = q ( i,j,llm+1-l,0 )*sm(i,j,l) |
| 132 |
|
✗ |
sx( i,j,l) = q( i,j,llm+1-l,1 )*sm(i,j,l) |
| 133 |
|
✗ |
sy( i,j,l) = q( i,j,llm+1-l,2)*sm(i,j,l) |
| 134 |
|
✗ |
sz( i,j,l) = q( i,j,llm+1-l,3)*sm(i,j,l) |
| 135 |
|
✗ |
sxx( i,j,l) = q( i,j,llm+1-l,4)*sm(i,j,l) |
| 136 |
|
✗ |
sxy( i,j,l) = q( i,j,llm+1-l,5)*sm(i,j,l) |
| 137 |
|
✗ |
sxz( i,j,l) = q( i,j,llm+1-l,6)*sm(i,j,l) |
| 138 |
|
✗ |
syy( i,j,l) = q( i,j,llm+1-l,7)*sm(i,j,l) |
| 139 |
|
✗ |
syz( i,j,l) = q( i,j,llm+1-l,8)*sm(i,j,l) |
| 140 |
|
✗ |
szz( i,j,l) = q( i,j,llm+1-l,9)*sm(i,j,l) |
| 141 |
|
|
ENDDO |
| 142 |
|
|
ENDDO |
| 143 |
|
|
ENDDO |
| 144 |
|
|
c *** Appel des subroutines d'advection en X, en Y et en Z |
| 145 |
|
|
c *** Advection avec "time-splitting" |
| 146 |
|
|
|
| 147 |
|
|
c----------------------------------------------------------- |
| 148 |
|
✗ |
do indice =1,nt |
| 149 |
|
|
call advxp( limit,0.5*dt,pbaru,sm,s0,sx,sy,sz |
| 150 |
|
✗ |
. ,sxx,sxy,sxz,syy,syz,szz,1 ) |
| 151 |
|
|
end do |
| 152 |
|
✗ |
do l=1,llm |
| 153 |
|
✗ |
do i=1,iip1 |
| 154 |
|
✗ |
sy(i,1,l)=0. |
| 155 |
|
✗ |
sy(i,jjp1,l)=0. |
| 156 |
|
|
enddo |
| 157 |
|
|
enddo |
| 158 |
|
|
c--------------------------------------------------------- |
| 159 |
|
|
call advyp( limit,.5*dt*nt,pbarv,sm,s0,sx,sy,sz |
| 160 |
|
✗ |
. ,sxx,sxy,sxz,syy,syz,szz,1 ) |
| 161 |
|
|
c--------------------------------------------------------- |
| 162 |
|
|
|
| 163 |
|
|
c--------------------------------------------------------- |
| 164 |
|
✗ |
do j=1,jjp1 |
| 165 |
|
✗ |
do i=1,iip1 |
| 166 |
|
✗ |
sz(i,j,1)=0. |
| 167 |
|
✗ |
sz(i,j,llm)=0. |
| 168 |
|
✗ |
sxz(i,j,1)=0. |
| 169 |
|
✗ |
sxz(i,j,llm)=0. |
| 170 |
|
✗ |
syz(i,j,1)=0. |
| 171 |
|
✗ |
syz(i,j,llm)=0. |
| 172 |
|
✗ |
szz(i,j,1)=0. |
| 173 |
|
✗ |
szz(i,j,llm)=0. |
| 174 |
|
|
enddo |
| 175 |
|
|
enddo |
| 176 |
|
|
call advzp( limit,dt*nt,w,sm,s0,sx,sy,sz |
| 177 |
|
✗ |
. ,sxx,sxy,sxz,syy,syz,szz,1 ) |
| 178 |
|
✗ |
do l=1,llm |
| 179 |
|
✗ |
do i=1,iip1 |
| 180 |
|
✗ |
sy(i,1,l)=0. |
| 181 |
|
✗ |
sy(i,jjp1,l)=0. |
| 182 |
|
|
enddo |
| 183 |
|
|
enddo |
| 184 |
|
|
|
| 185 |
|
|
c--------------------------------------------------------- |
| 186 |
|
|
|
| 187 |
|
|
c--------------------------------------------------------- |
| 188 |
|
|
