| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! IM ctes ds clesphys.h SUBROUTINE SW(PSCT, RCO2, PRMU0, PFRAC, |
| 2 |
|
✗ |
SUBROUTINE sw_lmdar4(psct, prmu0, pfrac, ppmb, pdp, ppsol, palbd, palbp, & |
| 3 |
|
✗ |
ptave, pwv, pqs, pozon, paer, pcldsw, ptau, pomega, pcg, pheat, pheat0, & |
| 4 |
|
|
palbpla, ptopsw, psolsw, ptopsw0, psolsw0, zfsup, zfsdn, zfsup0, zfsdn0, & |
| 5 |
|
|
tauae, pizae, cgae, ptaua, pomegaa, ptopswad, psolswad, ptopswai, & |
| 6 |
|
|
psolswai, ok_ade, ok_aie) |
| 7 |
|
|
USE dimphy |
| 8 |
|
|
USE print_control_mod, ONLY: lunout |
| 9 |
|
|
IMPLICIT NONE |
| 10 |
|
|
|
| 11 |
|
|
include "YOMCST.h" |
| 12 |
|
|
|
| 13 |
|
|
! ------------------------------------------------------------------ |
| 14 |
|
|
|
| 15 |
|
|
! PURPOSE. |
| 16 |
|
|
! -------- |
| 17 |
|
|
|
| 18 |
|
|
! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN TWO |
| 19 |
|
|
! SPECTRAL INTERVALS FOLLOWING FOUQUART AND BONNEL (1980). |
| 20 |
|
|
|
| 21 |
|
|
! METHOD. |
| 22 |
|
|
! ------- |
| 23 |
|
|
|
| 24 |
|
|
! 1. COMPUTES ABSORBER AMOUNTS (SWU) |
| 25 |
|
|
! 2. COMPUTES FLUXES IN 1ST SPECTRAL INTERVAL (SW1S) |
| 26 |
|
|
! 3. COMPUTES FLUXES IN 2ND SPECTRAL INTERVAL (SW2S) |
| 27 |
|
|
|
| 28 |
|
|
! REFERENCE. |
| 29 |
|
|
! ---------- |
| 30 |
|
|
|
| 31 |
|
|
! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
| 32 |
|
|
! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
| 33 |
|
|
|
| 34 |
|
|
! AUTHOR. |
| 35 |
|
|
! ------- |
| 36 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 37 |
|
|
|
| 38 |
|
|
! MODIFICATIONS. |
| 39 |
|
|
! -------------- |
| 40 |
|
|
! ORIGINAL : 89-07-14 |
| 41 |
|
|
! 95-01-01 J.-J. MORCRETTE Direct/Diffuse Albedo |
| 42 |
|
|
! 03-11-27 J. QUAAS Introduce aerosol forcings (based on BOUCHER) |
| 43 |
|
|
! ------------------------------------------------------------------ |
| 44 |
|
|
|
| 45 |
|
|
! * ARGUMENTS: |
| 46 |
|
|
|
| 47 |
|
|
REAL (KIND=8) psct ! constante solaire (valeur conseillee: 1370) |
| 48 |
|
|
! IM ctes ds clesphys.h REAL(KIND=8) RCO2 ! concentration CO2 (IPCC: |
| 49 |
|
|
! 353.E-06*44.011/28.97) |
| 50 |
|
|
include "clesphys.h" |
| 51 |
|
|
|
| 52 |
|
|
REAL (KIND=8) ppsol(kdlon) ! SURFACE PRESSURE (PA) |
| 53 |
|
|
REAL (KIND=8) pdp(kdlon, kflev) ! LAYER THICKNESS (PA) |
| 54 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) ! HALF-LEVEL PRESSURE (MB) |
| 55 |
|
|
|
| 56 |
|
|
REAL (KIND=8) prmu0(kdlon) ! COSINE OF ZENITHAL ANGLE |
| 57 |
|
|
REAL (KIND=8) pfrac(kdlon) ! fraction de la journee |
| 58 |
|
|
|
| 59 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) ! LAYER TEMPERATURE (K) |
| 60 |
|
|
REAL (KIND=8) pwv(kdlon, kflev) ! SPECIFIC HUMIDITY (KG/KG) |
| 61 |
|
|
REAL (KIND=8) pqs(kdlon, kflev) ! SATURATED WATER VAPOUR (KG/KG) |
| 62 |
|
|
REAL (KIND=8) pozon(kdlon, kflev) ! OZONE CONCENTRATION (KG/KG) |
| 63 |
|
|
REAL (KIND=8) paer(kdlon, kflev, 5) ! AEROSOLS' OPTICAL THICKNESS |
| 64 |
|
|
|
| 65 |
|
|
REAL (KIND=8) palbd(kdlon, 2) ! albedo du sol (lumiere diffuse) |
| 66 |
|
|
REAL (KIND=8) palbp(kdlon, 2) ! albedo du sol (lumiere parallele) |
| 67 |
|
|
|
| 68 |
|
|
REAL (KIND=8) pcldsw(kdlon, kflev) ! CLOUD FRACTION |
| 69 |
|
|
REAL (KIND=8) ptau(kdlon, 2, kflev) ! CLOUD OPTICAL THICKNESS |
| 70 |
|
|
REAL (KIND=8) pcg(kdlon, 2, kflev) ! ASYMETRY FACTOR |
| 71 |
|
|
REAL (KIND=8) pomega(kdlon, 2, kflev) ! SINGLE SCATTERING ALBEDO |
| 72 |
|
|
|
| 73 |
|
|
REAL (KIND=8) pheat(kdlon, kflev) ! SHORTWAVE HEATING (K/DAY) |
| 74 |
|
|
REAL (KIND=8) pheat0(kdlon, kflev) ! SHORTWAVE HEATING (K/DAY) clear-sky |
| 75 |
|
|
REAL (KIND=8) palbpla(kdlon) ! PLANETARY ALBEDO |
| 76 |
|
|
REAL (KIND=8) ptopsw(kdlon) ! SHORTWAVE FLUX AT T.O.A. |
| 77 |
|
|
REAL (KIND=8) psolsw(kdlon) ! SHORTWAVE FLUX AT SURFACE |
| 78 |
|
|
REAL (KIND=8) ptopsw0(kdlon) ! SHORTWAVE FLUX AT T.O.A. (CLEAR-SKY) |
| 79 |
|
|
REAL (KIND=8) psolsw0(kdlon) ! SHORTWAVE FLUX AT SURFACE (CLEAR-SKY) |
| 80 |
|
|
|
| 81 |
|
|
! * LOCAL VARIABLES: |
| 82 |
|
|
|
| 83 |
|
|
REAL, PARAMETER :: dobson_u = 2.1415E-05 ! Dobson unit, in kg m-2 |
| 84 |
|
|
|
| 85 |
|
✗ |
REAL (KIND=8) zoz(kdlon, kflev) |
| 86 |
|
|
! column-density of ozone in layer, in kilo-Dobsons |
| 87 |
|
|
|
| 88 |
|
✗ |
REAL (KIND=8) zaki(kdlon, 2) |
| 89 |
|
✗ |
REAL (KIND=8) zcld(kdlon, kflev) |
| 90 |
|
✗ |
REAL (KIND=8) zclear(kdlon) |
| 91 |
|
✗ |
REAL (KIND=8) zdsig(kdlon, kflev) |
| 92 |
|
✗ |
REAL (KIND=8) zfact(kdlon) |
| 93 |
|
✗ |
REAL (KIND=8) zfd(kdlon, kflev+1) |
| 94 |
|
✗ |
REAL (KIND=8) zfdown(kdlon, kflev+1) |
| 95 |
|
✗ |
REAL (KIND=8) zfu(kdlon, kflev+1) |
| 96 |
|
✗ |
REAL (KIND=8) zfup(kdlon, kflev+1) |
| 97 |
|
✗ |
REAL (KIND=8) zrmu(kdlon) |
| 98 |
|
✗ |
REAL (KIND=8) zsec(kdlon) |
| 99 |
|
✗ |
REAL (KIND=8) zud(kdlon, 5, kflev+1) |
| 100 |
|
✗ |
REAL (KIND=8) zcldsw0(kdlon, kflev) |
| 101 |
|
|
|
| 102 |
|
|
REAL (KIND=8) zfsup(kdlon, kflev+1) |
| 103 |
|
|
REAL (KIND=8) zfsdn(kdlon, kflev+1) |
| 104 |
|
|
REAL (KIND=8) zfsup0(kdlon, kflev+1) |
| 105 |
|
|
REAL (KIND=8) zfsdn0(kdlon, kflev+1) |
| 106 |
|
|
|
| 107 |
|
|
INTEGER inu, jl, jk, i, k, kpl1 |
| 108 |
|
|
|
| 109 |
|
|
INTEGER swpas ! Every swpas steps, sw is calculated |
| 110 |
|
|
PARAMETER (swpas=1) |
| 111 |
|
|
|
| 112 |
|
|
INTEGER itapsw |
| 113 |
|
|
LOGICAL appel1er |
| 114 |
|
|
DATA itapsw/0/ |
| 115 |
|
|
DATA appel1er/.TRUE./ |
| 116 |
|
|
SAVE itapsw, appel1er |
| 117 |
|
|
!$OMP THREADPRIVATE(appel1er) |
| 118 |
|
|
!$OMP THREADPRIVATE(itapsw) |
| 119 |
|
|
! jq-Introduced for aerosol forcings |
| 120 |
|
|
REAL (KIND=8) flag_aer |
| 121 |
|
|
LOGICAL ok_ade, ok_aie ! use aerosol forcings or not? |
| 122 |
|
|
REAL (KIND=8) tauae(kdlon, kflev, 2) ! aerosol optical properties |
| 123 |
|
|
REAL (KIND=8) pizae(kdlon, kflev, 2) ! (see aeropt.F) |
| 124 |
|
|
REAL (KIND=8) cgae(kdlon, kflev, 2) ! -"- |
| 125 |
|
|
REAL (KIND=8) ptaua(kdlon, 2, kflev) ! CLOUD OPTICAL THICKNESS (pre-industrial value) |
| 126 |
|
|
REAL (KIND=8) pomegaa(kdlon, 2, kflev) ! SINGLE SCATTERING ALBEDO |
| 127 |
|
|
REAL (KIND=8) ptopswad(kdlon) ! SHORTWAVE FLUX AT T.O.A.(+AEROSOL DIR) |
| 128 |
|
|
REAL (KIND=8) psolswad(kdlon) ! SHORTWAVE FLUX AT SURFACE(+AEROSOL DIR) |
| 129 |
|
|
REAL (KIND=8) ptopswai(kdlon) ! SHORTWAVE FLUX AT T.O.A.(+AEROSOL IND) |
| 130 |
|
|
REAL (KIND=8) psolswai(kdlon) ! SHORTWAVE FLUX AT SURFACE(+AEROSOL IND) |
| 131 |
|
|
! jq - Fluxes including aerosol effects |
| 132 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zfsupad(:, :) |
| 133 |
|
|
!$OMP THREADPRIVATE(ZFSUPAD) |
| 134 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zfsdnad(:, :) |
| 135 |
|
|
!$OMP THREADPRIVATE(ZFSDNAD) |
| 136 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zfsupai(:, :) |
| 137 |
|
|
!$OMP THREADPRIVATE(ZFSUPAI) |
| 138 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zfsdnai(:, :) |
| 139 |
|
|
!$OMP THREADPRIVATE(ZFSDNAI) |
| 140 |
|
|
LOGICAL initialized |
| 141 |
|
|
! ym SAVE ZFSUPAD, ZFSDNAD, ZFSUPAI, ZFSDNAI ! aerosol fluxes |
| 142 |
|
|
! rv |
| 143 |
|
|
SAVE flag_aer |
| 144 |
|
|
!$OMP THREADPRIVATE(flag_aer) |
| 145 |
|
|
DATA initialized/.FALSE./ |
| 146 |
|
|
SAVE initialized |
| 147 |
|
|
!$OMP THREADPRIVATE(initialized) |
| 148 |
|
|
! jq-end |
| 149 |
|
|
REAL tmp_ |
| 150 |
|
|
|
| 151 |
|
✗ |
IF (.NOT. initialized) THEN |
| 152 |
|
✗ |
flag_aer = 0. |
| 153 |
|
✗ |
initialized = .TRUE. |
| 154 |
|
✗ |
ALLOCATE (zfsupad(kdlon,kflev+1)) |
| 155 |
|
✗ |
ALLOCATE (zfsdnad(kdlon,kflev+1)) |
| 156 |
|
✗ |
ALLOCATE (zfsupai(kdlon,kflev+1)) |
| 157 |
|
✗ |
ALLOCATE (zfsdnai(kdlon,kflev+1)) |
| 158 |
|
|
|
| 159 |
|
✗ |
zfsupad(:, :) = 0. |
| 160 |
|
✗ |
zfsdnad(:, :) = 0. |
| 161 |
|
✗ |
zfsupai(:, :) = 0. |
| 162 |
|
✗ |
zfsdnai(:, :) = 0. |
| 163 |
|
|
END IF |
| 164 |
|
|
|
| 165 |
|
✗ |
IF (appel1er) THEN |
| 166 |
|
✗ |
WRITE (lunout, *) 'SW calling frequency : ', swpas |
| 167 |
|
✗ |
WRITE (lunout, *) ' In general, it should be 1' |
| 168 |
|
✗ |
appel1er = .FALSE. |
| 169 |
|
|
END IF |
| 170 |
|
|
! ------------------------------------------------------------------ |
| 171 |
|
|
IF (mod(itapsw,swpas)==0) THEN |
| 172 |
|
|
|
| 173 |
|
✗ |
tmp_ = 1./(dobson_u*1E3*rg) |
| 174 |
|
|
! cdir collapse |
| 175 |
|
✗ |
DO jk = 1, kflev |
| 176 |
|
✗ |
DO jl = 1, kdlon |
| 177 |
|
✗ |
zcldsw0(jl, jk) = 0.0 |
| 178 |
|
✗ |
zoz(jl, jk) = pozon(jl, jk)*tmp_*pdp(jl, jk) |
| 179 |
|
|
END DO |
| 180 |
|
|
END DO |
| 181 |
|
|
|
| 182 |
|
|
|
| 183 |
|
|
! clear-sky: |
| 184 |
|
|
! IM ctes ds clesphys.h CALL SWU(PSCT,RCO2,ZCLDSW0,PPMB,PPSOL, |
| 185 |
|
|
CALL swu_lmdar4(psct, zcldsw0, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
| 186 |
|
✗ |
zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
| 187 |
|
✗ |
inu = 1 |
| 188 |
|
|
CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
| 189 |
|
|
pcg, zcld, zclear, zcldsw0, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
| 190 |
|
✗ |
zfd, zfu) |
| 191 |
|
✗ |
inu = 2 |
| 192 |
|
|
CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
| 193 |
|
|
palbp, pcg, zcld, zclear, zcldsw0, zdsig, pomega, zoz, zrmu, zsec, & |
| 194 |
|
✗ |
ptau, zud, pwv, pqs, zfdown, zfup) |
| 195 |
|
✗ |
DO jk = 1, kflev + 1 |
| 196 |
|
✗ |
DO jl = 1, kdlon |
| 197 |
|
✗ |
zfsup0(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
| 198 |
|
✗ |
zfsdn0(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
| 199 |
|
|
END DO |
| 200 |
|
|
END DO |
| 201 |
|
|
|
| 202 |
|
✗ |
flag_aer = 0.0 |
| 203 |
|
|
CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
| 204 |
|
✗ |
zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
| 205 |
|
✗ |
inu = 1 |
| 206 |
|
|
CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
| 207 |
|
|
pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
| 208 |
|
✗ |
zfd, zfu) |
| 209 |
|
✗ |
inu = 2 |
| 210 |
|
|
CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
| 211 |
|
|
palbp, pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, & |
| 212 |
|
✗ |
zud, pwv, pqs, zfdown, zfup) |
| 213 |
|
|
|
| 214 |
|
|
! cloudy-sky: |
| 215 |
|
|
|
| 216 |
|
✗ |
DO jk = 1, kflev + 1 |
| 217 |
|
✗ |
DO jl = 1, kdlon |
| 218 |
|
✗ |
zfsup(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
| 219 |
|
✗ |
zfsdn(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
| 220 |
|
|
END DO |
| 221 |
|
|
END DO |
| 222 |
|
|
|
| 223 |
|
|
|
| 224 |
|
✗ |
IF (ok_ade) THEN |
| 225 |
|
|
|
| 226 |
|
|
! cloudy-sky + aerosol dir OB |
| 227 |
|
✗ |
flag_aer = 1.0 |
| 228 |
|
|
CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
| 229 |
|
✗ |
zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
| 230 |
|
✗ |
inu = 1 |
| 231 |
|
|
CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
| 232 |
|
|
pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
| 233 |
|
✗ |
zfd, zfu) |
| 234 |
|
✗ |
inu = 2 |
| 235 |
|
|
CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
| 236 |
|
|
palbp, pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, & |
| 237 |
|
✗ |
ptau, zud, pwv, pqs, zfdown, zfup) |
| 238 |
|
✗ |
DO jk = 1, kflev + 1 |
| 239 |
|
✗ |
DO jl = 1, kdlon |
| 240 |
|
✗ |
zfsupad(jl, jk) = zfsup(jl, jk) |
| 241 |
|
✗ |
zfsdnad(jl, jk) = zfsdn(jl, jk) |
| 242 |
|
✗ |
zfsup(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
| 243 |
|
✗ |
zfsdn(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
| 244 |
|
|
END DO |
| 245 |
|
|
END DO |
| 246 |
|
|
|
| 247 |
|
|
END IF ! ok_ade |
| 248 |
|
|
|
| 249 |
|
✗ |
IF (ok_aie) THEN |
| 250 |
|
|
|
| 251 |
|
|
! jq cloudy-sky + aerosol direct + aerosol indirect |
| 252 |
|
✗ |
flag_aer = 1.0 |
| 253 |
|
|
CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
| 254 |
|
✗ |
zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
| 255 |
|
✗ |
inu = 1 |
| 256 |
|
|
CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
| 257 |
|
|
pcg, zcld, zclear, pcldsw, zdsig, pomegaa, zoz, zrmu, zsec, ptaua, & |
| 258 |
|
✗ |
zud, zfd, zfu) |
| 259 |
|
✗ |
inu = 2 |
| 260 |
|
|
CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
| 261 |
|
|
palbp, pcg, zcld, zclear, pcldsw, zdsig, pomegaa, zoz, zrmu, zsec, & |
| 262 |
|
✗ |
ptaua, zud, pwv, pqs, zfdown, zfup) |
| 263 |
|
✗ |
DO jk = 1, kflev + 1 |
| 264 |
|
✗ |
DO jl = 1, kdlon |
| 265 |
|
✗ |
zfsupai(jl, jk) = zfsup(jl, jk) |
| 266 |
|
✗ |
zfsdnai(jl, jk) = zfsdn(jl, jk) |
| 267 |
|
✗ |
zfsup(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
| 268 |
|
✗ |
zfsdn(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
| 269 |
|
|
END DO |
| 270 |
|
|
END DO |
| 271 |
|
|
END IF ! ok_aie |
| 272 |
|
|
! jq -end |
| 273 |
|
|
|
| 274 |
|
|
itapsw = 0 |
| 275 |
|
|
END IF |
| 276 |
|
✗ |
itapsw = itapsw + 1 |
| 277 |
|
|
|
| 278 |
|
✗ |
DO k = 1, kflev |
| 279 |
|
✗ |
kpl1 = k + 1 |
| 280 |
|
✗ |
DO i = 1, kdlon |
| 281 |
|
✗ |
pheat(i, k) = -(zfsup(i,kpl1)-zfsup(i,k)) - (zfsdn(i,k)-zfsdn(i,kpl1)) |
| 282 |
|
✗ |
pheat(i, k) = pheat(i, k)*rday*rg/rcpd/pdp(i, k) |
| 283 |
|
|
pheat0(i, k) = -(zfsup0(i,kpl1)-zfsup0(i,k)) - & |
| 284 |
|
✗ |
(zfsdn0(i,k)-zfsdn0(i,kpl1)) |
| 285 |
|
✗ |
pheat0(i, k) = pheat0(i, k)*rday*rg/rcpd/pdp(i, k) |
| 286 |
|
|
END DO |
| 287 |
|
|
END DO |
| 288 |
|
✗ |
DO i = 1, kdlon |
| 289 |
|
✗ |
palbpla(i) = zfsup(i, kflev+1)/(zfsdn(i,kflev+1)+1.0E-20) |
| 290 |
|
|
|
| 291 |
|
✗ |
psolsw(i) = zfsdn(i, 1) - zfsup(i, 1) |
| 292 |
|
✗ |
ptopsw(i) = zfsdn(i, kflev+1) - zfsup(i, kflev+1) |
| 293 |
|
|
|
| 294 |
|
✗ |
psolsw0(i) = zfsdn0(i, 1) - zfsup0(i, 1) |
| 295 |
|
✗ |
ptopsw0(i) = zfsdn0(i, kflev+1) - zfsup0(i, kflev+1) |
| 296 |
|
|
! -OB |
| 297 |
|
✗ |
psolswad(i) = zfsdnad(i, 1) - zfsupad(i, 1) |
| 298 |
|
✗ |
ptopswad(i) = zfsdnad(i, kflev+1) - zfsupad(i, kflev+1) |
| 299 |
|
|
|
| 300 |
|
✗ |
psolswai(i) = zfsdnai(i, 1) - zfsupai(i, 1) |
| 301 |
|
✗ |
ptopswai(i) = zfsdnai(i, kflev+1) - zfsupai(i, kflev+1) |
| 302 |
|
|
! -fin |
| 303 |
|
|
END DO |
| 304 |
|
|
|
| 305 |
|
✗ |
RETURN |
| 306 |
|
|
END SUBROUTINE sw_lmdar4 |
| 307 |
|
|
|
| 308 |
|
|
! IM ctes ds clesphys.h SUBROUTINE SWU |
| 309 |
|
|
! (PSCT,RCO2,PCLDSW,PPMB,PPSOL,PRMU0,PFRAC, |
| 310 |
|
✗ |
SUBROUTINE swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
| 311 |
|
✗ |
paki, pcld, pclear, pdsig, pfact, prmu, psec, pud) |
| 312 |
|
|
USE dimphy |
| 313 |
|
|
USE radiation_ar4_param, ONLY: zpdh2o, zpdumg, zprh2o, zprumg, rtdh2o, & |
| 314 |
|
|
rtdumg, rth2o, rtumg |
| 315 |
|
|
IMPLICIT NONE |
| 316 |
|
|
include "radepsi.h" |
| 317 |
|
|
include "radopt.h" |
| 318 |
|
|
include "YOMCST.h" |
| 319 |
|
|
|
| 320 |
|
|
! * ARGUMENTS: |
| 321 |
|
|
|
| 322 |
|
|
REAL (KIND=8) psct |
| 323 |
|
|
! IM ctes ds clesphys.h REAL(KIND=8) RCO2 |
| 324 |
|
|
include "clesphys.h" |
| 325 |
|
|
REAL (KIND=8) pcldsw(kdlon, kflev) |
| 326 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) |
| 327 |
|
|
REAL (KIND=8) ppsol(kdlon) |
| 328 |
|
|
REAL (KIND=8) prmu0(kdlon) |
| 329 |
|
|
REAL (KIND=8) pfrac(kdlon) |
| 330 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) |
| 331 |
|
|
REAL (KIND=8) pwv(kdlon, kflev) |
| 332 |
|
|
|
| 333 |
|
|
REAL (KIND=8) paki(kdlon, 2) |
| 334 |
|
|
REAL (KIND=8) pcld(kdlon, kflev) |
| 335 |
|
|
REAL (KIND=8) pclear(kdlon) |
| 336 |
|
|
REAL (KIND=8) pdsig(kdlon, kflev) |
| 337 |
|
|
REAL (KIND=8) pfact(kdlon) |
| 338 |
|
|
REAL (KIND=8) prmu(kdlon) |
| 339 |
|
|
REAL (KIND=8) psec(kdlon) |
| 340 |
|
|
REAL (KIND=8) pud(kdlon, 5, kflev+1) |
| 341 |
|
|
|
| 342 |
|
|
! * LOCAL VARIABLES: |
| 343 |
|
|
|
| 344 |
|
|
INTEGER iind(2) |
| 345 |
|
✗ |
REAL (KIND=8) zc1j(kdlon, kflev+1) |
| 346 |
|
✗ |
REAL (KIND=8) zclear(kdlon) |
| 347 |
|
✗ |
REAL (KIND=8) zcloud(kdlon) |
| 348 |
|
✗ |
REAL (KIND=8) zn175(kdlon) |
| 349 |
|
✗ |
REAL (KIND=8) zn190(kdlon) |
| 350 |
|
✗ |
REAL (KIND=8) zo175(kdlon) |
| 351 |
|
✗ |
REAL (KIND=8) zo190(kdlon) |
| 352 |
|
✗ |
REAL (KIND=8) zsign(kdlon) |
| 353 |
|
✗ |
REAL (KIND=8) zr(kdlon, 2) |
| 354 |
|
✗ |
REAL (KIND=8) zsigo(kdlon) |
| 355 |
|
✗ |
REAL (KIND=8) zud(kdlon, 2) |
| 356 |
|
|
REAL (KIND=8) zrth, zrtu, zwh2o, zdsco2, zdsh2o, zfppw |
| 357 |
|
|
INTEGER jl, jk, jkp1, jkl, jklp1, ja |
| 358 |
|
|
|
| 359 |
|
|
! ------------------------------------------------------------------ |
| 360 |
|
|
|
| 361 |
|
|
! * 1. COMPUTES AMOUNTS OF ABSORBERS |
| 362 |
|
|
! ----------------------------- |
| 363 |
|
|
|
| 364 |
|
|
|
| 365 |
|
✗ |
iind(1) = 1 |
| 366 |
|
✗ |
iind(2) = 2 |
| 367 |
|
|
|
| 368 |
|
|
! * 1.1 INITIALIZES QUANTITIES |
| 369 |
|
|
! ---------------------- |
| 370 |
|
|
|
| 371 |
|
|
|
| 372 |
|
✗ |
DO jl = 1, kdlon |
| 373 |
|
✗ |
pud(jl, 1, kflev+1) = 0. |
| 374 |
|
✗ |
pud(jl, 2, kflev+1) = 0. |
| 375 |
|
✗ |
pud(jl, 3, kflev+1) = 0. |
| 376 |
|
✗ |
pud(jl, 4, kflev+1) = 0. |
| 377 |
|
✗ |
pud(jl, 5, kflev+1) = 0. |
| 378 |
|
✗ |
pfact(jl) = prmu0(jl)*pfrac(jl)*psct |
| 379 |
|
✗ |
prmu(jl) = sqrt(1224.*prmu0(jl)*prmu0(jl)+1.)/35. |
| 380 |
|
✗ |
psec(jl) = 1./prmu(jl) |
| 381 |
|
✗ |
zc1j(jl, kflev+1) = 0. |
| 382 |
|
|
END DO |
| 383 |
|
|
|
| 384 |
|
|
! * 1.3 AMOUNTS OF ABSORBERS |
| 385 |
|
|
! -------------------- |
| 386 |
|
|
|
| 387 |
|
|
|
| 388 |
|
✗ |
DO jl = 1, kdlon |
| 389 |
|
✗ |
zud(jl, 1) = 0. |
| 390 |
|
✗ |
zud(jl, 2) = 0. |
| 391 |
|
✗ |
zo175(jl) = ppsol(jl)**(zpdumg+1.) |
| 392 |
|
✗ |
zo190(jl) = ppsol(jl)**(zpdh2o+1.) |
| 393 |
|
✗ |
zsigo(jl) = ppsol(jl) |
| 394 |
|
✗ |
zclear(jl) = 1. |
| 395 |
|
✗ |
zcloud(jl) = 0. |
| 396 |
|
|
END DO |
| 397 |
|
|
|
| 398 |
|
✗ |
DO jk = 1, kflev |
| 399 |
|
✗ |
jkp1 = jk + 1 |
| 400 |
|
✗ |
jkl = kflev + 1 - jk |
| 401 |
|
|
jklp1 = jkl + 1 |
| 402 |
|
✗ |
DO jl = 1, kdlon |
| 403 |
|
✗ |
zrth = (rth2o/ptave(jl,jk))**rtdh2o |
| 404 |
|
✗ |
zrtu = (rtumg/ptave(jl,jk))**rtdumg |
| 405 |
|
✗ |
zwh2o = max(pwv(jl,jk), zepscq) |
| 406 |
|
✗ |
zsign(jl) = 100.*ppmb(jl, jkp1) |
| 407 |
|
✗ |
pdsig(jl, jk) = (zsigo(jl)-zsign(jl))/ppsol(jl) |
| 408 |
|
✗ |
zn175(jl) = zsign(jl)**(zpdumg+1.) |
| 409 |
|
✗ |
zn190(jl) = zsign(jl)**(zpdh2o+1.) |
| 410 |
|
✗ |
zdsco2 = zo175(jl) - zn175(jl) |
| 411 |
|
✗ |
zdsh2o = zo190(jl) - zn190(jl) |
| 412 |
|
|
pud(jl, 1, jk) = 1./(10.*rg*(zpdh2o+1.))/(zprh2o**zpdh2o)*zdsh2o*zwh2o* & |
| 413 |
|
✗ |
zrth |
| 414 |
|
|
pud(jl, 2, jk) = 1./(10.*rg*(zpdumg+1.))/(zprumg**zpdumg)*zdsco2*rco2* & |
| 415 |
|
✗ |
zrtu |
| 416 |
|
✗ |
zfppw = 1.6078*zwh2o/(1.+0.608*zwh2o) |
| 417 |
|
✗ |
pud(jl, 4, jk) = pud(jl, 1, jk)*zfppw |
| 418 |
|
✗ |
pud(jl, 5, jk) = pud(jl, 1, jk)*(1.-zfppw) |
| 419 |
|
✗ |
zud(jl, 1) = zud(jl, 1) + pud(jl, 1, jk) |
| 420 |
|
✗ |
zud(jl, 2) = zud(jl, 2) + pud(jl, 2, jk) |
| 421 |
|
✗ |
zsigo(jl) = zsign(jl) |
| 422 |
|
✗ |
zo175(jl) = zn175(jl) |
| 423 |
|
✗ |
zo190(jl) = zn190(jl) |
| 424 |
|
|
|
| 425 |
|
✗ |
IF (novlp==1) THEN |
| 426 |
|
|
zclear(jl) = zclear(jl)*(1.-max(pcldsw(jl,jkl),zcloud(jl)))/(1.-min( & |
| 427 |
|
✗ |
zcloud(jl),1.-zepsec)) |
| 428 |
|
✗ |
zc1j(jl, jkl) = 1.0 - zclear(jl) |
| 429 |
|
✗ |
zcloud(jl) = pcldsw(jl, jkl) |
| 430 |
|
|
ELSE IF (novlp==2) THEN |
| 431 |
|
|
zcloud(jl) = max(pcldsw(jl,jkl), zcloud(jl)) |
| 432 |
|
|
zc1j(jl, jkl) = zcloud(jl) |
| 433 |
|
|
ELSE IF (novlp==3) THEN |
| 434 |
|
|
zclear(jl) = zclear(jl)*(1.-pcldsw(jl,jkl)) |
| 435 |
|
|
zcloud(jl) = 1.0 - zclear(jl) |
| 436 |
|
|
zc1j(jl, jkl) = zcloud(jl) |
| 437 |
|
|
END IF |
| 438 |
|
|
END DO |
| 439 |
|
|
END DO |
| 440 |
|
✗ |
DO jl = 1, kdlon |
| 441 |
|
✗ |
pclear(jl) = 1. - zc1j(jl, 1) |
| 442 |
|
|
END DO |
| 443 |
|
✗ |
DO jk = 1, kflev |
| 444 |
|
✗ |
DO jl = 1, kdlon |
| 445 |
|
✗ |
IF (pclear(jl)<1.) THEN |
| 446 |
|
✗ |
pcld(jl, jk) = pcldsw(jl, jk)/(1.-pclear(jl)) |
| 447 |
|
|
ELSE |
| 448 |
|
✗ |
pcld(jl, jk) = 0. |
| 449 |
|
|
END IF |
| 450 |
|
|
END DO |
| 451 |
|
|
END DO |
| 452 |
|
|
|
| 453 |
|
|
! * 1.4 COMPUTES CLEAR-SKY GREY ABSORPTION COEFFICIENTS |
| 454 |
|
|
! ----------------------------------------------- |
| 455 |
|
|
|
| 456 |
|
|
|
| 457 |
|
✗ |
DO ja = 1, 2 |
| 458 |
|
✗ |
DO jl = 1, kdlon |
| 459 |
|
✗ |
zud(jl, ja) = zud(jl, ja)*psec(jl) |
| 460 |
|
|
END DO |
| 461 |
|
|
END DO |
| 462 |
|
|
|
| 463 |
|
✗ |
CALL swtt1_lmdar4(2, 2, iind, zud, zr) |
| 464 |
|
|
|
| 465 |
|
✗ |
DO ja = 1, 2 |
| 466 |
|
✗ |
DO jl = 1, kdlon |
| 467 |
|
✗ |
paki(jl, ja) = -log(zr(jl,ja))/zud(jl, ja) |
| 468 |
|
|
END DO |
| 469 |
|
|
END DO |
| 470 |
|
|
|
| 471 |
|
|
|
| 472 |
|
|
! ------------------------------------------------------------------ |
| 473 |
|
|
|
| 474 |
|
✗ |
RETURN |
| 475 |
|
|
END SUBROUTINE swu_lmdar4 |
| 476 |
|
✗ |
SUBROUTINE sw1s_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
| 477 |
|
✗ |
pcg, pcld, pclear, pcldsw, pdsig, pomega, poz, prmu, psec, ptau, pud, & |
| 478 |
|
✗ |
pfd, pfu) |
| 479 |
|
|
USE dimphy |
| 480 |
|
|
USE radiation_ar4_param, ONLY: rsun, rray |
| 481 |
|
|
USE infotrac_phy, ONLY: type_trac |
| 482 |
|
|
|
| 483 |
|
|
IMPLICIT NONE |
| 484 |
|
|
|
| 485 |
|
|
! ------------------------------------------------------------------ |
| 486 |
|
|
! PURPOSE. |
| 487 |
|
|
! -------- |
| 488 |
|
|
|
| 489 |
|
|
! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN TWO |
| 490 |
|
|
! SPECTRAL INTERVALS FOLLOWING FOUQUART AND BONNEL (1980). |
| 491 |
|
|
|
| 492 |
|
|
! METHOD. |
| 493 |
|
|
! ------- |
| 494 |
|
|
|
| 495 |
|
|
! 1. COMPUTES UPWARD AND DOWNWARD FLUXES CORRESPONDING TO |
| 496 |
|
|
! CONTINUUM SCATTERING |
| 497 |
|
|
! 2. MULTIPLY BY OZONE TRANSMISSION FUNCTION |
| 498 |
|
|
|
| 499 |
|
|
! REFERENCE. |
| 500 |
|
|
! ---------- |
| 501 |
|
|
|
| 502 |
|
|
! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
| 503 |
|
|
! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
| 504 |
|
|
|
| 505 |
|
|
! AUTHOR. |
| 506 |
|
|
! ------- |
| 507 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 508 |
|
|
|
| 509 |
|
|
! MODIFICATIONS. |
| 510 |
|
|
! -------------- |
| 511 |
|
|
! ORIGINAL : 89-07-14 |
| 512 |
|
|
! 94-11-15 J.-J. MORCRETTE DIRECT/DIFFUSE ALBEDO |
| 513 |
|
|
! ------------------------------------------------------------------ |
| 514 |
|
|
|
| 515 |
|
|
! * ARGUMENTS: |
| 516 |
|
|
|
| 517 |
|
|
INTEGER knu |
| 518 |
|
|
! -OB |
| 519 |
|
|
REAL (KIND=8) flag_aer |
| 520 |
|
|
REAL (KIND=8) tauae(kdlon, kflev, 2) |
| 521 |
|
|
REAL (KIND=8) pizae(kdlon, kflev, 2) |
| 522 |
|
|
REAL (KIND=8) cgae(kdlon, kflev, 2) |
| 523 |
|
|
REAL (KIND=8) paer(kdlon, kflev, 5) |
| 524 |
|
|
REAL (KIND=8) palbd(kdlon, 2) |
| 525 |
|
|
REAL (KIND=8) palbp(kdlon, 2) |
| 526 |
|
|
REAL (KIND=8) pcg(kdlon, 2, kflev) |
| 527 |
|
|
REAL (KIND=8) pcld(kdlon, kflev) |
| 528 |
|
|
REAL (KIND=8) pcldsw(kdlon, kflev) |
| 529 |
|
|
REAL (KIND=8) pclear(kdlon) |
| 530 |
|
|
REAL (KIND=8) pdsig(kdlon, kflev) |
| 531 |
|
|
REAL (KIND=8) pomega(kdlon, 2, kflev) |
| 532 |
|
|
REAL (KIND=8) poz(kdlon, kflev) |
| 533 |
|
|
REAL (KIND=8) prmu(kdlon) |
| 534 |
|
|
REAL (KIND=8) psec(kdlon) |
| 535 |
|
|
REAL (KIND=8) ptau(kdlon, 2, kflev) |
| 536 |
|
|
REAL (KIND=8) pud(kdlon, 5, kflev+1) |
| 537 |
|
|
|
| 538 |
|
|
REAL (KIND=8) pfd(kdlon, kflev+1) |
| 539 |
|
|
REAL (KIND=8) pfu(kdlon, kflev+1) |
| 540 |
|
|
|
| 541 |
|
|
! * LOCAL VARIABLES: |
| 542 |
|
|
|
| 543 |
|
|
INTEGER iind(4) |
| 544 |
|
|
|
| 545 |
|
✗ |
REAL (KIND=8) zcgaz(kdlon, kflev) |
| 546 |
|
✗ |
REAL (KIND=8) zdiff(kdlon) |
| 547 |
|
✗ |
REAL (KIND=8) zdirf(kdlon) |
| 548 |
|
✗ |
REAL (KIND=8) zpizaz(kdlon, kflev) |
| 549 |
|
✗ |
REAL (KIND=8) zrayl(kdlon) |
| 550 |
|
✗ |
REAL (KIND=8) zray1(kdlon, kflev+1) |
| 551 |
|
✗ |
REAL (KIND=8) zray2(kdlon, kflev+1) |
| 552 |
|
✗ |
REAL (KIND=8) zrefz(kdlon, 2, kflev+1) |
| 553 |
|
✗ |
REAL (KIND=8) zrj(kdlon, 6, kflev+1) |
| 554 |
|
✗ |
REAL (KIND=8) zrj0(kdlon, 6, kflev+1) |
| 555 |
|
✗ |
REAL (KIND=8) zrk(kdlon, 6, kflev+1) |
| 556 |
|
✗ |
REAL (KIND=8) zrk0(kdlon, 6, kflev+1) |
| 557 |
|
✗ |
REAL (KIND=8) zrmue(kdlon, kflev+1) |
| 558 |
|
✗ |
REAL (KIND=8) zrmu0(kdlon, kflev+1) |
| 559 |
|
✗ |
REAL (KIND=8) zr(kdlon, 4) |
| 560 |
|
✗ |
REAL (KIND=8) ztauaz(kdlon, kflev) |
| 561 |
|
✗ |
REAL (KIND=8) ztra1(kdlon, kflev+1) |
| 562 |
|
✗ |
REAL (KIND=8) ztra2(kdlon, kflev+1) |
| 563 |
|
✗ |
REAL (KIND=8) zw(kdlon, 4) |
| 564 |
|
|
|
| 565 |
|
|
INTEGER jl, jk, k, jaj, ikm1, ikl |
| 566 |
|
|
|
| 567 |
|
|
! If running with Reporbus, overwrite default values of RSUN. |
| 568 |
|
|
! Otherwise keep default values from radiation_AR4_param module. |
| 569 |
|
|
IF (type_trac=='repr') THEN |
| 570 |
|
|
END IF |
| 571 |
|
|
|
| 572 |
|
|
! ------------------------------------------------------------------ |
| 573 |
|
|
|
| 574 |
|
|
! * 1. FIRST SPECTRAL INTERVAL (0.25-0.68 MICRON) |
| 575 |
|
|
! ----------------------- ------------------ |
| 576 |
|
|
|
| 577 |
|
|
|
| 578 |
|
|
|
| 579 |
|
|
! * 1.1 OPTICAL THICKNESS FOR RAYLEIGH SCATTERING |
| 580 |
|
|
! ----------------------------------------- |
| 581 |
|
|
|
| 582 |
|
|
|
| 583 |
|
✗ |
DO jl = 1, kdlon |
| 584 |
|
|
zrayl(jl) = rray(knu, 1) + prmu(jl)*(rray(knu,2)+prmu(jl)*(rray(knu, & |
| 585 |
|
✗ |
3)+prmu(jl)*(rray(knu,4)+prmu(jl)*(rray(knu,5)+prmu(jl)*rray(knu,6))))) |
| 586 |
|
|
END DO |
| 587 |
|
|
|
| 588 |
|
|
|
| 589 |
|
|
! ------------------------------------------------------------------ |
| 590 |
|
|
|
| 591 |
|
|
! * 2. CONTINUUM SCATTERING CALCULATIONS |
| 592 |
|
|
! --------------------------------- |
| 593 |
|
|
|
| 594 |
|
|
|
| 595 |
|
|
! * 2.1 CLEAR-SKY FRACTION OF THE COLUMN |
| 596 |
|
|
! -------------------------------- |
| 597 |
|
|
|
| 598 |
|
|
|
| 599 |
|
|
CALL swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, pdsig, & |
| 600 |
|
|
zrayl, psec, zcgaz, zpizaz, zray1, zray2, zrefz, zrj0, zrk0, zrmu0, & |
| 601 |
|
✗ |
ztauaz, ztra1, ztra2) |
| 602 |
|
|
|
| 603 |
|
|
! * 2.2 CLOUDY FRACTION OF THE COLUMN |
| 604 |
|
|
! ----------------------------- |
| 605 |
|
|
|
| 606 |
|
|
|
| 607 |
|
|
CALL swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, zrayl, psec, ptau, & |
| 608 |
|
|
zcgaz, zpizaz, zray1, zray2, zrefz, zrj, zrk, zrmue, ztauaz, ztra1, & |
| 609 |
|
✗ |
ztra2) |
| 610 |
|
|
|
| 611 |
|
|
! ------------------------------------------------------------------ |
| 612 |
|
|
|
| 613 |
|
|
! * 3. OZONE ABSORPTION |
| 614 |
|
|
! ---------------- |
| 615 |
|
|
|
| 616 |
|
|
|
| 617 |
|
✗ |
iind(1) = 1 |
| 618 |
|
✗ |
iind(2) = 3 |
| 619 |
|
✗ |
iind(3) = 1 |
| 620 |
|
✗ |
iind(4) = 3 |
| 621 |
|
|
|
| 622 |
|
|
! * 3.1 DOWNWARD FLUXES |
| 623 |
|
|
! --------------- |
| 624 |
|
|
|
| 625 |
|
|
|
| 626 |
|
|
jaj = 2 |
| 627 |
|
|
|
| 628 |
|
✗ |
DO jl = 1, kdlon |
| 629 |
|
✗ |
zw(jl, 1) = 0. |
| 630 |
|
✗ |
zw(jl, 2) = 0. |
| 631 |
|
✗ |
zw(jl, 3) = 0. |
| 632 |
|
✗ |
zw(jl, 4) = 0. |
| 633 |
|
|
pfd(jl, kflev+1) = ((1.-pclear(jl))*zrj(jl,jaj,kflev+1)+pclear(jl)*zrj0( & |
| 634 |
|
✗ |
jl,jaj,kflev+1))*rsun(knu) |
| 635 |
|
|
END DO |
| 636 |
|
✗ |
DO jk = 1, kflev |
| 637 |
|
✗ |
ikl = kflev + 1 - jk |
| 638 |
|
✗ |
DO jl = 1, kdlon |
| 639 |
|
✗ |
zw(jl, 1) = zw(jl, 1) + pud(jl, 1, ikl)/zrmue(jl, ikl) |
| 640 |
|
✗ |
zw(jl, 2) = zw(jl, 2) + poz(jl, ikl)/zrmue(jl, ikl) |
| 641 |
|
✗ |
zw(jl, 3) = zw(jl, 3) + pud(jl, 1, ikl)/zrmu0(jl, ikl) |
| 642 |
|
✗ |
zw(jl, 4) = zw(jl, 4) + poz(jl, ikl)/zrmu0(jl, ikl) |
| 643 |
|
|
END DO |
| 644 |
|
|
|
| 645 |
|
✗ |
CALL swtt1_lmdar4(knu, 4, iind, zw, zr) |
| 646 |
|
|
|
| 647 |
|
✗ |
DO jl = 1, kdlon |
| 648 |
|
✗ |
zdiff(jl) = zr(jl, 1)*zr(jl, 2)*zrj(jl, jaj, ikl) |
| 649 |
|
✗ |
zdirf(jl) = zr(jl, 3)*zr(jl, 4)*zrj0(jl, jaj, ikl) |
| 650 |
|
|
pfd(jl, ikl) = ((1.-pclear(jl))*zdiff(jl)+pclear(jl)*zdirf(jl))* & |
| 651 |
|
✗ |
rsun(knu) |
| 652 |
|
|
END DO |
| 653 |
|
|
END DO |
| 654 |
|
|
|
| 655 |
|
|
! * 3.2 UPWARD FLUXES |
| 656 |
|
|
! ------------- |
| 657 |
|
|
|
| 658 |
|
|
|
| 659 |
|
✗ |
DO jl = 1, kdlon |
| 660 |
|
|
pfu(jl, 1) = ((1.-pclear(jl))*zdiff(jl)*palbd(jl,knu)+pclear(jl)*zdirf(jl & |
| 661 |
|
✗ |
)*palbp(jl,knu))*rsun(knu) |
| 662 |
|
|
END DO |
| 663 |
|
|
|
| 664 |
|
✗ |
DO jk = 2, kflev + 1 |
| 665 |
|
✗ |
ikm1 = jk - 1 |
| 666 |
|
✗ |
DO jl = 1, kdlon |
| 667 |
|
✗ |
zw(jl, 1) = zw(jl, 1) + pud(jl, 1, ikm1)*1.66 |
| 668 |
|
✗ |
zw(jl, 2) = zw(jl, 2) + poz(jl, ikm1)*1.66 |
| 669 |
|
✗ |
zw(jl, 3) = zw(jl, 3) + pud(jl, 1, ikm1)*1.66 |
| 670 |
|
✗ |
zw(jl, 4) = zw(jl, 4) + poz(jl, ikm1)*1.66 |
| 671 |
|
|
END DO |
| 672 |
|
|
|
| 673 |
|
✗ |
CALL swtt1_lmdar4(knu, 4, iind, zw, zr) |
| 674 |
|
|
|
| 675 |
|
✗ |
DO jl = 1, kdlon |
| 676 |
|
✗ |
zdiff(jl) = zr(jl, 1)*zr(jl, 2)*zrk(jl, jaj, jk) |
| 677 |
|
✗ |
zdirf(jl) = zr(jl, 3)*zr(jl, 4)*zrk0(jl, jaj, jk) |
| 678 |
|
|
pfu(jl, jk) = ((1.-pclear(jl))*zdiff(jl)+pclear(jl)*zdirf(jl))* & |
| 679 |
|
✗ |
rsun(knu) |
| 680 |
|
|
END DO |
| 681 |
|
|
END DO |
| 682 |
|
|
|
| 683 |
|
|
! ------------------------------------------------------------------ |
| 684 |
|
|
|
| 685 |
|
✗ |
RETURN |
| 686 |
|
|
END SUBROUTINE sw1s_lmdar4 |
| 687 |
|
✗ |
SUBROUTINE sw2s_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, paki, palbd, & |
| 688 |
|
✗ |
palbp, pcg, pcld, pclear, pcldsw, pdsig, pomega, poz, prmu, psec, ptau, & |
| 689 |
|
✗ |
pud, pwv, pqs, pfdown, pfup) |
| 690 |
|
|
USE dimphy |
| 691 |
|
|
USE radiation_ar4_param, ONLY: rsun, rray |
| 692 |
|
|
USE infotrac_phy, ONLY: type_trac |
| 693 |
|
|
|
| 694 |
|
|
IMPLICIT NONE |
| 695 |
|
|
include "radepsi.h" |
| 696 |
|
|
|
| 697 |
|
|
! ------------------------------------------------------------------ |
| 698 |
|
|
! PURPOSE. |
| 699 |
|
|
! -------- |
| 700 |
|
|
|
| 701 |
|
|
! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN THE |
| 702 |
|
|
! SECOND SPECTRAL INTERVAL FOLLOWING FOUQUART AND BONNEL (1980). |
| 703 |
|
|
|
| 704 |
|
|
! METHOD. |
| 705 |
|
|
! ------- |
| 706 |
|
|
|
| 707 |
|
|
! 1. COMPUTES REFLECTIVITY/TRANSMISSIVITY CORRESPONDING TO |
| 708 |
|
|
! CONTINUUM SCATTERING |
| 709 |
|
|
! 2. COMPUTES REFLECTIVITY/TRANSMISSIVITY CORRESPONDING FOR |
| 710 |
|
|
! A GREY MOLECULAR ABSORPTION |
| 711 |
|
|
! 3. LAPLACE TRANSFORM ON THE PREVIOUS TO GET EFFECTIVE AMOUNTS |
| 712 |
|
|
! OF ABSORBERS |
| 713 |
|
|
! 4. APPLY H2O AND U.M.G. TRANSMISSION FUNCTIONS |
| 714 |
|
|
! 5. MULTIPLY BY OZONE TRANSMISSION FUNCTION |
| 715 |
|
|
|
| 716 |
|
|
! REFERENCE. |
| 717 |
|
|
! ---------- |
| 718 |
|
|
|
| 719 |
|
|
! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
| 720 |
|
|
! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
| 721 |
|
|
|
| 722 |
|
|
! AUTHOR. |
| 723 |
|
|
! ------- |
| 724 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 725 |
|
|
|
| 726 |
|
|
! MODIFICATIONS. |
| 727 |
|
|
! -------------- |
| 728 |
|
|
! ORIGINAL : 89-07-14 |
| 729 |
|
|
! 94-11-15 J.-J. MORCRETTE DIRECT/DIFFUSE ALBEDO |
| 730 |
|
|
! ------------------------------------------------------------------ |
| 731 |
|
|
! * ARGUMENTS: |
| 732 |
|
|
|
| 733 |
|
|
INTEGER knu |
| 734 |
|
|
! -OB |
| 735 |
|
|
REAL (KIND=8) flag_aer |
| 736 |
|
|
REAL (KIND=8) tauae(kdlon, kflev, 2) |
| 737 |
|
|
REAL (KIND=8) pizae(kdlon, kflev, 2) |
| 738 |
|
|
REAL (KIND=8) cgae(kdlon, kflev, 2) |
| 739 |
|
|
REAL (KIND=8) paer(kdlon, kflev, 5) |
| 740 |
|
|
REAL (KIND=8) paki(kdlon, 2) |
| 741 |
|
|
REAL (KIND=8) palbd(kdlon, 2) |
| 742 |
|
|
REAL (KIND=8) palbp(kdlon, 2) |
| 743 |
|
|
REAL (KIND=8) pcg(kdlon, 2, kflev) |
| 744 |
|
|
REAL (KIND=8) pcld(kdlon, kflev) |
| 745 |
|
|
REAL (KIND=8) pcldsw(kdlon, kflev) |
| 746 |
|
|
REAL (KIND=8) pclear(kdlon) |
| 747 |
|
|
REAL (KIND=8) pdsig(kdlon, kflev) |
| 748 |
|
|
REAL (KIND=8) pomega(kdlon, 2, kflev) |
| 749 |
|
|
REAL (KIND=8) poz(kdlon, kflev) |
| 750 |
|
|
REAL (KIND=8) pqs(kdlon, kflev) |
| 751 |
|
|
REAL (KIND=8) prmu(kdlon) |
| 752 |
|
|
REAL (KIND=8) psec(kdlon) |
| 753 |
|
|
REAL (KIND=8) ptau(kdlon, 2, kflev) |
| 754 |
|
|
REAL (KIND=8) pud(kdlon, 5, kflev+1) |
| 755 |
|
|
REAL (KIND=8) pwv(kdlon, kflev) |
| 756 |
|
|
|
| 757 |
|
|
REAL (KIND=8) pfdown(kdlon, kflev+1) |
| 758 |
|
|
REAL (KIND=8) pfup(kdlon, kflev+1) |
| 759 |
|
|
|
| 760 |
|
|
! * LOCAL VARIABLES: |
| 761 |
|
|
|
| 762 |
|
|
INTEGER iind2(2), iind3(3) |
| 763 |
|
✗ |
REAL (KIND=8) zcgaz(kdlon, kflev) |
| 764 |
|
✗ |
REAL (KIND=8) zfd(kdlon, kflev+1) |
| 765 |
|
✗ |
REAL (KIND=8) zfu(kdlon, kflev+1) |
| 766 |
|
✗ |
REAL (KIND=8) zg(kdlon) |
| 767 |
|
✗ |
REAL (KIND=8) zgg(kdlon) |
| 768 |
|
✗ |
REAL (KIND=8) zpizaz(kdlon, kflev) |
| 769 |
|
✗ |
REAL (KIND=8) zrayl(kdlon) |
| 770 |
|
✗ |
REAL (KIND=8) zray1(kdlon, kflev+1) |
| 771 |
|
✗ |
REAL (KIND=8) zray2(kdlon, kflev+1) |
| 772 |
|
✗ |
REAL (KIND=8) zref(kdlon) |
| 773 |
|
✗ |
REAL (KIND=8) zrefz(kdlon, 2, kflev+1) |
| 774 |
|
✗ |
REAL (KIND=8) zre1(kdlon) |
| 775 |
|
✗ |
REAL (KIND=8) zre2(kdlon) |
| 776 |
|
✗ |
REAL (KIND=8) zrj(kdlon, 6, kflev+1) |
| 777 |
|
✗ |
REAL (KIND=8) zrj0(kdlon, 6, kflev+1) |
| 778 |
|
✗ |
REAL (KIND=8) zrk(kdlon, 6, kflev+1) |
| 779 |
|
✗ |
REAL (KIND=8) zrk0(kdlon, 6, kflev+1) |
| 780 |
|
✗ |
REAL (KIND=8) zrl(kdlon, 8) |
| 781 |
|
✗ |
REAL (KIND=8) zrmue(kdlon, kflev+1) |
| 782 |
|
✗ |
REAL (KIND=8) zrmu0(kdlon, kflev+1) |
| 783 |
|
✗ |
REAL (KIND=8) zrmuz(kdlon) |
| 784 |
|
✗ |
REAL (KIND=8) zrneb(kdlon) |
| 785 |
|
✗ |
REAL (KIND=8) zruef(kdlon, 8) |
| 786 |
|
✗ |
REAL (KIND=8) zr1(kdlon) |
| 787 |
|
✗ |
REAL (KIND=8) zr2(kdlon, 2) |
| 788 |
|
✗ |
REAL (KIND=8) zr3(kdlon, 3) |
| 789 |
|
✗ |
REAL (KIND=8) zr4(kdlon) |
| 790 |
|
✗ |
REAL (KIND=8) zr21(kdlon) |
| 791 |
|
✗ |
REAL (KIND=8) zr22(kdlon) |
| 792 |
|
✗ |
REAL (KIND=8) zs(kdlon) |
| 793 |
|
✗ |
REAL (KIND=8) ztauaz(kdlon, kflev) |
| 794 |
|
✗ |
REAL (KIND=8) zto1(kdlon) |
| 795 |
|
✗ |
REAL (KIND=8) ztr(kdlon, 2, kflev+1) |
| 796 |
|
✗ |
REAL (KIND=8) ztra1(kdlon, kflev+1) |
| 797 |
|
✗ |
REAL (KIND=8) ztra2(kdlon, kflev+1) |
| 798 |
|
✗ |
REAL (KIND=8) ztr1(kdlon) |
| 799 |
|
✗ |
REAL (KIND=8) ztr2(kdlon) |
| 800 |
|
✗ |
REAL (KIND=8) zw(kdlon) |
| 801 |
|
✗ |
REAL (KIND=8) zw1(kdlon) |
| 802 |
|
✗ |
REAL (KIND=8) zw2(kdlon, 2) |
| 803 |
|
✗ |
REAL (KIND=8) zw3(kdlon, 3) |
| 804 |
|
✗ |
REAL (KIND=8) zw4(kdlon) |
| 805 |
|
✗ |
REAL (KIND=8) zw5(kdlon) |
| 806 |
|
|
|
| 807 |
|
|
INTEGER jl, jk, k, jaj, ikm1, ikl, jn, jabs, jkm1 |
| 808 |
|
|
INTEGER jref, jkl, jklp1, jajp, jkki, jkkp4, jn2j, iabs |
| 809 |
|
|
REAL (KIND=8) zrmum1, zwh2o, zcneb, zaa, zbb, zrki, zre11 |
| 810 |
|
|
|
| 811 |
|
|
! If running with Reporbus, overwrite default values of RSUN. |
| 812 |
|
|
! Otherwise keep default values from radiation_AR4_param module. |
| 813 |
|
|
IF (type_trac=='repr') THEN |
| 814 |
|
|
END IF |
| 815 |
|
|
|
| 816 |
|
|
! ------------------------------------------------------------------ |
| 817 |
|
|
|
| 818 |
|
|
! * 1. SECOND SPECTRAL INTERVAL (0.68-4.00 MICRON) |
| 819 |
|
|
! ------------------------------------------- |
| 820 |
|
|
|
| 821 |
|
|
|
| 822 |
|
|
|
| 823 |
|
|
! * 1.1 OPTICAL THICKNESS FOR RAYLEIGH SCATTERING |
| 824 |
|
|
! ----------------------------------------- |
| 825 |
|
|
|
| 826 |
|
|
|
| 827 |
|
✗ |
DO jl = 1, kdlon |
| 828 |
|
✗ |
zrmum1 = 1. - prmu(jl) |
| 829 |
|
|
zrayl(jl) = rray(knu, 1) + zrmum1*(rray(knu,2)+zrmum1*(rray(knu, & |
| 830 |
|
✗ |
3)+zrmum1*(rray(knu,4)+zrmum1*(rray(knu,5)+zrmum1*rray(knu,6))))) |
| 831 |
|
|
END DO |
| 832 |
|
|
|
| 833 |
|
|
! ------------------------------------------------------------------ |
| 834 |
|
|
|
| 835 |
|
|
! * 2. CONTINUUM SCATTERING CALCULATIONS |
| 836 |
|
|
! --------------------------------- |
| 837 |
|
|
|
| 838 |
|
|
|
| 839 |
|
|
! * 2.1 CLEAR-SKY FRACTION OF THE COLUMN |
| 840 |
|
|
! -------------------------------- |
| 841 |
|
|
|
| 842 |
|
|
|
| 843 |
|
|
CALL swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, pdsig, & |
| 844 |
|
|
zrayl, psec, zcgaz, zpizaz, zray1, zray2, zrefz, zrj0, zrk0, zrmu0, & |
| 845 |
|
✗ |
ztauaz, ztra1, ztra2) |
| 846 |
|
|
|
| 847 |
|
|
! * 2.2 CLOUDY FRACTION OF THE COLUMN |
| 848 |
|
|
! ----------------------------- |
| 849 |
|
|
|
| 850 |
|
|
|
| 851 |
|
|
CALL swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, zrayl, psec, ptau, & |
| 852 |
|
|
zcgaz, zpizaz, zray1, zray2, zrefz, zrj, zrk, zrmue, ztauaz, ztra1, & |
| 853 |
|
✗ |
ztra2) |
| 854 |
|
|
|
| 855 |
|
|
! ------------------------------------------------------------------ |
| 856 |
|
|
|
| 857 |
|
|
! * 3. SCATTERING CALCULATIONS WITH GREY MOLECULAR ABSORPTION |
| 858 |
|
|
! ------------------------------------------------------ |
| 859 |
|
|
|
| 860 |
|
|
|
| 861 |
|
|
jn = 2 |
| 862 |
|
|
|
| 863 |
|
✗ |
DO jabs = 1, 2 |
| 864 |
|
|
! * 3.1 SURFACE CONDITIONS |
| 865 |
|
|
! ------------------ |
| 866 |
|
|
|
| 867 |
|
|
|
| 868 |
|
✗ |
DO jl = 1, kdlon |
| 869 |
|
✗ |
zrefz(jl, 2, 1) = palbd(jl, knu) |
| 870 |
|
✗ |
zrefz(jl, 1, 1) = palbd(jl, knu) |
| 871 |
|
|
END DO |
| 872 |
|
|
|
| 873 |
|
|
! * 3.2 INTRODUCING CLOUD EFFECTS |
| 874 |
|
|
! ------------------------- |
| 875 |
|
|
|
| 876 |
|
|
|
| 877 |
|
✗ |
DO jk = 2, kflev + 1 |
| 878 |
|
✗ |
jkm1 = jk - 1 |
| 879 |
|
|
ikl = kflev + 1 - jkm1 |
| 880 |
|
✗ |
DO jl = 1, kdlon |
| 881 |
|
✗ |
zrneb(jl) = pcld(jl, jkm1) |
| 882 |
|
✗ |
IF (jabs==1 .AND. zrneb(jl)>2.*zeelog) THEN |
| 883 |
|
✗ |
zwh2o = max(pwv(jl,jkm1), zeelog) |
| 884 |
|
✗ |
zcneb = max(zeelog, min(zrneb(jl),1.-zeelog)) |
| 885 |
|
✗ |
zbb = pud(jl, jabs, jkm1)*pqs(jl, jkm1)/zwh2o |
| 886 |
|
✗ |
zaa = max((pud(jl,jabs,jkm1)-zcneb*zbb)/(1.-zcneb), zeelog) |
| 887 |
|
|
ELSE |
| 888 |
|
✗ |
zaa = pud(jl, jabs, jkm1) |
| 889 |
|
|
zbb = zaa |
| 890 |
|
|
END IF |
| 891 |
|
✗ |
zrki = paki(jl, jabs) |
| 892 |
|
✗ |
zs(jl) = exp(-zrki*zaa*1.66) |
| 893 |
|
✗ |
zg(jl) = exp(-zrki*zaa/zrmue(jl,jk)) |
| 894 |
|
✗ |
ztr1(jl) = 0. |
| 895 |
|
✗ |
zre1(jl) = 0. |
| 896 |
|
✗ |
ztr2(jl) = 0. |
| 897 |
|
✗ |
zre2(jl) = 0. |
| 898 |
|
|
|
| 899 |
|
✗ |
zw(jl) = pomega(jl, knu, jkm1) |
| 900 |
|
|
zto1(jl) = ptau(jl, knu, jkm1)/zw(jl) + ztauaz(jl, jkm1)/zpizaz(jl, & |
| 901 |
|
✗ |
jkm1) + zbb*zrki |
| 902 |
|
|
|
| 903 |
|
✗ |
zr21(jl) = ptau(jl, knu, jkm1) + ztauaz(jl, jkm1) |
| 904 |
|
✗ |
zr22(jl) = ptau(jl, knu, jkm1)/zr21(jl) |
| 905 |
|
✗ |
zgg(jl) = zr22(jl)*pcg(jl, knu, jkm1) + (1.-zr22(jl))*zcgaz(jl, jkm1) |
| 906 |
|
✗ |
zw(jl) = zr21(jl)/zto1(jl) |
| 907 |
|
✗ |
zref(jl) = zrefz(jl, 1, jkm1) |
| 908 |
|
✗ |
zrmuz(jl) = zrmue(jl, jk) |
| 909 |
|
|
END DO |
| 910 |
|
|
|
| 911 |
|
✗ |
CALL swde_lmdar4(zgg, zref, zrmuz, zto1, zw, zre1, zre2, ztr1, ztr2) |
| 912 |
|
|
|
| 913 |
|
✗ |
DO jl = 1, kdlon |
| 914 |
|
|
|
| 915 |
|
|
zrefz(jl, 2, jk) = (1.-zrneb(jl))*(zray1(jl,jkm1)+zrefz(jl,2,jkm1)* & |
| 916 |
|
✗ |
ztra1(jl,jkm1)*ztra2(jl,jkm1))*zg(jl)*zs(jl) + zrneb(jl)*zre1(jl) |
| 917 |
|
|
|
| 918 |
|
|
ztr(jl, 2, jkm1) = zrneb(jl)*ztr1(jl) + (ztra1(jl,jkm1))*zg(jl)*(1.- & |
| 919 |
|
✗ |
zrneb(jl)) |
| 920 |
|
|
|
| 921 |
|
|
zrefz(jl, 1, jk) = (1.-zrneb(jl))*(zray1(jl,jkm1)+zrefz(jl,1,jkm1)* & |
| 922 |
|
|
ztra1(jl,jkm1)*ztra2(jl,jkm1)/(1.-zray2(jl,jkm1)*zrefz(jl,1, & |
| 923 |
|
✗ |
jkm1)))*zg(jl)*zs(jl) + zrneb(jl)*zre2(jl) |
| 924 |
|
|
|
| 925 |
|
|
ztr(jl, 1, jkm1) = zrneb(jl)*ztr2(jl) + (ztra1(jl,jkm1)/(1.-zray2(jl, & |
| 926 |
|
✗ |
jkm1)*zrefz(jl,1,jkm1)))*zg(jl)*(1.-zrneb(jl)) |
| 927 |
|
|
|
| 928 |
|
|
END DO |
| 929 |
|
|
END DO |
| 930 |
|
|
|
| 931 |
|
|
! * 3.3 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
| 932 |
|
|
! ------------------------------------------------- |
| 933 |
|
|
|
| 934 |
|
|
|
| 935 |
|
✗ |
DO jref = 1, 2 |
| 936 |
|
|
|
| 937 |
|
✗ |
jn = jn + 1 |
| 938 |
|
|
|
| 939 |
|
✗ |
DO jl = 1, kdlon |
| 940 |
|
✗ |
zrj(jl, jn, kflev+1) = 1. |
| 941 |
|
✗ |
zrk(jl, jn, kflev+1) = zrefz(jl, jref, kflev+1) |
| 942 |
|
|
END DO |
| 943 |
|
|
|
| 944 |
|
✗ |
DO jk = 1, kflev |
| 945 |
|
✗ |
jkl = kflev + 1 - jk |
| 946 |
|
✗ |
jklp1 = jkl + 1 |
| 947 |
|
✗ |
DO jl = 1, kdlon |
| 948 |
|
✗ |
zre11 = zrj(jl, jn, jklp1)*ztr(jl, jref, jkl) |
| 949 |
|
✗ |
zrj(jl, jn, jkl) = zre11 |
| 950 |
|
✗ |
zrk(jl, jn, jkl) = zre11*zrefz(jl, jref, jkl) |
| 951 |
|
|
END DO |
| 952 |
|
|
END DO |
| 953 |
|
|
END DO |
| 954 |
|
|
END DO |
| 955 |
|
|
|
| 956 |
|
|
! ------------------------------------------------------------------ |
| 957 |
|
|
|
| 958 |
|
|
! * 4. INVERT GREY AND CONTINUUM FLUXES |
| 959 |
|
|
! -------------------------------- |
| 960 |
|
|
|
| 961 |
|
|
|
| 962 |
|
|
|
| 963 |
|
|
! * 4.1 UPWARD (ZRK) AND DOWNWARD (ZRJ) PSEUDO-FLUXES |
| 964 |
|
|
! --------------------------------------------- |
| 965 |
|
|
|
| 966 |
|
|
|
| 967 |
|
✗ |
DO jk = 1, kflev + 1 |
| 968 |
|
✗ |
DO jaj = 1, 5, 2 |
| 969 |
|
✗ |
jajp = jaj + 1 |
| 970 |
|
✗ |
DO jl = 1, kdlon |
| 971 |
|
✗ |
zrj(jl, jaj, jk) = zrj(jl, jaj, jk) - zrj(jl, jajp, jk) |
| 972 |
|
✗ |
zrk(jl, jaj, jk) = zrk(jl, jaj, jk) - zrk(jl, jajp, jk) |
| 973 |
|
✗ |
zrj(jl, jaj, jk) = max(zrj(jl,jaj,jk), zeelog) |
| 974 |
|
✗ |
zrk(jl, jaj, jk) = max(zrk(jl,jaj,jk), zeelog) |
| 975 |
|
|
END DO |
| 976 |
|
|
END DO |
| 977 |
|
|
END DO |
| 978 |
|
|
|
| 979 |
|
✗ |
DO jk = 1, kflev + 1 |
| 980 |
|
✗ |
DO jaj = 2, 6, 2 |
| 981 |
|
✗ |
DO jl = 1, kdlon |
| 982 |
|
✗ |
zrj(jl, jaj, jk) = max(zrj(jl,jaj,jk), zeelog) |
| 983 |
|
✗ |
zrk(jl, jaj, jk) = max(zrk(jl,jaj,jk), zeelog) |
| 984 |
|
|
END DO |
| 985 |
|
|
END DO |
| 986 |
|
|
END DO |
| 987 |
|
|
|
| 988 |
|
|
! * 4.2 EFFECTIVE ABSORBER AMOUNTS BY INVERSE LAPLACE |
| 989 |
|
|
! --------------------------------------------- |
| 990 |
|
|
|
| 991 |
|
|
|
| 992 |
|
✗ |
DO jk = 1, kflev + 1 |
| 993 |
|
|
jkki = 1 |
| 994 |
|
✗ |
DO jaj = 1, 2 |
| 995 |
|
✗ |
iind2(1) = jaj |
| 996 |
|
✗ |
iind2(2) = jaj |
| 997 |
|
✗ |
DO jn = 1, 2 |
| 998 |
|
✗ |
jn2j = jn + 2*jaj |
| 999 |
|
✗ |
jkkp4 = jkki + 4 |
| 1000 |
|
|
|
| 1001 |
|
|
! * 4.2.1 EFFECTIVE ABSORBER AMOUNTS |
| 1002 |
|
|
! -------------------------- |
| 1003 |
|
|
|
| 1004 |
|
|
|
| 1005 |
|
✗ |
DO jl = 1, kdlon |
| 1006 |
|
✗ |
zw2(jl, 1) = log(zrj(jl,jn,jk)/zrj(jl,jn2j,jk))/paki(jl, jaj) |
| 1007 |
|
✗ |
zw2(jl, 2) = log(zrk(jl,jn,jk)/zrk(jl,jn2j,jk))/paki(jl, jaj) |
| 1008 |
|
|
END DO |
| 1009 |
|
|
|
| 1010 |
|
|
! * 4.2.2 TRANSMISSION FUNCTION |
| 1011 |
|
|
! --------------------- |
| 1012 |
|
|
|
| 1013 |
|
|
|
| 1014 |
|
✗ |
CALL swtt1_lmdar4(knu, 2, iind2, zw2, zr2) |
| 1015 |
|
|
|
| 1016 |
|
✗ |
DO jl = 1, kdlon |
| 1017 |
|
✗ |
zrl(jl, jkki) = zr2(jl, 1) |
| 1018 |
|
✗ |
zruef(jl, jkki) = zw2(jl, 1) |
| 1019 |
|
✗ |
zrl(jl, jkkp4) = zr2(jl, 2) |
| 1020 |
|
✗ |
zruef(jl, jkkp4) = zw2(jl, 2) |
| 1021 |
|
|
END DO |
| 1022 |
|
|
|
| 1023 |
|
✗ |
jkki = jkki + 1 |
| 1024 |
|
|
END DO |
| 1025 |
|
|
END DO |
| 1026 |
|
|
|
| 1027 |
|
|
! * 4.3 UPWARD AND DOWNWARD FLUXES WITH H2O AND UMG ABSORPTION |
| 1028 |
|
|
! ------------------------------------------------------ |
| 1029 |
|
|
|
| 1030 |
|
|
|
| 1031 |
|
✗ |
DO jl = 1, kdlon |
| 1032 |
|
|
pfdown(jl, jk) = zrj(jl, 1, jk)*zrl(jl, 1)*zrl(jl, 3) + & |
| 1033 |
|
✗ |
zrj(jl, 2, jk)*zrl(jl, 2)*zrl(jl, 4) |
| 1034 |
|
|
pfup(jl, jk) = zrk(jl, 1, jk)*zrl(jl, 5)*zrl(jl, 7) + & |
| 1035 |
|
✗ |
zrk(jl, 2, jk)*zrl(jl, 6)*zrl(jl, 8) |
| 1036 |
|
|
END DO |
| 1037 |
|
|
END DO |
| 1038 |
|
|
|
| 1039 |
|
|
! ------------------------------------------------------------------ |
| 1040 |
|
|
|
| 1041 |
|
|
! * 5. MOLECULAR ABSORPTION ON CLEAR-SKY FLUXES |
| 1042 |
|
|
! ---------------------------------------- |
| 1043 |
|
|
|
| 1044 |
|
|
|
| 1045 |
|
|
|
| 1046 |
|
|
! * 5.1 DOWNWARD FLUXES |
| 1047 |
|
|
! --------------- |
| 1048 |
|
|
|
| 1049 |
|
|
|
| 1050 |
|
|
jaj = 2 |
| 1051 |
|
✗ |
iind3(1) = 1 |
| 1052 |
|
✗ |
iind3(2) = 2 |
| 1053 |
|
✗ |
iind3(3) = 3 |
| 1054 |
|
|
|
| 1055 |
|
✗ |
DO jl = 1, kdlon |
| 1056 |
|
✗ |
zw3(jl, 1) = 0. |
| 1057 |
|
✗ |
zw3(jl, 2) = 0. |
| 1058 |
|
✗ |
zw3(jl, 3) = 0. |
| 1059 |
|
✗ |
zw4(jl) = 0. |
| 1060 |
|
✗ |
zw5(jl) = 0. |
| 1061 |
|
✗ |
zr4(jl) = 1. |
| 1062 |
|
✗ |
zfd(jl, kflev+1) = zrj0(jl, jaj, kflev+1) |
| 1063 |
|
|
END DO |
| 1064 |
|
✗ |
DO jk = 1, kflev |
| 1065 |
|
✗ |
ikl = kflev + 1 - jk |
| 1066 |
|
✗ |
DO jl = 1, kdlon |
| 1067 |
|
✗ |
zw3(jl, 1) = zw3(jl, 1) + pud(jl, 1, ikl)/zrmu0(jl, ikl) |
| 1068 |
|
✗ |
zw3(jl, 2) = zw3(jl, 2) + pud(jl, 2, ikl)/zrmu0(jl, ikl) |
| 1069 |
|
✗ |
zw3(jl, 3) = zw3(jl, 3) + poz(jl, ikl)/zrmu0(jl, ikl) |
| 1070 |
|
✗ |
zw4(jl) = zw4(jl) + pud(jl, 4, ikl)/zrmu0(jl, ikl) |
| 1071 |
|
✗ |
zw5(jl) = zw5(jl) + pud(jl, 5, ikl)/zrmu0(jl, ikl) |
| 1072 |
|
|
END DO |
| 1073 |
|
|
|
| 1074 |
|
✗ |
CALL swtt1_lmdar4(knu, 3, iind3, zw3, zr3) |
| 1075 |
|
|
|
| 1076 |
|
✗ |
DO jl = 1, kdlon |
| 1077 |
|
|
! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
| 1078 |
|
|
zfd(jl, ikl) = zr3(jl, 1)*zr3(jl, 2)*zr3(jl, 3)*zr4(jl)* & |
| 1079 |
|
✗ |
zrj0(jl, jaj, ikl) |
| 1080 |
|
|
END DO |
| 1081 |
|
|
END DO |
| 1082 |
|
|
|
| 1083 |
|
|
! * 5.2 UPWARD FLUXES |
| 1084 |
|
|
! ------------- |
| 1085 |
|
|
|
| 1086 |
|
|
|
| 1087 |
|
✗ |
DO jl = 1, kdlon |
| 1088 |
|
✗ |
zfu(jl, 1) = zfd(jl, 1)*palbp(jl, knu) |
| 1089 |
|
|
END DO |
| 1090 |
|
|
|
| 1091 |
|
✗ |
DO jk = 2, kflev + 1 |
| 1092 |
|
✗ |
ikm1 = jk - 1 |
| 1093 |
|
✗ |
DO jl = 1, kdlon |
| 1094 |
|
✗ |
zw3(jl, 1) = zw3(jl, 1) + pud(jl, 1, ikm1)*1.66 |
| 1095 |
|
✗ |
zw3(jl, 2) = zw3(jl, 2) + pud(jl, 2, ikm1)*1.66 |
| 1096 |
|
✗ |
zw3(jl, 3) = zw3(jl, 3) + poz(jl, ikm1)*1.66 |
| 1097 |
|
✗ |
zw4(jl) = zw4(jl) + pud(jl, 4, ikm1)*1.66 |
| 1098 |
|
✗ |
zw5(jl) = zw5(jl) + pud(jl, 5, ikm1)*1.66 |
| 1099 |
|
|
END DO |
| 1100 |
|
|
|
| 1101 |
|
✗ |
CALL swtt1_lmdar4(knu, 3, iind3, zw3, zr3) |
| 1102 |
|
|
|
| 1103 |
|
✗ |
DO jl = 1, kdlon |
| 1104 |
|
|
! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
| 1105 |
|
|
zfu(jl, jk) = zr3(jl, 1)*zr3(jl, 2)*zr3(jl, 3)*zr4(jl)* & |
| 1106 |
|
✗ |
zrk0(jl, jaj, jk) |
| 1107 |
|
|
END DO |
| 1108 |
|
|
END DO |
| 1109 |
|
|
|
| 1110 |
|
|
! ------------------------------------------------------------------ |
| 1111 |
|
|
|
| 1112 |
|
|
! * 6. INTRODUCTION OF OZONE AND H2O CONTINUUM ABSORPTION |
| 1113 |
|
|
! -------------------------------------------------- |
| 1114 |
|
|
|
| 1115 |
|
✗ |
iabs = 3 |
| 1116 |
|
|
|
| 1117 |
|
|
! * 6.1 DOWNWARD FLUXES |
| 1118 |
|
|
! --------------- |
| 1119 |
|
|
|
| 1120 |
|
✗ |
DO jl = 1, kdlon |
| 1121 |
|
✗ |
zw1(jl) = 0. |
| 1122 |
|
✗ |
zw4(jl) = 0. |
| 1123 |
|
✗ |
zw5(jl) = 0. |
| 1124 |
|
✗ |
zr1(jl) = 0. |
| 1125 |
|
|
pfdown(jl, kflev+1) = ((1.-pclear(jl))*pfdown(jl,kflev+1)+pclear(jl)*zfd( & |
| 1126 |
|
✗ |
jl,kflev+1))*rsun(knu) |
| 1127 |
|
|
END DO |
| 1128 |
|
|
|
| 1129 |
|
✗ |
DO jk = 1, kflev |
| 1130 |
|
✗ |
ikl = kflev + 1 - jk |
| 1131 |
|
✗ |
DO jl = 1, kdlon |
| 1132 |
|
✗ |
zw1(jl) = zw1(jl) + poz(jl, ikl)/zrmue(jl, ikl) |
| 1133 |
|
✗ |
zw4(jl) = zw4(jl) + pud(jl, 4, ikl)/zrmue(jl, ikl) |
| 1134 |
|
✗ |
zw5(jl) = zw5(jl) + pud(jl, 5, ikl)/zrmue(jl, ikl) |
| 1135 |
|
|
! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
| 1136 |
|
|
END DO |
| 1137 |
|
|
|
| 1138 |
|
✗ |
CALL swtt_lmdar4(knu, iabs, zw1, zr1) |
| 1139 |
|
|
|
| 1140 |
|
✗ |
DO jl = 1, kdlon |
| 1141 |
|
|
pfdown(jl, ikl) = ((1.-pclear(jl))*zr1(jl)*zr4(jl)*pfdown(jl,ikl)+ & |
| 1142 |
|
✗ |
pclear(jl)*zfd(jl,ikl))*rsun(knu) |
| 1143 |
|
|
END DO |
| 1144 |
|
|
END DO |
| 1145 |
|
|
|
| 1146 |
|
|
! * 6.2 UPWARD FLUXES |
| 1147 |
|
|
! ------------- |
| 1148 |
|
|
|
| 1149 |
|
✗ |
DO jl = 1, kdlon |
| 1150 |
|
|
pfup(jl, 1) = ((1.-pclear(jl))*zr1(jl)*zr4(jl)*pfup(jl,1)+pclear(jl)*zfu( & |
| 1151 |
|
✗ |
jl,1))*rsun(knu) |
| 1152 |
|
|
END DO |
| 1153 |
|
|
|
| 1154 |
|
✗ |
DO jk = 2, kflev + 1 |
| 1155 |
|
✗ |
ikm1 = jk - 1 |
| 1156 |
|
✗ |
DO jl = 1, kdlon |
| 1157 |
|
✗ |
zw1(jl) = zw1(jl) + poz(jl, ikm1)*1.66 |
| 1158 |
|
✗ |
zw4(jl) = zw4(jl) + pud(jl, 4, ikm1)*1.66 |