call advyp( limit,.5*dt*nt,pbarv,sm,s0,sx,sy,sz |
| 189 |
|
✗ |
. ,sxx,sxy,sxz,syy,syz,szz,1 ) |
| 190 |
|
|
c--------------------------------------------------------- |
| 191 |
|
✗ |
DO l = 1,llm |
| 192 |
|
✗ |
DO j = 1,jjp1 |
| 193 |
|
✗ |
s0( iip1,j,l)=s0( 1,j,l ) |
| 194 |
|
✗ |
sx( iip1,j,l)=sx( 1,j,l ) |
| 195 |
|
✗ |
sy( iip1,j,l)=sy( 1,j,l ) |
| 196 |
|
✗ |
sz( iip1,j,l)=sz( 1,j,l ) |
| 197 |
|
✗ |
sxx( iip1,j,l)=sxx( 1,j,l ) |
| 198 |
|
✗ |
sxy( iip1,j,l)=sxy( 1,j,l) |
| 199 |
|
✗ |
sxz( iip1,j,l)=sxz( 1,j,l ) |
| 200 |
|
✗ |
syy( iip1,j,l)=syy( 1,j,l ) |
| 201 |
|
✗ |
syz( iip1,j,l)=syz( 1,j,l) |
| 202 |
|
✗ |
szz( iip1,j,l)=szz( 1,j,l ) |
| 203 |
|
|
ENDDO |
| 204 |
|
|
ENDDO |
| 205 |
|
✗ |
do indice=1,nt |
| 206 |
|
|
call advxp( limit,0.5*dt,pbaru,sm,s0,sx,sy,sz |
| 207 |
|
✗ |
. ,sxx,sxy,sxz,syy,syz,szz,1 ) |
| 208 |
|
|
end do |
| 209 |
|
|
c--------------------------------------------------------- |
| 210 |
|
|
c--------------------------------------------------------- |
| 211 |
|
|
c *** On repasse les S dans la variable qpr |
| 212 |
|
|
c *** On repasse les S dans la variable q directement 14/10/94 |
| 213 |
|
|
|
| 214 |
|
✗ |
DO l = 1,llm |
| 215 |
|
✗ |
DO j = 1,jjp1 |
| 216 |
|
✗ |
DO i = 1,iip1 |
| 217 |
|
✗ |
q( i,j,llm+1-l,0 )=s0( i,j,l )/sm(i,j,l) |
| 218 |
|
✗ |
q( i,j,llm+1-l,1 ) = sx( i,j,l )/sm(i,j,l) |
| 219 |
|
✗ |
q( i,j,llm+1-l,2 ) = sy( i,j,l )/sm(i,j,l) |
| 220 |
|
✗ |
q( i,j,llm+1-l,3 ) = sz( i,j,l )/sm(i,j,l) |
| 221 |
|
✗ |
q( i,j,llm+1-l,4 ) = sxx( i,j,l )/sm(i,j,l) |
| 222 |
|
✗ |
q( i,j,llm+1-l,5 ) = sxy( i,j,l )/sm(i,j,l) |
| 223 |
|
✗ |
q( i,j,llm+1-l,6 ) = sxz( i,j,l )/sm(i,j,l) |
| 224 |
|
✗ |
q( i,j,llm+1-l,7 ) = syy( i,j,l )/sm(i,j,l) |
| 225 |
|
✗ |
q( i,j,llm+1-l,8 ) = syz( i,j,l )/sm(i,j,l) |
| 226 |
|
✗ |
q( i,j,llm+1-l,9 ) = szz( i,j,l )/sm(i,j,l) |
| 227 |
|
|
ENDDO |
| 228 |
|
|
ENDDO |
| 229 |
|
|
ENDDO |
| 230 |
|
|
|
| 231 |
|
|
c--------------------------------------------------------- |
| 232 |
|
|
c go to 777 |
| 233 |
|
|
c filtrages aux poles |
| 234 |
|
|
|
| 235 |
|
|
c Traitements specifiques au pole |
| 236 |
|
|
|
| 237 |
|
|
c filtrages aux poles |
| 238 |
|
✗ |
DO l=1,llm |
| 239 |
|
|
c filtrages aux poles |
| 240 |
|
✗ |
masn=ssum(iim,sm(1,1,l),1) |
| 241 |
|
✗ |