| 1159 |
|
✗ |
zw5(jl) = zw5(jl) + pud(jl, 5, ikm1)*1.66 |
| 1160 |
|
|
! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
| 1161 |
|
|
END DO |
| 1162 |
|
|
|
| 1163 |
|
✗ |
CALL swtt_lmdar4(knu, iabs, zw1, zr1) |
| 1164 |
|
|
|
| 1165 |
|
✗ |
DO jl = 1, kdlon |
| 1166 |
|
|
pfup(jl, jk) = ((1.-pclear(jl))*zr1(jl)*zr4(jl)*pfup(jl,jk)+pclear(jl)* & |
| 1167 |
|
✗ |
zfu(jl,jk))*rsun(knu) |
| 1168 |
|
|
END DO |
| 1169 |
|
|
END DO |
| 1170 |
|
|
|
| 1171 |
|
|
! ------------------------------------------------------------------ |
| 1172 |
|
|
|
| 1173 |
|
✗ |
RETURN |
| 1174 |
|
|
END SUBROUTINE sw2s_lmdar4 |
| 1175 |
|
✗ |
SUBROUTINE swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, & |
| 1176 |
|
✗ |
pdsig, prayl, psec, pcgaz, ppizaz, pray1, pray2, prefz, prj, prk, prmu0, & |
| 1177 |
|
✗ |
ptauaz, ptra1, ptra2) |
| 1178 |
|
|
USE dimphy |
| 1179 |
|
|
USE radiation_ar4_param, ONLY: taua, rpiza, rcga |
| 1180 |
|
|
IMPLICIT NONE |
| 1181 |
|
|
include "radepsi.h" |
| 1182 |
|
|
include "radopt.h" |
| 1183 |
|
|
|
| 1184 |
|
|
! ------------------------------------------------------------------ |
| 1185 |
|
|
! PURPOSE. |
| 1186 |
|
|
! -------- |
| 1187 |
|
|
! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY IN CASE OF |
| 1188 |
|
|
! CLEAR-SKY COLUMN |
| 1189 |
|
|
|
| 1190 |
|
|
! REFERENCE. |
| 1191 |
|
|
! ---------- |
| 1192 |
|
|
|
| 1193 |
|
|
! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
| 1194 |
|
|
! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
| 1195 |
|
|
|
| 1196 |
|
|
! AUTHOR. |
| 1197 |
|
|
! ------- |
| 1198 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 1199 |
|
|
|
| 1200 |
|
|
! MODIFICATIONS. |
| 1201 |
|
|
! -------------- |
| 1202 |
|
|
! ORIGINAL : 94-11-15 |
| 1203 |
|
|
! ------------------------------------------------------------------ |
| 1204 |
|
|
! * ARGUMENTS: |
| 1205 |
|
|
|
| 1206 |
|
|
INTEGER knu |
| 1207 |
|
|
! -OB |
| 1208 |
|
|
REAL (KIND=8) flag_aer |
| 1209 |
|
|
REAL (KIND=8) tauae(kdlon, kflev, 2) |
| 1210 |
|
|
REAL (KIND=8) pizae(kdlon, kflev, 2) |
| 1211 |
|
|
REAL (KIND=8) cgae(kdlon, kflev, 2) |
| 1212 |
|
|
REAL (KIND=8) paer(kdlon, kflev, 5) |
| 1213 |
|
|
REAL (KIND=8) palbp(kdlon, 2) |
| 1214 |
|
|
REAL (KIND=8) pdsig(kdlon, kflev) |
| 1215 |
|
|
REAL (KIND=8) prayl(kdlon) |
| 1216 |
|
|
REAL (KIND=8) psec(kdlon) |
| 1217 |
|
|
|
| 1218 |
|
|
REAL (KIND=8) pcgaz(kdlon, kflev) |
| 1219 |
|
|
REAL (KIND=8) ppizaz(kdlon, kflev) |
| 1220 |
|
|
REAL (KIND=8) pray1(kdlon, kflev+1) |
| 1221 |
|
|
REAL (KIND=8) pray2(kdlon, kflev+1) |
| 1222 |
|
|
REAL (KIND=8) prefz(kdlon, 2, kflev+1) |
| 1223 |
|
|
REAL (KIND=8) prj(kdlon, 6, kflev+1) |
| 1224 |
|
|
REAL (KIND=8) prk(kdlon, 6, kflev+1) |
| 1225 |
|
|
REAL (KIND=8) prmu0(kdlon, kflev+1) |
| 1226 |
|
|
REAL (KIND=8) ptauaz(kdlon, kflev) |
| 1227 |
|
|
REAL (KIND=8) ptra1(kdlon, kflev+1) |
| 1228 |
|
|
REAL (KIND=8) ptra2(kdlon, kflev+1) |
| 1229 |
|
|
|
| 1230 |
|
|
! * LOCAL VARIABLES: |
| 1231 |
|
|
|
| 1232 |
|
✗ |
REAL (KIND=8) zc0i(kdlon, kflev+1) |
| 1233 |
|
✗ |
REAL (KIND=8) zcle0(kdlon, kflev) |
| 1234 |
|
✗ |
REAL (KIND=8) zclear(kdlon) |
| 1235 |
|
✗ |
REAL (KIND=8) zr21(kdlon) |
| 1236 |
|
✗ |
REAL (KIND=8) zr23(kdlon) |
| 1237 |
|
✗ |
REAL (KIND=8) zss0(kdlon) |
| 1238 |
|
✗ |
REAL (KIND=8) zscat(kdlon) |
| 1239 |
|
✗ |
REAL (KIND=8) ztr(kdlon, 2, kflev+1) |
| 1240 |
|
|
|
| 1241 |
|
|
INTEGER jl, jk, ja, jae, jkl, jklp1, jaj, jkm1, in |
| 1242 |
|
|
REAL (KIND=8) ztray, zgar, zratio, zff, zfacoa, zcorae |
| 1243 |
|
|
REAL (KIND=8) zmue, zgap, zww, zto, zden, zmu1, zden1 |
| 1244 |
|
|
REAL (KIND=8) zbmu0, zbmu1, zre11 |
| 1245 |
|
|
|
| 1246 |
|
|
! ------------------------------------------------------------------ |
| 1247 |
|
|
|
| 1248 |
|
|
! * 1. OPTICAL PARAMETERS FOR AEROSOLS AND RAYLEIGH |
| 1249 |
|
|
! -------------------------------------------- |
| 1250 |
|
|
|
| 1251 |
|
|
|
| 1252 |
|
|
! cdir collapse |
| 1253 |
|
✗ |
DO jk = 1, kflev + 1 |
| 1254 |
|
✗ |
DO ja = 1, 6 |
| 1255 |
|
✗ |
DO jl = 1, kdlon |
| 1256 |
|
✗ |
prj(jl, ja, jk) = 0. |
| 1257 |
|
✗ |
prk(jl, ja, jk) = 0. |
| 1258 |
|
|
END DO |
| 1259 |
|
|
END DO |
| 1260 |
|
|
END DO |
| 1261 |
|
|
|
| 1262 |
|
✗ |
DO jk = 1, kflev |
| 1263 |
|
|
! -OB |
| 1264 |
|
|
! DO 104 JL = 1, KDLON |
| 1265 |
|
|
! PCGAZ(JL,JK) = 0. |
| 1266 |
|
|
! PPIZAZ(JL,JK) = 0. |
| 1267 |
|
|
! PTAUAZ(JL,JK) = 0. |
| 1268 |
|
|
! 104 CONTINUE |
| 1269 |
|
|
! -OB |
| 1270 |
|
|
! DO 106 JAE=1,5 |
| 1271 |
|
|
! DO 105 JL = 1, KDLON |
| 1272 |
|
|
! PTAUAZ(JL,JK)=PTAUAZ(JL,JK) |
| 1273 |
|
|
! S +PAER(JL,JK,JAE)*TAUA(KNU,JAE) |
| 1274 |
|
|
! PPIZAZ(JL,JK)=PPIZAZ(JL,JK)+PAER(JL,JK,JAE) |
| 1275 |
|
|
! S * TAUA(KNU,JAE)*RPIZA(KNU,JAE) |
| 1276 |
|
|
! PCGAZ(JL,JK) = PCGAZ(JL,JK) +PAER(JL,JK,JAE) |
| 1277 |
|
|
! S * TAUA(KNU,JAE)*RPIZA(KNU,JAE)*RCGA(KNU,JAE) |
| 1278 |
|
|
! 105 CONTINUE |
| 1279 |
|
|
! 106 CONTINUE |
| 1280 |
|
|
! -OB |
| 1281 |
|
✗ |
DO jl = 1, kdlon |
| 1282 |
|
✗ |
ptauaz(jl, jk) = flag_aer*tauae(jl, jk, knu) |
| 1283 |
|
✗ |
ppizaz(jl, jk) = flag_aer*pizae(jl, jk, knu) |
| 1284 |
|
✗ |
pcgaz(jl, jk) = flag_aer*cgae(jl, jk, knu) |
| 1285 |
|
|
END DO |
| 1286 |
|
|
|
| 1287 |
|
✗ |
IF (flag_aer>0) THEN |
| 1288 |
|
|
! -OB |
| 1289 |
|
✗ |
DO jl = 1, kdlon |
| 1290 |
|
|
! PCGAZ(JL,JK)=PCGAZ(JL,JK)/PPIZAZ(JL,JK) |
| 1291 |
|
|
! PPIZAZ(JL,JK)=PPIZAZ(JL,JK)/PTAUAZ(JL,JK) |
| 1292 |
|
✗ |
ztray = prayl(jl)*pdsig(jl, jk) |
| 1293 |
|
✗ |
zratio = ztray/(ztray+ptauaz(jl,jk)) |
| 1294 |
|
✗ |
zgar = pcgaz(jl, jk) |
| 1295 |
|
✗ |
zff = zgar*zgar |
| 1296 |
|
✗ |
ptauaz(jl, jk) = ztray + ptauaz(jl, jk)*(1.-ppizaz(jl,jk)*zff) |
| 1297 |
|
✗ |
pcgaz(jl, jk) = zgar*(1.-zratio)/(1.+zgar) |
| 1298 |
|
|
ppizaz(jl, jk) = zratio + (1.-zratio)*ppizaz(jl, jk)*(1.-zff)/(1.- & |
| 1299 |
|
✗ |
ppizaz(jl,jk)*zff) |
| 1300 |
|
|
END DO |
| 1301 |
|
|
ELSE |
| 1302 |
|
✗ |
DO jl = 1, kdlon |
| 1303 |
|
✗ |
ztray = prayl(jl)*pdsig(jl, jk) |
| 1304 |
|
✗ |
ptauaz(jl, jk) = ztray |
| 1305 |
|
✗ |
pcgaz(jl, jk) = 0. |
| 1306 |
|
✗ |
ppizaz(jl, jk) = 1. - repsct |
| 1307 |
|
|
END DO |
| 1308 |
|
|
END IF ! check flag_aer |
| 1309 |
|
|
! 107 CONTINUE |
| 1310 |
|
|
! PRINT 9107,JK,((PAER(JL,JK,JAE),JAE=1,5) |
| 1311 |
|
|
! $ ,PTAUAZ(JL,JK),PPIZAZ(JL,JK),PCGAZ(JL,JK),JL=1,KDLON) |
| 1312 |
|
|
! 9107 FORMAT(1X,'SWCLR_107',I3,8E12.5) |
| 1313 |
|
|
|
| 1314 |
|
|
END DO |
| 1315 |
|
|
|
| 1316 |
|
|
! ------------------------------------------------------------------ |
| 1317 |
|
|
|
| 1318 |
|
|
! * 2. TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
| 1319 |
|
|
! ---------------------------------------------- |
| 1320 |
|
|
|
| 1321 |
|
|
|
| 1322 |
|
✗ |
DO jl = 1, kdlon |
| 1323 |
|
✗ |
zr23(jl) = 0. |
| 1324 |
|
✗ |
zc0i(jl, kflev+1) = 0. |
| 1325 |
|
✗ |
zclear(jl) = 1. |
| 1326 |
|
✗ |
zscat(jl) = 0. |
| 1327 |
|
|
END DO |
| 1328 |
|
|
|
| 1329 |
|
|
jk = 1 |
| 1330 |
|
|
jkl = kflev + 1 - jk |
| 1331 |
|
|
jklp1 = jkl + 1 |
| 1332 |
|
✗ |
DO jl = 1, kdlon |
| 1333 |
|
✗ |
zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
| 1334 |
|
✗ |
zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
| 1335 |
|
✗ |
zr21(jl) = exp(-zcorae) |
| 1336 |
|
✗ |
zss0(jl) = 1. - zr21(jl) |
| 1337 |
|
✗ |
zcle0(jl, jkl) = zss0(jl) |
| 1338 |
|
|
|
| 1339 |
|
✗ |
IF (novlp==1) THEN |
| 1340 |
|
|
! * maximum-random |
| 1341 |
|
|
zclear(jl) = zclear(jl)*(1.0-max(zss0(jl),zscat(jl)))/ & |
| 1342 |
|
✗ |
(1.0-min(zscat(jl),1.-zepsec)) |
| 1343 |
|
✗ |
zc0i(jl, jkl) = 1.0 - zclear(jl) |
| 1344 |
|
✗ |
zscat(jl) = zss0(jl) |
| 1345 |
|
|
ELSE IF (novlp==2) THEN |
| 1346 |
|
|
! * maximum |
| 1347 |
|
|
zscat(jl) = max(zss0(jl), zscat(jl)) |
| 1348 |
|
|
zc0i(jl, jkl) = zscat(jl) |
| 1349 |
|
|
ELSE IF (novlp==3) THEN |
| 1350 |
|
|
! * random |
| 1351 |
|
|
zclear(jl) = zclear(jl)*(1.0-zss0(jl)) |
| 1352 |
|
|
zscat(jl) = 1.0 - zclear(jl) |
| 1353 |
|
|
zc0i(jl, jkl) = zscat(jl) |
| 1354 |
|
|
END IF |
| 1355 |
|
|
END DO |
| 1356 |
|
|
|
| 1357 |
|
✗ |
DO jk = 2, kflev |
| 1358 |
|
✗ |
jkl = kflev + 1 - jk |
| 1359 |
|
|
jklp1 = jkl + 1 |
| 1360 |
|
✗ |
DO jl = 1, kdlon |
| 1361 |
|
✗ |
zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
| 1362 |
|
✗ |
zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
| 1363 |
|
✗ |
zr21(jl) = exp(-zcorae) |
| 1364 |
|
✗ |
zss0(jl) = 1. - zr21(jl) |
| 1365 |
|
✗ |
zcle0(jl, jkl) = zss0(jl) |
| 1366 |
|
|
|
| 1367 |
|
✗ |
IF (novlp==1) THEN |
| 1368 |
|
|
! * maximum-random |
| 1369 |
|
|
zclear(jl) = zclear(jl)*(1.0-max(zss0(jl),zscat(jl)))/ & |
| 1370 |
|
✗ |
(1.0-min(zscat(jl),1.-zepsec)) |
| 1371 |
|
✗ |
zc0i(jl, jkl) = 1.0 - zclear(jl) |
| 1372 |
|
✗ |
zscat(jl) = zss0(jl) |
| 1373 |
|
|
ELSE IF (novlp==2) THEN |
| 1374 |
|
|
! * maximum |
| 1375 |
|
|
zscat(jl) = max(zss0(jl), zscat(jl)) |
| 1376 |
|
|
zc0i(jl, jkl) = zscat(jl) |
| 1377 |
|
|
ELSE IF (novlp==3) THEN |
| 1378 |
|
|
! * random |
| 1379 |
|
|
zclear(jl) = zclear(jl)*(1.0-zss0(jl)) |
| 1380 |
|
|
zscat(jl) = 1.0 - zclear(jl) |
| 1381 |
|
|
zc0i(jl, jkl) = zscat(jl) |
| 1382 |
|
|
END IF |
| 1383 |
|
|
END DO |
| 1384 |
|
|
END DO |
| 1385 |
|
|
|
| 1386 |
|
|
! ------------------------------------------------------------------ |
| 1387 |
|
|
|
| 1388 |
|
|
! * 3. REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
| 1389 |
|
|
! ----------------------------------------------- |
| 1390 |
|
|
|
| 1391 |
|
|
|
| 1392 |
|
✗ |
DO jl = 1, kdlon |
| 1393 |
|
✗ |
pray1(jl, kflev+1) = 0. |
| 1394 |
|
✗ |
pray2(jl, kflev+1) = 0. |
| 1395 |
|
✗ |
prefz(jl, 2, 1) = palbp(jl, knu) |
| 1396 |
|
✗ |
prefz(jl, 1, 1) = palbp(jl, knu) |
| 1397 |
|
✗ |
ptra1(jl, kflev+1) = 1. |
| 1398 |
|
✗ |
ptra2(jl, kflev+1) = 1. |
| 1399 |
|
|
END DO |
| 1400 |
|
|
|
| 1401 |
|
✗ |
DO jk = 2, kflev + 1 |
| 1402 |
|
✗ |
jkm1 = jk - 1 |
| 1403 |
|
✗ |
DO jl = 1, kdlon |
| 1404 |
|
|
|
| 1405 |
|
|
! ------------------------------------------------------------------ |
| 1406 |
|
|
|
| 1407 |
|
|
! * 3.1 EQUIVALENT ZENITH ANGLE |
| 1408 |
|
|
! ----------------------- |
| 1409 |
|
|
|
| 1410 |
|
|
|
| 1411 |
|
✗ |
zmue = (1.-zc0i(jl,jk))*psec(jl) + zc0i(jl, jk)*1.66 |
| 1412 |
|
✗ |
prmu0(jl, jk) = 1./zmue |
| 1413 |
|
|
|
| 1414 |
|
|
! ------------------------------------------------------------------ |
| 1415 |
|
|
|
| 1416 |
|
|
! * 3.2 REFLECT./TRANSMISSIVITY DUE TO RAYLEIGH AND AEROSOLS |
| 1417 |
|
|
! ---------------------------------------------------- |
| 1418 |
|
|
|
| 1419 |
|
|
|
| 1420 |
|
✗ |
zgap = pcgaz(jl, jkm1) |
| 1421 |
|
✗ |
zbmu0 = 0.5 - 0.75*zgap/zmue |
| 1422 |
|
✗ |
zww = ppizaz(jl, jkm1) |
| 1423 |
|
✗ |
zto = ptauaz(jl, jkm1) |
| 1424 |
|
|
zden = 1. + (1.-zww+zbmu0*zww)*zto*zmue + (1-zww)*(1.-zww+2.*zbmu0*zww) & |
| 1425 |
|
✗ |
*zto*zto*zmue*zmue |
| 1426 |
|
✗ |
pray1(jl, jkm1) = zbmu0*zww*zto*zmue/zden |
| 1427 |
|
✗ |
ptra1(jl, jkm1) = 1./zden |
| 1428 |
|
|
|
| 1429 |
|
|
zmu1 = 0.5 |
| 1430 |
|
✗ |
zbmu1 = 0.5 - 0.75*zgap*zmu1 |
| 1431 |
|
|
zden1 = 1. + (1.-zww+zbmu1*zww)*zto/zmu1 + (1-zww)*(1.-zww+2.*zbmu1*zww & |
| 1432 |
|
✗ |
)*zto*zto/zmu1/zmu1 |
| 1433 |
|
✗ |
pray2(jl, jkm1) = zbmu1*zww*zto/zmu1/zden1 |
| 1434 |
|
✗ |
ptra2(jl, jkm1) = 1./zden1 |
| 1435 |
|
|
|
| 1436 |
|
|
|
| 1437 |
|
|
|
| 1438 |
|
|
prefz(jl, 1, jk) = (pray1(jl,jkm1)+prefz(jl,1,jkm1)*ptra1(jl,jkm1)* & |
| 1439 |
|
✗ |
ptra2(jl,jkm1)/(1.-pray2(jl,jkm1)*prefz(jl,1,jkm1))) |
| 1440 |
|
|
|
| 1441 |
|
|
ztr(jl, 1, jkm1) = (ptra1(jl,jkm1)/(1.-pray2(jl,jkm1)*prefz(jl,1, & |
| 1442 |
|
✗ |
jkm1))) |
| 1443 |
|
|
|
| 1444 |
|
|
prefz(jl, 2, jk) = (pray1(jl,jkm1)+prefz(jl,2,jkm1)*ptra1(jl,jkm1)* & |
| 1445 |
|
✗ |
ptra2(jl,jkm1)) |
| 1446 |
|
|
|
| 1447 |
|
✗ |
ztr(jl, 2, jkm1) = ptra1(jl, jkm1) |
| 1448 |
|
|
|
| 1449 |
|
|
END DO |
| 1450 |
|
|
END DO |
| 1451 |
|
✗ |
DO jl = 1, kdlon |
| 1452 |
|
✗ |
zmue = (1.-zc0i(jl,1))*psec(jl) + zc0i(jl, 1)*1.66 |
| 1453 |
|
✗ |
prmu0(jl, 1) = 1./zmue |
| 1454 |
|
|
END DO |
| 1455 |
|
|
|
| 1456 |
|
|
! ------------------------------------------------------------------ |
| 1457 |
|
|
|
| 1458 |
|
|
! * 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
| 1459 |
|
|
! ------------------------------------------------- |
| 1460 |
|
|
|
| 1461 |
|
|
|
| 1462 |
|
✗ |
IF (knu==1) THEN |
| 1463 |
|
|
jaj = 2 |
| 1464 |
|
✗ |
DO jl = 1, kdlon |
| 1465 |
|
✗ |
prj(jl, jaj, kflev+1) = 1. |
| 1466 |
|
✗ |
prk(jl, jaj, kflev+1) = prefz(jl, 1, kflev+1) |
| 1467 |
|
|
END DO |
| 1468 |
|
|
|
| 1469 |
|
✗ |
DO jk = 1, kflev |
| 1470 |
|
✗ |
jkl = kflev + 1 - jk |
| 1471 |
|
✗ |
jklp1 = jkl + 1 |
| 1472 |
|
✗ |
DO jl = 1, kdlon |
| 1473 |
|
✗ |
zre11 = prj(jl, jaj, jklp1)*ztr(jl, 1, jkl) |
| 1474 |
|
✗ |
prj(jl, jaj, jkl) = zre11 |
| 1475 |
|
✗ |
prk(jl, jaj, jkl) = zre11*prefz(jl, 1, jkl) |
| 1476 |
|
|
END DO |
| 1477 |
|
|
END DO |
| 1478 |
|
|
|
| 1479 |
|
|
ELSE |
| 1480 |
|
|
|
| 1481 |
|
✗ |
DO jaj = 1, 2 |
| 1482 |
|
✗ |
DO jl = 1, kdlon |
| 1483 |
|
✗ |
prj(jl, jaj, kflev+1) = 1. |
| 1484 |
|
✗ |
prk(jl, jaj, kflev+1) = prefz(jl, jaj, kflev+1) |
| 1485 |
|
|
END DO |
| 1486 |
|
|
|
| 1487 |
|
✗ |
DO jk = 1, kflev |
| 1488 |
|
✗ |
jkl = kflev + 1 - jk |
| 1489 |
|
✗ |
jklp1 = jkl + 1 |
| 1490 |
|
✗ |
DO jl = 1, kdlon |
| 1491 |
|
✗ |
zre11 = prj(jl, jaj, jklp1)*ztr(jl, jaj, jkl) |
| 1492 |
|
✗ |
prj(jl, jaj, jkl) = zre11 |
| 1493 |
|
✗ |
prk(jl, jaj, jkl) = zre11*prefz(jl, jaj, jkl) |
| 1494 |
|
|
END DO |
| 1495 |
|
|
END DO |
| 1496 |
|
|
END DO |
| 1497 |
|
|
|
| 1498 |
|
|
END IF |
| 1499 |
|
|
|
| 1500 |
|
|
! ------------------------------------------------------------------ |
| 1501 |
|
|
|
| 1502 |
|
✗ |
RETURN |
| 1503 |
|
|
END SUBROUTINE swclr_lmdar4 |
| 1504 |
|
✗ |
SUBROUTINE swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, prayl, psec, & |
| 1505 |
|
✗ |
ptau, pcgaz, ppizaz, pray1, pray2, prefz, prj, prk, prmue, ptauaz, ptra1, & |
| 1506 |
|
|
ptra2) |
| 1507 |
|
|
USE dimphy |
| 1508 |
|
|
IMPLICIT NONE |
| 1509 |
|
|
include "radepsi.h" |
| 1510 |
|
|
include "radopt.h" |
| 1511 |
|
|
|
| 1512 |
|
|
! ------------------------------------------------------------------ |
| 1513 |
|
|
! PURPOSE. |
| 1514 |
|
|
! -------- |
| 1515 |
|
|
! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY IN CASE OF |
| 1516 |
|
|
! CONTINUUM SCATTERING |
| 1517 |
|
|
|
| 1518 |
|
|
! METHOD. |
| 1519 |
|
|
! ------- |
| 1520 |
|
|
|
| 1521 |
|
|
! 1. COMPUTES CONTINUUM FLUXES CORRESPONDING TO AEROSOL |
| 1522 |
|
|
! OR/AND RAYLEIGH SCATTERING (NO MOLECULAR GAS ABSORPTION) |
| 1523 |
|
|
|
| 1524 |
|
|
! REFERENCE. |
| 1525 |
|
|
! ---------- |
| 1526 |
|
|
|
| 1527 |
|
|
! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
| 1528 |
|
|
! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
| 1529 |
|
|
|
| 1530 |
|
|
! AUTHOR. |
| 1531 |
|
|
! ------- |
| 1532 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 1533 |
|
|
|
| 1534 |
|
|
! MODIFICATIONS. |
| 1535 |
|
|
! -------------- |
| 1536 |
|
|
! ORIGINAL : 89-07-14 |
| 1537 |
|
|
! ------------------------------------------------------------------ |
| 1538 |
|
|
! * ARGUMENTS: |
| 1539 |
|
|
|
| 1540 |
|
|
INTEGER knu |
| 1541 |
|
|
REAL (KIND=8) palbd(kdlon, 2) |
| 1542 |
|
|
REAL (KIND=8) pcg(kdlon, 2, kflev) |
| 1543 |
|
|
REAL (KIND=8) pcld(kdlon, kflev) |
| 1544 |
|
|
REAL (KIND=8) pdsig(kdlon, kflev) |
| 1545 |
|
|
REAL (KIND=8) pomega(kdlon, 2, kflev) |
| 1546 |
|
|
REAL (KIND=8) prayl(kdlon) |
| 1547 |
|
|
REAL (KIND=8) psec(kdlon) |
| 1548 |
|
|
REAL (KIND=8) ptau(kdlon, 2, kflev) |
| 1549 |
|
|
|
| 1550 |
|
|
REAL (KIND=8) pray1(kdlon, kflev+1) |
| 1551 |
|
|
REAL (KIND=8) pray2(kdlon, kflev+1) |
| 1552 |
|
|
REAL (KIND=8) prefz(kdlon, 2, kflev+1) |
| 1553 |
|
|
REAL (KIND=8) prj(kdlon, 6, kflev+1) |
| 1554 |
|
|
REAL (KIND=8) prk(kdlon, 6, kflev+1) |
| 1555 |
|
|
REAL (KIND=8) prmue(kdlon, kflev+1) |
| 1556 |
|
|
REAL (KIND=8) pcgaz(kdlon, kflev) |
| 1557 |
|
|
REAL (KIND=8) ppizaz(kdlon, kflev) |
| 1558 |
|
|
REAL (KIND=8) ptauaz(kdlon, kflev) |
| 1559 |
|
|
REAL (KIND=8) ptra1(kdlon, kflev+1) |
| 1560 |
|
|
REAL (KIND=8) ptra2(kdlon, kflev+1) |
| 1561 |
|
|
|
| 1562 |
|
|
! * LOCAL VARIABLES: |
| 1563 |
|
|
|
| 1564 |
|
✗ |
REAL (KIND=8) zc1i(kdlon, kflev+1) |
| 1565 |
|
✗ |
REAL (KIND=8) zcleq(kdlon, kflev) |
| 1566 |
|
✗ |
REAL (KIND=8) zclear(kdlon) |
| 1567 |
|
✗ |
REAL (KIND=8) zcloud(kdlon) |
| 1568 |
|
✗ |
REAL (KIND=8) zgg(kdlon) |
| 1569 |
|
✗ |
REAL (KIND=8) zref(kdlon) |
| 1570 |
|
✗ |
REAL (KIND=8) zre1(kdlon) |
| 1571 |
|
✗ |
REAL (KIND=8) zre2(kdlon) |
| 1572 |
|
✗ |
REAL (KIND=8) zrmuz(kdlon) |
| 1573 |
|
✗ |
REAL (KIND=8) zrneb(kdlon) |
| 1574 |
|
✗ |
REAL (KIND=8) zr21(kdlon) |
| 1575 |
|
✗ |
REAL (KIND=8) zr22(kdlon) |
| 1576 |
|
✗ |
REAL (KIND=8) zr23(kdlon) |
| 1577 |
|
✗ |
REAL (KIND=8) zss1(kdlon) |
| 1578 |
|
✗ |
REAL (KIND=8) zto1(kdlon) |
| 1579 |
|
✗ |
REAL (KIND=8) ztr(kdlon, 2, kflev+1) |
| 1580 |
|
✗ |
REAL (KIND=8) ztr1(kdlon) |
| 1581 |
|
✗ |
REAL (KIND=8) ztr2(kdlon) |
| 1582 |
|
✗ |
REAL (KIND=8) zw(kdlon) |
| 1583 |
|
|
|
| 1584 |
|
|
INTEGER jk, jl, ja, jkl, jklp1, jkm1, jaj |
| 1585 |
|
|
REAL (KIND=8) zfacoa, zfacoc, zcorae, zcorcd |
| 1586 |
|
|
REAL (KIND=8) zmue, zgap, zww, zto, zden, zden1 |
| 1587 |
|
|
REAL (KIND=8) zmu1, zre11, zbmu0, zbmu1 |
| 1588 |
|
|
|
| 1589 |
|
|
! ------------------------------------------------------------------ |
| 1590 |
|
|
|
| 1591 |
|
|
! * 1. INITIALIZATION |
| 1592 |
|
|
! -------------- |
| 1593 |
|
|
|
| 1594 |
|
|
|
| 1595 |
|
✗ |
DO jk = 1, kflev + 1 |
| 1596 |
|
✗ |
DO ja = 1, 6 |
| 1597 |
|
✗ |
DO jl = 1, kdlon |
| 1598 |
|
✗ |
prj(jl, ja, jk) = 0. |
| 1599 |
|
✗ |
prk(jl, ja, jk) = 0. |
| 1600 |
|
|
END DO |
| 1601 |
|
|
END DO |
| 1602 |
|
|
END DO |
| 1603 |
|
|
|
| 1604 |
|
|
! ------------------------------------------------------------------ |
| 1605 |
|
|
|
| 1606 |
|
|
! * 2. TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
| 1607 |
|
|
! ---------------------------------------------- |
| 1608 |
|
|
|
| 1609 |
|
|
|
| 1610 |
|
✗ |
DO jl = 1, kdlon |
| 1611 |
|
✗ |
zr23(jl) = 0. |
| 1612 |
|
✗ |
zc1i(jl, kflev+1) = 0. |
| 1613 |
|
✗ |
zclear(jl) = 1. |
| 1614 |
|
✗ |
zcloud(jl) = 0. |
| 1615 |
|
|
END DO |
| 1616 |
|
|
|
| 1617 |
|
|
jk = 1 |
| 1618 |
|
|
jkl = kflev + 1 - jk |
| 1619 |
|
|
jklp1 = jkl + 1 |
| 1620 |
|
✗ |
DO jl = 1, kdlon |
| 1621 |
|
✗ |
zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
| 1622 |
|
✗ |
zfacoc = 1. - pomega(jl, knu, jkl)*pcg(jl, knu, jkl)*pcg(jl, knu, jkl) |
| 1623 |
|
✗ |
zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
| 1624 |
|
✗ |
zcorcd = zfacoc*ptau(jl, knu, jkl)*psec(jl) |
| 1625 |
|
✗ |
zr21(jl) = exp(-zcorae) |
| 1626 |
|
✗ |
zr22(jl) = exp(-zcorcd) |
| 1627 |
|
|
zss1(jl) = pcld(jl, jkl)*(1.0-zr21(jl)*zr22(jl)) + & |
| 1628 |
|
✗ |
(1.0-pcld(jl,jkl))*(1.0-zr21(jl)) |
| 1629 |
|
✗ |
zcleq(jl, jkl) = zss1(jl) |
| 1630 |
|
|
|
| 1631 |
|
✗ |
IF (novlp==1) THEN |
| 1632 |
|
|
! * maximum-random |
| 1633 |
|
|
zclear(jl) = zclear(jl)*(1.0-max(zss1(jl),zcloud(jl)))/ & |
| 1634 |
|
✗ |
(1.0-min(zcloud(jl),1.-zepsec)) |
| 1635 |
|
✗ |
zc1i(jl, jkl) = 1.0 - zclear(jl) |
| 1636 |
|
✗ |
zcloud(jl) = zss1(jl) |
| 1637 |
|
|
ELSE IF (novlp==2) THEN |
| 1638 |
|
|
! * maximum |
| 1639 |
|
|
zcloud(jl) = max(zss1(jl), zcloud(jl)) |
| 1640 |
|
|
zc1i(jl, jkl) = zcloud(jl) |
| 1641 |
|
|
ELSE IF (novlp==3) THEN |
| 1642 |
|
|
! * random |
| 1643 |
|
|
zclear(jl) = zclear(jl)*(1.0-zss1(jl)) |
| 1644 |
|
|
zcloud(jl) = 1.0 - zclear(jl) |
| 1645 |
|
|
zc1i(jl, jkl) = zcloud(jl) |
| 1646 |
|
|
END IF |
| 1647 |
|
|
END DO |
| 1648 |
|
|
|
| 1649 |
|
✗ |
DO jk = 2, kflev |
| 1650 |
|
✗ |
jkl = kflev + 1 - jk |
| 1651 |
|
|
jklp1 = jkl + 1 |
| 1652 |
|
✗ |
DO jl = 1, kdlon |
| 1653 |
|
✗ |
zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
| 1654 |
|
✗ |
zfacoc = 1. - pomega(jl, knu, jkl)*pcg(jl, knu, jkl)*pcg(jl, knu, jkl) |
| 1655 |
|
✗ |
zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
| 1656 |
|
✗ |
zcorcd = zfacoc*ptau(jl, knu, jkl)*psec(jl) |
| 1657 |
|
✗ |
zr21(jl) = exp(-zcorae) |
| 1658 |
|
✗ |
zr22(jl) = exp(-zcorcd) |
| 1659 |
|
|
zss1(jl) = pcld(jl, jkl)*(1.0-zr21(jl)*zr22(jl)) + & |
| 1660 |
|
✗ |
(1.0-pcld(jl,jkl))*(1.0-zr21(jl)) |
| 1661 |
|
✗ |
zcleq(jl, jkl) = zss1(jl) |
| 1662 |
|
|
|
| 1663 |
|
✗ |
IF (novlp==1) THEN |
| 1664 |
|
|
! * maximum-random |
| 1665 |
|
|
zclear(jl) = zclear(jl)*(1.0-max(zss1(jl),zcloud(jl)))/ & |
| 1666 |
|
✗ |
(1.0-min(zcloud(jl),1.-zepsec)) |
| 1667 |
|
✗ |
zc1i(jl, jkl) = 1.0 - zclear(jl) |
| 1668 |
|
✗ |
zcloud(jl) = zss1(jl) |
| 1669 |
|
|
ELSE IF (novlp==2) THEN |
| 1670 |
|
|
! * maximum |
| 1671 |
|
|
zcloud(jl) = max(zss1(jl), zcloud(jl)) |
| 1672 |
|
|
zc1i(jl, jkl) = zcloud(jl) |
| 1673 |
|
|
ELSE IF (novlp==3) THEN |
| 1674 |
|
|
! * random |
| 1675 |
|
|
zclear(jl) = zclear(jl)*(1.0-zss1(jl)) |
| 1676 |
|
|
zcloud(jl) = 1.0 - zclear(jl) |
| 1677 |
|
|
zc1i(jl, jkl) = zcloud(jl) |
| 1678 |
|
|
END IF |
| 1679 |
|
|
END DO |
| 1680 |
|
|
END DO |
| 1681 |
|
|
|
| 1682 |
|
|
! ------------------------------------------------------------------ |
| 1683 |
|
|
|
| 1684 |
|
|
! * 3. REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
| 1685 |
|
|
! ----------------------------------------------- |
| 1686 |
|
|
|
| 1687 |
|
|
|
| 1688 |
|
✗ |
DO jl = 1, kdlon |
| 1689 |
|
✗ |
pray1(jl, kflev+1) = 0. |
| 1690 |
|
✗ |
pray2(jl, kflev+1) = 0. |
| 1691 |
|
✗ |
prefz(jl, 2, 1) = palbd(jl, knu) |
| 1692 |
|
✗ |
prefz(jl, 1, 1) = palbd(jl, knu) |
| 1693 |
|
✗ |
ptra1(jl, kflev+1) = 1. |
| 1694 |
|
✗ |
ptra2(jl, kflev+1) = 1. |
| 1695 |
|
|
END DO |
| 1696 |
|
|
|
| 1697 |
|
✗ |
DO jk = 2, kflev + 1 |
| 1698 |
|
✗ |
jkm1 = jk - 1 |
| 1699 |
|
✗ |
DO jl = 1, kdlon |
| 1700 |
|
✗ |
zrneb(jl) = pcld(jl, jkm1) |
| 1701 |
|
✗ |
zre1(jl) = 0. |
| 1702 |
|
✗ |
ztr1(jl) = 0. |
| 1703 |
|
✗ |
zre2(jl) = 0. |
| 1704 |
|
✗ |
ztr2(jl) = 0. |
| 1705 |
|
|
|
| 1706 |
|
|
! ------------------------------------------------------------------ |
| 1707 |
|
|
|
| 1708 |
|
|
! * 3.1 EQUIVALENT ZENITH ANGLE |
| 1709 |
|
|
! ----------------------- |
| 1710 |
|
|
|
| 1711 |
|
|
|
| 1712 |
|
✗ |
zmue = (1.-zc1i(jl,jk))*psec(jl) + zc1i(jl, jk)*1.66 |
| 1713 |
|
✗ |
prmue(jl, jk) = 1./zmue |
| 1714 |
|
|
|
| 1715 |
|
|
! ------------------------------------------------------------------ |
| 1716 |
|
|
|
| 1717 |
|
|
! * 3.2 REFLECT./TRANSMISSIVITY DUE TO RAYLEIGH AND AEROSOLS |
| 1718 |
|
|
! ---------------------------------------------------- |
| 1719 |
|
|
|
| 1720 |
|
|
|
| 1721 |
|
✗ |
zgap = pcgaz(jl, jkm1) |
| 1722 |
|
✗ |
zbmu0 = 0.5 - 0.75*zgap/zmue |
| 1723 |
|
✗ |
zww = ppizaz(jl, jkm1) |
| 1724 |
|
✗ |
zto = ptauaz(jl, jkm1) |
| 1725 |
|
|
zden = 1. + (1.-zww+zbmu0*zww)*zto*zmue + (1-zww)*(1.-zww+2.*zbmu0*zww) & |
| 1726 |
|
✗ |
*zto*zto*zmue*zmue |
| 1727 |
|
✗ |
pray1(jl, jkm1) = zbmu0*zww*zto*zmue/zden |
| 1728 |
|
✗ |
ptra1(jl, jkm1) = 1./zden |
| 1729 |
|
|
! PRINT *,' LOOP 342 ** 3 ** JL=',JL,PRAY1(JL,JKM1),PTRA1(JL,JKM1) |
| 1730 |
|
|
|
| 1731 |
|
|
zmu1 = 0.5 |
| 1732 |
|
✗ |
zbmu1 = 0.5 - 0.75*zgap*zmu1 |
| 1733 |
|
|
zden1 = 1. + (1.-zww+zbmu1*zww)*zto/zmu1 + (1-zww)*(1.-zww+2.*zbmu1*zww & |
| 1734 |
|
✗ |
)*zto*zto/zmu1/zmu1 |
| 1735 |
|
✗ |
pray2(jl, jkm1) = zbmu1*zww*zto/zmu1/zden1 |
| 1736 |
|
✗ |
ptra2(jl, jkm1) = 1./zden1 |
| 1737 |
|
|
|
| 1738 |
|
|
! ------------------------------------------------------------------ |
| 1739 |
|
|
|
| 1740 |
|
|
! * 3.3 EFFECT OF CLOUD LAYER |
| 1741 |
|
|
! --------------------- |
| 1742 |
|
|
|
| 1743 |
|
|
|
| 1744 |
|
✗ |
zw(jl) = pomega(jl, knu, jkm1) |
| 1745 |
|
|
zto1(jl) = ptau(jl, knu, jkm1)/zw(jl) + ptauaz(jl, jkm1)/ppizaz(jl, & |
| 1746 |
|
✗ |
jkm1) |
| 1747 |
|
✗ |
zr21(jl) = ptau(jl, knu, jkm1) + ptauaz(jl, jkm1) |
| 1748 |