mass=ssum(iim,sm(1,jjp1,l),1) |
| 242 |
|
✗ |
qpn=ssum(iim,s0(1,1,l),1)/masn |
| 243 |
|
✗ |
qps=ssum(iim,s0(1,jjp1,l),1)/mass |
| 244 |
|
✗ |
dqzpn=ssum(iim,sz(1,1,l),1)/masn |
| 245 |
|
✗ |
dqzps=ssum(iim,sz(1,jjp1,l),1)/mass |
| 246 |
|
✗ |
do i=1,iip1 |
| 247 |
|
✗ |
q( i,1,llm+1-l,3)=dqzpn |
| 248 |
|
✗ |
q( i,jjp1,llm+1-l,3)=dqzps |
| 249 |
|
✗ |
q( i,1,llm+1-l,0)=qpn |
| 250 |
|
✗ |
q( i,jjp1,llm+1-l,0)=qps |
| 251 |
|
|
enddo |
| 252 |
|
|
c enddo |
| 253 |
|
|
c print*,'qpn',qpn,'qps',qps |
| 254 |
|
|
c print*,'dqzpn',dqzpn,'dqzps',dqzps |
| 255 |
|
|
c enddo |
| 256 |
|
|
dyn1=0. |
| 257 |
|
|
dys1=0. |
| 258 |
|
|
dyn2=0. |
| 259 |
|
|
dys2=0. |
| 260 |
|
✗ |
do i=1,iim |
| 261 |
|
✗ |
zz=s0(i,2,l)/sm(i,2,l)-q(i,1,llm+1-l,0) |
| 262 |
|
✗ |
dyn1=dyn1+sinlondlon(i)*zz |
| 263 |
|
✗ |
dyn2=dyn2+coslondlon(i)*zz |
| 264 |
|
✗ |
zz=q(i,jjp1,llm+1-l,0)-s0(i,jjm,l)/sm(i,jjm,l) |
| 265 |
|
✗ |
dys1=dys1+sinlondlon(i)*zz |
| 266 |
|
✗ |
dys2=dys2+coslondlon(i)*zz |
| 267 |
|
|
enddo |
| 268 |
|
✗ |
do i=1,iim |
| 269 |
|
|
q(i,1,llm+1-l,2)= |
| 270 |
|
✗ |
$ (sinlon(i)*dyn1+coslon(i)*dyn2)/2. |
| 271 |
|
|
q(i,1,llm+1-l,0)=q(i,1,llm+1-l,0) |
| 272 |
|
✗ |
$ +q(i,1,llm+1-l,2) |
| 273 |
|
|
q(i,jjp1,llm+1-l,2)= |
| 274 |
|
✗ |
$ (sinlon(i)*dys1+coslon(i)*dys2)/2. |
| 275 |
|
|
q(i,jjp1,llm+1-l,0)=q(i,jjp1,llm+1-l,0) |
| 276 |
|
✗ |
$ -q(i,jjp1,llm+1-l,2) |
| 277 |
|
|
enddo |
| 278 |
|
✗ |
q(iip1,1,llm+1-l,0)=q(1,1,llm+1-l,0) |
| 279 |
|
✗ |
q(iip1,jjp1,llm+1-l,0)=q(1,jjp1,llm+1-l,0) |
| 280 |
|
✗ |
do i=1,iim |
| 281 |
|
✗ |
sxn(i)=q(i+1,1,llm+1-l,0)-q(i,1,llm+1-l,0) |
| 282 |
|
✗ |
sxs(i)=q(i+1,jjp1,llm+1-l,0)-q(i,jjp1,llm+1-l,0) |
| 283 |
|
|
enddo |
| 284 |
|
✗ |
sxn(iip1)=sxn(1) |
| 285 |
|
✗ |
sxs(iip1)=sxs(1) |
| 286 |
|
✗ |
do i=1,iim |
| 287 |
|
✗ |
q(i+1,1,llm+1-l,1)=0.25*(sxn(i)+sxn(i+1)) |
| 288 |
|
✗ |
q(i+1,jjp1,llm+1-l,1)=0.25*(sxs(i)+sxs(i+1)) |
| 289 |
|
|
END DO |
| 290 |
|
✗ |
q(1,1,llm+1-l,1)=q(iip1,1,llm+1-l,1) |
| 291 |
|
|
q(1,jjp1,llm+1-l,1)= |
| 292 |
|
✗ |
$ q(iip1,jjp1,llm+1-l,1) |
| 293 |
|
|
enddo |
| 294 |
|
✗ |
do l=1,llm |
| 295 |
|
✗ |
do i=1,iim |
| 296 |
|
✗ |
q( i,1,llm+1-l,4)=0. |
| 297 |
|
✗ |
q( i,jjp1,llm+1-l,4)=0. |
| 298 |
|
✗ |
q( i,1,llm+1-l,5)=0. |
| 299 |
|
✗ |
q( i,jjp1,llm+1-l,5)=0. |
| 300 |