|
✗ |
zr22(jl) = ptau(jl, knu, jkm1)/zr21(jl) |
| 1749 |
|
✗ |
zgg(jl) = zr22(jl)*pcg(jl, knu, jkm1) + (1.-zr22(jl))*pcgaz(jl, jkm1) |
| 1750 |
|
|
! Modif PhD - JJM 19/03/96 pour erreurs arrondis |
| 1751 |
|
|
! machine |
| 1752 |
|
|
! PHD PROTECTION ZW(JL) = ZR21(JL) / ZTO1(JL) |
| 1753 |
|
✗ |
IF (zw(jl)==1. .AND. ppizaz(jl,jkm1)==1.) THEN |
| 1754 |
|
✗ |
zw(jl) = 1. |
| 1755 |
|
|
ELSE |
| 1756 |
|
✗ |
zw(jl) = zr21(jl)/zto1(jl) |
| 1757 |
|
|
END IF |
| 1758 |
|
✗ |
zref(jl) = prefz(jl, 1, jkm1) |
| 1759 |
|
✗ |
zrmuz(jl) = prmue(jl, jk) |
| 1760 |
|
|
END DO |
| 1761 |
|
|
|
| 1762 |
|
✗ |
CALL swde_lmdar4(zgg, zref, zrmuz, zto1, zw, zre1, zre2, ztr1, ztr2) |
| 1763 |
|
|
|
| 1764 |
|
✗ |
DO jl = 1, kdlon |
| 1765 |
|
|
|
| 1766 |
|
|
prefz(jl, 1, jk) = (1.-zrneb(jl))*(pray1(jl,jkm1)+prefz(jl,1,jkm1)* & |
| 1767 |
|
|
ptra1(jl,jkm1)*ptra2(jl,jkm1)/(1.-pray2(jl,jkm1)*prefz(jl,1, & |
| 1768 |
|
✗ |
jkm1))) + zrneb(jl)*zre2(jl) |
| 1769 |
|
|
|
| 1770 |
|
|
ztr(jl, 1, jkm1) = zrneb(jl)*ztr2(jl) + (ptra1(jl,jkm1)/(1.-pray2(jl, & |
| 1771 |
|
✗ |
jkm1)*prefz(jl,1,jkm1)))*(1.-zrneb(jl)) |
| 1772 |
|
|
|
| 1773 |
|
|
prefz(jl, 2, jk) = (1.-zrneb(jl))*(pray1(jl,jkm1)+prefz(jl,2,jkm1)* & |
| 1774 |
|
✗ |
ptra1(jl,jkm1)*ptra2(jl,jkm1)) + zrneb(jl)*zre1(jl) |
| 1775 |
|
|
|
| 1776 |
|
✗ |
ztr(jl, 2, jkm1) = zrneb(jl)*ztr1(jl) + ptra1(jl, jkm1)*(1.-zrneb(jl)) |
| 1777 |
|
|
|
| 1778 |
|
|
END DO |
| 1779 |
|
|
END DO |
| 1780 |
|
✗ |
DO jl = 1, kdlon |
| 1781 |
|
✗ |
zmue = (1.-zc1i(jl,1))*psec(jl) + zc1i(jl, 1)*1.66 |
| 1782 |
|
✗ |
prmue(jl, 1) = 1./zmue |
| 1783 |
|
|
END DO |
| 1784 |
|
|
|
| 1785 |
|
|
! ------------------------------------------------------------------ |
| 1786 |
|
|
|
| 1787 |
|
|
! * 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
| 1788 |
|
|
! ------------------------------------------------- |
| 1789 |
|
|
|
| 1790 |
|
|
|
| 1791 |
|
✗ |
IF (knu==1) THEN |
| 1792 |
|
|
jaj = 2 |
| 1793 |
|
✗ |
DO jl = 1, kdlon |
| 1794 |
|
✗ |
prj(jl, jaj, kflev+1) = 1. |
| 1795 |
|
✗ |
prk(jl, jaj, kflev+1) = prefz(jl, 1, kflev+1) |
| 1796 |
|
|
END DO |
| 1797 |
|
|
|
| 1798 |
|
✗ |
DO jk = 1, kflev |
| 1799 |
|
✗ |
jkl = kflev + 1 - jk |
| 1800 |
|
✗ |
jklp1 = jkl + 1 |
| 1801 |
|
✗ |
DO jl = 1, kdlon |
| 1802 |
|
✗ |
zre11 = prj(jl, jaj, jklp1)*ztr(jl, 1, jkl) |
| 1803 |
|
✗ |
prj(jl, jaj, jkl) = zre11 |
| 1804 |
|
✗ |
prk(jl, jaj, jkl) = zre11*prefz(jl, 1, jkl) |
| 1805 |
|
|
END DO |
| 1806 |
|
|
END DO |
| 1807 |
|
|
|
| 1808 |
|
|
ELSE |
| 1809 |
|
|
|
| 1810 |
|
✗ |
DO jaj = 1, 2 |
| 1811 |
|
✗ |
DO jl = 1, kdlon |
| 1812 |
|
✗ |
prj(jl, jaj, kflev+1) = 1. |
| 1813 |
|
✗ |
prk(jl, jaj, kflev+1) = prefz(jl, jaj, kflev+1) |
| 1814 |
|
|
END DO |
| 1815 |
|
|
|
| 1816 |
|
✗ |
DO jk = 1, kflev |
| 1817 |
|
✗ |
jkl = kflev + 1 - jk |
| 1818 |
|
✗ |
jklp1 = jkl + 1 |
| 1819 |
|
✗ |
DO jl = 1, kdlon |
| 1820 |
|
✗ |
zre11 = prj(jl, jaj, jklp1)*ztr(jl, jaj, jkl) |
| 1821 |
|
✗ |
prj(jl, jaj, jkl) = zre11 |
| 1822 |
|
✗ |
prk(jl, jaj, jkl) = zre11*prefz(jl, jaj, jkl) |
| 1823 |
|
|
END DO |
| 1824 |
|
|
END DO |
| 1825 |
|
|
END DO |
| 1826 |
|
|
|
| 1827 |
|
|
END IF |
| 1828 |
|
|
|
| 1829 |
|
|
! ------------------------------------------------------------------ |
| 1830 |
|
|
|
| 1831 |
|
✗ |
RETURN |
| 1832 |
|
|
END SUBROUTINE swr_lmdar4 |
| 1833 |
|
✗ |
SUBROUTINE swde_lmdar4(pgg, pref, prmuz, pto1, pw, pre1, pre2, ptr1, ptr2) |
| 1834 |
|
|
USE dimphy |
| 1835 |
|
|
IMPLICIT NONE |
| 1836 |
|
|
|
| 1837 |
|
|
! ------------------------------------------------------------------ |
| 1838 |
|
|
! PURPOSE. |
| 1839 |
|
|
! -------- |
| 1840 |
|
|
! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY OF A CLOUDY |
| 1841 |
|
|
! LAYER USING THE DELTA-EDDINGTON'S APPROXIMATION. |
| 1842 |
|
|
|
| 1843 |
|
|
! METHOD. |
| 1844 |
|
|
! ------- |
| 1845 |
|
|
|
| 1846 |
|
|
! STANDARD DELTA-EDDINGTON LAYER CALCULATIONS. |
| 1847 |
|
|
|
| 1848 |
|
|
! REFERENCE. |
| 1849 |
|
|
! ---------- |
| 1850 |
|
|
|
| 1851 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 1852 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 1853 |
|
|
|
| 1854 |
|
|
! AUTHOR. |
| 1855 |
|
|
! ------- |
| 1856 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 1857 |
|
|
|
| 1858 |
|
|
! MODIFICATIONS. |
| 1859 |
|
|
! -------------- |
| 1860 |
|
|
! ORIGINAL : 88-12-15 |
| 1861 |
|
|
! ------------------------------------------------------------------ |
| 1862 |
|
|
! * ARGUMENTS: |
| 1863 |
|
|
|
| 1864 |
|
|
REAL (KIND=8) pgg(kdlon) ! ASSYMETRY FACTOR |
| 1865 |
|
|
REAL (KIND=8) pref(kdlon) ! REFLECTIVITY OF THE UNDERLYING LAYER |
| 1866 |
|
|
REAL (KIND=8) prmuz(kdlon) ! COSINE OF SOLAR ZENITH ANGLE |
| 1867 |
|
|
REAL (KIND=8) pto1(kdlon) ! OPTICAL THICKNESS |
| 1868 |
|
|
REAL (KIND=8) pw(kdlon) ! SINGLE SCATTERING ALBEDO |
| 1869 |
|
|
REAL (KIND=8) pre1(kdlon) ! LAYER REFLECTIVITY (NO UNDERLYING-LAYER REFLECTION) |
| 1870 |
|
|
REAL (KIND=8) pre2(kdlon) ! LAYER REFLECTIVITY |
| 1871 |
|
|
REAL (KIND=8) ptr1(kdlon) ! LAYER TRANSMISSIVITY (NO UNDERLYING-LAYER REFLECTION) |
| 1872 |
|
|
REAL (KIND=8) ptr2(kdlon) ! LAYER TRANSMISSIVITY |
| 1873 |
|
|
|
| 1874 |
|
|
! * LOCAL VARIABLES: |
| 1875 |
|
|
|
| 1876 |
|
|
INTEGER jl |
| 1877 |
|
|
REAL (KIND=8) zff, zgp, ztop, zwcp, zdt, zx1, zwm |
| 1878 |
|
|
REAL (KIND=8) zrm2, zrk, zx2, zrp, zalpha, zbeta, zarg |
| 1879 |
|
|
REAL (KIND=8) zexmu0, zarg2, zexkp, zexkm, zxp2p, zxm2p, zap2b, zam2b |
| 1880 |
|
|
REAL (KIND=8) za11, za12, za13, za21, za22, za23 |
| 1881 |
|
|
REAL (KIND=8) zdena, zc1a, zc2a, zri0a, zri1a |
| 1882 |
|
|
REAL (KIND=8) zri0b, zri1b |
| 1883 |
|
|
REAL (KIND=8) zb21, zb22, zb23, zdenb, zc1b, zc2b |
| 1884 |
|
|
REAL (KIND=8) zri0c, zri1c, zri0d, zri1d |
| 1885 |
|
|
|
| 1886 |
|
|
! ------------------------------------------------------------------ |
| 1887 |
|
|
|
| 1888 |
|
|
! * 1. DELTA-EDDINGTON CALCULATIONS |
| 1889 |
|
|
|
| 1890 |
|
|
|
| 1891 |
|
✗ |
DO jl = 1, kdlon |
| 1892 |
|
|
! * 1.1 SET UP THE DELTA-MODIFIED PARAMETERS |
| 1893 |
|
|
|
| 1894 |
|
|
|
| 1895 |
|
✗ |
zff = pgg(jl)*pgg(jl) |
| 1896 |
|
✗ |
zgp = pgg(jl)/(1.+pgg(jl)) |
| 1897 |
|
✗ |
ztop = (1.-pw(jl)*zff)*pto1(jl) |
| 1898 |
|
✗ |
zwcp = (1-zff)*pw(jl)/(1.-pw(jl)*zff) |
| 1899 |
|
|
zdt = 2./3. |
| 1900 |
|
✗ |
zx1 = 1. - zwcp*zgp |
| 1901 |
|
✗ |
zwm = 1. - zwcp |
| 1902 |
|
✗ |
zrm2 = prmuz(jl)*prmuz(jl) |
| 1903 |
|
✗ |
zrk = sqrt(3.*zwm*zx1) |
| 1904 |
|
✗ |
zx2 = 4.*(1.-zrk*zrk*zrm2) |
| 1905 |
|
✗ |
zrp = zrk/zx1 |
| 1906 |
|
✗ |
zalpha = 3.*zwcp*zrm2*(1.+zgp*zwm)/zx2 |
| 1907 |
|
✗ |
zbeta = 3.*zwcp*prmuz(jl)*(1.+3.*zgp*zrm2*zwm)/zx2 |
| 1908 |
|
✗ |
zarg = min(ztop/prmuz(jl), 200._8) |
| 1909 |
|
✗ |
zexmu0 = exp(-zarg) |
| 1910 |
|
✗ |
zarg2 = min(zrk*ztop, 200._8) |
| 1911 |
|
✗ |
zexkp = exp(zarg2) |
| 1912 |
|
✗ |
zexkm = 1./zexkp |
| 1913 |
|
✗ |
zxp2p = 1. + zdt*zrp |
| 1914 |
|
✗ |
zxm2p = 1. - zdt*zrp |
| 1915 |
|
✗ |
zap2b = zalpha + zdt*zbeta |
| 1916 |
|
✗ |
zam2b = zalpha - zdt*zbeta |
| 1917 |
|
|
|
| 1918 |
|
|
! * 1.2 WITHOUT REFLECTION FROM THE UNDERLYING LAYER |
| 1919 |
|
|
|
| 1920 |
|
|
|
| 1921 |
|
|
za11 = zxp2p |
| 1922 |
|
|
za12 = zxm2p |
| 1923 |
|
|
za13 = zap2b |
| 1924 |
|
✗ |
za22 = zxp2p*zexkp |
| 1925 |
|
✗ |
za21 = zxm2p*zexkm |
| 1926 |
|
✗ |
za23 = zam2b*zexmu0 |
| 1927 |
|
✗ |
zdena = za11*za22 - za21*za12 |
| 1928 |
|
✗ |
zc1a = (za22*za13-za12*za23)/zdena |
| 1929 |
|
✗ |
zc2a = (za11*za23-za21*za13)/zdena |
| 1930 |
|
✗ |
zri0a = zc1a + zc2a - zalpha |
| 1931 |
|
✗ |
zri1a = zrp*(zc1a-zc2a) - zbeta |
| 1932 |
|
✗ |
pre1(jl) = (zri0a-zdt*zri1a)/prmuz(jl) |
| 1933 |
|
✗ |
zri0b = zc1a*zexkm + zc2a*zexkp - zalpha*zexmu0 |
| 1934 |
|
✗ |
zri1b = zrp*(zc1a*zexkm-zc2a*zexkp) - zbeta*zexmu0 |
| 1935 |
|
✗ |
ptr1(jl) = zexmu0 + (zri0b+zdt*zri1b)/prmuz(jl) |
| 1936 |
|
|
|
| 1937 |
|
|
! * 1.3 WITH REFLECTION FROM THE UNDERLYING LAYER |
| 1938 |
|
|
|
| 1939 |
|
|
|
| 1940 |
|
✗ |
zb21 = za21 - pref(jl)*zxp2p*zexkm |
| 1941 |
|
✗ |
zb22 = za22 - pref(jl)*zxm2p*zexkp |
| 1942 |
|
✗ |
zb23 = za23 - pref(jl)*zexmu0*(zap2b-prmuz(jl)) |
| 1943 |
|
✗ |
zdenb = za11*zb22 - zb21*za12 |
| 1944 |
|
✗ |
zc1b = (zb22*za13-za12*zb23)/zdenb |
| 1945 |
|
✗ |
zc2b = (za11*zb23-zb21*za13)/zdenb |
| 1946 |
|
✗ |
zri0c = zc1b + zc2b - zalpha |
| 1947 |
|
✗ |
zri1c = zrp*(zc1b-zc2b) - zbeta |
| 1948 |
|
✗ |
pre2(jl) = (zri0c-zdt*zri1c)/prmuz(jl) |
| 1949 |
|
✗ |
zri0d = zc1b*zexkm + zc2b*zexkp - zalpha*zexmu0 |
| 1950 |
|
✗ |
zri1d = zrp*(zc1b*zexkm-zc2b*zexkp) - zbeta*zexmu0 |
| 1951 |
|
✗ |
ptr2(jl) = zexmu0 + (zri0d+zdt*zri1d)/prmuz(jl) |
| 1952 |
|
|
|
| 1953 |
|
|
END DO |
| 1954 |
|
✗ |
RETURN |
| 1955 |
|
|
END SUBROUTINE swde_lmdar4 |
| 1956 |
|
✗ |
SUBROUTINE swtt_lmdar4(knu, ka, pu, ptr) |
| 1957 |
|
|
USE dimphy |
| 1958 |
|
|
USE radiation_ar4_param, ONLY: apad, bpad, d |
| 1959 |
|
|
IMPLICIT NONE |
| 1960 |
|
|
|
| 1961 |
|
|
! ----------------------------------------------------------------------- |
| 1962 |
|
|
! PURPOSE. |
| 1963 |
|
|
! -------- |
| 1964 |
|
|
! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
| 1965 |
|
|
! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN THE TWO SPECTRAL |
| 1966 |
|
|
! INTERVALS. |
| 1967 |
|
|
|
| 1968 |
|
|
! METHOD. |
| 1969 |
|
|
! ------- |
| 1970 |
|
|
|
| 1971 |
|
|
! TRANSMISSION FUNCTION ARE COMPUTED USING PADE APPROXIMANTS |
| 1972 |
|
|
! AND HORNER'S ALGORITHM. |
| 1973 |
|
|
|
| 1974 |
|
|
! REFERENCE. |
| 1975 |
|
|
! ---------- |
| 1976 |
|
|
|
| 1977 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 1978 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 1979 |
|
|
|
| 1980 |
|
|
! AUTHOR. |
| 1981 |
|
|
! ------- |
| 1982 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 1983 |
|
|
|
| 1984 |
|
|
! MODIFICATIONS. |
| 1985 |
|
|
! -------------- |
| 1986 |
|
|
! ORIGINAL : 88-12-15 |
| 1987 |
|
|
! ----------------------------------------------------------------------- |
| 1988 |
|
|
|
| 1989 |
|
|
! * ARGUMENTS |
| 1990 |
|
|
|
| 1991 |
|
|
INTEGER knu ! INDEX OF THE SPECTRAL INTERVAL |
| 1992 |
|
|
INTEGER ka ! INDEX OF THE ABSORBER |
| 1993 |
|
|
REAL (KIND=8) pu(kdlon) ! ABSORBER AMOUNT |
| 1994 |
|
|
|
| 1995 |
|
|
REAL (KIND=8) ptr(kdlon) ! TRANSMISSION FUNCTION |
| 1996 |
|
|
|
| 1997 |
|
|
! * LOCAL VARIABLES: |
| 1998 |
|
|
|
| 1999 |
|
✗ |
REAL (KIND=8) zr1(kdlon), zr2(kdlon) |
| 2000 |
|
|
INTEGER jl, i, j |
| 2001 |
|
|
|
| 2002 |
|
|
! ----------------------------------------------------------------------- |
| 2003 |
|
|
|
| 2004 |
|
|
! * 1. HORNER'S ALGORITHM TO COMPUTE TRANSMISSION FUNCTION |
| 2005 |
|
|
|
| 2006 |
|
|
|
| 2007 |
|
✗ |
DO jl = 1, kdlon |
| 2008 |
|
|
zr1(jl) = apad(knu, ka, 1) + pu(jl)*(apad(knu,ka,2)+pu(jl)*(apad(knu,ka, & |
| 2009 |
|
|
3)+pu(jl)*(apad(knu,ka,4)+pu(jl)*(apad(knu,ka,5)+pu(jl)*(apad(knu,ka,6) & |
| 2010 |
|
✗ |
+pu(jl)*(apad(knu,ka,7))))))) |
| 2011 |
|
|
|
| 2012 |
|
|
zr2(jl) = bpad(knu, ka, 1) + pu(jl)*(bpad(knu,ka,2)+pu(jl)*(bpad(knu,ka, & |
| 2013 |
|
|
3)+pu(jl)*(bpad(knu,ka,4)+pu(jl)*(bpad(knu,ka,5)+pu(jl)*(bpad(knu,ka,6) & |
| 2014 |
|
✗ |
+pu(jl)*(bpad(knu,ka,7))))))) |
| 2015 |
|
|
|
| 2016 |
|
|
! * 2. ADD THE BACKGROUND TRANSMISSION |
| 2017 |
|
|
|
| 2018 |
|
|
|
| 2019 |
|
|
|
| 2020 |
|
✗ |
ptr(jl) = (zr1(jl)/zr2(jl))*(1.-d(knu,ka)) + d(knu, ka) |
| 2021 |
|
|
END DO |
| 2022 |
|
|
|
| 2023 |
|
✗ |
RETURN |
| 2024 |
|
|
END SUBROUTINE swtt_lmdar4 |
| 2025 |
|
✗ |
SUBROUTINE swtt1_lmdar4(knu, kabs, kind, pu, ptr) |
| 2026 |
|
|
USE dimphy |
| 2027 |
|
|
USE radiation_ar4_param, ONLY: apad, bpad, d |
| 2028 |
|
|
IMPLICIT NONE |
| 2029 |
|
|
|
| 2030 |
|
|
! ----------------------------------------------------------------------- |
| 2031 |
|
|
! PURPOSE. |
| 2032 |
|
|
! -------- |
| 2033 |
|
|
! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
| 2034 |
|
|
! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN THE TWO SPECTRAL |
| 2035 |
|
|
! INTERVALS. |
| 2036 |
|
|
|
| 2037 |
|
|
! METHOD. |
| 2038 |
|
|
! ------- |
| 2039 |
|
|
|
| 2040 |
|
|
! TRANSMISSION FUNCTION ARE COMPUTED USING PADE APPROXIMANTS |
| 2041 |
|
|
! AND HORNER'S ALGORITHM. |
| 2042 |
|
|
|
| 2043 |
|
|
! REFERENCE. |
| 2044 |
|
|
! ---------- |
| 2045 |
|
|
|
| 2046 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 2047 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 2048 |
|
|
|
| 2049 |
|
|
! AUTHOR. |
| 2050 |
|
|
! ------- |
| 2051 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 2052 |
|
|
|
| 2053 |
|
|
! MODIFICATIONS. |
| 2054 |
|
|
! -------------- |
| 2055 |
|
|
! ORIGINAL : 95-01-20 |
| 2056 |
|
|
! ----------------------------------------------------------------------- |
| 2057 |
|
|
! * ARGUMENTS: |
| 2058 |
|
|
|
| 2059 |
|
|
INTEGER knu ! INDEX OF THE SPECTRAL INTERVAL |
| 2060 |
|
|
INTEGER kabs ! NUMBER OF ABSORBERS |
| 2061 |
|
|
INTEGER kind(kabs) ! INDICES OF THE ABSORBERS |
| 2062 |
|
|
REAL (KIND=8) pu(kdlon, kabs) ! ABSORBER AMOUNT |
| 2063 |
|
|
|
| 2064 |
|
|
REAL (KIND=8) ptr(kdlon, kabs) ! TRANSMISSION FUNCTION |
| 2065 |
|
|
|
| 2066 |
|
|
! * LOCAL VARIABLES: |
| 2067 |
|
|
|
| 2068 |
|
✗ |
REAL (KIND=8) zr1(kdlon) |
| 2069 |
|
✗ |
REAL (KIND=8) zr2(kdlon) |
| 2070 |
|
✗ |
REAL (KIND=8) zu(kdlon) |
| 2071 |
|
|
INTEGER jl, ja, i, j, ia |
| 2072 |
|
|
|
| 2073 |
|
|
! ----------------------------------------------------------------------- |
| 2074 |
|
|
|
| 2075 |
|
|
! * 1. HORNER'S ALGORITHM TO COMPUTE TRANSMISSION FUNCTION |
| 2076 |
|
|
|
| 2077 |
|
|
|
| 2078 |
|
✗ |
DO ja = 1, kabs |
| 2079 |
|
✗ |
ia = kind(ja) |
| 2080 |
|
✗ |
DO jl = 1, kdlon |
| 2081 |
|
✗ |
zu(jl) = pu(jl, ja) |
| 2082 |
|
|
zr1(jl) = apad(knu, ia, 1) + zu(jl)*(apad(knu,ia,2)+zu(jl)*(apad(knu, & |
| 2083 |
|
|
ia,3)+zu(jl)*(apad(knu,ia,4)+zu(jl)*(apad(knu,ia,5)+zu(jl)*(apad(knu, & |
| 2084 |
|
✗ |
ia,6)+zu(jl)*(apad(knu,ia,7))))))) |
| 2085 |
|
|
|
| 2086 |
|
|
zr2(jl) = bpad(knu, ia, 1) + zu(jl)*(bpad(knu,ia,2)+zu(jl)*(bpad(knu, & |
| 2087 |
|
|
ia,3)+zu(jl)*(bpad(knu,ia,4)+zu(jl)*(bpad(knu,ia,5)+zu(jl)*(bpad(knu, & |
| 2088 |
|
✗ |
ia,6)+zu(jl)*(bpad(knu,ia,7))))))) |
| 2089 |
|
|
|
| 2090 |
|
|
! * 2. ADD THE BACKGROUND TRANSMISSION |
| 2091 |
|
|
|
| 2092 |
|
|
|
| 2093 |
|
✗ |
ptr(jl, ja) = (zr1(jl)/zr2(jl))*(1.-d(knu,ia)) + d(knu, ia) |
| 2094 |
|
|
END DO |
| 2095 |
|
|
END DO |
| 2096 |
|
|
|
| 2097 |
|
✗ |
RETURN |
| 2098 |
|
|
END SUBROUTINE swtt1_lmdar4 |
| 2099 |
|
|
! IM ctes ds clesphys.h SUBROUTINE LW(RCO2,RCH4,RN2O,RCFC11,RCFC12, |
| 2100 |
|
✗ |
SUBROUTINE lw_lmdar4(ppmb, pdp, ppsol, pdt0, pemis, ptl, ptave, pwv, pozon, & |
| 2101 |
|
|
paer, pcldld, pcldlu, pview, pcolr, pcolr0, ptoplw, psollw, ptoplw0, & |
| 2102 |
|
|
psollw0, psollwdown, & ! IM . |
| 2103 |
|
|
! psollwdown,psollwdownclr, |
| 2104 |
|
|
! IM . ptoplwdown,ptoplwdownclr) |
| 2105 |
|
|
plwup, plwdn, plwup0, plwdn0) |
| 2106 |
|
|
USE dimphy |
| 2107 |
|
|
USE print_control_mod, ONLY: lunout |
| 2108 |
|
|
IMPLICIT NONE |
| 2109 |
|
|
include "raddimlw.h" |
| 2110 |
|
|
include "YOMCST.h" |
| 2111 |
|
|
|
| 2112 |
|
|
! ----------------------------------------------------------------------- |
| 2113 |
|
|
! METHOD. |
| 2114 |
|
|
! ------- |
| 2115 |
|
|
|
| 2116 |
|
|
! 1. COMPUTES THE PRESSURE AND TEMPERATURE WEIGHTED AMOUNTS OF |
| 2117 |
|
|
! ABSORBERS. |
| 2118 |
|
|
! 2. COMPUTES THE PLANCK FUNCTIONS ON THE INTERFACES AND THE |
| 2119 |
|
|
! GRADIENT OF PLANCK FUNCTIONS IN THE LAYERS. |
| 2120 |
|
|
! 3. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING THE CON- |
| 2121 |
|
|
! TRIBUTIONS OF THE ADJACENT AND DISTANT LAYERS AND THOSE FROM THE |
| 2122 |
|
|
! BOUNDARIES. |
| 2123 |
|
|
! 4. COMPUTES THE CLEAR-SKY DOWNWARD AND UPWARD EMISSIVITIES. |
| 2124 |
|
|
! 5. INTRODUCES THE EFFECTS OF THE CLOUDS ON THE FLUXES. |
| 2125 |
|
|
|
| 2126 |
|
|
|
| 2127 |
|
|
! REFERENCE. |
| 2128 |
|
|
! ---------- |
| 2129 |
|
|
|
| 2130 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 2131 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 2132 |
|
|
|
| 2133 |
|
|
! AUTHOR. |
| 2134 |
|
|
! ------- |
| 2135 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 2136 |
|
|
|
| 2137 |
|
|
! MODIFICATIONS. |
| 2138 |
|
|
! -------------- |
| 2139 |
|
|
! ORIGINAL : 89-07-14 |
| 2140 |
|
|
! ----------------------------------------------------------------------- |
| 2141 |
|
|
! IM ctes ds clesphys.h |
| 2142 |
|
|
! REAL(KIND=8) RCO2 ! CO2 CONCENTRATION (IPCC:353.E-06* 44.011/28.97) |
| 2143 |
|
|
! REAL(KIND=8) RCH4 ! CH4 CONCENTRATION (IPCC: 1.72E-06* 16.043/28.97) |
| 2144 |
|
|
! REAL(KIND=8) RN2O ! N2O CONCENTRATION (IPCC: 310.E-09* 44.013/28.97) |
| 2145 |
|
|
! REAL(KIND=8) RCFC11 ! CFC11 CONCENTRATION (IPCC: 280.E-12* |
| 2146 |
|
|
! 137.3686/28.97) |
| 2147 |
|
|
! REAL(KIND=8) RCFC12 ! CFC12 CONCENTRATION (IPCC: 484.E-12* |
| 2148 |
|
|
! 120.9140/28.97) |
| 2149 |
|
|
include "clesphys.h" |
| 2150 |
|
|
REAL (KIND=8) pcldld(kdlon, kflev) ! DOWNWARD EFFECTIVE CLOUD COVER |
| 2151 |
|
|
REAL (KIND=8) pcldlu(kdlon, kflev) ! UPWARD EFFECTIVE CLOUD COVER |
| 2152 |
|
|
REAL (KIND=8) pdp(kdlon, kflev) ! LAYER PRESSURE THICKNESS (Pa) |
| 2153 |
|
|
REAL (KIND=8) pdt0(kdlon) ! SURFACE TEMPERATURE DISCONTINUITY (K) |
| 2154 |
|
|
REAL (KIND=8) pemis(kdlon) ! SURFACE EMISSIVITY |
| 2155 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) ! HALF LEVEL PRESSURE (mb) |
| 2156 |
|
|
REAL (KIND=8) ppsol(kdlon) ! SURFACE PRESSURE (Pa) |
| 2157 |
|
|
REAL (KIND=8) pozon(kdlon, kflev) ! O3 mass fraction |
| 2158 |
|
|
REAL (KIND=8) ptl(kdlon, kflev+1) ! HALF LEVEL TEMPERATURE (K) |
| 2159 |
|
|
REAL (KIND=8) paer(kdlon, kflev, 5) ! OPTICAL THICKNESS OF THE AEROSOLS |
| 2160 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) ! LAYER TEMPERATURE (K) |
| 2161 |
|
|
REAL (KIND=8) pview(kdlon) ! COSECANT OF VIEWING ANGLE |
| 2162 |
|
|
REAL (KIND=8) pwv(kdlon, kflev) ! SPECIFIC HUMIDITY (kg/kg) |
| 2163 |
|
|
|
| 2164 |
|
|
REAL (KIND=8) pcolr(kdlon, kflev) ! LONG-WAVE TENDENCY (K/day) |
| 2165 |
|
|
REAL (KIND=8) pcolr0(kdlon, kflev) ! LONG-WAVE TENDENCY (K/day) clear-sky |
| 2166 |
|
|
REAL (KIND=8) ptoplw(kdlon) ! LONGWAVE FLUX AT T.O.A. |
| 2167 |
|
|
REAL (KIND=8) psollw(kdlon) ! LONGWAVE FLUX AT SURFACE |
| 2168 |
|
|
REAL (KIND=8) ptoplw0(kdlon) ! LONGWAVE FLUX AT T.O.A. (CLEAR-SKY) |
| 2169 |
|
|
REAL (KIND=8) psollw0(kdlon) ! LONGWAVE FLUX AT SURFACE (CLEAR-SKY) |
| 2170 |
|
|
! Rajout LF |
| 2171 |
|
|
REAL (KIND=8) psollwdown(kdlon) ! LONGWAVE downwards flux at surface |
| 2172 |
|
|
! Rajout IM |
| 2173 |
|
|
! IM real(kind=8) psollwdownclr(kdlon) ! LONGWAVE CS downwards flux at |
| 2174 |
|
|
! surface |
| 2175 |
|
|
! IM real(kind=8) ptoplwdown(kdlon) ! LONGWAVE downwards flux at |
| 2176 |
|
|
! T.O.A. |
| 2177 |
|
|
! IM real(kind=8) ptoplwdownclr(kdlon) ! LONGWAVE CS downwards flux at |
| 2178 |
|
|
! T.O.A. |
| 2179 |
|
|
! IM |
| 2180 |
|
|
REAL (KIND=8) plwup(kdlon, kflev+1) ! LW up total sky |
| 2181 |
|
|
REAL (KIND=8) plwup0(kdlon, kflev+1) ! LW up clear sky |
| 2182 |
|
|
REAL (KIND=8) plwdn(kdlon, kflev+1) ! LW down total sky |
| 2183 |
|
|
REAL (KIND=8) plwdn0(kdlon, kflev+1) ! LW down clear sky |
| 2184 |
|
|
! ------------------------------------------------------------------------- |
| 2185 |
|
✗ |
REAL (KIND=8) zabcu(kdlon, nua, 3*kflev+1) |
| 2186 |
|
|
|
| 2187 |
|
✗ |
REAL (KIND=8) zoz(kdlon, kflev) |
| 2188 |
|
|
! equivalent pressure of ozone in a layer, in Pa |
| 2189 |
|
|
|
| 2190 |
|
|
! ym REAL(KIND=8) ZFLUX(KDLON,2,KFLEV+1) ! RADIATIVE FLUXES (1:up; |
| 2191 |
|
|
! 2:down) |
| 2192 |
|
|
! ym REAL(KIND=8) ZFLUC(KDLON,2,KFLEV+1) ! CLEAR-SKY RADIATIVE FLUXES |
| 2193 |
|
|
! ym REAL(KIND=8) ZBINT(KDLON,KFLEV+1) ! Intermediate |
| 2194 |
|
|
! variable |
| 2195 |
|
|
! ym REAL(KIND=8) ZBSUI(KDLON) ! Intermediate |
| 2196 |
|
|
! variable |
| 2197 |
|
|
! ym REAL(KIND=8) ZCTS(KDLON,KFLEV) ! Intermediate |
| 2198 |
|
|
! variable |
| 2199 |
|
|
! ym REAL(KIND=8) ZCNTRB(KDLON,KFLEV+1,KFLEV+1) ! Intermediate |
| 2200 |
|
|
! variable |
| 2201 |
|
|
! ym SAVE ZFLUX, ZFLUC, ZBINT, ZBSUI, ZCTS, ZCNTRB |
| 2202 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zflux(:, :, :) ! RADIATIVE FLUXES (1:up; 2:down) |
| 2203 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zfluc(:, :, :) ! CLEAR-SKY RADIATIVE FLUXES |
| 2204 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zbint(:, :) ! Intermediate variable |
| 2205 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zbsui(:) ! Intermediate variable |
| 2206 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zcts(:, :) ! Intermediate variable |
| 2207 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zcntrb(:, :, :) ! Intermediate variable |
| 2208 |
|
|
!$OMP THREADPRIVATE(ZFLUX, ZFLUC, ZBINT, ZBSUI, ZCTS, ZCNTRB) |
| 2209 |
|
|
|
| 2210 |
|
|
INTEGER ilim, i, k, kpl1 |
| 2211 |
|
|
|
| 2212 |
|
|
INTEGER lw0pas ! Every lw0pas steps, clear-sky is done |
| 2213 |
|
|
PARAMETER (lw0pas=1) |
| 2214 |
|
|
INTEGER lwpas ! Every lwpas steps, cloudy-sky is done |
| 2215 |
|
|
PARAMETER (lwpas=1) |
| 2216 |
|
|
|
| 2217 |
|
|
INTEGER itaplw0, itaplw |
| 2218 |
|
|
LOGICAL appel1er |
| 2219 |
|
|
SAVE appel1er, itaplw0, itaplw |
| 2220 |
|
|
!$OMP THREADPRIVATE(appel1er, itaplw0, itaplw) |
| 2221 |
|
|
DATA appel1er/.TRUE./ |
| 2222 |
|
|
DATA itaplw0, itaplw/0, 0/ |
| 2223 |
|
|
|
| 2224 |
|
|
! ------------------------------------------------------------------ |
| 2225 |
|
✗ |
IF (appel1er) THEN |
| 2226 |
|
✗ |
WRITE (lunout, *) 'LW clear-sky calling frequency: ', lw0pas |
| 2227 |
|
✗ |
WRITE (lunout, *) 'LW cloudy-sky calling frequency: ', lwpas |
| 2228 |
|
✗ |
WRITE (lunout, *) ' In general, they should be 1' |
| 2229 |
|
|
! ym |
| 2230 |
|
✗ |
ALLOCATE (zflux(kdlon,2,kflev+1)) |
| 2231 |
|
✗ |
ALLOCATE (zfluc(kdlon,2,kflev+1)) |
| 2232 |
|
✗ |
ALLOCATE (zbint(kdlon,kflev+1)) |
| 2233 |
|
✗ |
ALLOCATE (zbsui(kdlon)) |
| 2234 |
|
✗ |
ALLOCATE (zcts(kdlon,kflev)) |
| 2235 |
|
✗ |
ALLOCATE (zcntrb(kdlon,kflev+1,kflev+1)) |
| 2236 |
|
✗ |
appel1er = .FALSE. |
| 2237 |
|
|
END IF |
| 2238 |
|
|
|
| 2239 |
|
|
IF (mod(itaplw0,lw0pas)==0) THEN |
| 2240 |
|
|
! Compute equivalent pressure of ozone from mass fraction: |
| 2241 |
|
✗ |
DO k = 1, kflev |
| 2242 |
|
✗ |
DO i = 1, kdlon |
| 2243 |
|
✗ |
zoz(i, k) = pozon(i, k)*pdp(i, k) |
| 2244 |
|
|
END DO |
| 2245 |
|
|
END DO |
| 2246 |
|
|
! IM ctes ds clesphys.h CALL LWU(RCO2,RCH4, RN2O, RCFC11, RCFC12, |
| 2247 |
|
✗ |
CALL lwu_lmdar4(paer, pdp, ppmb, ppsol, zoz, ptave, pview, pwv, zabcu) |
| 2248 |
|
|
CALL lwbv_lmdar4(ilim, pdp, pdt0, pemis, ppmb, ptl, ptave, zabcu, zfluc, & |
| 2249 |
|
✗ |
zbint, zbsui, zcts, zcntrb) |
| 2250 |
|
|
itaplw0 = 0 |
| 2251 |
|
|
END IF |
| 2252 |
|
✗ |
itaplw0 = itaplw0 + 1 |
| 2253 |
|
|
|
| 2254 |
|
|
IF (mod(itaplw,lwpas)==0) THEN |
| 2255 |
|
|
CALL lwc_lmdar4(ilim, pcldld, pcldlu, pemis, zfluc, zbint, zbsui, zcts, & |
| 2256 |
|
✗ |
zcntrb, zflux) |
| 2257 |
|
|
itaplw = 0 |
| 2258 |
|
|
END IF |
| 2259 |
|
✗ |
itaplw = itaplw + 1 |
| 2260 |
|
|
|
| 2261 |
|
✗ |
DO k = 1, kflev |
| 2262 |
|
✗ |
kpl1 = k + 1 |
| 2263 |
|
✗ |
DO i = 1, kdlon |
| 2264 |
|
|
pcolr(i, k) = zflux(i, 1, kpl1) + zflux(i, 2, kpl1) - zflux(i, 1, k) - & |
| 2265 |
|
✗ |
zflux(i, 2, k) |
| 2266 |
|
✗ |
pcolr(i, k) = pcolr(i, k)*rday*rg/rcpd/pdp(i, k) |
| 2267 |
|
|
pcolr0(i, k) = zfluc(i, 1, kpl1) + zfluc(i, 2, kpl1) - zfluc(i, 1, k) - & |
| 2268 |
|
✗ |
zfluc(i, 2, k) |
| 2269 |
|
✗ |
pcolr0(i, k) = pcolr0(i, k)*rday*rg/rcpd/pdp(i, k) |
| 2270 |
|
|
END DO |
| 2271 |
|
|
END DO |
| 2272 |
|
✗ |
DO i = 1, kdlon |
| 2273 |
|
✗ |
psollw(i) = -zflux(i, 1, 1) - zflux(i, 2, 1) |
| 2274 |
|
✗ |
ptoplw(i) = zflux(i, 1, kflev+1) + zflux(i, 2, kflev+1) |
| 2275 |
|
|
|
| 2276 |
|
✗ |
psollw0(i) = -zfluc(i, 1, 1) - zfluc(i, 2, 1) |
| 2277 |
|
✗ |
ptoplw0(i) = zfluc(i, 1, kflev+1) + zfluc(i, 2, kflev+1) |
| 2278 |
|
✗ |
psollwdown(i) = -zflux(i, 2, 1) |
| 2279 |
|
|
|
| 2280 |
|
|
! IM attention aux signes !; LWtop >0, LWdn < 0 |
| 2281 |
|
✗ |
DO k = 1, kflev + 1 |
| 2282 |
|
✗ |
plwup(i, k) = zflux(i, 1, k) |
| 2283 |
|
✗ |
plwup0(i, k) = zfluc(i, 1, k) |
| 2284 |
|
✗ |
plwdn(i, k) = zflux(i, 2, k) |
| 2285 |
|
✗ |
plwdn0(i, k) = zfluc(i, 2, k) |
| 2286 |
|
|
END DO |
| 2287 |
|
|
END DO |
| 2288 |
|
|
! ------------------------------------------------------------------ |
| 2289 |
|
✗ |
RETURN |
| 2290 |
|
|
END SUBROUTINE lw_lmdar4 |
| 2291 |
|
|
! IM ctes ds clesphys.h SUBROUTINE LWU(RCO2, RCH4, RN2O, RCFC11, RCFC12, |
| 2292 |
|
✗ |
SUBROUTINE lwu_lmdar4(paer, pdp, ppmb, ppsol, poz, ptave, pview, pwv, pabcu) |
| 2293 |
|
|
USE dimphy |
| 2294 |
|
|
USE radiation_ar4_param, ONLY: tref, rt1, raer, at, bt, oct |
| 2295 |
|
|
USE infotrac_phy, ONLY: type_trac |
| 2296 |
|
|
|
| 2297 |
|
|
IMPLICIT NONE |
| 2298 |
|
|
include "raddimlw.h" |
| 2299 |
|
|
include "YOMCST.h" |
| 2300 |
|
|
include "radepsi.h" |
| 2301 |
|
|
include "radopt.h" |
| 2302 |
|
|
|
| 2303 |
|
|
! PURPOSE. |
| 2304 |
|
|
! -------- |
| 2305 |
|
|
! COMPUTES ABSORBER AMOUNTS INCLUDING PRESSURE AND |
| 2306 |
|
|
! TEMPERATURE EFFECTS |
| 2307 |
|
|
|
| 2308 |
|
|
! METHOD. |
| 2309 |
|
|
! ------- |
| 2310 |
|
|
|
| 2311 |
|
|
! 1. COMPUTES THE PRESSURE AND TEMPERATURE WEIGHTED AMOUNTS OF |
| 2312 |
|
|
! ABSORBERS. |
| 2313 |
|
|
|
| 2314 |
|
|
|
| 2315 |
|
|
! REFERENCE. |
| 2316 |
|
|
! ---------- |
| 2317 |
|
|
|
| 2318 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 2319 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 2320 |
|
|
|
| 2321 |
|
|
! AUTHOR. |
| 2322 |
|
|
! ------- |
| 2323 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 2324 |
|
|
|
| 2325 |
|
|
! MODIFICATIONS. |
| 2326 |
|
|
! -------------- |
| 2327 |
|
|
! ORIGINAL : 89-07-14 |
| 2328 |
|
|
! Voigt lines (loop 404 modified) - JJM & PhD - 01/96 |
| 2329 |
|
|
! ----------------------------------------------------------------------- |
| 2330 |
|
|
! * ARGUMENTS: |
| 2331 |
|
|
! IM ctes ds clesphys.h |
| 2332 |
|
|
! REAL(KIND=8) RCO2 |
| 2333 |
|
|
! REAL(KIND=8) RCH4, RN2O, RCFC11, RCFC12 |
| 2334 |
|
|
include "clesphys.h" |
| 2335 |
|
|
REAL (KIND=8) paer(kdlon, kflev, 5) |
| 2336 |
|
|
REAL (KIND=8) pdp(kdlon, kflev) |
| 2337 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) |
| 2338 |
|
|
REAL (KIND=8) ppsol(kdlon) |
| 2339 |
|
|
REAL (KIND=8) poz(kdlon, kflev) |
| 2340 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) |
| 2341 |
|
|
REAL (KIND=8) pview(kdlon) |
| 2342 |
|
|
REAL (KIND=8) pwv(kdlon, kflev) |
| 2343 |
|
|
|
| 2344 |
|
|
REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! EFFECTIVE ABSORBER AMOUNTS |
| 2345 |
|
|
|
| 2346 |
|
|
! ----------------------------------------------------------------------- |
| 2347 |
|
|
! * LOCAL VARIABLES: |
| 2348 |
|
✗ |
REAL (KIND=8) zably(kdlon, nua, 3*kflev+1) |
| 2349 |
|
✗ |
REAL (KIND=8) zduc(kdlon, 3*kflev+1) |
| 2350 |
|
✗ |
REAL (KIND=8) zphio(kdlon) |
| 2351 |
|
✗ |
REAL (KIND=8) zpsc2(kdlon) |
| 2352 |
|
✗ |
REAL (KIND=8) zpsc3(kdlon) |
| 2353 |
|
✗ |
REAL (KIND=8) zpsh1(kdlon) |
| 2354 |
|
✗ |
REAL (KIND=8) zpsh2(kdlon) |
| 2355 |
|
✗ |
REAL (KIND=8) zpsh3(kdlon) |
| 2356 |
|
✗ |
REAL (KIND=8) zpsh4(kdlon) |
| 2357 |
|
✗ |
REAL (KIND=8) zpsh5(kdlon) |
| 2358 |
|
✗ |
REAL (KIND=8) zpsh6(kdlon) |
| 2359 |
|
✗ |
REAL (KIND=8) zpsio(kdlon) |
| 2360 |
|
✗ |
REAL (KIND=8) ztcon(kdlon) |
| 2361 |
|
✗ |
REAL (KIND=8) zphm6(kdlon) |
| 2362 |
|
✗ |
REAL (KIND=8) zpsm6(kdlon) |
| 2363 |
|
✗ |
REAL (KIND=8) zphn6(kdlon) |
| 2364 |
|
✗ |
REAL (KIND=8) zpsn6(kdlon) |
| 2365 |
|
✗ |
REAL (KIND=8) zssig(kdlon, 3*kflev+1) |
| 2366 |
|
✗ |
REAL (KIND=8) ztavi(kdlon) |
| 2367 |
|
✗ |
REAL (KIND=8) zuaer(kdlon, ninter) |
| 2368 |
|
✗ |
REAL (KIND=8) zxoz(kdlon) |
| 2369 |
|
✗ |
REAL (KIND=8) zxwv(kdlon) |
| 2370 |
|
|
|
| 2371 |
|
|
INTEGER jl, jk, jkj, jkjr, jkjp, ig1 |
| 2372 |
|
|
INTEGER jki, jkip1, ja, jj |
| 2373 |
|
|
INTEGER jkl, jkp1, jkk, jkjpn |
| 2374 |
|
|
INTEGER jae1, jae2, jae3, jae, jjpn |
| 2375 |
|
|
INTEGER ir, jc, jcp1 |
| 2376 |
|
|
REAL (KIND=8) zdpm, zupm, zupmh2o, zupmco2, zupmo3, zu6, zup |
| 2377 |
|
|
REAL (KIND=8) zfppw, ztx, ztx2, zzably |
| 2378 |
|
|
REAL (KIND=8) zcah1, zcbh1, zcah2, zcbh2, zcah3, zcbh3 |
| 2379 |
|
|
REAL (KIND=8) zcah4, zcbh4, zcah5, zcbh5, zcah6, zcbh6 |
| 2380 |
|
|
REAL (KIND=8) zcac8, zcbc8 |
| 2381 |
|
|
REAL (KIND=8) zalup, zdiff |
| 2382 |
|
|
|
| 2383 |
|
|
REAL (KIND=8) pvgco2, pvgh2o, pvgo3 |
| 2384 |
|
|
|
| 2385 |
|
|
REAL (KIND=8) r10e ! DECIMAL/NATURAL LOG.FACTOR |
| 2386 |
|
|
PARAMETER (r10e=0.4342945) |
| 2387 |
|
|
|
| 2388 |
|
|
! ----------------------------------------------------------------------- |
| 2389 |
|
|
|
| 2390 |
|
|
IF (levoigt) THEN |
| 2391 |
|
|
pvgco2 = 60. |
| 2392 |
|
|
pvgh2o = 30. |
| 2393 |
|
|
pvgo3 = 400. |
| 2394 |
|
|
ELSE |
| 2395 |
|
|
pvgco2 = 0. |
| 2396 |
|
|
pvgh2o = 0. |
| 2397 |
|
|
pvgo3 = 0. |
| 2398 |
|
|
END IF |
| 2399 |
|
|
|
| 2400 |
|
|
! * 2. PRESSURE OVER GAUSS SUB-LEVELS |
| 2401 |
|
|
! ------------------------------ |
| 2402 |
|
|
|
| 2403 |
|
|
|
| 2404 |
|
✗ |
DO jl = 1, kdlon |
| 2405 |
|
✗ |
zssig(jl, 1) = ppmb(jl, 1)*100. |
| 2406 |
|
|
END DO |
| 2407 |
|
|
|
| 2408 |
|
✗ |
DO jk = 1, kflev |
| 2409 |
|
✗ |
jkj = (jk-1)*ng1p1 + 1 |
| 2410 |
|
|
jkjr = jkj |
| 2411 |
|
✗ |
jkjp = jkj + ng1p1 |
| 2412 |
|
✗ |
DO jl = 1, kdlon |
| 2413 |
|
✗ |
zssig(jl, jkjp) = ppmb(jl, jk+1)*100. |
| 2414 |
|
|
END DO |
| 2415 |
|
✗ |
DO ig1 = 1, ng1 |
| 2416 |
|
✗ |
jkj = jkj + 1 |
| 2417 |
|
✗ |
DO jl = 1, kdlon |
| 2418 |
|
|
zssig(jl, jkj) = (zssig(jl,jkjr)+zssig(jl,jkjp))*0.5 + & |
| 2419 |
|
✗ |
rt1(ig1)*(zssig(jl,jkjp)-zssig(jl,jkjr))*0.5 |
| 2420 |
|
|
END DO |
| 2421 |
|
|
END DO |
| 2422 |
|
|
END DO |
| 2423 |
|
|
|
| 2424 |
|
|
! ----------------------------------------------------------------------- |
| 2425 |
|
|
|
| 2426 |
|
|
|
| 2427 |
|
|
! * 4. PRESSURE THICKNESS AND MEAN PRESSURE OF SUB-LAYERS |
| 2428 |
|
|
! -------------------------------------------------- |
| 2429 |
|
|
|
| 2430 |
|
|
|
| 2431 |
|
✗ |
DO jki = 1, 3*kflev |
| 2432 |
|
✗ |
jkip1 = jki + 1 |
| 2433 |
|
✗ |
DO jl = 1, kdlon |
| 2434 |
|
✗ |
zably(jl, 5, jki) = (zssig(jl,jki)+zssig(jl,jkip1))*0.5 |
| 2435 |
|
✗ |
zably(jl, 3, jki) = (zssig(jl,jki)-zssig(jl,jkip1))/(10.*rg) |
| 2436 |
|
|
END DO |
| 2437 |
|
|
END DO |
| 2438 |
|
|
|
| 2439 |
|
✗ |
DO jk = 1, kflev |
| 2440 |
|
✗ |
jkp1 = jk + 1 |
| 2441 |
|
|
jkl = kflev + 1 - jk |
| 2442 |
|
✗ |
DO jl = 1, kdlon |
| 2443 |
|
✗ |
zxwv(jl) = max(pwv(jl,jk), zepscq) |
| 2444 |
|
✗ |
zxoz(jl) = max(poz(jl,jk)/pdp(jl,jk), zepsco) |
| 2445 |
|
|
END DO |
| 2446 |
|
✗ |
jkj = (jk-1)*ng1p1 + 1 |
| 2447 |
|
✗ |
jkjpn = jkj + ng1 |
| 2448 |
|
✗ |
DO jkk = jkj, jkjpn |
| 2449 |
|
✗ |
DO jl = 1, kdlon |
| 2450 |
|
✗ |
zdpm = zably(jl, 3, jkk) |
| 2451 |
|
✗ |
zupm = zably(jl, 5, jkk)*zdpm/101325. |
| 2452 |
|
✗ |
zupmco2 = (zably(jl,5,jkk)+pvgco2)*zdpm/101325. |
| 2453 |
|
|
zupmh2o = (zably(jl,5,jkk)+pvgh2o)*zdpm/101325. |
| 2454 |
|
|
zupmo3 = (zably(jl,5,jkk)+pvgo3)*zdpm/101325. |
| 2455 |
|
✗ |
zduc(jl, jkk) = zdpm |
| 2456 |
|
✗ |
zably(jl, 12, jkk) = zxoz(jl)*zdpm |
| 2457 |
|
✗ |
zably(jl, 13, jkk) = zxoz(jl)*zupmo3 |
| 2458 |
|
✗ |
zu6 = zxwv(jl)*zupm |
| 2459 |
|
✗ |
zfppw = 1.6078*zxwv(jl)/(1.+0.608*zxwv(jl)) |
| 2460 |
|
✗ |
zably(jl, 6, jkk) = zxwv(jl)*zupmh2o |
| 2461 |
|
✗ |
zably(jl, 11, jkk) = zu6*zfppw |
| 2462 |
|
✗ |
zably(jl, 10, jkk) = zu6*(1.-zfppw) |
| 2463 |
|
✗ |
zably(jl, 9, jkk) = rco2*zupmco2 |
| 2464 |
|
✗ |
zably(jl, 8, jkk) = rco2*zdpm |
| 2465 |
|
|
END DO |
| 2466 |
|
|
END DO |
| 2467 |
|
|
END DO |
| 2468 |
|
|
|
| 2469 |
|
|
! ----------------------------------------------------------------------- |
| 2470 |
|
|
|
| 2471 |
|
|
|
| 2472 |
|
|
! * 5. CUMULATIVE ABSORBER AMOUNTS FROM TOP OF ATMOSPHERE |
| 2473 |
|
|
! -------------------------------------------------- |
| 2474 |
|
|
|
| 2475 |
|
|
|
| 2476 |
|
✗ |
DO ja = 1, nua |
| 2477 |
|
✗ |
DO jl = 1, kdlon |
| 2478 |
|
✗ |
pabcu(jl, ja, 3*kflev+1) = 0. |
| 2479 |
|
|
END DO |
| 2480 |
|
|
END DO |
| 2481 |
|
|
|
| 2482 |
|
✗ |
DO jk = 1, kflev |
| 2483 |
|
✗ |
jj = (jk-1)*ng1p1 + 1 |
| 2484 |
|
✗ |
jjpn = jj + ng1 |
| 2485 |
|
✗ |
jkl = kflev + 1 - jk |
| 2486 |
|
|
|
| 2487 |
|
|
! * 5.1 CUMULATIVE AEROSOL AMOUNTS FROM TOP OF ATMOSPHERE |
| 2488 |
|
|
! -------------------------------------------------- |
| 2489 |
|
|
|
| 2490 |
|
|
|
| 2491 |
|
✗ |
jae1 = 3*kflev + 1 - jj |
| 2492 |
|
✗ |
jae2 = 3*kflev + 1 - (jj+1) |
| 2493 |
|
✗ |
jae3 = 3*kflev + 1 - jjpn |
| 2494 |
|
✗ |
DO jae = 1, 5 |
| 2495 |
|
✗ |
DO jl = 1, kdlon |
| 2496 |
|
|
zuaer(jl, jae) = (raer(jae,1)*paer(jl,jkl,1)+raer(jae,2)*paer(jl,jkl, & |
| 2497 |
|
|
2)+raer(jae,3)*paer(jl,jkl,3)+raer(jae,4)*paer(jl,jkl,4)+ & |
| 2498 |
|
|
raer(jae,5)*paer(jl,jkl,5))/(zduc(jl,jae1)+zduc(jl,jae2)+zduc(jl, & |
| 2499 |
|
✗ |
jae3)) |
| 2500 |
|
|
END DO |
| 2501 |
|
|
END DO |
| 2502 |
|
|
|
| 2503 |
|
|
! * 5.2 INTRODUCES TEMPERATURE EFFECTS ON ABSORBER AMOUNTS |
| 2504 |
|
|
! -------------------------------------------------- |
| 2505 |
|
|
|
| 2506 |
|
|
|
| 2507 |
|
✗ |
DO jl = 1, kdlon |
| 2508 |
|
✗ |
ztavi(jl) = ptave(jl, jkl) |
| 2509 |
|
✗ |
ztcon(jl) = exp(6.08*(296./ztavi(jl)-1.)) |
| 2510 |
|
✗ |
ztx = ztavi(jl) - tref |
| 2511 |
|
✗ |
ztx2 = ztx*ztx |
| 2512 |
|
✗ |
zzably = zably(jl, 6, jae1) + zably(jl, 6, jae2) + zably(jl, 6, jae3) |
| 2513 |
|
✗ |
zup = min(max(0.5*r10e*log(zzably)+5.,0._8), 6._8) |
| 2514 |
|
✗ |
zcah1 = at(1, 1) + zup*(at(1,2)+zup*(at(1,3))) |
| 2515 |
|
✗ |
zcbh1 = bt(1, 1) + zup*(bt(1,2)+zup*(bt(1,3))) |
| 2516 |
|
✗ |
zpsh1(jl) = exp(zcah1*ztx+zcbh1*ztx2) |
| 2517 |
|
✗ |
zcah2 = at(2, 1) + zup*(at(2,2)+zup*(at(2,3))) |
| 2518 |
|
✗ |
zcbh2 = bt(2, 1) + zup*(bt(2,2)+zup*(bt(2,3))) |
| 2519 |
|
✗ |
zpsh2(jl) = exp(zcah2*ztx+zcbh2*ztx2) |
| 2520 |
|
✗ |
zcah3 = at(3, 1) + zup*(at(3,2)+zup*(at(3,3))) |
| 2521 |
|
✗ |
zcbh3 = bt(3, 1) + zup*(bt(3,2)+zup*(bt(3,3))) |
| 2522 |
|
✗ |
zpsh3(jl) = exp(zcah3*ztx+zcbh3*ztx2) |
| 2523 |
|
✗ |
zcah4 = at(4, 1) + zup*(at(4,2)+zup*(at(4,3))) |
| 2524 |
|
✗ |
zcbh4 = bt(4, 1) + zup*(bt(4,2)+zup*(bt(4,3))) |
| 2525 |
|
✗ |
zpsh4(jl) = exp(zcah4*ztx+zcbh4*ztx2) |
| 2526 |
|
✗ |
zcah5 = at(5, 1) + zup*(at(5,2)+zup*(at(5,3))) |
| 2527 |
|
✗ |
zcbh5 = bt(5, 1) + zup*(bt(5,2)+zup*(bt(5,3))) |
| 2528 |
|
✗ |
zpsh5(jl) = exp(zcah5*ztx+zcbh5*ztx2) |
| 2529 |
|
✗ |
zcah6 = at(6, 1) + zup*(at(6,2)+zup*(at(6,3))) |
| 2530 |
|
✗ |
zcbh6 = bt(6, 1) + zup*(bt(6,2)+zup*(bt(6,3))) |
| 2531 |
|
✗ |
zpsh6(jl) = exp(zcah6*ztx+zcbh6*ztx2) |
| 2532 |
|
✗ |
zphm6(jl) = exp(-5.81E-4*ztx-1.13E-6*ztx2) |
| 2533 |
|
✗ |
zpsm6(jl) = exp(-5.57E-4*ztx-3.30E-6*ztx2) |
| 2534 |
|
✗ |
zphn6(jl) = exp(-3.46E-5*ztx+2.05E-7*ztx2) |
| 2535 |
|
✗ |
zpsn6(jl) = exp(3.70E-3*ztx-2.30E-6*ztx2) |
| 2536 |
|
|
END DO |
| 2537 |
|
|
|
| 2538 |
|
✗ |
DO jl = 1, kdlon |
| 2539 |
|
✗ |
ztavi(jl) = ptave(jl, jkl) |
| 2540 |
|
✗ |
ztx = ztavi(jl) - tref |
| 2541 |
|
✗ |
ztx2 = ztx*ztx |
| 2542 |
|
✗ |
zzably = zably(jl, 9, jae1) + zably(jl, 9, jae2) + zably(jl, 9, jae3) |
| 2543 |
|
✗ |
zalup = r10e*log(zzably) |
| 2544 |
|
✗ |
zup = max(0._8, 5.0+0.5*zalup) |
| 2545 |
|
✗ |
zpsc2(jl) = (ztavi(jl)/tref)**zup |
| 2546 |
|
✗ |
zcac8 = at(8, 1) + zup*(at(8,2)+zup*(at(8,3))) |
| 2547 |
|
✗ |
zcbc8 = bt(8, 1) + zup*(bt(8,2)+zup*(bt(8,3))) |
| 2548 |
|
✗ |
zpsc3(jl) = exp(zcac8*ztx+zcbc8*ztx2) |
| 2549 |
|
✗ |
zphio(jl) = exp(oct(1)*ztx+oct(2)*ztx2) |
| 2550 |
|
✗ |
zpsio(jl) = exp(2.*(oct(3)*ztx+oct(4)*ztx2)) |
| 2551 |
|
|
END DO |
| 2552 |
|
|
|
| 2553 |
|
✗ |
DO jkk = jj, jjpn |
| 2554 |
|
✗ |
jc = 3*kflev + 1 - jkk |
| 2555 |
|
✗ |
jcp1 = jc + 1 |
| 2556 |
|
✗ |
DO jl = 1, kdlon |
| 2557 |
|
✗ |
zdiff = pview(jl) |
| 2558 |
|
✗ |
pabcu(jl, 10, jc) = pabcu(jl, 10, jcp1) + zably(jl, 10, jc)*zdiff |
| 2559 |
|
|
pabcu(jl, 11, jc) = pabcu(jl, 11, jcp1) + zably(jl, 11, jc)*ztcon(jl) & |
| 2560 |
|
✗ |
*zdiff |
| 2561 |
|
|
|
| 2562 |
|
|
pabcu(jl, 12, jc) = pabcu(jl, 12, jcp1) + zably(jl, 12, jc)*zphio(jl) & |
| 2563 |
|
✗ |
*zdiff |
| 2564 |
|
|
pabcu(jl, 13, jc) = pabcu(jl, 13, jcp1) + zably(jl, 13, jc)*zpsio(jl) & |
| 2565 |
|
✗ |
*zdiff |
| 2566 |
|
|
|
| 2567 |
|
|
pabcu(jl, 7, jc) = pabcu(jl, 7, jcp1) + zably(jl, 9, jc)*zpsc2(jl)* & |
| 2568 |
|
✗ |
zdiff |
| 2569 |
|
|
pabcu(jl, 8, jc) = pabcu(jl, 8, jcp1) + zably(jl, 9, jc)*zpsc3(jl)* & |
| 2570 |
|
✗ |
zdiff |
| 2571 |
|
|
pabcu(jl, 9, jc) = pabcu(jl, 9, jcp1) + zably(jl, 9, jc)*zpsc3(jl)* & |
| 2572 |
|
✗ |
zdiff |
| 2573 |
|
|
|
| 2574 |
|
|
pabcu(jl, 1, jc) = pabcu(jl, 1, jcp1) + zably(jl, 6, jc)*zpsh1(jl)* & |
| 2575 |
|
✗ |
zdiff |
| 2576 |
|
|
pabcu(jl, 2, jc) = pabcu(jl, 2, jcp1) + zably(jl, 6, jc)*zpsh2(jl)* & |
| 2577 |
|
✗ |
zdiff |
| 2578 |
|
|
pabcu(jl, 3, jc) = pabcu(jl, 3, jcp1) + zably(jl, 6, jc)*zpsh5(jl)* & |
| 2579 |
|
✗ |
zdiff |
| 2580 |
|
|
pabcu(jl, 4, jc) = pabcu(jl, 4, jcp1) + zably(jl, 6, jc)*zpsh3(jl)* & |
| 2581 |
|
✗ |
zdiff |
| 2582 |
|
|
pabcu(jl, 5, jc) = pabcu(jl, 5, jcp1) + zably(jl, 6, jc)*zpsh4(jl)* & |
| 2583 |
|
✗ |
zdiff |
| 2584 |
|
|
pabcu(jl, 6, jc) = pabcu(jl, 6, jcp1) + zably(jl, 6, jc)*zpsh6(jl)* & |
| 2585 |
|
✗ |
zdiff |
| 2586 |
|
|
|
| 2587 |
|
|
pabcu(jl, 14, jc) = pabcu(jl, 14, jcp1) + zuaer(jl, 1)*zduc(jl, jc)* & |
| 2588 |
|
✗ |
zdiff |
| 2589 |
|
|
pabcu(jl, 15, jc) = pabcu(jl, 15, jcp1) + zuaer(jl, 2)*zduc(jl, jc)* & |
| 2590 |
|
✗ |
zdiff |
| 2591 |
|
|
pabcu(jl, 16, jc) = pabcu(jl, 16, jcp1) + zuaer(jl, 3)*zduc(jl, jc)* & |
| 2592 |
|
✗ |
zdiff |
| 2593 |
|
|
pabcu(jl, 17, jc) = pabcu(jl, 17, jcp1) + zuaer(jl, 4)*zduc(jl, jc)* & |
| 2594 |
|
✗ |
zdiff |
| 2595 |
|
|
pabcu(jl, 18, jc) = pabcu(jl, 18, jcp1) + zuaer(jl, 5)*zduc(jl, jc)* & |
| 2596 |
|
✗ |
zdiff |
| 2597 |
|
|
|
| 2598 |
|
|
|
| 2599 |
|
|
|
| 2600 |
|
✗ |
IF (type_trac=='repr') THEN |
| 2601 |
|
|
ELSE |
| 2602 |
|
|
pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
| 2603 |
|
✗ |
zably(jl, 8, jc)*rch4/rco2*zphm6(jl)*zdiff |
| 2604 |
|
|
pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
| 2605 |
|
✗ |
zably(jl, 9, jc)*rch4/rco2*zpsm6(jl)*zdiff |
| 2606 |
|
|
pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
| 2607 |
|
✗ |
zably(jl, 8, jc)*rn2o/rco2*zphn6(jl)*zdiff |
| 2608 |
|
|
pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
| 2609 |
|
✗ |
zably(jl, 9, jc)*rn2o/rco2*zpsn6(jl)*zdiff |
| 2610 |
|
|
|
| 2611 |
|
|
pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
| 2612 |
|
✗ |
zably(jl, 8, jc)*rcfc11/rco2*zdiff |
| 2613 |
|
|
pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
| 2614 |
|
✗ |
zably(jl, 8, jc)*rcfc12/rco2*zdiff |
| 2615 |
|
|
END IF |
| 2616 |
|
|
|
| 2617 |
|
|
END DO |
| 2618 |
|
|
END DO |
| 2619 |
|
|
|
| 2620 |
|
|
END DO |
| 2621 |
|
|
|
| 2622 |
|
|
|
| 2623 |
|
✗ |
RETURN |
| 2624 |
|
|
END SUBROUTINE lwu_lmdar4 |
| 2625 |
|
✗ |
SUBROUTINE lwbv_lmdar4(klim, pdp, pdt0, pemis, ppmb, ptl, ptave, pabcu, & |
| 2626 |
|
|
pfluc, pbint, pbsui, pcts, pcntrb) |
| 2627 |
|
|
USE dimphy |
| 2628 |
|
|
IMPLICIT NONE |
| 2629 |
|
|
include "raddimlw.h" |
| 2630 |
|
|
include "YOMCST.h" |
| 2631 |
|
|
|
| 2632 |
|
|
! PURPOSE. |
| 2633 |
|
|
! -------- |
| 2634 |
|
|
! TO COMPUTE THE PLANCK FUNCTION AND PERFORM THE |
| 2635 |
|
|
! VERTICAL INTEGRATION. SPLIT OUT FROM LW FOR MEMORY |
| 2636 |
|
|
! SAVING |
| 2637 |
|
|
|
| 2638 |
|
|
! METHOD. |
| 2639 |
|
|
! ------- |
| 2640 |
|
|
|
| 2641 |
|
|
! 1. COMPUTES THE PLANCK FUNCTIONS ON THE INTERFACES AND THE |
| 2642 |
|
|
! GRADIENT OF PLANCK FUNCTIONS IN THE LAYERS. |
| 2643 |
|
|
! 2. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING THE CON- |
| 2644 |
|
|
! TRIBUTIONS OF THE ADJACENT AND DISTANT LAYERS AND THOSE FROM THE |
| 2645 |
|
|
! BOUNDARIES. |
| 2646 |
|
|
! 3. COMPUTES THE CLEAR-SKY COOLING RATES. |
| 2647 |
|
|
|
| 2648 |
|
|
! REFERENCE. |
| 2649 |
|
|
! ---------- |
| 2650 |
|
|
|
| 2651 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 2652 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 2653 |
|
|
|
| 2654 |
|
|
! AUTHOR. |
| 2655 |
|
|
! ------- |
| 2656 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 2657 |
|
|
|
| 2658 |
|
|
! MODIFICATIONS. |
| 2659 |
|
|
! -------------- |
| 2660 |
|
|
! ORIGINAL : 89-07-14 |
| 2661 |
|
|
! MODIFICATION : 93-10-15 M.HAMRUD (SPLIT OUT FROM LW TO SAVE |
| 2662 |
|
|
! MEMORY) |
| 2663 |
|
|
! ----------------------------------------------------------------------- |
| 2664 |
|
|
! * ARGUMENTS: |
| 2665 |
|
|
INTEGER klim |
| 2666 |
|
|
|
| 2667 |
|
|
REAL (KIND=8) pdp(kdlon, kflev) |
| 2668 |
|
|
REAL (KIND=8) pdt0(kdlon) |
| 2669 |
|
|
REAL (KIND=8) pemis(kdlon) |
| 2670 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) |
| 2671 |
|
|
REAL (KIND=8) ptl(kdlon, kflev+1) |
| 2672 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) |
| 2673 |
|
|
|
| 2674 |
|
|
REAL (KIND=8) pfluc(kdlon, 2, kflev+1) |
| 2675 |
|
|
|
| 2676 |
|
|
REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) |
| 2677 |
|
|
REAL (KIND=8) pbint(kdlon, kflev+1) |
| 2678 |
|
|
REAL (KIND=8) pbsui(kdlon) |
| 2679 |
|
|
REAL (KIND=8) pcts(kdlon, kflev) |
| 2680 |
|
|
REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) |
| 2681 |
|
|
|
| 2682 |
|
|
! ------------------------------------------------------------------------- |
| 2683 |
|
|
|
| 2684 |
|
|
! * LOCAL VARIABLES: |
| 2685 |
|
✗ |
REAL (KIND=8) zb(kdlon, ninter, kflev+1) |
| 2686 |
|
✗ |
REAL (KIND=8) zbsur(kdlon, ninter) |
| 2687 |
|
✗ |
REAL (KIND=8) zbtop(kdlon, ninter) |
| 2688 |
|
✗ |
REAL (KIND=8) zdbsl(kdlon, ninter, kflev*2) |
| 2689 |
|
✗ |
REAL (KIND=8) zga(kdlon, 8, 2, kflev) |
| 2690 |
|
✗ |
REAL (KIND=8) zgb(kdlon, 8, 2, kflev) |
| 2691 |
|
✗ |
REAL (KIND=8) zgasur(kdlon, 8, 2) |
| 2692 |
|
✗ |
REAL (KIND=8) zgbsur(kdlon, 8, 2) |
| 2693 |
|
✗ |
REAL (KIND=8) zgatop(kdlon, 8, 2) |
| 2694 |
|
✗ |
REAL (KIND=8) zgbtop(kdlon, 8, 2) |
| 2695 |
|
|
|
| 2696 |
|
|
INTEGER nuaer, ntraer |
| 2697 |
|
|
! ------------------------------------------------------------------ |
| 2698 |
|
|
! * COMPUTES PLANCK FUNCTIONS: |
| 2699 |
|
|
CALL lwb_lmdar4(pdt0, ptave, ptl, zb, pbint, pbsui, zbsur, zbtop, zdbsl, & |
| 2700 |
|
✗ |
zga, zgb, zgasur, zgbsur, zgatop, zgbtop) |
| 2701 |
|
|
! ------------------------------------------------------------------ |
| 2702 |
|
|
! * PERFORMS THE VERTICAL INTEGRATION: |
| 2703 |
|
✗ |
nuaer = nua |
| 2704 |
|
✗ |
ntraer = ntra |
| 2705 |
|
|
CALL lwv_lmdar4(nuaer, ntraer, klim, pabcu, zb, pbint, pbsui, zbsur, zbtop, & |
| 2706 |
|
|
zdbsl, pemis, ppmb, ptave, zga, zgb, zgasur, zgbsur, zgatop, zgbtop, & |
| 2707 |
|
✗ |
pcntrb, pcts, pfluc) |
| 2708 |
|
|
! ------------------------------------------------------------------ |
| 2709 |
|
✗ |
RETURN |
| 2710 |
|
|
END SUBROUTINE lwbv_lmdar4 |
| 2711 |
|
✗ |
SUBROUTINE lwc_lmdar4(klim, pcldld, pcldlu, pemis, pfluc, pbint, pbsuin, & |
| 2712 |
|
✗ |
pcts, pcntrb, pflux) |
| 2713 |
|
|
USE dimphy |
| 2714 |
|
|
IMPLICIT NONE |
| 2715 |
|
|
include "radepsi.h" |
| 2716 |
|
|
include "radopt.h" |
| 2717 |
|
|
|
| 2718 |
|
|
! PURPOSE. |
| 2719 |
|
|
! -------- |
| 2720 |
|
|
! INTRODUCES CLOUD EFFECTS ON LONGWAVE FLUXES OR |
| 2721 |
|
|
! RADIANCES |
| 2722 |
|
|
|
| 2723 |
|
|
! EXPLICIT ARGUMENTS : |
| 2724 |
|
|
! -------------------- |
| 2725 |
|
|
! ==== INPUTS === |
| 2726 |
|
|
! PBINT : (KDLON,0:KFLEV) ; HALF LEVEL PLANCK FUNCTION |
| 2727 |
|
|
! PBSUIN : (KDLON) ; SURFACE PLANCK FUNCTION |
| 2728 |
|
|
! PCLDLD : (KDLON,KFLEV) ; DOWNWARD EFFECTIVE CLOUD FRACTION |
| 2729 |
|
|
! PCLDLU : (KDLON,KFLEV) ; UPWARD EFFECTIVE CLOUD FRACTION |
| 2730 |
|
|
! PCNTRB : (KDLON,KFLEV+1,KFLEV+1); CLEAR-SKY ENERGY EXCHANGE |
| 2731 |
|
|
! PCTS : (KDLON,KFLEV) ; CLEAR-SKY LAYER COOLING-TO-SPACE |
| 2732 |
|
|
! PEMIS : (KDLON) ; SURFACE EMISSIVITY |
| 2733 |
|
|
! PFLUC |
| 2734 |
|
|
! ==== OUTPUTS === |
| 2735 |
|
|
! PFLUX(KDLON,2,KFLEV) ; RADIATIVE FLUXES : |
| 2736 |
|
|
! 1 ==> UPWARD FLUX TOTAL |
| 2737 |
|
|
! 2 ==> DOWNWARD FLUX TOTAL |
| 2738 |
|
|
|
| 2739 |
|
|
! METHOD. |
| 2740 |
|
|
! ------- |
| 2741 |
|
|
|
| 2742 |
|
|
! 1. INITIALIZES ALL FLUXES TO CLEAR-SKY VALUES |
| 2743 |
|
|
! 2. EFFECT OF ONE OVERCAST UNITY EMISSIVITY CLOUD LAYER |
| 2744 |
|
|
! 3. EFFECT OF SEMI-TRANSPARENT, PARTIAL OR MULTI-LAYERED |
| 2745 |
|
|
! CLOUDS |
| 2746 |
|
|
|
| 2747 |
|
|
! REFERENCE. |
| 2748 |
|
|
! ---------- |
| 2749 |
|
|
|
| 2750 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 2751 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 2752 |
|
|
|
| 2753 |
|
|
! AUTHOR. |
| 2754 |
|
|
! ------- |
| 2755 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 2756 |
|
|
|
| 2757 |
|
|
! MODIFICATIONS. |
| 2758 |
|
|
! -------------- |
| 2759 |
|
|
! ORIGINAL : 89-07-14 |
| 2760 |
|
|
! Voigt lines (loop 231 to 233) - JJM & PhD - 01/96 |
| 2761 |
|
|
! ----------------------------------------------------------------------- |
| 2762 |
|
|
! * ARGUMENTS: |
| 2763 |
|
|
INTEGER klim |
| 2764 |
|
|
REAL (KIND=8) pfluc(kdlon, 2, kflev+1) ! CLEAR-SKY RADIATIVE FLUXES |
| 2765 |
|
|
REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF LEVEL PLANCK FUNCTION |
| 2766 |
|
|
REAL (KIND=8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
| 2767 |
|
|
REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) !CLEAR-SKY ENERGY EXCHANGE |
| 2768 |
|
|
REAL (KIND=8) pcts(kdlon, kflev) ! CLEAR-SKY LAYER COOLING-TO-SPACE |
| 2769 |
|
|
|
| 2770 |
|
|
REAL (KIND=8) pcldld(kdlon, kflev) |
| 2771 |
|
|
REAL (KIND=8) pcldlu(kdlon, kflev) |
| 2772 |
|
|
REAL (KIND=8) pemis(kdlon) |
| 2773 |
|
|
|
| 2774 |
|
|
REAL (KIND=8) pflux(kdlon, 2, kflev+1) |
| 2775 |
|
|
! ----------------------------------------------------------------------- |
| 2776 |
|
|
! * LOCAL VARIABLES: |
| 2777 |
|
✗ |
INTEGER imx(kdlon), imxp(kdlon) |
| 2778 |
|
|
|
| 2779 |
|
✗ |
REAL (KIND=8) zclear(kdlon), zcloud(kdlon), zdnf(kdlon, kflev+1, kflev+1), & |
| 2780 |
|
✗ |
zfd(kdlon), zfn10(kdlon), zfu(kdlon), zupf(kdlon, kflev+1, kflev+1) |
| 2781 |
|
✗ |
REAL (KIND=8) zclm(kdlon, kflev+1, kflev+1) |
| 2782 |
|
|
|
| 2783 |
|
|
INTEGER jk, jl, imaxc, imx1, imx2, jkj, jkp1, jkm1 |
| 2784 |
|
|
INTEGER jk1, jk2, jkc, jkcp1, jcloud |
| 2785 |
|
|
INTEGER imxm1, imxp1 |
| 2786 |
|
|
REAL (KIND=8) zcfrac |
| 2787 |
|
|
|
| 2788 |
|
|
! ------------------------------------------------------------------ |
| 2789 |
|
|
|
| 2790 |
|
|
! * 1. INITIALIZATION |
| 2791 |
|
|
! -------------- |
| 2792 |
|
|
|
| 2793 |
|
|
|
| 2794 |
|
|
imaxc = 0 |
| 2795 |
|
|
|
| 2796 |
|
✗ |
DO jl = 1, kdlon |
| 2797 |
|
✗ |
imx(jl) = 0 |
| 2798 |
|
✗ |
imxp(jl) = 0 |
| 2799 |
|
✗ |
zcloud(jl) = 0. |
| 2800 |
|
|
END DO |
| 2801 |
|
|
|
| 2802 |
|
|
! * 1.1 SEARCH THE LAYER INDEX OF THE HIGHEST CLOUD |
| 2803 |
|
|
! ------------------------------------------- |
| 2804 |
|
|
|
| 2805 |
|
|
|
| 2806 |
|
✗ |
DO jk = 1, kflev |
| 2807 |
|
✗ |
DO jl = 1, kdlon |
| 2808 |
|
✗ |
imx1 = imx(jl) |
| 2809 |
|
|
imx2 = jk |
| 2810 |
|
✗ |
IF (pcldlu(jl,jk)>zepsc) THEN |
| 2811 |
|
✗ |
imxp(jl) = imx2 |
| 2812 |
|
|
ELSE |
| 2813 |
|
✗ |
imxp(jl) = imx1 |
| 2814 |
|
|
END IF |
| 2815 |
|
✗ |
imaxc = max(imxp(jl), imaxc) |
| 2816 |
|
✗ |
imx(jl) = imxp(jl) |
| 2817 |
|
|
END DO |
| 2818 |
|
|
END DO |
| 2819 |
|
|
! GM******* |
| 2820 |
|
|
imaxc = kflev |
| 2821 |
|
|
! GM******* |
| 2822 |
|
|
|
| 2823 |
|
✗ |
DO jk = 1, kflev + 1 |
| 2824 |
|
✗ |
DO jl = 1, kdlon |
| 2825 |
|
✗ |
pflux(jl, 1, jk) = pfluc(jl, 1, jk) |
| 2826 |
|
✗ |
pflux(jl, 2, jk) = pfluc(jl, 2, jk) |