|
✗ |
q( i,1,llm+1-l,6)=0. |
| 301 |
|
✗ |
q( i,jjp1,llm+1-l,6)=0. |
| 302 |
|
✗ |
q( i,1,llm+1-l,7)=0. |
| 303 |
|
✗ |
q( i,jjp1,llm+1-l,7)=0. |
| 304 |
|
✗ |
q( i,1,llm+1-l,8)=0. |
| 305 |
|
✗ |
q( i,jjp1,llm+1-l,8)=0. |
| 306 |
|
✗ |
q( i,1,llm+1-l,9)=0. |
| 307 |
|
✗ |
q( i,jjp1,llm+1-l,9)=0. |
| 308 |
|
|
enddo |
| 309 |
|
|
ENDDO |
| 310 |
|
|
|
| 311 |
|
|
777 continue |
| 312 |
|
|
c |
| 313 |
|
|
c bouclage en longitude |
| 314 |
|
✗ |
do l=1,llm |
| 315 |
|
✗ |
do j=1,jjp1 |
| 316 |
|
✗ |
q(iip1,j,l,0)=q(1,j,l,0) |
| 317 |
|
✗ |
q(iip1,j,llm+1-l,0)=q(1,j,llm+1-l,0) |
| 318 |
|
✗ |
q(iip1,j,llm+1-l,1)=q(1,j,llm+1-l,1) |
| 319 |
|
✗ |
q(iip1,j,llm+1-l,2)=q(1,j,llm+1-l,2) |
| 320 |
|
✗ |
q(iip1,j,llm+1-l,3)=q(1,j,llm+1-l,3) |
| 321 |
|
✗ |
q(iip1,j,llm+1-l,4)=q(1,j,llm+1-l,4) |
| 322 |
|
✗ |
q(iip1,j,llm+1-l,5)=q(1,j,llm+1-l,5) |
| 323 |
|
✗ |
q(iip1,j,llm+1-l,6)=q(1,j,llm+1-l,6) |
| 324 |
|
✗ |
q(iip1,j,llm+1-l,7)=q(1,j,llm+1-l,7) |
| 325 |
|
✗ |
q(iip1,j,llm+1-l,8)=q(1,j,llm+1-l,8) |
| 326 |
|
✗ |
q(iip1,j,llm+1-l,9)=q(1,j,llm+1-l,9) |
| 327 |
|
|
enddo |
| 328 |
|
|
enddo |
| 329 |
|
✗ |
DO l = 1,llm |
| 330 |
|
✗ |
DO j = 2,jjm |
| 331 |
|
✗ |
DO i = 1,iip1 |
| 332 |
|
✗ |
IF (q(i,j,l,0).lt.0.) THEN |
| 333 |
|
✗ |
PRINT*,'------------ BIP-----------' |
| 334 |
|
✗ |
PRINT*,'S0(',i,j,l,')=',q(i,j,l,0), |
| 335 |
|
✗ |
$ q(i,j-1,l,0) |
| 336 |
|
✗ |
PRINT*,'SX(',i,j,l,')=',q(i,j,l,1) |
| 337 |
|
✗ |
PRINT*,'SY(',i,j,l,')=',q(i,j,l,2), |
| 338 |
|
✗ |
$ q(i,j-1,l,2) |
| 339 |
|
✗ |
PRINT*,'SZ(',i,j,l,')=',q(i,j,l,3) |
| 340 |
|
|
c PRINT*,' PBL EN SORTIE D'' ADVZP' |
| 341 |
|
✗ |
q(i,j,l,0)=0. |
| 342 |
|
|
c STOP |
| 343 |
|
|
ENDIF |
| 344 |
|
|
ENDDO |
| 345 |
|
|
ENDDO |
| 346 |
|
✗ |
do j=1,jjp1,jjm |
| 347 |
|
✗ |
do i=1,iip1 |
| 348 |
|
✗ |
IF (q(i,j,l,0).lt.0.) THEN |
| 349 |
|
✗ |
PRINT*,'------------ BIP 2-----------' |
| 350 |
|
✗ |
PRINT*,'S0(',i,j,l,')=',q(i,j,l,0) |
| 351 |
|
✗ |
PRINT*,'SX(',i,j,l,')=',q(i,j,l,1) |
| 352 |
|
✗ |
PRINT*,'SY(',i,j,l,')=',q(i,j,l,2) |
| 353 |
|
✗ |
PRINT*,'SZ(',i,j,l,')=',q(i,j,l,3) |
| 354 |
|
|
|
| 355 |
|
✗ |
q(i,j,l,0)=0. |
| 356 |
|
|
c STOP |
| 357 |
|
|
ENDIF |
| 358 |
|
|
enddo |
| 359 |
|
|
enddo |
| 360 |
|
|
ENDDO |
| 361 |
|
✗ |
RETURN |
| 362 |
|
|
END |
| 363 |
|
|
|