| 2827 |
|
|
END DO |
| 2828 |
|
|
END DO |
| 2829 |
|
|
|
| 2830 |
|
|
! ------------------------------------------------------------------ |
| 2831 |
|
|
|
| 2832 |
|
|
! * 2. EFFECT OF CLOUDINESS ON LONGWAVE FLUXES |
| 2833 |
|
|
! --------------------------------------- |
| 2834 |
|
|
|
| 2835 |
|
✗ |
IF (imaxc>0) THEN |
| 2836 |
|
|
|
| 2837 |
|
|
imxp1 = imaxc + 1 |
| 2838 |
|
✗ |
imxm1 = imaxc - 1 |
| 2839 |
|
|
|
| 2840 |
|
|
! * 2.0 INITIALIZE TO CLEAR-SKY FLUXES |
| 2841 |
|
|
! ------------------------------ |
| 2842 |
|
|
|
| 2843 |
|
|
|
| 2844 |
|
✗ |
DO jk1 = 1, kflev + 1 |
| 2845 |
|
✗ |
DO jk2 = 1, kflev + 1 |
| 2846 |
|
✗ |
DO jl = 1, kdlon |
| 2847 |
|
✗ |
zupf(jl, jk2, jk1) = pfluc(jl, 1, jk1) |
| 2848 |
|
✗ |
zdnf(jl, jk2, jk1) = pfluc(jl, 2, jk1) |
| 2849 |
|
|
END DO |
| 2850 |
|
|
END DO |
| 2851 |
|
|
END DO |
| 2852 |
|
|
|
| 2853 |
|
|
! * 2.1 FLUXES FOR ONE OVERCAST UNITY EMISSIVITY CLOUD |
| 2854 |
|
|
! ---------------------------------------------- |
| 2855 |
|
|
|
| 2856 |
|
|
|
| 2857 |
|
✗ |
DO jkc = 1, imaxc |
| 2858 |
|
|
jcloud = jkc |
| 2859 |
|
✗ |
jkcp1 = jcloud + 1 |
| 2860 |
|
|
|
| 2861 |
|
|
! * 2.1.1 ABOVE THE CLOUD |
| 2862 |
|
|
! --------------- |
| 2863 |
|
|
|
| 2864 |
|
|
|
| 2865 |
|
✗ |
DO jk = jkcp1, kflev + 1 |
| 2866 |
|
✗ |
jkm1 = jk - 1 |
| 2867 |
|
✗ |
DO jl = 1, kdlon |
| 2868 |
|
✗ |
zfu(jl) = 0. |
| 2869 |
|
|
END DO |
| 2870 |
|
✗ |
IF (jk>jkcp1) THEN |
| 2871 |
|
✗ |
DO jkj = jkcp1, jkm1 |
| 2872 |
|
✗ |
DO jl = 1, kdlon |
| 2873 |
|
✗ |
zfu(jl) = zfu(jl) + pcntrb(jl, jk, jkj) |
| 2874 |
|
|
END DO |
| 2875 |
|
|
END DO |
| 2876 |
|
|
END IF |
| 2877 |
|
|
|
| 2878 |
|
✗ |
DO jl = 1, kdlon |
| 2879 |
|
✗ |
zupf(jl, jkcp1, jk) = pbint(jl, jk) - zfu(jl) |
| 2880 |
|
|
END DO |
| 2881 |
|
|
END DO |
| 2882 |
|
|
|
| 2883 |
|
|
! * 2.1.2 BELOW THE CLOUD |
| 2884 |
|
|
! --------------- |
| 2885 |
|
|
|
| 2886 |
|
|
|
| 2887 |
|
✗ |
DO jk = 1, jcloud |
| 2888 |
|
✗ |
jkp1 = jk + 1 |
| 2889 |
|
✗ |
DO jl = 1, kdlon |
| 2890 |
|
✗ |
zfd(jl) = 0. |
| 2891 |
|
|
END DO |
| 2892 |
|
|
|
| 2893 |
|
✗ |
IF (jk<jcloud) THEN |
| 2894 |
|
✗ |
DO jkj = jkp1, jcloud |
| 2895 |
|
✗ |
DO jl = 1, kdlon |
| 2896 |
|
✗ |
zfd(jl) = zfd(jl) + pcntrb(jl, jk, jkj) |
| 2897 |
|
|
END DO |
| 2898 |
|
|
END DO |
| 2899 |
|
|
END IF |
| 2900 |
|
✗ |
DO jl = 1, kdlon |
| 2901 |
|
✗ |
zdnf(jl, jkcp1, jk) = -pbint(jl, jk) - zfd(jl) |
| 2902 |
|
|
END DO |
| 2903 |
|
|
END DO |
| 2904 |
|
|
|
| 2905 |
|
|
END DO |
| 2906 |
|
|
|
| 2907 |
|
|
! * 2.2 CLOUD COVER MATRIX |
| 2908 |
|
|
! ------------------ |
| 2909 |
|
|
|
| 2910 |
|
|
! * ZCLM(JK1,JK2) IS THE OBSCURATION FACTOR BY CLOUD LAYERS BETWEEN |
| 2911 |
|
|
! HALF-LEVELS JK1 AND JK2 AS SEEN FROM JK1 |
| 2912 |
|
|
|
| 2913 |
|
|
|
| 2914 |
|
✗ |
DO jk1 = 1, kflev + 1 |
| 2915 |
|
✗ |
DO jk2 = 1, kflev + 1 |
| 2916 |
|
✗ |
DO jl = 1, kdlon |
| 2917 |
|
✗ |
zclm(jl, jk1, jk2) = 0. |
| 2918 |
|
|
END DO |
| 2919 |
|
|
END DO |
| 2920 |
|
|
END DO |
| 2921 |
|
|
|
| 2922 |
|
|
! * 2.4 CLOUD COVER BELOW THE LEVEL OF CALCULATION |
| 2923 |
|
|
! ------------------------------------------ |
| 2924 |
|
|
|
| 2925 |
|
|
|
| 2926 |
|
✗ |
DO jk1 = 2, kflev + 1 |
| 2927 |
|
✗ |
DO jl = 1, kdlon |
| 2928 |
|
✗ |
zclear(jl) = 1. |
| 2929 |
|
✗ |
zcloud(jl) = 0. |
| 2930 |
|
|
END DO |
| 2931 |
|
✗ |
DO jk = jk1 - 1, 1, -1 |
| 2932 |
|
✗ |
DO jl = 1, kdlon |
| 2933 |
|
✗ |
IF (novlp==1) THEN |
| 2934 |
|
|
! * maximum-random |
| 2935 |
|
|
zclear(jl) = zclear(jl)*(1.0-max(pcldlu(jl, & |
| 2936 |
|
✗ |
jk),zcloud(jl)))/(1.0-min(zcloud(jl),1.-zepsec)) |
| 2937 |
|
✗ |
zclm(jl, jk1, jk) = 1.0 - zclear(jl) |
| 2938 |
|
✗ |
zcloud(jl) = pcldlu(jl, jk) |
| 2939 |
|
|
ELSE IF (novlp==2) THEN |
| 2940 |
|
|
! * maximum |
| 2941 |
|
|
zcloud(jl) = max(zcloud(jl), pcldlu(jl,jk)) |
| 2942 |
|
|
zclm(jl, jk1, jk) = zcloud(jl) |
| 2943 |
|
|
ELSE IF (novlp==3) THEN |
| 2944 |
|
|
! * random |
| 2945 |
|
|
zclear(jl) = zclear(jl)*(1.0-pcldlu(jl,jk)) |
| 2946 |
|
|
zcloud(jl) = 1.0 - zclear(jl) |
| 2947 |
|
|
zclm(jl, jk1, jk) = zcloud(jl) |
| 2948 |
|
|
END IF |
| 2949 |
|
|
END DO |
| 2950 |
|
|
END DO |
| 2951 |
|
|
END DO |
| 2952 |
|
|
|
| 2953 |
|
|
! * 2.5 CLOUD COVER ABOVE THE LEVEL OF CALCULATION |
| 2954 |
|
|
! ------------------------------------------ |
| 2955 |
|
|
|
| 2956 |
|
|
|
| 2957 |
|
✗ |
DO jk1 = 1, kflev |
| 2958 |
|
✗ |
DO jl = 1, kdlon |
| 2959 |
|
✗ |
zclear(jl) = 1. |
| 2960 |
|
✗ |
zcloud(jl) = 0. |
| 2961 |
|
|
END DO |
| 2962 |
|
✗ |
DO jk = jk1, kflev |
| 2963 |
|
✗ |
DO jl = 1, kdlon |
| 2964 |
|
✗ |
IF (novlp==1) THEN |
| 2965 |
|
|
! * maximum-random |
| 2966 |
|
|
zclear(jl) = zclear(jl)*(1.0-max(pcldld(jl, & |
| 2967 |
|
✗ |
jk),zcloud(jl)))/(1.0-min(zcloud(jl),1.-zepsec)) |
| 2968 |
|
✗ |
zclm(jl, jk1, jk) = 1.0 - zclear(jl) |
| 2969 |
|
✗ |
zcloud(jl) = pcldld(jl, jk) |
| 2970 |
|
|
ELSE IF (novlp==2) THEN |
| 2971 |
|
|
! * maximum |
| 2972 |
|
|
zcloud(jl) = max(zcloud(jl), pcldld(jl,jk)) |
| 2973 |
|
|
zclm(jl, jk1, jk) = zcloud(jl) |
| 2974 |
|
|
ELSE IF (novlp==3) THEN |
| 2975 |
|
|
! * random |
| 2976 |
|
|
zclear(jl) = zclear(jl)*(1.0-pcldld(jl,jk)) |
| 2977 |
|
|
zcloud(jl) = 1.0 - zclear(jl) |
| 2978 |
|
|
zclm(jl, jk1, jk) = zcloud(jl) |
| 2979 |
|
|
END IF |
| 2980 |
|
|
END DO |
| 2981 |
|
|
END DO |
| 2982 |
|
|
END DO |
| 2983 |
|
|
|
| 2984 |
|
|
! * 3. FLUXES FOR PARTIAL/MULTIPLE LAYERED CLOUDINESS |
| 2985 |
|
|
! ---------------------------------------------- |
| 2986 |
|
|
|
| 2987 |
|
|
|
| 2988 |
|
|
! * 3.1 DOWNWARD FLUXES |
| 2989 |
|
|
! --------------- |
| 2990 |
|
|
|
| 2991 |
|
|
|
| 2992 |
|
✗ |
DO jl = 1, kdlon |
| 2993 |
|
✗ |
pflux(jl, 2, kflev+1) = 0. |
| 2994 |
|
|
END DO |
| 2995 |
|
|
|
| 2996 |
|
✗ |
DO jk1 = kflev, 1, -1 |
| 2997 |
|
|
|
| 2998 |
|
|
! * CONTRIBUTION FROM CLEAR-SKY FRACTION |
| 2999 |
|
|
|
| 3000 |
|
✗ |
DO jl = 1, kdlon |
| 3001 |
|
✗ |
zfd(jl) = (1.-zclm(jl,jk1,kflev))*zdnf(jl, 1, jk1) |
| 3002 |
|
|
END DO |
| 3003 |
|
|
|
| 3004 |
|
|
! * CONTRIBUTION FROM ADJACENT CLOUD |
| 3005 |
|
|
|
| 3006 |
|
✗ |
DO jl = 1, kdlon |
| 3007 |
|
✗ |
zfd(jl) = zfd(jl) + zclm(jl, jk1, jk1)*zdnf(jl, jk1+1, jk1) |
| 3008 |
|
|
END DO |
| 3009 |
|
|
|
| 3010 |
|
|
! * CONTRIBUTION FROM OTHER CLOUDY FRACTIONS |
| 3011 |
|
|
|
| 3012 |
|
✗ |
DO jk = kflev - 1, jk1, -1 |
| 3013 |
|
✗ |
DO jl = 1, kdlon |
| 3014 |
|
✗ |
zcfrac = zclm(jl, jk1, jk+1) - zclm(jl, jk1, jk) |
| 3015 |
|
✗ |
zfd(jl) = zfd(jl) + zcfrac*zdnf(jl, jk+2, jk1) |
| 3016 |
|
|
END DO |
| 3017 |
|
|
END DO |
| 3018 |
|
|
|
| 3019 |
|
✗ |
DO jl = 1, kdlon |
| 3020 |
|
✗ |
pflux(jl, 2, jk1) = zfd(jl) |
| 3021 |
|
|
END DO |
| 3022 |
|
|
|
| 3023 |
|
|
END DO |
| 3024 |
|
|
|
| 3025 |
|
|
! * 3.2 UPWARD FLUX AT THE SURFACE |
| 3026 |
|
|
! -------------------------- |
| 3027 |
|
|
|
| 3028 |
|
|
|
| 3029 |
|
✗ |
DO jl = 1, kdlon |
| 3030 |
|
✗ |
pflux(jl, 1, 1) = pemis(jl)*pbsuin(jl) - (1.-pemis(jl))*pflux(jl, 2, 1) |
| 3031 |
|
|
END DO |
| 3032 |
|
|
|
| 3033 |
|
|
! * 3.3 UPWARD FLUXES |
| 3034 |
|
|
! ------------- |
| 3035 |
|
|
|
| 3036 |
|
|
|
| 3037 |
|
✗ |
DO jk1 = 2, kflev + 1 |
| 3038 |
|
|
|
| 3039 |
|
|
! * CONTRIBUTION FROM CLEAR-SKY FRACTION |
| 3040 |
|
|
|
| 3041 |
|
✗ |
DO jl = 1, kdlon |
| 3042 |
|
✗ |
zfu(jl) = (1.-zclm(jl,jk1,1))*zupf(jl, 1, jk1) |
| 3043 |
|
|
END DO |
| 3044 |
|
|
|
| 3045 |
|
|
! * CONTRIBUTION FROM ADJACENT CLOUD |
| 3046 |
|
|
|
| 3047 |
|
✗ |
DO jl = 1, kdlon |
| 3048 |
|
✗ |
zfu(jl) = zfu(jl) + zclm(jl, jk1, jk1-1)*zupf(jl, jk1, jk1) |
| 3049 |
|
|
END DO |
| 3050 |
|
|
|
| 3051 |
|
|
! * CONTRIBUTION FROM OTHER CLOUDY FRACTIONS |
| 3052 |
|
|
|
| 3053 |
|
✗ |
DO jk = 2, jk1 - 1 |
| 3054 |
|
✗ |
DO jl = 1, kdlon |
| 3055 |
|
✗ |
zcfrac = zclm(jl, jk1, jk-1) - zclm(jl, jk1, jk) |
| 3056 |
|
✗ |
zfu(jl) = zfu(jl) + zcfrac*zupf(jl, jk, jk1) |
| 3057 |
|
|
END DO |
| 3058 |
|
|
END DO |
| 3059 |
|
|
|
| 3060 |
|
✗ |
DO jl = 1, kdlon |
| 3061 |
|
✗ |
pflux(jl, 1, jk1) = zfu(jl) |
| 3062 |
|
|
END DO |
| 3063 |
|
|
|
| 3064 |
|
|
END DO |
| 3065 |
|
|
|
| 3066 |
|
|
|
| 3067 |
|
|
END IF |
| 3068 |
|
|
|
| 3069 |
|
|
! * 2.3 END OF CLOUD EFFECT COMPUTATIONS |
| 3070 |
|
|
|
| 3071 |
|
|
|
| 3072 |
|
|
IF (.NOT. levoigt) THEN |
| 3073 |
|
✗ |
DO jl = 1, kdlon |
| 3074 |
|
✗ |
zfn10(jl) = pflux(jl, 1, klim) + pflux(jl, 2, klim) |
| 3075 |
|
|
END DO |
| 3076 |
|
✗ |
DO jk = klim + 1, kflev + 1 |
| 3077 |
|
✗ |
DO jl = 1, kdlon |
| 3078 |
|
✗ |
zfn10(jl) = zfn10(jl) + pcts(jl, jk-1) |
| 3079 |
|
✗ |
pflux(jl, 1, jk) = zfn10(jl) |
| 3080 |
|
✗ |
pflux(jl, 2, jk) = 0.0 |
| 3081 |
|
|
END DO |
| 3082 |
|
|
END DO |
| 3083 |
|
|
END IF |
| 3084 |
|
|
|
| 3085 |
|
✗ |
RETURN |
| 3086 |
|
|
END SUBROUTINE lwc_lmdar4 |
| 3087 |
|
✗ |
SUBROUTINE lwb_lmdar4(pdt0, ptave, ptl, pb, pbint, pbsuin, pbsur, pbtop, & |
| 3088 |
|
✗ |
pdbsl, pga, pgb, pgasur, pgbsur, pgatop, pgbtop) |
| 3089 |
|
|
USE dimphy |
| 3090 |
|
|
USE radiation_ar4_param, ONLY: tintp, xp, ga, gb |
| 3091 |
|
|
IMPLICIT NONE |
| 3092 |
|
|
include "raddimlw.h" |
| 3093 |
|
|
|
| 3094 |
|
|
! ----------------------------------------------------------------------- |
| 3095 |
|
|
! PURPOSE. |
| 3096 |
|
|
! -------- |
| 3097 |
|
|
! COMPUTES PLANCK FUNCTIONS |
| 3098 |
|
|
|
| 3099 |
|
|
! EXPLICIT ARGUMENTS : |
| 3100 |
|
|
! -------------------- |
| 3101 |
|
|
! ==== INPUTS === |
| 3102 |
|
|
! PDT0 : (KDLON) ; SURFACE TEMPERATURE DISCONTINUITY |
| 3103 |
|
|
! PTAVE : (KDLON,KFLEV) ; TEMPERATURE |
| 3104 |
|
|
! PTL : (KDLON,0:KFLEV) ; HALF LEVEL TEMPERATURE |
| 3105 |
|
|
! ==== OUTPUTS === |
| 3106 |
|
|
! PB : (KDLON,Ninter,KFLEV+1); SPECTRAL HALF LEVEL PLANCK FUNCTION |
| 3107 |
|
|
! PBINT : (KDLON,KFLEV+1) ; HALF LEVEL PLANCK FUNCTION |
| 3108 |
|
|
! PBSUIN : (KDLON) ; SURFACE PLANCK FUNCTION |
| 3109 |
|
|
! PBSUR : (KDLON,Ninter) ; SURFACE SPECTRAL PLANCK FUNCTION |
| 3110 |
|
|
! PBTOP : (KDLON,Ninter) ; TOP SPECTRAL PLANCK FUNCTION |
| 3111 |
|
|
! PDBSL : (KDLON,Ninter,KFLEV*2); SUB-LAYER PLANCK FUNCTION GRADIENT |
| 3112 |
|
|
! PGA : (KDLON,8,2,KFLEV); dB/dT-weighted LAYER PADE APPROXIMANTS |
| 3113 |
|
|
! PGB : (KDLON,8,2,KFLEV); dB/dT-weighted LAYER PADE APPROXIMANTS |
| 3114 |
|
|
! PGASUR, PGBSUR (KDLON,8,2) ; SURFACE PADE APPROXIMANTS |
| 3115 |
|
|
! PGATOP, PGBTOP (KDLON,8,2) ; T.O.A. PADE APPROXIMANTS |
| 3116 |
|
|
|
| 3117 |
|
|
! IMPLICIT ARGUMENTS : NONE |
| 3118 |
|
|
! -------------------- |
| 3119 |
|
|
|
| 3120 |
|
|
! METHOD. |
| 3121 |
|
|
! ------- |
| 3122 |
|
|
|
| 3123 |
|
|
! 1. COMPUTES THE PLANCK FUNCTION ON ALL LEVELS AND HALF LEVELS |
| 3124 |
|
|
! FROM A POLYNOMIAL DEVELOPMENT OF PLANCK FUNCTION |
| 3125 |
|
|
|
| 3126 |
|
|
! REFERENCE. |
| 3127 |
|
|
! ---------- |
| 3128 |
|
|
|
| 3129 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 3130 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS " |
| 3131 |
|
|
|
| 3132 |
|
|
! AUTHOR. |
| 3133 |
|
|
! ------- |
| 3134 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 3135 |
|
|
|
| 3136 |
|
|
! MODIFICATIONS. |
| 3137 |
|
|
! -------------- |
| 3138 |
|
|
! ORIGINAL : 89-07-14 |
| 3139 |
|
|
|
| 3140 |
|
|
! ----------------------------------------------------------------------- |
| 3141 |
|
|
|
| 3142 |
|
|
! ARGUMENTS: |
| 3143 |
|
|
|
| 3144 |
|
|
REAL (KIND=8) pdt0(kdlon) |
| 3145 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) |
| 3146 |
|
|
REAL (KIND=8) ptl(kdlon, kflev+1) |
| 3147 |
|
|
|
| 3148 |
|
|
REAL (KIND=8) pb(kdlon, ninter, kflev+1) ! SPECTRAL HALF LEVEL PLANCK FUNCTION |
| 3149 |
|
|
REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF LEVEL PLANCK FUNCTION |
| 3150 |
|
|
REAL (KIND=8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
| 3151 |
|
|
REAL (KIND=8) pbsur(kdlon, ninter) ! SURFACE SPECTRAL PLANCK FUNCTION |
| 3152 |
|
|
REAL (KIND=8) pbtop(kdlon, ninter) ! TOP SPECTRAL PLANCK FUNCTION |
| 3153 |
|
|
REAL (KIND=8) pdbsl(kdlon, ninter, kflev*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
| 3154 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! dB/dT-weighted LAYER PADE APPROXIMANTS |
| 3155 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! dB/dT-weighted LAYER PADE APPROXIMANTS |
| 3156 |
|
|
REAL (KIND=8) pgasur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
| 3157 |
|
|
REAL (KIND=8) pgbsur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
| 3158 |
|
|
REAL (KIND=8) pgatop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
| 3159 |
|
|
REAL (KIND=8) pgbtop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
| 3160 |
|
|
|
| 3161 |
|
|
! ------------------------------------------------------------------------- |
| 3162 |
|
|
! * LOCAL VARIABLES: |
| 3163 |
|
✗ |
INTEGER indb(kdlon), inds(kdlon) |
| 3164 |
|
✗ |
REAL (KIND=8) zblay(kdlon, kflev), zblev(kdlon, kflev+1) |
| 3165 |
|
✗ |
REAL (KIND=8) zres(kdlon), zres2(kdlon), zti(kdlon), zti2(kdlon) |
| 3166 |
|
|
|
| 3167 |
|
|
INTEGER jk, jl, ic, jnu, jf, jg |
| 3168 |
|
|
INTEGER jk1, jk2 |
| 3169 |
|
|
INTEGER k, j, ixtox, indto, ixtx, indt |
| 3170 |
|
|
INTEGER indsu, indtp |
| 3171 |
|
|
REAL (KIND=8) zdsto1, zdstox, zdst1, zdstx |
| 3172 |
|
|
|
| 3173 |
|
|
! * Quelques parametres: |
| 3174 |
|
|
REAL (KIND=8) tstand |
| 3175 |
|
|
PARAMETER (tstand=250.0) |
| 3176 |
|
|
REAL (KIND=8) tstp |
| 3177 |
|
|
PARAMETER (tstp=12.5) |
| 3178 |
|
|
INTEGER mxixt |
| 3179 |
|
|
PARAMETER (mxixt=10) |
| 3180 |
|
|
|
| 3181 |
|
|
! * Used Data Block: |
| 3182 |
|
|
! REAL*8 TINTP(11) |
| 3183 |
|
|
! SAVE TINTP |
| 3184 |
|
|
! c$OMP THREADPRIVATE(TINTP) |
| 3185 |
|
|
! REAL*8 GA(11,16,3), GB(11,16,3) |
| 3186 |
|
|
! SAVE GA, GB |
| 3187 |
|
|
! c$OMP THREADPRIVATE(GA, GB) |
| 3188 |
|
|
! REAL*8 XP(6,6) |
| 3189 |
|
|
! SAVE XP |
| 3190 |
|
|
! c$OMP THREADPRIVATE(XP) |
| 3191 |
|
|
|
| 3192 |
|
|
! DATA TINTP / 187.5, 200., 212.5, 225., 237.5, 250., |
| 3193 |
|
|
! S 262.5, 275., 287.5, 300., 312.5 / |
| 3194 |
|
|
! ----------------------------------------------------------------------- |
| 3195 |
|
|
! -- WATER VAPOR -- INT.1 -- 0- 500 CM-1 -- FROM ABS225 ---------------- |
| 3196 |
|
|
|
| 3197 |
|
|
|
| 3198 |
|
|
|
| 3199 |
|
|
|
| 3200 |
|
|
! -- R.D. -- G = - 0.2 SLA |
| 3201 |
|
|
|
| 3202 |
|
|
|
| 3203 |
|
|
! ----- INTERVAL = 1 ----- T = 187.5 |
| 3204 |
|
|
|
| 3205 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 3206 |
|
|
! DATA (GA( 1, 1,IC),IC=1,3) / |
| 3207 |
|
|
! S 0.63499072E-02,-0.99506586E-03, 0.00000000E+00/ |
| 3208 |
|
|
! DATA (GB( 1, 1,IC),IC=1,3) / |
| 3209 |
|
|
! S 0.63499072E-02, 0.97222852E-01, 0.10000000E+01/ |
| 3210 |
|
|
! DATA (GA( 1, 2,IC),IC=1,3) / |
| 3211 |
|
|
! S 0.77266491E-02,-0.11661515E-02, 0.00000000E+00/ |
| 3212 |
|
|
! DATA (GB( 1, 2,IC),IC=1,3) / |
| 3213 |
|
|
! S 0.77266491E-02, 0.10681591E+00, 0.10000000E+01/ |
| 3214 |
|
|
|
| 3215 |
|
|
! ----- INTERVAL = 1 ----- T = 200.0 |
| 3216 |
|
|
|
| 3217 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 3218 |
|
|
! DATA (GA( 2, 1,IC),IC=1,3) / |
| 3219 |
|
|
! S 0.65566348E-02,-0.10184169E-02, 0.00000000E+00/ |
| 3220 |
|
|
! DATA (GB( 2, 1,IC),IC=1,3) / |
| 3221 |
|
|
! S 0.65566348E-02, 0.98862238E-01, 0.10000000E+01/ |
| 3222 |
|
|
! DATA (GA( 2, 2,IC),IC=1,3) / |
| 3223 |
|
|
! S 0.81323287E-02,-0.11886130E-02, 0.00000000E+00/ |
| 3224 |
|
|
! DATA (GB( 2, 2,IC),IC=1,3) / |
| 3225 |
|
|
! S 0.81323287E-02, 0.10921298E+00, 0.10000000E+01/ |
| 3226 |
|
|
|
| 3227 |
|
|
! ----- INTERVAL = 1 ----- T = 212.5 |
| 3228 |
|
|
|
| 3229 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 3230 |
|
|
! DATA (GA( 3, 1,IC),IC=1,3) / |
| 3231 |
|
|
! S 0.67849730E-02,-0.10404730E-02, 0.00000000E+00/ |
| 3232 |
|
|
! DATA (GB( 3, 1,IC),IC=1,3) / |
| 3233 |
|
|
! S 0.67849730E-02, 0.10061504E+00, 0.10000000E+01/ |
| 3234 |
|
|
! DATA (GA( 3, 2,IC),IC=1,3) / |
| 3235 |
|
|
! S 0.86507620E-02,-0.12139929E-02, 0.00000000E+00/ |
| 3236 |
|
|
! DATA (GB( 3, 2,IC),IC=1,3) / |
| 3237 |
|
|
! S 0.86507620E-02, 0.11198225E+00, 0.10000000E+01/ |
| 3238 |
|
|
|
| 3239 |
|
|
! ----- INTERVAL = 1 ----- T = 225.0 |
| 3240 |
|
|
|
| 3241 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 3242 |
|
|
! DATA (GA( 4, 1,IC),IC=1,3) / |
| 3243 |
|
|
! S 0.70481947E-02,-0.10621792E-02, 0.00000000E+00/ |
| 3244 |
|
|
! DATA (GB( 4, 1,IC),IC=1,3) / |
| 3245 |
|
|
! S 0.70481947E-02, 0.10256222E+00, 0.10000000E+01/ |
| 3246 |
|
|
! DATA (GA( 4, 2,IC),IC=1,3) / |
| 3247 |
|
|
! S 0.92776391E-02,-0.12445811E-02, 0.00000000E+00/ |
| 3248 |
|
|
! DATA (GB( 4, 2,IC),IC=1,3) / |
| 3249 |
|
|
! S 0.92776391E-02, 0.11487826E+00, 0.10000000E+01/ |
| 3250 |
|
|
|
| 3251 |
|
|
! ----- INTERVAL = 1 ----- T = 237.5 |
| 3252 |
|
|
|
| 3253 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 3254 |
|
|
! DATA (GA( 5, 1,IC),IC=1,3) / |
| 3255 |
|
|
! S 0.73585943E-02,-0.10847662E-02, 0.00000000E+00/ |
| 3256 |
|
|
! DATA (GB( 5, 1,IC),IC=1,3) / |
| 3257 |
|
|
! S 0.73585943E-02, 0.10475952E+00, 0.10000000E+01/ |
| 3258 |
|
|
! DATA (GA( 5, 2,IC),IC=1,3) / |
| 3259 |
|
|
! S 0.99806312E-02,-0.12807672E-02, 0.00000000E+00/ |
| 3260 |
|
|
! DATA (GB( 5, 2,IC),IC=1,3) / |
| 3261 |
|
|
! S 0.99806312E-02, 0.11751113E+00, 0.10000000E+01/ |
| 3262 |
|
|
|
| 3263 |
|
|
! ----- INTERVAL = 1 ----- T = 250.0 |
| 3264 |
|
|
|
| 3265 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 3266 |
|
|
! DATA (GA( 6, 1,IC),IC=1,3) / |
| 3267 |
|
|
! S 0.77242818E-02,-0.11094726E-02, 0.00000000E+00/ |
| 3268 |
|
|
! DATA (GB( 6, 1,IC),IC=1,3) / |
| 3269 |
|
|
! S 0.77242818E-02, 0.10720986E+00, 0.10000000E+01/ |
| 3270 |
|
|
! DATA (GA( 6, 2,IC),IC=1,3) / |
| 3271 |
|
|
! S 0.10709803E-01,-0.13208251E-02, 0.00000000E+00/ |
| 3272 |
|
|
! DATA (GB( 6, 2,IC),IC=1,3) / |
| 3273 |
|
|
! S 0.10709803E-01, 0.11951535E+00, 0.10000000E+01/ |
| 3274 |
|
|
|
| 3275 |
|
|
! ----- INTERVAL = 1 ----- T = 262.5 |
| 3276 |
|
|
|
| 3277 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 3278 |
|
|
! DATA (GA( 7, 1,IC),IC=1,3) / |
| 3279 |
|
|
! S 0.81472693E-02,-0.11372949E-02, 0.00000000E+00/ |
| 3280 |
|
|
! DATA (GB( 7, 1,IC),IC=1,3) / |
| 3281 |
|
|
! S 0.81472693E-02, 0.10985370E+00, 0.10000000E+01/ |
| 3282 |
|
|
! DATA (GA( 7, 2,IC),IC=1,3) / |
| 3283 |
|
|
! S 0.11414739E-01,-0.13619034E-02, 0.00000000E+00/ |
| 3284 |
|
|
! DATA (GB( 7, 2,IC),IC=1,3) / |
| 3285 |
|
|
! S 0.11414739E-01, 0.12069945E+00, 0.10000000E+01/ |
| 3286 |
|
|
|
| 3287 |
|
|
! ----- INTERVAL = 1 ----- T = 275.0 |
| 3288 |
|
|
|
| 3289 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 3290 |
|
|
! DATA (GA( 8, 1,IC),IC=1,3) / |
| 3291 |
|
|
! S 0.86227527E-02,-0.11687683E-02, 0.00000000E+00/ |
| 3292 |
|
|
! DATA (GB( 8, 1,IC),IC=1,3) / |
| 3293 |
|
|
! S 0.86227527E-02, 0.11257633E+00, 0.10000000E+01/ |
| 3294 |
|
|
! DATA (GA( 8, 2,IC),IC=1,3) / |
| 3295 |
|
|
! S 0.12058772E-01,-0.14014165E-02, 0.00000000E+00/ |
| 3296 |
|
|
! DATA (GB( 8, 2,IC),IC=1,3) / |
| 3297 |
|
|
! S 0.12058772E-01, 0.12108524E+00, 0.10000000E+01/ |
| 3298 |
|
|
|
| 3299 |
|
|
! ----- INTERVAL = 1 ----- T = 287.5 |
| 3300 |
|
|
|
| 3301 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 3302 |
|
|
! DATA (GA( 9, 1,IC),IC=1,3) / |
| 3303 |
|
|
! S 0.91396814E-02,-0.12038314E-02, 0.00000000E+00/ |
| 3304 |
|
|
! DATA (GB( 9, 1,IC),IC=1,3) / |
| 3305 |
|
|
! S 0.91396814E-02, 0.11522980E+00, 0.10000000E+01/ |
| 3306 |
|
|
! DATA (GA( 9, 2,IC),IC=1,3) / |
| 3307 |
|
|
! S 0.12623992E-01,-0.14378639E-02, 0.00000000E+00/ |
| 3308 |
|
|
! DATA (GB( 9, 2,IC),IC=1,3) / |
| 3309 |
|
|
! S 0.12623992E-01, 0.12084229E+00, 0.10000000E+01/ |
| 3310 |
|
|
|
| 3311 |
|
|
! ----- INTERVAL = 1 ----- T = 300.0 |
| 3312 |
|
|
|
| 3313 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 3314 |
|
|
! DATA (GA(10, 1,IC),IC=1,3) / |
| 3315 |
|
|
! S 0.96825438E-02,-0.12418367E-02, 0.00000000E+00/ |
| 3316 |
|
|
! DATA (GB(10, 1,IC),IC=1,3) / |
| 3317 |
|
|
! S 0.96825438E-02, 0.11766343E+00, 0.10000000E+01/ |
| 3318 |
|
|
! DATA (GA(10, 2,IC),IC=1,3) / |
| 3319 |
|
|
! S 0.13108146E-01,-0.14708488E-02, 0.00000000E+00/ |
| 3320 |
|
|
! DATA (GB(10, 2,IC),IC=1,3) / |
| 3321 |
|
|
! S 0.13108146E-01, 0.12019005E+00, 0.10000000E+01/ |
| 3322 |
|
|
|
| 3323 |
|
|
! ----- INTERVAL = 1 ----- T = 312.5 |
| 3324 |
|
|
|
| 3325 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 3326 |
|
|
! DATA (GA(11, 1,IC),IC=1,3) / |
| 3327 |
|
|
! S 0.10233955E-01,-0.12817135E-02, 0.00000000E+00/ |
| 3328 |
|
|
! DATA (GB(11, 1,IC),IC=1,3) / |
| 3329 |
|
|
! S 0.10233955E-01, 0.11975320E+00, 0.10000000E+01/ |
| 3330 |
|
|
! DATA (GA(11, 2,IC),IC=1,3) / |
| 3331 |
|
|
! S 0.13518390E-01,-0.15006791E-02, 0.00000000E+00/ |
| 3332 |
|
|
! DATA (GB(11, 2,IC),IC=1,3) / |
| 3333 |
|
|
! S 0.13518390E-01, 0.11932684E+00, 0.10000000E+01/ |
| 3334 |
|
|
|
| 3335 |
|
|
|
| 3336 |
|
|
|
| 3337 |
|
|
! --- WATER VAPOR --- INTERVAL 2 -- 500-800 CM-1--- FROM ABS225 --------- |
| 3338 |
|
|
|
| 3339 |
|
|
|
| 3340 |
|
|
|
| 3341 |
|
|
|
| 3342 |
|
|
! --- R.D. --- G = 0.02 + 0.50 / ( 1 + 4.5 U ) |
| 3343 |
|
|
|
| 3344 |
|
|
|
| 3345 |
|
|
! ----- INTERVAL = 2 ----- T = 187.5 |
| 3346 |
|
|
|
| 3347 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3348 |
|
|
! DATA (GA( 1, 3,IC),IC=1,3) / |
| 3349 |
|
|
! S 0.11644593E+01, 0.41243390E+00, 0.00000000E+00/ |
| 3350 |
|
|
! DATA (GB( 1, 3,IC),IC=1,3) / |
| 3351 |
|
|
! S 0.11644593E+01, 0.10346097E+01, 0.10000000E+01/ |
| 3352 |
|
|
! DATA (GA( 1, 4,IC),IC=1,3) / |
| 3353 |
|
|
! S 0.12006968E+01, 0.48318936E+00, 0.00000000E+00/ |
| 3354 |
|
|
! DATA (GB( 1, 4,IC),IC=1,3) / |
| 3355 |
|
|
! S 0.12006968E+01, 0.10626130E+01, 0.10000000E+01/ |
| 3356 |
|
|
|
| 3357 |
|
|
! ----- INTERVAL = 2 ----- T = 200.0 |
| 3358 |
|
|
|
| 3359 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3360 |
|
|
! DATA (GA( 2, 3,IC),IC=1,3) / |
| 3361 |
|
|
! S 0.11747203E+01, 0.43407282E+00, 0.00000000E+00/ |
| 3362 |
|
|
! DATA (GB( 2, 3,IC),IC=1,3) / |
| 3363 |
|
|
! S 0.11747203E+01, 0.10433655E+01, 0.10000000E+01/ |
| 3364 |
|
|
! DATA (GA( 2, 4,IC),IC=1,3) / |
| 3365 |
|
|
! S 0.12108196E+01, 0.50501827E+00, 0.00000000E+00/ |
| 3366 |
|
|
! DATA (GB( 2, 4,IC),IC=1,3) / |
| 3367 |
|
|
! S 0.12108196E+01, 0.10716026E+01, 0.10000000E+01/ |
| 3368 |
|
|
|
| 3369 |
|
|
! ----- INTERVAL = 2 ----- T = 212.5 |
| 3370 |
|
|
|
| 3371 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3372 |
|
|
! DATA (GA( 3, 3,IC),IC=1,3) / |
| 3373 |
|
|
! S 0.11837872E+01, 0.45331413E+00, 0.00000000E+00/ |
| 3374 |
|
|
! DATA (GB( 3, 3,IC),IC=1,3) / |
| 3375 |
|
|
! S 0.11837872E+01, 0.10511933E+01, 0.10000000E+01/ |
| 3376 |
|
|
! DATA (GA( 3, 4,IC),IC=1,3) / |
| 3377 |
|
|
! S 0.12196717E+01, 0.52409502E+00, 0.00000000E+00/ |
| 3378 |
|
|
! DATA (GB( 3, 4,IC),IC=1,3) / |
| 3379 |
|
|
! S 0.12196717E+01, 0.10795108E+01, 0.10000000E+01/ |
| 3380 |
|
|
|
| 3381 |
|
|
! ----- INTERVAL = 2 ----- T = 225.0 |
| 3382 |
|
|
|
| 3383 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3384 |
|
|
! DATA (GA( 4, 3,IC),IC=1,3) / |
| 3385 |
|
|
! S 0.11918561E+01, 0.47048604E+00, 0.00000000E+00/ |
| 3386 |
|
|
! DATA (GB( 4, 3,IC),IC=1,3) / |
| 3387 |
|
|
! S 0.11918561E+01, 0.10582150E+01, 0.10000000E+01/ |
| 3388 |
|
|
! DATA (GA( 4, 4,IC),IC=1,3) / |
| 3389 |
|
|
! S 0.12274493E+01, 0.54085277E+00, 0.00000000E+00/ |
| 3390 |
|
|
! DATA (GB( 4, 4,IC),IC=1,3) / |
| 3391 |
|
|
! S 0.12274493E+01, 0.10865006E+01, 0.10000000E+01/ |
| 3392 |
|
|
|
| 3393 |
|
|
! ----- INTERVAL = 2 ----- T = 237.5 |
| 3394 |
|
|
|
| 3395 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3396 |
|
|
! DATA (GA( 5, 3,IC),IC=1,3) / |
| 3397 |
|
|
! S 0.11990757E+01, 0.48586286E+00, 0.00000000E+00/ |
| 3398 |
|
|
! DATA (GB( 5, 3,IC),IC=1,3) / |
| 3399 |
|
|
! S 0.11990757E+01, 0.10645317E+01, 0.10000000E+01/ |
| 3400 |
|
|
! DATA (GA( 5, 4,IC),IC=1,3) / |
| 3401 |
|
|
! S 0.12343189E+01, 0.55565422E+00, 0.00000000E+00/ |
| 3402 |
|
|
! DATA (GB( 5, 4,IC),IC=1,3) / |
| 3403 |
|
|
! S 0.12343189E+01, 0.10927103E+01, 0.10000000E+01/ |
| 3404 |
|
|
|
| 3405 |
|
|
! ----- INTERVAL = 2 ----- T = 250.0 |
| 3406 |
|
|
|
| 3407 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3408 |
|
|
! DATA (GA( 6, 3,IC),IC=1,3) / |
| 3409 |
|
|
! S 0.12055643E+01, 0.49968044E+00, 0.00000000E+00/ |
| 3410 |
|
|
! DATA (GB( 6, 3,IC),IC=1,3) / |
| 3411 |
|
|
! S 0.12055643E+01, 0.10702313E+01, 0.10000000E+01/ |
| 3412 |
|
|
! DATA (GA( 6, 4,IC),IC=1,3) / |
| 3413 |
|
|
! S 0.12404147E+01, 0.56878618E+00, 0.00000000E+00/ |
| 3414 |
|
|
! DATA (GB( 6, 4,IC),IC=1,3) / |
| 3415 |
|
|
! S 0.12404147E+01, 0.10982489E+01, 0.10000000E+01/ |
| 3416 |
|
|
|
| 3417 |
|
|
! ----- INTERVAL = 2 ----- T = 262.5 |
| 3418 |
|
|
|
| 3419 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3420 |
|
|
! DATA (GA( 7, 3,IC),IC=1,3) / |
| 3421 |
|
|
! S 0.12114186E+01, 0.51214132E+00, 0.00000000E+00/ |
| 3422 |
|
|
! DATA (GB( 7, 3,IC),IC=1,3) / |
| 3423 |
|
|
! S 0.12114186E+01, 0.10753907E+01, 0.10000000E+01/ |
| 3424 |
|
|
! DATA (GA( 7, 4,IC),IC=1,3) / |
| 3425 |
|
|
! S 0.12458431E+01, 0.58047395E+00, 0.00000000E+00/ |
| 3426 |
|
|
! DATA (GB( 7, 4,IC),IC=1,3) / |
| 3427 |
|
|
! S 0.12458431E+01, 0.11032019E+01, 0.10000000E+01/ |
| 3428 |
|
|
|
| 3429 |
|
|
! ----- INTERVAL = 2 ----- T = 275.0 |
| 3430 |
|
|
|
| 3431 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3432 |
|
|
! DATA (GA( 8, 3,IC),IC=1,3) / |
| 3433 |
|
|
! S 0.12167192E+01, 0.52341830E+00, 0.00000000E+00/ |
| 3434 |
|
|
! DATA (GB( 8, 3,IC),IC=1,3) / |
| 3435 |
|
|
! S 0.12167192E+01, 0.10800762E+01, 0.10000000E+01/ |
| 3436 |
|
|
! DATA (GA( 8, 4,IC),IC=1,3) / |
| 3437 |
|
|
! S 0.12506907E+01, 0.59089894E+00, 0.00000000E+00/ |
| 3438 |
|
|
! DATA (GB( 8, 4,IC),IC=1,3) / |
| 3439 |
|
|
! S 0.12506907E+01, 0.11076379E+01, 0.10000000E+01/ |
| 3440 |
|
|
|
| 3441 |
|
|
! ----- INTERVAL = 2 ----- T = 287.5 |
| 3442 |
|
|
|
| 3443 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3444 |
|
|
! DATA (GA( 9, 3,IC),IC=1,3) / |
| 3445 |
|
|
! S 0.12215344E+01, 0.53365803E+00, 0.00000000E+00/ |
| 3446 |
|
|
! DATA (GB( 9, 3,IC),IC=1,3) / |
| 3447 |
|
|
! S 0.12215344E+01, 0.10843446E+01, 0.10000000E+01/ |
| 3448 |
|
|
! DATA (GA( 9, 4,IC),IC=1,3) / |
| 3449 |
|
|
! S 0.12550299E+01, 0.60021475E+00, 0.00000000E+00/ |
| 3450 |
|
|
! DATA (GB( 9, 4,IC),IC=1,3) / |
| 3451 |
|
|
! S 0.12550299E+01, 0.11116160E+01, 0.10000000E+01/ |
| 3452 |
|
|
|
| 3453 |
|
|
! ----- INTERVAL = 2 ----- T = 300.0 |
| 3454 |
|
|
|
| 3455 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3456 |
|
|
! DATA (GA(10, 3,IC),IC=1,3) / |
| 3457 |
|
|
! S 0.12259226E+01, 0.54298448E+00, 0.00000000E+00/ |
| 3458 |
|
|
! DATA (GB(10, 3,IC),IC=1,3) / |
| 3459 |
|
|
! S 0.12259226E+01, 0.10882439E+01, 0.10000000E+01/ |
| 3460 |
|
|
! DATA (GA(10, 4,IC),IC=1,3) / |
| 3461 |
|
|
! S 0.12589256E+01, 0.60856112E+00, 0.00000000E+00/ |
| 3462 |
|
|
! DATA (GB(10, 4,IC),IC=1,3) / |
| 3463 |
|
|
! S 0.12589256E+01, 0.11151910E+01, 0.10000000E+01/ |
| 3464 |
|
|
|
| 3465 |
|
|
! ----- INTERVAL = 2 ----- T = 312.5 |
| 3466 |
|
|
|
| 3467 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3468 |
|
|
! DATA (GA(11, 3,IC),IC=1,3) / |
| 3469 |
|
|
! S 0.12299344E+01, 0.55150227E+00, 0.00000000E+00/ |
| 3470 |
|
|
! DATA (GB(11, 3,IC),IC=1,3) / |
| 3471 |
|
|
! S 0.12299344E+01, 0.10918144E+01, 0.10000000E+01/ |
| 3472 |
|
|
! DATA (GA(11, 4,IC),IC=1,3) / |
| 3473 |
|
|
! S 0.12624402E+01, 0.61607594E+00, 0.00000000E+00/ |
| 3474 |
|
|
! DATA (GB(11, 4,IC),IC=1,3) / |
| 3475 |
|
|
! S 0.12624402E+01, 0.11184188E+01, 0.10000000E+01/ |
| 3476 |
|
|
|
| 3477 |
|
|
|
| 3478 |
|
|
|
| 3479 |
|
|
|
| 3480 |
|
|
|
| 3481 |
|
|
|
| 3482 |
|
|
! - WATER VAPOR - INT. 3 -- 800-970 + 1110-1250 CM-1 -- FIT FROM 215 IS - |
| 3483 |
|
|
|
| 3484 |
|
|
|
| 3485 |
|
|
! -- WATER VAPOR LINES IN THE WINDOW REGION (800-1250 CM-1) |
| 3486 |
|
|
|
| 3487 |
|
|
|
| 3488 |
|
|
|
| 3489 |
|
|
! --- G = 3.875E-03 --------------- |
| 3490 |
|
|
|
| 3491 |
|
|
! ----- INTERVAL = 3 ----- T = 187.5 |
| 3492 |
|
|
|
| 3493 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3494 |
|
|
! DATA (GA( 1, 7,IC),IC=1,3) / |
| 3495 |
|
|
! S 0.10192131E+02, 0.80737799E+01, 0.00000000E+00/ |
| 3496 |
|
|
! DATA (GB( 1, 7,IC),IC=1,3) / |
| 3497 |
|
|
! S 0.10192131E+02, 0.82623280E+01, 0.10000000E+01/ |
| 3498 |
|
|
! DATA (GA( 1, 8,IC),IC=1,3) / |
| 3499 |
|
|
! S 0.92439050E+01, 0.77425778E+01, 0.00000000E+00/ |
| 3500 |
|
|
! DATA (GB( 1, 8,IC),IC=1,3) / |
| 3501 |
|
|
! S 0.92439050E+01, 0.79342219E+01, 0.10000000E+01/ |
| 3502 |
|
|
|
| 3503 |
|
|
! ----- INTERVAL = 3 ----- T = 200.0 |
| 3504 |
|
|
|
| 3505 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3506 |
|
|
! DATA (GA( 2, 7,IC),IC=1,3) / |
| 3507 |
|
|
! S 0.97258602E+01, 0.79171158E+01, 0.00000000E+00/ |
| 3508 |
|
|
! DATA (GB( 2, 7,IC),IC=1,3) / |
| 3509 |
|
|
! S 0.97258602E+01, 0.81072291E+01, 0.10000000E+01/ |
| 3510 |
|
|
! DATA (GA( 2, 8,IC),IC=1,3) / |
| 3511 |
|
|
! S 0.87567422E+01, 0.75443460E+01, 0.00000000E+00/ |
| 3512 |
|
|
! DATA (GB( 2, 8,IC),IC=1,3) / |
| 3513 |
|
|
! S 0.87567422E+01, 0.77373458E+01, 0.10000000E+01/ |
| 3514 |
|
|
|
| 3515 |
|
|
! ----- INTERVAL = 3 ----- T = 212.5 |
| 3516 |
|
|
|
| 3517 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3518 |
|
|
! DATA (GA( 3, 7,IC),IC=1,3) / |
| 3519 |
|
|
! S 0.92992890E+01, 0.77609605E+01, 0.00000000E+00/ |
| 3520 |
|
|
! DATA (GB( 3, 7,IC),IC=1,3) / |
| 3521 |
|
|
! S 0.92992890E+01, 0.79523834E+01, 0.10000000E+01/ |
| 3522 |
|
|
! DATA (GA( 3, 8,IC),IC=1,3) / |
| 3523 |
|
|
! S 0.83270144E+01, 0.73526151E+01, 0.00000000E+00/ |
| 3524 |
|
|
! DATA (GB( 3, 8,IC),IC=1,3) / |
| 3525 |
|
|
! S 0.83270144E+01, 0.75467334E+01, 0.10000000E+01/ |
| 3526 |
|
|
|
| 3527 |
|
|
! ----- INTERVAL = 3 ----- T = 225.0 |
| 3528 |
|
|
|
| 3529 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3530 |
|
|
! DATA (GA( 4, 7,IC),IC=1,3) / |
| 3531 |
|
|
! S 0.89154021E+01, 0.76087371E+01, 0.00000000E+00/ |
| 3532 |
|
|
! DATA (GB( 4, 7,IC),IC=1,3) / |
| 3533 |
|
|
! S 0.89154021E+01, 0.78012527E+01, 0.10000000E+01/ |
| 3534 |
|
|
! DATA (GA( 4, 8,IC),IC=1,3) / |
| 3535 |
|
|
! S 0.79528337E+01, 0.71711188E+01, 0.00000000E+00/ |
| 3536 |
|
|
! DATA (GB( 4, 8,IC),IC=1,3) / |
| 3537 |
|
|
! S 0.79528337E+01, 0.73661786E+01, 0.10000000E+01/ |
| 3538 |
|
|
|
| 3539 |
|
|
! ----- INTERVAL = 3 ----- T = 237.5 |
| 3540 |
|
|
|
| 3541 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3542 |
|
|
! DATA (GA( 5, 7,IC),IC=1,3) / |
| 3543 |
|
|
! S 0.85730084E+01, 0.74627112E+01, 0.00000000E+00/ |
| 3544 |
|
|
! DATA (GB( 5, 7,IC),IC=1,3) / |
| 3545 |
|
|
! S 0.85730084E+01, 0.76561458E+01, 0.10000000E+01/ |
| 3546 |
|
|
! DATA (GA( 5, 8,IC),IC=1,3) / |
| 3547 |
|
|
! S 0.76286839E+01, 0.70015571E+01, 0.00000000E+00/ |
| 3548 |
|
|
! DATA (GB( 5, 8,IC),IC=1,3) / |
| 3549 |
|
|
! S 0.76286839E+01, 0.71974319E+01, 0.10000000E+01/ |
| 3550 |
|
|
|
| 3551 |
|
|
! ----- INTERVAL = 3 ----- T = 250.0 |
| 3552 |
|
|
|
| 3553 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3554 |
|
|
! DATA (GA( 6, 7,IC),IC=1,3) / |
| 3555 |
|
|
! S 0.82685838E+01, 0.73239981E+01, 0.00000000E+00/ |
| 3556 |
|
|
! DATA (GB( 6, 7,IC),IC=1,3) / |
| 3557 |
|
|
! S 0.82685838E+01, 0.75182174E+01, 0.10000000E+01/ |
| 3558 |
|
|
! DATA (GA( 6, 8,IC),IC=1,3) / |
| 3559 |
|
|
! S 0.73477879E+01, 0.68442532E+01, 0.00000000E+00/ |
| 3560 |
|
|
! DATA (GB( 6, 8,IC),IC=1,3) / |
| 3561 |
|
|
! S 0.73477879E+01, 0.70408543E+01, 0.10000000E+01/ |
| 3562 |
|
|
|
| 3563 |
|
|
! ----- INTERVAL = 3 ----- T = 262.5 |
| 3564 |
|
|
|
| 3565 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3566 |
|
|
! DATA (GA( 7, 7,IC),IC=1,3) / |
| 3567 |
|
|
! S 0.79978921E+01, 0.71929934E+01, 0.00000000E+00/ |
| 3568 |
|
|
! DATA (GB( 7, 7,IC),IC=1,3) / |
| 3569 |
|
|
! S 0.79978921E+01, 0.73878952E+01, 0.10000000E+01/ |
| 3570 |
|
|
! DATA (GA( 7, 8,IC),IC=1,3) / |
| 3571 |
|
|
! S 0.71035818E+01, 0.66987996E+01, 0.00000000E+00/ |
| 3572 |
|
|
! DATA (GB( 7, 8,IC),IC=1,3) / |
| 3573 |
|
|
! S 0.71035818E+01, 0.68960649E+01, 0.10000000E+01/ |
| 3574 |
|
|
|
| 3575 |
|
|
! ----- INTERVAL = 3 ----- T = 275.0 |
| 3576 |
|
|
|
| 3577 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3578 |
|
|
! DATA (GA( 8, 7,IC),IC=1,3) / |
| 3579 |
|
|
! S 0.77568055E+01, 0.70697065E+01, 0.00000000E+00/ |
| 3580 |
|
|
! DATA (GB( 8, 7,IC),IC=1,3) / |
| 3581 |
|
|
! S 0.77568055E+01, 0.72652133E+01, 0.10000000E+01/ |
| 3582 |
|
|
! DATA (GA( 8, 8,IC),IC=1,3) / |
| 3583 |
|
|
! S 0.68903312E+01, 0.65644820E+01, 0.00000000E+00/ |
| 3584 |
|
|
! DATA (GB( 8, 8,IC),IC=1,3) / |
| 3585 |
|
|
! S 0.68903312E+01, 0.67623672E+01, 0.10000000E+01/ |
| 3586 |
|
|
|
| 3587 |
|
|
! ----- INTERVAL = 3 ----- T = 287.5 |
| 3588 |
|
|
|
| 3589 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3590 |
|
|
! DATA (GA( 9, 7,IC),IC=1,3) / |
| 3591 |
|
|
! S 0.75416266E+01, 0.69539626E+01, 0.00000000E+00/ |
| 3592 |
|
|
! DATA (GB( 9, 7,IC),IC=1,3) / |
| 3593 |
|
|
! S 0.75416266E+01, 0.71500151E+01, 0.10000000E+01/ |
| 3594 |
|
|
! DATA (GA( 9, 8,IC),IC=1,3) / |
| 3595 |
|
|
! S 0.67032875E+01, 0.64405267E+01, 0.00000000E+00/ |
| 3596 |
|
|
! DATA (GB( 9, 8,IC),IC=1,3) / |
| 3597 |
|
|
! S 0.67032875E+01, 0.66389989E+01, 0.10000000E+01/ |
| 3598 |
|
|
|
| 3599 |
|
|
! ----- INTERVAL = 3 ----- T = 300.0 |
| 3600 |
|
|
|
| 3601 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3602 |
|
|
! DATA (GA(10, 7,IC),IC=1,3) / |
| 3603 |
|
|
! S 0.73491694E+01, 0.68455144E+01, 0.00000000E+00/ |
| 3604 |
|
|
! DATA (GB(10, 7,IC),IC=1,3) / |
| 3605 |
|
|
! S 0.73491694E+01, 0.70420667E+01, 0.10000000E+01/ |
| 3606 |
|
|
! DATA (GA(10, 8,IC),IC=1,3) / |
| 3607 |
|
|
! S 0.65386461E+01, 0.63262376E+01, 0.00000000E+00/ |
| 3608 |
|
|
! DATA (GB(10, 8,IC),IC=1,3) / |
| 3609 |
|
|
! S 0.65386461E+01, 0.65252707E+01, 0.10000000E+01/ |
| 3610 |
|
|
|
| 3611 |
|
|
! ----- INTERVAL = 3 ----- T = 312.5 |
| 3612 |
|
|
|
| 3613 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3614 |
|
|
! DATA (GA(11, 7,IC),IC=1,3) / |
| 3615 |
|
|
! S 0.71767400E+01, 0.67441020E+01, 0.00000000E+00/ |
| 3616 |
|
|
! DATA (GB(11, 7,IC),IC=1,3) / |
| 3617 |
|
|
! S 0.71767400E+01, 0.69411177E+01, 0.10000000E+01/ |
| 3618 |
|
|
! DATA (GA(11, 8,IC),IC=1,3) / |
| 3619 |
|
|
! S 0.63934377E+01, 0.62210701E+01, 0.00000000E+00/ |
| 3620 |
|
|
! DATA (GB(11, 8,IC),IC=1,3) / |
| 3621 |
|
|
! S 0.63934377E+01, 0.64206412E+01, 0.10000000E+01/ |
| 3622 |
|
|
|
| 3623 |
|
|
|
| 3624 |
|
|
! -- WATER VAPOR -- 970-1110 CM-1 ---------------------------------------- |
| 3625 |
|
|
|
| 3626 |
|
|
! -- G = 3.6E-03 |
| 3627 |
|
|
|
| 3628 |
|
|
! ----- INTERVAL = 4 ----- T = 187.5 |
| 3629 |
|
|
|
| 3630 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3631 |
|
|
! DATA (GA( 1, 9,IC),IC=1,3) / |
| 3632 |
|
|
! S 0.24870635E+02, 0.10542131E+02, 0.00000000E+00/ |
| 3633 |
|
|
! DATA (GB( 1, 9,IC),IC=1,3) / |
| 3634 |
|
|
! S 0.24870635E+02, 0.10656640E+02, 0.10000000E+01/ |
| 3635 |
|
|
! DATA (GA( 1,10,IC),IC=1,3) / |
| 3636 |
|
|
! S 0.24586283E+02, 0.10490353E+02, 0.00000000E+00/ |
| 3637 |
|
|
! DATA (GB( 1,10,IC),IC=1,3) / |
| 3638 |
|
|
! S 0.24586283E+02, 0.10605856E+02, 0.10000000E+01/ |
| 3639 |
|
|
|
| 3640 |
|
|
! ----- INTERVAL = 4 ----- T = 200.0 |
| 3641 |
|
|
|
| 3642 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3643 |
|
|
! DATA (GA( 2, 9,IC),IC=1,3) / |
| 3644 |
|
|
! S 0.24725591E+02, 0.10515895E+02, 0.00000000E+00/ |
| 3645 |
|
|
! DATA (GB( 2, 9,IC),IC=1,3) / |
| 3646 |
|
|
! S 0.24725591E+02, 0.10630910E+02, 0.10000000E+01/ |
| 3647 |
|
|
! DATA (GA( 2,10,IC),IC=1,3) / |
| 3648 |
|
|
! S 0.24441465E+02, 0.10463512E+02, 0.00000000E+00/ |
| 3649 |
|
|
! DATA (GB( 2,10,IC),IC=1,3) / |
| 3650 |
|
|
! S 0.24441465E+02, 0.10579514E+02, 0.10000000E+01/ |
| 3651 |
|
|
|
| 3652 |
|
|
! ----- INTERVAL = 4 ----- T = 212.5 |
| 3653 |
|
|
|
| 3654 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3655 |
|
|
! DATA (GA( 3, 9,IC),IC=1,3) / |
| 3656 |
|
|
! S 0.24600320E+02, 0.10492949E+02, 0.00000000E+00/ |
| 3657 |
|
|
! DATA (GB( 3, 9,IC),IC=1,3) / |
| 3658 |
|
|
! S 0.24600320E+02, 0.10608399E+02, 0.10000000E+01/ |
| 3659 |
|
|
! DATA (GA( 3,10,IC),IC=1,3) / |
| 3660 |
|
|
! S 0.24311657E+02, 0.10439183E+02, 0.00000000E+00/ |
| 3661 |
|
|
! DATA (GB( 3,10,IC),IC=1,3) / |
| 3662 |
|
|
! S 0.24311657E+02, 0.10555632E+02, 0.10000000E+01/ |
| 3663 |
|
|
|
| 3664 |
|
|
! ----- INTERVAL = 4 ----- T = 225.0 |
| 3665 |
|
|
|
| 3666 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3667 |
|
|
! DATA (GA( 4, 9,IC),IC=1,3) / |
| 3668 |
|
|
! S 0.24487300E+02, 0.10472049E+02, 0.00000000E+00/ |
| 3669 |
|
|
! DATA (GB( 4, 9,IC),IC=1,3) / |
| 3670 |
|
|
! S 0.24487300E+02, 0.10587891E+02, 0.10000000E+01/ |
| 3671 |
|
|
! DATA (GA( 4,10,IC),IC=1,3) / |
| 3672 |
|
|
! S 0.24196167E+02, 0.10417324E+02, 0.00000000E+00/ |
| 3673 |
|
|
! DATA (GB( 4,10,IC),IC=1,3) / |
| 3674 |
|
|
! S 0.24196167E+02, 0.10534169E+02, 0.10000000E+01/ |
| 3675 |
|
|
|
| 3676 |
|
|
! ----- INTERVAL = 4 ----- T = 237.5 |
| 3677 |
|
|
|
| 3678 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3679 |
|
|
! DATA (GA( 5, 9,IC),IC=1,3) / |
| 3680 |
|
|
! S 0.24384935E+02, 0.10452961E+02, 0.00000000E+00/ |
| 3681 |
|
|
! DATA (GB( 5, 9,IC),IC=1,3) / |
| 3682 |
|
|
! S 0.24384935E+02, 0.10569156E+02, 0.10000000E+01/ |
| 3683 |
|
|
! DATA (GA( 5,10,IC),IC=1,3) / |
| 3684 |
|
|
! S 0.24093406E+02, 0.10397704E+02, 0.00000000E+00/ |
| 3685 |
|
|
! DATA (GB( 5,10,IC),IC=1,3) / |
| 3686 |
|
|
! S 0.24093406E+02, 0.10514900E+02, 0.10000000E+01/ |
| 3687 |
|
|
|
| 3688 |
|
|
! ----- INTERVAL = 4 ----- T = 250.0 |
| 3689 |
|
|
|
| 3690 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3691 |
|
|
! DATA (GA( 6, 9,IC),IC=1,3) / |
| 3692 |
|
|
! S 0.24292341E+02, 0.10435562E+02, 0.00000000E+00/ |
| 3693 |
|
|
! DATA (GB( 6, 9,IC),IC=1,3) / |
| 3694 |
|
|
! S 0.24292341E+02, 0.10552075E+02, 0.10000000E+01/ |
| 3695 |
|
|
! DATA (GA( 6,10,IC),IC=1,3) / |
| 3696 |
|
|
! S 0.24001597E+02, 0.10380038E+02, 0.00000000E+00/ |
| 3697 |
|
|
! DATA (GB( 6,10,IC),IC=1,3) / |
| 3698 |
|
|
! S 0.24001597E+02, 0.10497547E+02, 0.10000000E+01/ |
| 3699 |
|
|
|
| 3700 |
|
|
! ----- INTERVAL = 4 ----- T = 262.5 |
| 3701 |
|
|
|
| 3702 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3703 |
|
|
! DATA (GA( 7, 9,IC),IC=1,3) / |
| 3704 |
|
|
! S 0.24208572E+02, 0.10419710E+02, 0.00000000E+00/ |
| 3705 |
|
|
! DATA (GB( 7, 9,IC),IC=1,3) / |
| 3706 |
|
|
! S 0.24208572E+02, 0.10536510E+02, 0.10000000E+01/ |
| 3707 |
|
|
! DATA (GA( 7,10,IC),IC=1,3) / |
| 3708 |
|
|
! S 0.23919098E+02, 0.10364052E+02, 0.00000000E+00/ |
| 3709 |
|
|
! DATA (GB( 7,10,IC),IC=1,3) / |
| 3710 |
|
|
! S 0.23919098E+02, 0.10481842E+02, 0.10000000E+01/ |
| 3711 |
|
|
|
| 3712 |
|
|
! ----- INTERVAL = 4 ----- T = 275.0 |
| 3713 |
|
|
|
| 3714 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3715 |
|
|
! DATA (GA( 8, 9,IC),IC=1,3) / |
| 3716 |
|
|
! S 0.24132642E+02, 0.10405247E+02, 0.00000000E+00/ |
| 3717 |
|
|
! DATA (GB( 8, 9,IC),IC=1,3) / |
| 3718 |
|
|
! S 0.24132642E+02, 0.10522307E+02, 0.10000000E+01/ |
| 3719 |
|
|
! DATA (GA( 8,10,IC),IC=1,3) / |
| 3720 |
|
|
! S 0.23844511E+02, 0.10349509E+02, 0.00000000E+00/ |
| 3721 |
|
|
! DATA (GB( 8,10,IC),IC=1,3) / |
| 3722 |
|
|
! S 0.23844511E+02, 0.10467553E+02, 0.10000000E+01/ |
| 3723 |
|
|
|
| 3724 |
|
|
! ----- INTERVAL = 4 ----- T = 287.5 |
| 3725 |
|
|
|
| 3726 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3727 |
|
|
! DATA (GA( 9, 9,IC),IC=1,3) / |
| 3728 |
|
|
! S 0.24063614E+02, 0.10392022E+02, 0.00000000E+00/ |
| 3729 |
|
|
! DATA (GB( 9, 9,IC),IC=1,3) / |
| 3730 |
|
|
! S 0.24063614E+02, 0.10509317E+02, 0.10000000E+01/ |
| 3731 |
|
|
! DATA (GA( 9,10,IC),IC=1,3) / |
| 3732 |
|
|
! S 0.23776708E+02, 0.10336215E+02, 0.00000000E+00/ |
| 3733 |
|
|
! DATA (GB( 9,10,IC),IC=1,3) / |
| 3734 |
|
|
! S 0.23776708E+02, 0.10454488E+02, 0.10000000E+01/ |
| 3735 |
|
|
|
| 3736 |
|
|
! ----- INTERVAL = 4 ----- T = 300.0 |
| 3737 |
|
|
|
| 3738 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3739 |
|
|
! DATA (GA(10, 9,IC),IC=1,3) / |
| 3740 |
|
|
! S 0.24000649E+02, 0.10379892E+02, 0.00000000E+00/ |
| 3741 |
|
|
! DATA (GB(10, 9,IC),IC=1,3) / |
| 3742 |
|
|
! S 0.24000649E+02, 0.10497402E+02, 0.10000000E+01/ |
| 3743 |
|
|
! DATA (GA(10,10,IC),IC=1,3) / |
| 3744 |
|
|
! S 0.23714816E+02, 0.10324018E+02, 0.00000000E+00/ |
| 3745 |
|
|
! DATA (GB(10,10,IC),IC=1,3) / |
| 3746 |
|
|
! S 0.23714816E+02, 0.10442501E+02, 0.10000000E+01/ |
| 3747 |
|
|
|
| 3748 |
|
|
! ----- INTERVAL = 4 ----- T = 312.5 |
| 3749 |
|
|
|
| 3750 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
| 3751 |
|
|
! DATA (GA(11, 9,IC),IC=1,3) / |
| 3752 |
|
|
! S 0.23943021E+02, 0.10368736E+02, 0.00000000E+00/ |
| 3753 |
|
|
! DATA (GB(11, 9,IC),IC=1,3) / |
| 3754 |
|
|
! S 0.23943021E+02, 0.10486443E+02, 0.10000000E+01/ |
| 3755 |
|
|
! DATA (GA(11,10,IC),IC=1,3) / |
| 3756 |
|
|
! S 0.23658197E+02, 0.10312808E+02, 0.00000000E+00/ |
| 3757 |
|
|
! DATA (GB(11,10,IC),IC=1,3) / |
| 3758 |
|
|
! S 0.23658197E+02, 0.10431483E+02, 0.10000000E+01/ |
| 3759 |
|
|
|
| 3760 |
|
|
|
| 3761 |
|
|
|
| 3762 |
|
|
! -- H2O -- WEAKER PARTS OF THE STRONG BANDS -- FROM ABS225 ---- |
| 3763 |
|
|
|
| 3764 |
|
|
! -- WATER VAPOR --- 350 - 500 CM-1 |
| 3765 |
|
|
|
| 3766 |
|
|
! -- G = - 0.2*SLA, 0.0 +0.5/(1+0.5U) |
| 3767 |
|
|
|
| 3768 |
|
|
! ----- INTERVAL = 5 ----- T = 187.5 |
| 3769 |
|
|
|
| 3770 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3771 |
|
|
! DATA (GA( 1, 5,IC),IC=1,3) / |
| 3772 |
|
|
! S 0.15750172E+00,-0.22159303E-01, 0.00000000E+00/ |
| 3773 |
|
|
! DATA (GB( 1, 5,IC),IC=1,3) / |
| 3774 |
|
|
! S 0.15750172E+00, 0.38103212E+00, 0.10000000E+01/ |
| 3775 |
|
|
! DATA (GA( 1, 6,IC),IC=1,3) / |
| 3776 |
|
|
! S 0.17770551E+00,-0.24972399E-01, 0.00000000E+00/ |
| 3777 |
|
|
! DATA (GB( 1, 6,IC),IC=1,3) / |
| 3778 |
|
|
! S 0.17770551E+00, 0.41646579E+00, 0.10000000E+01/ |
| 3779 |
|
|
|
| 3780 |
|
|
! ----- INTERVAL = 5 ----- T = 200.0 |
| 3781 |
|
|
|
| 3782 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3783 |
|
|
! DATA (GA( 2, 5,IC),IC=1,3) / |
| 3784 |
|
|
! S 0.16174076E+00,-0.22748917E-01, 0.00000000E+00/ |
| 3785 |
|
|
! DATA (GB( 2, 5,IC),IC=1,3) / |
| 3786 |
|
|
! S 0.16174076E+00, 0.38913800E+00, 0.10000000E+01/ |
| 3787 |
|
|
! DATA (GA( 2, 6,IC),IC=1,3) / |
| 3788 |
|
|
! S 0.18176757E+00,-0.25537247E-01, 0.00000000E+00/ |
| 3789 |
|
|
! DATA (GB( 2, 6,IC),IC=1,3) / |
| 3790 |
|
|
! S 0.18176757E+00, 0.42345095E+00, 0.10000000E+01/ |
| 3791 |
|
|
|
| 3792 |
|
|
! ----- INTERVAL = 5 ----- T = 212.5 |
| 3793 |
|
|
|
| 3794 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3795 |
|
|
! DATA (GA( 3, 5,IC),IC=1,3) / |
| 3796 |
|
|
! S 0.16548628E+00,-0.23269898E-01, 0.00000000E+00/ |
| 3797 |
|
|
! DATA (GB( 3, 5,IC),IC=1,3) / |
| 3798 |
|
|
! S 0.16548628E+00, 0.39613651E+00, 0.10000000E+01/ |
| 3799 |
|
|
! DATA (GA( 3, 6,IC),IC=1,3) / |
| 3800 |
|
|
! S 0.18527967E+00,-0.26025624E-01, 0.00000000E+00/ |
| 3801 |
|
|
! DATA (GB( 3, 6,IC),IC=1,3) / |
| 3802 |
|
|
! S 0.18527967E+00, 0.42937476E+00, 0.10000000E+01/ |
| 3803 |
|
|
|
| 3804 |
|
|
! ----- INTERVAL = 5 ----- T = 225.0 |
| 3805 |
|
|
|
| 3806 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3807 |
|
|
! DATA (GA( 4, 5,IC),IC=1,3) / |
| 3808 |
|
|
! S 0.16881124E+00,-0.23732392E-01, 0.00000000E+00/ |
| 3809 |
|
|
! DATA (GB( 4, 5,IC),IC=1,3) / |
| 3810 |
|
|
! S 0.16881124E+00, 0.40222421E+00, 0.10000000E+01/ |
| 3811 |
|
|
! DATA (GA( 4, 6,IC),IC=1,3) / |
| 3812 |
|
|
! S 0.18833348E+00,-0.26450280E-01, 0.00000000E+00/ |
| 3813 |
|
|
! DATA (GB( 4, 6,IC),IC=1,3) / |
| 3814 |
|
|
! S 0.18833348E+00, 0.43444062E+00, 0.10000000E+01/ |
| 3815 |
|
|
|
| 3816 |
|
|
! ----- INTERVAL = 5 ----- T = 237.5 |
| 3817 |
|
|
|
| 3818 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3819 |
|
|
! DATA (GA( 5, 5,IC),IC=1,3) / |
| 3820 |
|
|
! S 0.17177839E+00,-0.24145123E-01, 0.00000000E+00/ |
| 3821 |
|
|
! DATA (GB( 5, 5,IC),IC=1,3) / |
| 3822 |
|
|
! S 0.17177839E+00, 0.40756010E+00, 0.10000000E+01/ |
| 3823 |
|
|
! DATA (GA( 5, 6,IC),IC=1,3) / |
| 3824 |
|
|
! S 0.19100108E+00,-0.26821236E-01, 0.00000000E+00/ |
| 3825 |
|
|
! DATA (GB( 5, 6,IC),IC=1,3) / |
| 3826 |
|
|
! S 0.19100108E+00, 0.43880316E+00, 0.10000000E+01/ |
| 3827 |
|
|
|
| 3828 |
|
|
! ----- INTERVAL = 5 ----- T = 250.0 |
| 3829 |
|
|
|
| 3830 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3831 |
|
|
! DATA (GA( 6, 5,IC),IC=1,3) / |
| 3832 |
|
|
! S 0.17443933E+00,-0.24515269E-01, 0.00000000E+00/ |
| 3833 |
|
|
! DATA (GB( 6, 5,IC),IC=1,3) / |
| 3834 |
|
|
! S 0.17443933E+00, 0.41226954E+00, 0.10000000E+01/ |
| 3835 |
|
|
! DATA (GA( 6, 6,IC),IC=1,3) / |
| 3836 |
|
|
! S 0.19334122E+00,-0.27146657E-01, 0.00000000E+00/ |
| 3837 |
|
|
! DATA (GB( 6, 6,IC),IC=1,3) / |
| 3838 |
|
|
! S 0.19334122E+00, 0.44258354E+00, 0.10000000E+01/ |
| 3839 |
|
|
|
| 3840 |
|
|
! ----- INTERVAL = 5 ----- T = 262.5 |
| 3841 |
|
|
|
| 3842 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3843 |
|
|
! DATA (GA( 7, 5,IC),IC=1,3) / |
| 3844 |
|
|
! S 0.17683622E+00,-0.24848690E-01, 0.00000000E+00/ |
| 3845 |
|
|
! DATA (GB( 7, 5,IC),IC=1,3) / |
| 3846 |
|
|
! S 0.17683622E+00, 0.41645142E+00, 0.10000000E+01/ |
| 3847 |
|
|
! DATA (GA( 7, 6,IC),IC=1,3) / |
| 3848 |
|
|
! S 0.19540288E+00,-0.27433354E-01, 0.00000000E+00/ |
| 3849 |
|
|
! DATA (GB( 7, 6,IC),IC=1,3) / |
| 3850 |
|
|
! S 0.19540288E+00, 0.44587882E+00, 0.10000000E+01/ |
| 3851 |
|
|
|
| 3852 |
|
|
! ----- INTERVAL = 5 ----- T = 275.0 |
| 3853 |
|
|
|
| 3854 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3855 |
|
|
! DATA (GA( 8, 5,IC),IC=1,3) / |
| 3856 |
|
|
! S 0.17900375E+00,-0.25150210E-01, 0.00000000E+00/ |
| 3857 |
|
|
! DATA (GB( 8, 5,IC),IC=1,3) / |
| 3858 |
|
|
! S 0.17900375E+00, 0.42018474E+00, 0.10000000E+01/ |
| 3859 |
|
|
! DATA (GA( 8, 6,IC),IC=1,3) / |
| 3860 |
|
|
! S 0.19722732E+00,-0.27687065E-01, 0.00000000E+00/ |
| 3861 |
|
|
! DATA (GB( 8, 6,IC),IC=1,3) / |
| 3862 |
|
|
! S 0.19722732E+00, 0.44876776E+00, 0.10000000E+01/ |
| 3863 |
|
|
|
| 3864 |
|
|
! ----- INTERVAL = 5 ----- T = 287.5 |
| 3865 |
|
|
|
| 3866 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3867 |
|
|
! DATA (GA( 9, 5,IC),IC=1,3) / |
| 3868 |
|
|
! S 0.18097099E+00,-0.25423873E-01, 0.00000000E+00/ |
| 3869 |
|
|
! DATA (GB( 9, 5,IC),IC=1,3) / |
| 3870 |
|
|
! S 0.18097099E+00, 0.42353379E+00, 0.10000000E+01/ |
| 3871 |
|
|
! DATA (GA( 9, 6,IC),IC=1,3) / |
| 3872 |
|
|
! S 0.19884918E+00,-0.27912608E-01, 0.00000000E+00/ |
| 3873 |
|
|
! DATA (GB( 9, 6,IC),IC=1,3) / |
| 3874 |
|
|
! S 0.19884918E+00, 0.45131451E+00, 0.10000000E+01/ |
| 3875 |
|
|
|
| 3876 |
|
|
! ----- INTERVAL = 5 ----- T = 300.0 |
| 3877 |
|
|
|
| 3878 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3879 |
|
|
! DATA (GA(10, 5,IC),IC=1,3) / |
| 3880 |
|
|
! S 0.18276283E+00,-0.25673139E-01, 0.00000000E+00/ |
| 3881 |
|
|
! DATA (GB(10, 5,IC),IC=1,3) / |
| 3882 |
|
|
! S 0.18276283E+00, 0.42655211E+00, 0.10000000E+01/ |
| 3883 |
|
|
! DATA (GA(10, 6,IC),IC=1,3) / |
| 3884 |
|
|
! S 0.20029696E+00,-0.28113944E-01, 0.00000000E+00/ |
| 3885 |
|
|
! DATA (GB(10, 6,IC),IC=1,3) / |
| 3886 |
|
|
! S 0.20029696E+00, 0.45357095E+00, 0.10000000E+01/ |
| 3887 |
|
|
|
| 3888 |
|
|
! ----- INTERVAL = 5 ----- T = 312.5 |
| 3889 |
|
|
|
| 3890 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3891 |
|
|
! DATA (GA(11, 5,IC),IC=1,3) / |
| 3892 |
|
|
! S 0.18440117E+00,-0.25901055E-01, 0.00000000E+00/ |
| 3893 |
|
|
! DATA (GB(11, 5,IC),IC=1,3) / |
| 3894 |
|
|
! S 0.18440117E+00, 0.42928533E+00, 0.10000000E+01/ |
| 3895 |
|
|
! DATA (GA(11, 6,IC),IC=1,3) / |
| 3896 |
|
|
! S 0.20159300E+00,-0.28294180E-01, 0.00000000E+00/ |
| 3897 |
|
|
! DATA (GB(11, 6,IC),IC=1,3) / |
| 3898 |
|
|
! S 0.20159300E+00, 0.45557797E+00, 0.10000000E+01/ |
| 3899 |
|
|
|
| 3900 |
|
|
|
| 3901 |
|
|
|
| 3902 |
|
|
|
| 3903 |
|
|
! - WATER VAPOR - WINGS OF VIBRATION-ROTATION BAND - 1250-1450+1880-2820 - |
| 3904 |
|
|
! --- G = 0.0 |
| 3905 |
|
|
|
| 3906 |
|
|
|
| 3907 |
|
|
! ----- INTERVAL = 6 ----- T = 187.5 |
| 3908 |
|
|
|
| 3909 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3910 |
|
|
! DATA (GA( 1,11,IC),IC=1,3) / |
| 3911 |
|
|
! S 0.11990218E+02,-0.12823142E+01, 0.00000000E+00/ |
| 3912 |
|
|
! DATA (GB( 1,11,IC),IC=1,3) / |
| 3913 |
|
|
! S 0.11990218E+02, 0.26681588E+02, 0.10000000E+01/ |
| 3914 |
|
|
! DATA (GA( 1,12,IC),IC=1,3) / |
| 3915 |
|
|
! S 0.79709806E+01,-0.74805226E+00, 0.00000000E+00/ |
| 3916 |
|
|
! DATA (GB( 1,12,IC),IC=1,3) / |
| 3917 |
|
|
! S 0.79709806E+01, 0.18377807E+02, 0.10000000E+01/ |
| 3918 |
|
|
|
| 3919 |
|
|
! ----- INTERVAL = 6 ----- T = 200.0 |
| 3920 |
|
|
|
| 3921 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3922 |
|
|
! DATA (GA( 2,11,IC),IC=1,3) / |
| 3923 |
|
|
! S 0.10904073E+02,-0.10571588E+01, 0.00000000E+00/ |
| 3924 |
|
|
! DATA (GB( 2,11,IC),IC=1,3) / |
| 3925 |
|
|
! S 0.10904073E+02, 0.24728346E+02, 0.10000000E+01/ |
| 3926 |
|
|
! DATA (GA( 2,12,IC),IC=1,3) / |
| 3927 |
|
|
! S 0.75400737E+01,-0.56252739E+00, 0.00000000E+00/ |
| 3928 |
|
|
! DATA (GB( 2,12,IC),IC=1,3) / |
| 3929 |
|
|
! S 0.75400737E+01, 0.17643148E+02, 0.10000000E+01/ |
| 3930 |
|
|
|
| 3931 |
|
|
! ----- INTERVAL = 6 ----- T = 212.5 |
| 3932 |
|
|
|
| 3933 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3934 |
|
|
! DATA (GA( 3,11,IC),IC=1,3) / |
| 3935 |
|
|
! S 0.89126838E+01,-0.74864953E+00, 0.00000000E+00/ |
| 3936 |
|
|
! DATA (GB( 3,11,IC),IC=1,3) / |
| 3937 |
|
|
! S 0.89126838E+01, 0.20551342E+02, 0.10000000E+01/ |
| 3938 |
|
|
! DATA (GA( 3,12,IC),IC=1,3) / |
| 3939 |
|
|
! S 0.81804377E+01,-0.46188072E+00, 0.00000000E+00/ |
| 3940 |
|
|
! DATA (GB( 3,12,IC),IC=1,3) / |
| 3941 |
|
|
! S 0.81804377E+01, 0.19296161E+02, 0.10000000E+01/ |
| 3942 |
|
|
|
| 3943 |
|
|
! ----- INTERVAL = 6 ----- T = 225.0 |
| 3944 |
|
|
|
| 3945 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3946 |
|
|
! DATA (GA( 4,11,IC),IC=1,3) / |
| 3947 |
|
|
! S 0.85622405E+01,-0.58705980E+00, 0.00000000E+00/ |
| 3948 |
|
|
! DATA (GB( 4,11,IC),IC=1,3) / |
| 3949 |
|
|
! S 0.85622405E+01, 0.19955244E+02, 0.10000000E+01/ |
| 3950 |
|
|
! DATA (GA( 4,12,IC),IC=1,3) / |
| 3951 |
|
|
! S 0.10564339E+02,-0.40712065E+00, 0.00000000E+00/ |
| 3952 |
|
|
! DATA (GB( 4,12,IC),IC=1,3) / |
| 3953 |
|
|
! S 0.10564339E+02, 0.24951120E+02, 0.10000000E+01/ |
| 3954 |
|
|
|
| 3955 |
|
|
! ----- INTERVAL = 6 ----- T = 237.5 |
| 3956 |
|
|
|
| 3957 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3958 |
|
|
! DATA (GA( 5,11,IC),IC=1,3) / |
| 3959 |
|
|
! S 0.94892164E+01,-0.49305772E+00, 0.00000000E+00/ |
| 3960 |
|
|
! DATA (GB( 5,11,IC),IC=1,3) / |
| 3961 |
|
|
! S 0.94892164E+01, 0.22227100E+02, 0.10000000E+01/ |
| 3962 |
|
|
! DATA (GA( 5,12,IC),IC=1,3) / |
| 3963 |
|
|
! S 0.46896789E+02,-0.15295996E+01, 0.00000000E+00/ |
| 3964 |
|
|
! DATA (GB( 5,12,IC),IC=1,3) / |
| 3965 |
|
|
! S 0.46896789E+02, 0.10957372E+03, 0.10000000E+01/ |
| 3966 |
|
|
|
| 3967 |
|
|
! ----- INTERVAL = 6 ----- T = 250.0 |
| 3968 |
|
|
|
| 3969 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3970 |
|
|
! DATA (GA( 6,11,IC),IC=1,3) / |
| 3971 |
|
|
! S 0.13580937E+02,-0.51461431E+00, 0.00000000E+00/ |
| 3972 |
|
|
! DATA (GB( 6,11,IC),IC=1,3) / |
| 3973 |
|
|
! S 0.13580937E+02, 0.31770288E+02, 0.10000000E+01/ |
| 3974 |
|
|
! DATA (GA( 6,12,IC),IC=1,3) / |
| 3975 |
|
|
! S-0.30926524E+01, 0.43555255E+00, 0.00000000E+00/ |
| 3976 |
|
|
! DATA (GB( 6,12,IC),IC=1,3) / |
| 3977 |
|
|
! S-0.30926524E+01,-0.67432659E+01, 0.10000000E+01/ |
| 3978 |
|
|
|
| 3979 |
|
|
! ----- INTERVAL = 6 ----- T = 262.5 |
| 3980 |
|
|
|
| 3981 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3982 |
|
|
! DATA (GA( 7,11,IC),IC=1,3) / |
| 3983 |
|
|
! S-0.32050918E+03, 0.12373350E+02, 0.00000000E+00/ |
| 3984 |
|
|
! DATA (GB( 7,11,IC),IC=1,3) / |
| 3985 |
|
|
! S-0.32050918E+03,-0.74061287E+03, 0.10000000E+01/ |
| 3986 |
|
|
! DATA (GA( 7,12,IC),IC=1,3) / |
| 3987 |
|
|
! S 0.85742941E+00, 0.50380874E+00, 0.00000000E+00/ |
| 3988 |
|
|
! DATA (GB( 7,12,IC),IC=1,3) / |
| 3989 |
|
|
! S 0.85742941E+00, 0.24550746E+01, 0.10000000E+01/ |
| 3990 |
|
|
|
| 3991 |
|
|
! ----- INTERVAL = 6 ----- T = 275.0 |
| 3992 |
|
|
|
| 3993 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 3994 |
|
|
! DATA (GA( 8,11,IC),IC=1,3) / |
| 3995 |
|
|
! S-0.37133165E+01, 0.44809588E+00, 0.00000000E+00/ |
| 3996 |
|
|
! DATA (GB( 8,11,IC),IC=1,3) / |
| 3997 |
|
|
! S-0.37133165E+01,-0.81329826E+01, 0.10000000E+01/ |
| 3998 |
|
|
! DATA (GA( 8,12,IC),IC=1,3) / |
| 3999 |
|
|
! S 0.19164038E+01, 0.68537352E+00, 0.00000000E+00/ |
| 4000 |
|
|
! DATA (GB( 8,12,IC),IC=1,3) / |
| 4001 |
|
|
! S 0.19164038E+01, 0.49089917E+01, 0.10000000E+01/ |
| 4002 |
|
|
|
| 4003 |
|
|
! ----- INTERVAL = 6 ----- T = 287.5 |
| 4004 |
|
|
|
| 4005 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 4006 |
|
|
! DATA (GA( 9,11,IC),IC=1,3) / |
| 4007 |
|
|
! S 0.18890836E+00, 0.46548918E+00, 0.00000000E+00/ |
| 4008 |
|
|
! DATA (GB( 9,11,IC),IC=1,3) / |
| 4009 |
|
|
! S 0.18890836E+00, 0.90279822E+00, 0.10000000E+01/ |
| 4010 |
|
|
! DATA (GA( 9,12,IC),IC=1,3) / |
| 4011 |
|
|
! S 0.23513199E+01, 0.89437630E+00, 0.00000000E+00/ |
| 4012 |
|
|
! DATA (GB( 9,12,IC),IC=1,3) / |
| 4013 |
|
|
! S 0.23513199E+01, 0.59008712E+01, 0.10000000E+01/ |
| 4014 |
|
|
|
| 4015 |
|
|
! ----- INTERVAL = 6 ----- T = 300.0 |
| 4016 |
|
|
|
| 4017 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 4018 |
|
|
! DATA (GA(10,11,IC),IC=1,3) / |
| 4019 |
|
|
! S 0.14209226E+01, 0.59121475E+00, 0.00000000E+00/ |
| 4020 |
|
|
! DATA (GB(10,11,IC),IC=1,3) / |
| 4021 |
|
|
! S 0.14209226E+01, 0.37532746E+01, 0.10000000E+01/ |
| 4022 |
|
|
! DATA (GA(10,12,IC),IC=1,3) / |
| 4023 |
|
|
! S 0.25566644E+01, 0.11127003E+01, 0.00000000E+00/ |
| 4024 |
|
|
! DATA (GB(10,12,IC),IC=1,3) / |
| 4025 |
|
|
! S 0.25566644E+01, 0.63532616E+01, 0.10000000E+01/ |
| 4026 |
|
|
|
| 4027 |
|
|
! ----- INTERVAL = 6 ----- T = 312.5 |
| 4028 |
|
|
|
| 4029 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
| 4030 |
|
|
! DATA (GA(11,11,IC),IC=1,3) / |
| 4031 |
|
|
! S 0.19817679E+01, 0.74676119E+00, 0.00000000E+00/ |
| 4032 |
|
|
! DATA (GB(11,11,IC),IC=1,3) / |
| 4033 |
|
|
! S 0.19817679E+01, 0.50437916E+01, 0.10000000E+01/ |
| 4034 |
|
|
! DATA (GA(11,12,IC),IC=1,3) / |
| 4035 |
|
|
! S 0.26555181E+01, 0.13329782E+01, 0.00000000E+00/ |
| 4036 |
|
|
! DATA (GB(11,12,IC),IC=1,3) / |
| 4037 |
|
|
! S 0.26555181E+01, 0.65558627E+01, 0.10000000E+01/ |
| 4038 |
|
|
|
| 4039 |
|
|
|
| 4040 |
|
|
|
| 4041 |
|
|
|
| 4042 |
|
|
|
| 4043 |
|
|
! -- END WATER VAPOR |
| 4044 |
|
|
|
| 4045 |
|
|
|
| 4046 |
|
|
! -- CO2 -- INT.2 -- 500-800 CM-1 --- FROM ABS225 ---------------------- |
| 4047 |
|
|
|
| 4048 |
|
|
|
| 4049 |
|
|
|
| 4050 |
|
|
! -- FIU = 0.8 + MAX(0.35,(7-IU)*0.9) , X/T, 9 |
| 4051 |
|
|
|
| 4052 |
|
|
! ----- INTERVAL = 2 ----- T = 187.5 |
| 4053 |
|
|
|
| 4054 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
| 4055 |
|
|
! DATA (GA( 1,13,IC),IC=1,3) / |
| 4056 |
|
|
! S 0.87668459E-01, 0.13845511E+01, 0.00000000E+00/ |
| 4057 |
|
|
! DATA (GB( 1,13,IC),IC=1,3) / |
| 4058 |
|
|
! S 0.87668459E-01, 0.23203798E+01, 0.10000000E+01/ |
| 4059 |
|
|
! DATA (GA( 1,14,IC),IC=1,3) / |
| 4060 |
|
|
! S 0.74878820E-01, 0.11718758E+01, 0.00000000E+00/ |
| 4061 |
|
|
! DATA (GB( 1,14,IC),IC=1,3) / |
| 4062 |
|
|
! S 0.74878820E-01, 0.20206726E+01, 0.10000000E+01/ |
| 4063 |
|
|
|
| 4064 |
|
|
! ----- INTERVAL = 2 ----- T = 200.0 |
| 4065 |
|
|
|
| 4066 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
| 4067 |
|
|
! DATA (GA( 2,13,IC),IC=1,3) / |
| 4068 |
|
|
! S 0.83754276E-01, 0.13187042E+01, 0.00000000E+00/ |
| 4069 |
|
|
! DATA (GB( 2,13,IC),IC=1,3) / |
| 4070 |
|
|
! S 0.83754276E-01, 0.22288925E+01, 0.10000000E+01/ |
| 4071 |
|
|
! DATA (GA( 2,14,IC),IC=1,3) / |
| 4072 |
|
|
! S 0.71650966E-01, 0.11216131E+01, 0.00000000E+00/ |
| 4073 |
|
|
! DATA (GB( 2,14,IC),IC=1,3) / |
| 4074 |
|
|
! S 0.71650966E-01, 0.19441824E+01, 0.10000000E+01/ |
| 4075 |
|
|
|
| 4076 |
|
|
! ----- INTERVAL = 2 ----- T = 212.5 |
| 4077 |
|
|
|
| 4078 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
| 4079 |
|
|
! DATA (GA( 3,13,IC),IC=1,3) / |
| 4080 |
|
|
! S 0.80460283E-01, 0.12644396E+01, 0.00000000E+00/ |
| 4081 |
|
|
! DATA (GB( 3,13,IC),IC=1,3) / |
| 4082 |
|
|
! S 0.80460283E-01, 0.21515593E+01, 0.10000000E+01/ |
| 4083 |
|
|
! DATA (GA( 3,14,IC),IC=1,3) / |
| 4084 |
|
|
! S 0.68979615E-01, 0.10809473E+01, 0.00000000E+00/ |
| 4085 |
|
|
! DATA (GB( 3,14,IC),IC=1,3) / |
| 4086 |
|
|
! S 0.68979615E-01, 0.18807257E+01, 0.10000000E+01/ |
| 4087 |
|
|
|
| 4088 |
|
|
! ----- INTERVAL = 2 ----- T = 225.0 |
| 4089 |
|
|
|
| 4090 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
| 4091 |
|
|
! DATA (GA( 4,13,IC),IC=1,3) / |
| 4092 |
|
|
! S 0.77659686E-01, 0.12191543E+01, 0.00000000E+00/ |
| 4093 |
|
|
! DATA (GB( 4,13,IC),IC=1,3) / |
| 4094 |
|
|
! S 0.77659686E-01, 0.20855896E+01, 0.10000000E+01/ |
| 4095 |
|
|
! DATA (GA( 4,14,IC),IC=1,3) / |
| 4096 |
|
|
! S 0.66745345E-01, 0.10476396E+01, 0.00000000E+00/ |
| 4097 |
|
|
! DATA (GB( 4,14,IC),IC=1,3) / |
| 4098 |
|
|
! S 0.66745345E-01, 0.18275618E+01, 0.10000000E+01/ |
| 4099 |
|
|
|
| 4100 |
|
|
! ----- INTERVAL = 2 ----- T = 237.5 |
| 4101 |
|
|
|
| 4102 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
| 4103 |
|
|
! DATA (GA( 5,13,IC),IC=1,3) / |
| 4104 |
|
|
! S 0.75257056E-01, 0.11809511E+01, 0.00000000E+00/ |
| 4105 |
|
|
! DATA (GB( 5,13,IC),IC=1,3) / |
| 4106 |
|
|
! S 0.75257056E-01, 0.20288489E+01, 0.10000000E+01/ |
| 4107 |
|
|
! DATA (GA( 5,14,IC),IC=1,3) / |
| 4108 |
|
|
! S 0.64857571E-01, 0.10200373E+01, 0.00000000E+00/ |
| 4109 |
|
|
! DATA (GB( 5,14,IC),IC=1,3) / |
| 4110 |
|
|
! S 0.64857571E-01, 0.17825910E+01, 0.10000000E+01/ |
| 4111 |
|
|
|
| 4112 |
|
|
! ----- INTERVAL = 2 ----- T = 250.0 |
| 4113 |
|
|
|
| 4114 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
| 4115 |
|
|
! DATA (GA( 6,13,IC),IC=1,3) / |
| 4116 |
|
|
! S 0.73179175E-01, 0.11484154E+01, 0.00000000E+00/ |
| 4117 |
|
|
! DATA (GB( 6,13,IC),IC=1,3) / |
| 4118 |
|
|
! S 0.73179175E-01, 0.19796791E+01, 0.10000000E+01/ |
| 4119 |
|
|
! DATA (GA( 6,14,IC),IC=1,3) / |
| 4120 |
|
|
! S 0.63248495E-01, 0.99692726E+00, 0.00000000E+00/ |
| 4121 |
|
|
! DATA (GB( 6,14,IC),IC=1,3) / |
| 4122 |
|
|
! S 0.63248495E-01, 0.17442308E+01, 0.10000000E+01/ |
| 4123 |
|
|
|
| 4124 |
|
|
! ----- INTERVAL = 2 ----- T = 262.5 |
| 4125 |
|
|
|
| 4126 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
| 4127 |
|
|
! DATA (GA( 7,13,IC),IC=1,3) / |
| 4128 |
|
|
! S 0.71369063E-01, 0.11204723E+01, 0.00000000E+00/ |
| 4129 |
|
|
! DATA (GB( 7,13,IC),IC=1,3) / |
| 4130 |
|
|
! S 0.71369063E-01, 0.19367778E+01, 0.10000000E+01/ |
| 4131 |
|
|
! DATA (GA( 7,14,IC),IC=1,3) / |
| 4132 |
|
|
! S 0.61866970E-01, 0.97740923E+00, 0.00000000E+00/ |
| 4133 |
|
|
! DATA (GB( 7,14,IC),IC=1,3) / |
| 4134 |
|
|
! S 0.61866970E-01, 0.17112809E+01, 0.10000000E+01/ |
| 4135 |
|
|
|
| 4136 |
|
|
! ----- INTERVAL = 2 ----- T = 275.0 |
| 4137 |
|
|
|
| 4138 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
| 4139 |
|
|
! DATA (GA( 8,13,IC),IC=1,3) / |
| 4140 |
|
|
! S 0.69781812E-01, 0.10962918E+01, 0.00000000E+00/ |
| 4141 |
|
|
! DATA (GB( 8,13,IC),IC=1,3) / |
| 4142 |
|
|
! S 0.69781812E-01, 0.18991112E+01, 0.10000000E+01/ |
| 4143 |
|
|
! DATA (GA( 8,14,IC),IC=1,3) / |
| 4144 |
|
|
! S 0.60673632E-01, 0.96080188E+00, 0.00000000E+00/ |
| 4145 |
|
|
! DATA (GB( 8,14,IC),IC=1,3) / |
| 4146 |
|
|
! S 0.60673632E-01, 0.16828137E+01, 0.10000000E+01/ |
| 4147 |
|
|
|
| 4148 |
|
|
! ----- INTERVAL = 2 ----- T = 287.5 |
| 4149 |
|
|
|
| 4150 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
| 4151 |
|
|
! DATA (GA( 9,13,IC),IC=1,3) / |
| 4152 |
|
|
! S 0.68381606E-01, 0.10752229E+01, 0.00000000E+00/ |
| 4153 |
|
|
! DATA (GB( 9,13,IC),IC=1,3) / |
| 4154 |
|
|
! S 0.68381606E-01, 0.18658501E+01, 0.10000000E+01/ |
| 4155 |
|
|
! DATA (GA( 9,14,IC),IC=1,3) / |
| 4156 |
|
|
! S 0.59637277E-01, 0.94657562E+00, 0.00000000E+00/ |
| 4157 |
|
|
! DATA (GB( 9,14,IC),IC=1,3) / |
| 4158 |
|
|
! S 0.59637277E-01, 0.16580908E+01, 0.10000000E+01/ |
| 4159 |
|
|
|
| 4160 |
|
|
! ----- INTERVAL = 2 ----- T = 300.0 |
| 4161 |
|
|
|
| 4162 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
| 4163 |
|
|
! DATA (GA(10,13,IC),IC=1,3) / |
| 4164 |
|
|
! S 0.67139539E-01, 0.10567474E+01, 0.00000000E+00/ |
| 4165 |
|
|
! DATA (GB(10,13,IC),IC=1,3) / |
| 4166 |
|
|
! S 0.67139539E-01, 0.18363226E+01, 0.10000000E+01/ |
| 4167 |
|
|
! DATA (GA(10,14,IC),IC=1,3) / |
| 4168 |
|
|
! S 0.58732178E-01, 0.93430511E+00, 0.00000000E+00/ |
| 4169 |
|
|
! DATA (GB(10,14,IC),IC=1,3) / |
| 4170 |
|
|
! S 0.58732178E-01, 0.16365014E+01, 0.10000000E+01/ |
| 4171 |
|
|
|
| 4172 |
|
|
! ----- INTERVAL = 2 ----- T = 312.5 |
| 4173 |
|
|
|
| 4174 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
| 4175 |
|
|
! DATA (GA(11,13,IC),IC=1,3) / |
| 4176 |
|
|
! S 0.66032012E-01, 0.10404465E+01, 0.00000000E+00/ |
| 4177 |
|
|
! DATA (GB(11,13,IC),IC=1,3) / |
| 4178 |
|
|
! S 0.66032012E-01, 0.18099779E+01, 0.10000000E+01/ |
| 4179 |
|
|
! DATA (GA(11,14,IC),IC=1,3) / |
| 4180 |
|
|
! S 0.57936092E-01, 0.92363528E+00, 0.00000000E+00/ |
| 4181 |
|
|
! DATA (GB(11,14,IC),IC=1,3) / |
| 4182 |
|
|
! S 0.57936092E-01, 0.16175164E+01, 0.10000000E+01/ |
| 4183 |
|
|
|
| 4184 |
|
|
|
| 4185 |
|
|
|
| 4186 |
|
|
|
| 4187 |
|
|
|
| 4188 |
|
|
|
| 4189 |
|
|
|
| 4190 |
|
|
|
| 4191 |
|
|
|
| 4192 |
|
|
|
| 4193 |
|
|
! -- CARBON DIOXIDE LINES IN THE WINDOW REGION (800-1250 CM-1) |
| 4194 |
|
|
|
| 4195 |
|
|
|
| 4196 |
|
|
! -- G = 0.0 |
| 4197 |
|
|
|
| 4198 |
|
|
|
| 4199 |
|
|
! ----- INTERVAL = 4 ----- T = 187.5 |
| 4200 |
|
|
|
| 4201 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 4202 |
|
|
! DATA (GA( 1,15,IC),IC=1,3) / |
| 4203 |
|
|
! S 0.13230067E+02, 0.22042132E+02, 0.00000000E+00/ |
| 4204 |
|
|
! DATA (GB( 1,15,IC),IC=1,3) / |
| 4205 |
|
|
! S 0.13230067E+02, 0.22051750E+02, 0.10000000E+01/ |
| 4206 |
|
|
! DATA (GA( 1,16,IC),IC=1,3) / |
| 4207 |
|
|
! S 0.13183816E+02, 0.22169501E+02, 0.00000000E+00/ |
| 4208 |
|
|
! DATA (GB( 1,16,IC),IC=1,3) / |
| 4209 |
|
|
! S 0.13183816E+02, 0.22178972E+02, 0.10000000E+01/ |
| 4210 |
|
|
|
| 4211 |
|
|
! ----- INTERVAL = 4 ----- T = 200.0 |
| 4212 |
|
|
|
| 4213 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 4214 |
|
|
! DATA (GA( 2,15,IC),IC=1,3) / |
| 4215 |
|
|
! S 0.13213564E+02, 0.22107298E+02, 0.00000000E+00/ |
| 4216 |
|
|
! DATA (GB( 2,15,IC),IC=1,3) / |
| 4217 |
|
|
! S 0.13213564E+02, 0.22116850E+02, 0.10000000E+01/ |
| 4218 |
|
|
! DATA (GA( 2,16,IC),IC=1,3) / |
| 4219 |
|
|
! S 0.13189991E+02, 0.22270075E+02, 0.00000000E+00/ |
| 4220 |
|
|
! DATA (GB( 2,16,IC),IC=1,3) / |
| 4221 |
|
|
! S 0.13189991E+02, 0.22279484E+02, 0.10000000E+01/ |
| 4222 |
|
|
|
| 4223 |
|
|
! ----- INTERVAL = 4 ----- T = 212.5 |
| 4224 |
|
|
|
| 4225 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 4226 |
|
|
! DATA (GA( 3,15,IC),IC=1,3) / |
| 4227 |
|
|
! S 0.13209140E+02, 0.22180915E+02, 0.00000000E+00/ |
| 4228 |
|
|
! DATA (GB( 3,15,IC),IC=1,3) / |
| 4229 |
|
|
! S 0.13209140E+02, 0.22190410E+02, 0.10000000E+01/ |
| 4230 |
|
|
! DATA (GA( 3,16,IC),IC=1,3) / |
| 4231 |
|
|
! S 0.13209485E+02, 0.22379193E+02, 0.00000000E+00/ |
| 4232 |
|
|
! DATA (GB( 3,16,IC),IC=1,3) / |
| 4233 |
|
|
! S 0.13209485E+02, 0.22388551E+02, 0.10000000E+01/ |
| 4234 |
|
|
|
| 4235 |
|
|
! ----- INTERVAL = 4 ----- T = 225.0 |
| 4236 |
|
|
|
| 4237 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 4238 |
|
|
! DATA (GA( 4,15,IC),IC=1,3) / |
| 4239 |
|
|
! S 0.13213894E+02, 0.22259478E+02, 0.00000000E+00/ |
| 4240 |
|
|
! DATA (GB( 4,15,IC),IC=1,3) / |
| 4241 |
|
|
! S 0.13213894E+02, 0.22268925E+02, 0.10000000E+01/ |
| 4242 |
|
|
! DATA (GA( 4,16,IC),IC=1,3) / |
| 4243 |
|
|
! S 0.13238789E+02, 0.22492992E+02, 0.00000000E+00/ |
| 4244 |
|
|
! DATA (GB( 4,16,IC),IC=1,3) / |
| 4245 |
|
|
! S 0.13238789E+02, 0.22502309E+02, 0.10000000E+01/ |
| 4246 |
|
|
|
| 4247 |
|
|
! ----- INTERVAL = 4 ----- T = 237.5 |
| 4248 |
|
|
|
| 4249 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 4250 |
|
|
! DATA (GA( 5,15,IC),IC=1,3) / |
| 4251 |
|
|
! S 0.13225963E+02, 0.22341039E+02, 0.00000000E+00/ |
| 4252 |
|
|
! DATA (GB( 5,15,IC),IC=1,3) / |
| 4253 |
|
|
! S 0.13225963E+02, 0.22350445E+02, 0.10000000E+01/ |
| 4254 |
|
|
! DATA (GA( 5,16,IC),IC=1,3) / |
| 4255 |
|
|
! S 0.13275017E+02, 0.22608508E+02, 0.00000000E+00/ |
| 4256 |
|
|
! DATA (GB( 5,16,IC),IC=1,3) / |
| 4257 |
|
|
! S 0.13275017E+02, 0.22617792E+02, 0.10000000E+01/ |
| 4258 |
|
|
|
| 4259 |
|
|
! ----- INTERVAL = 4 ----- T = 250.0 |
| 4260 |
|
|
|
| 4261 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 4262 |
|
|
! DATA (GA( 6,15,IC),IC=1,3) / |
| 4263 |
|
|
! S 0.13243806E+02, 0.22424247E+02, 0.00000000E+00/ |
| 4264 |
|
|
! DATA (GB( 6,15,IC),IC=1,3) / |
| 4265 |
|
|
! S 0.13243806E+02, 0.22433617E+02, 0.10000000E+01/ |
| 4266 |
|
|
! DATA (GA( 6,16,IC),IC=1,3) / |
| 4267 |
|
|
! S 0.13316096E+02, 0.22723843E+02, 0.00000000E+00/ |
| 4268 |
|
|
! DATA (GB( 6,16,IC),IC=1,3) / |
| 4269 |
|
|
! S 0.13316096E+02, 0.22733099E+02, 0.10000000E+01/ |
| 4270 |
|
|
|
| 4271 |
|
|
! ----- INTERVAL = 4 ----- T = 262.5 |
| 4272 |
|
|
|
| 4273 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 4274 |
|
|
! DATA (GA( 7,15,IC),IC=1,3) / |
| 4275 |
|
|
! S 0.13266104E+02, 0.22508089E+02, 0.00000000E+00/ |
| 4276 |
|
|
! DATA (GB( 7,15,IC),IC=1,3) / |
| 4277 |
|
|
! S 0.13266104E+02, 0.22517429E+02, 0.10000000E+01/ |
| 4278 |
|
|
! DATA (GA( 7,16,IC),IC=1,3) / |
| 4279 |
|
|
! S 0.13360555E+02, 0.22837837E+02, 0.00000000E+00/ |
| 4280 |
|
|
! DATA (GB( 7,16,IC),IC=1,3) / |
| 4281 |
|
|
! S 0.13360555E+02, 0.22847071E+02, 0.10000000E+01/ |
| 4282 |
|
|
|
| 4283 |
|
|
! ----- INTERVAL = 4 ----- T = 275.0 |
| 4284 |
|
|
|
| 4285 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 4286 |
|
|
! DATA (GA( 8,15,IC),IC=1,3) / |
| 4287 |
|
|
! S 0.13291782E+02, 0.22591771E+02, 0.00000000E+00/ |
| 4288 |
|
|
! DATA (GB( 8,15,IC),IC=1,3) / |
| 4289 |
|
|
! S 0.13291782E+02, 0.22601086E+02, 0.10000000E+01/ |
| 4290 |
|
|
! DATA (GA( 8,16,IC),IC=1,3) / |
| 4291 |
|
|
! S 0.13407324E+02, 0.22949751E+02, 0.00000000E+00/ |
| 4292 |
|
|
! DATA (GB( 8,16,IC),IC=1,3) / |
| 4293 |
|
|
! S 0.13407324E+02, 0.22958967E+02, 0.10000000E+01/ |
| 4294 |
|
|
|
| 4295 |
|
|
! ----- INTERVAL = 4 ----- T = 287.5 |
| 4296 |
|
|
|
| 4297 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 4298 |
|
|
! DATA (GA( 9,15,IC),IC=1,3) / |
| 4299 |
|
|
! S 0.13319961E+02, 0.22674661E+02, 0.00000000E+00/ |
| 4300 |
|
|
! DATA (GB( 9,15,IC),IC=1,3) / |
| 4301 |
|
|
! S 0.13319961E+02, 0.22683956E+02, 0.10000000E+01/ |
| 4302 |
|
|
! DATA (GA( 9,16,IC),IC=1,3) / |
| 4303 |
|
|
! S 0.13455544E+02, 0.23059032E+02, 0.00000000E+00/ |
| 4304 |
|
|
! DATA (GB( 9,16,IC),IC=1,3) / |
| 4305 |
|
|
! S 0.13455544E+02, 0.23068234E+02, 0.10000000E+01/ |
| 4306 |
|
|
|
| 4307 |
|
|
! ----- INTERVAL = 4 ----- T = 300.0 |
| 4308 |
|
|
|
| 4309 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 4310 |
|
|
! DATA (GA(10,15,IC),IC=1,3) / |
| 4311 |
|
|
! S 0.13349927E+02, 0.22756246E+02, 0.00000000E+00/ |
| 4312 |
|
|
! DATA (GB(10,15,IC),IC=1,3) / |
| 4313 |
|
|
! S 0.13349927E+02, 0.22765522E+02, 0.10000000E+01/ |
| 4314 |
|
|
! DATA (GA(10,16,IC),IC=1,3) / |
| 4315 |
|
|
! S 0.13504450E+02, 0.23165146E+02, 0.00000000E+00/ |
| 4316 |
|
|
! DATA (GB(10,16,IC),IC=1,3) / |
| 4317 |
|
|
! S 0.13504450E+02, 0.23174336E+02, 0.10000000E+01/ |
| 4318 |
|
|
|
| 4319 |
|
|
! ----- INTERVAL = 4 ----- T = 312.5 |
| 4320 |
|
|
|
| 4321 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
| 4322 |
|
|
! DATA (GA(11,15,IC),IC=1,3) / |
| 4323 |
|
|
! S 0.13381108E+02, 0.22836093E+02, 0.00000000E+00/ |
| 4324 |
|
|
! DATA (GB(11,15,IC),IC=1,3) / |
| 4325 |
|
|
! S 0.13381108E+02, 0.22845354E+02, 0.10000000E+01/ |
| 4326 |
|
|
! DATA (GA(11,16,IC),IC=1,3) / |
| 4327 |
|
|
! S 0.13553282E+02, 0.23267456E+02, 0.00000000E+00/ |
| 4328 |
|
|
! DATA (GB(11,16,IC),IC=1,3) / |
| 4329 |
|
|
! S 0.13553282E+02, 0.23276638E+02, 0.10000000E+01/ |
| 4330 |
|
|
|
| 4331 |
|
|
! ------------------------------------------------------------------ |
| 4332 |
|
|
! DATA (( XP( J,K),J=1,6), K=1,6) / |
| 4333 |
|
|
! S 0.46430621E+02, 0.12928299E+03, 0.20732648E+03, |
| 4334 |
|
|
! S 0.31398411E+03, 0.18373177E+03,-0.11412303E+03, |
| 4335 |
|
|
! S 0.73604774E+02, 0.27887914E+03, 0.27076947E+03, |
| 4336 |
|
|
! S-0.57322111E+02,-0.64742459E+02, 0.87238280E+02, |
| 4337 |
|
|
! S 0.37050866E+02, 0.20498759E+03, 0.37558029E+03, |
| 4338 |
|
|
! S 0.17401171E+03,-0.13350302E+03,-0.37651795E+02, |
| 4339 |
|
|
! S 0.14930141E+02, 0.89161160E+02, 0.17793062E+03, |
| 4340 |
|
|
! S 0.93433860E+02,-0.70646020E+02,-0.26373150E+02, |
| 4341 |
|
|
! S 0.40386780E+02, 0.10855270E+03, 0.50755010E+02, |
| 4342 |
|
|
! S-0.31496190E+02, 0.12791300E+00, 0.18017770E+01, |
| 4343 |
|
|
! S 0.90811926E+01, 0.75073923E+02, 0.24654438E+03, |
| 4344 |
|
|
! S 0.39332612E+03, 0.29385281E+03, 0.89107921E+02 / |
| 4345 |
|
|
|
| 4346 |
|
|
|
| 4347 |
|
|
|
| 4348 |
|
|
! * 1.0 PLANCK FUNCTIONS AND GRADIENTS |
| 4349 |
|
|
! ------------------------------ |
| 4350 |
|
|
|
| 4351 |
|
|
|
| 4352 |
|
|
! cdir collapse |
| 4353 |
|
✗ |
DO jk = 1, kflev + 1 |
| 4354 |
|
✗ |
DO jl = 1, kdlon |
| 4355 |
|
✗ |
pbint(jl, jk) = 0. |
| 4356 |
|
|
END DO |
| 4357 |
|
|
END DO |
| 4358 |
|
✗ |
DO jl = 1, kdlon |
| 4359 |
|
✗ |
pbsuin(jl) = 0. |
| 4360 |
|
|
END DO |
| 4361 |
|
|
|
| 4362 |
|
✗ |
DO jnu = 1, ninter |
| 4363 |
|
|
|
| 4364 |
|
|
! * 1.1 LEVELS FROM SURFACE TO KFLEV |
| 4365 |
|
|
! ---------------------------- |
| 4366 |
|
|
|
| 4367 |
|
|
|
| 4368 |
|
✗ |
DO jk = 1, kflev |
| 4369 |
|
✗ |
DO jl = 1, kdlon |
| 4370 |
|
✗ |
zti(jl) = (ptl(jl,jk)-tstand)/tstand |
| 4371 |
|
|
zres(jl) = xp(1, jnu) + zti(jl)*(xp(2,jnu)+zti(jl)*(xp(3, & |
| 4372 |
|
✗ |
jnu)+zti(jl)*(xp(4,jnu)+zti(jl)*(xp(5,jnu)+zti(jl)*(xp(6,jnu)))))) |
| 4373 |
|
✗ |
pbint(jl, jk) = pbint(jl, jk) + zres(jl) |
| 4374 |
|
✗ |
pb(jl, jnu, jk) = zres(jl) |
| 4375 |
|
✗ |
zblev(jl, jk) = zres(jl) |
| 4376 |
|
✗ |
zti2(jl) = (ptave(jl,jk)-tstand)/tstand |
| 4377 |
|
|
zres2(jl) = xp(1, jnu) + zti2(jl)*(xp(2,jnu)+zti2(jl)*(xp(3, & |
| 4378 |
|
|
jnu)+zti2(jl)*(xp(4,jnu)+zti2(jl)*(xp(5,jnu)+zti2(jl)*(xp(6,jnu)))) & |
| 4379 |
|
✗ |
)) |
| 4380 |
|
✗ |
zblay(jl, jk) = zres2(jl) |
| 4381 |
|
|
END DO |
| 4382 |
|
|
END DO |
| 4383 |
|
|
|
| 4384 |
|
|
! * 1.2 TOP OF THE ATMOSPHERE AND SURFACE |
| 4385 |
|
|
! --------------------------------- |
| 4386 |
|
|
|
| 4387 |
|
|
|
| 4388 |
|
✗ |
DO jl = 1, kdlon |
| 4389 |
|
✗ |
zti(jl) = (ptl(jl,kflev+1)-tstand)/tstand |
| 4390 |
|
✗ |
zti2(jl) = (ptl(jl,1)+pdt0(jl)-tstand)/tstand |
| 4391 |
|
|
zres(jl) = xp(1, jnu) + zti(jl)*(xp(2,jnu)+zti(jl)*(xp(3, & |
| 4392 |
|
✗ |
jnu)+zti(jl)*(xp(4,jnu)+zti(jl)*(xp(5,jnu)+zti(jl)*(xp(6,jnu)))))) |
| 4393 |
|
|
zres2(jl) = xp(1, jnu) + zti2(jl)*(xp(2,jnu)+zti2(jl)*(xp(3, & |
| 4394 |
|
✗ |
jnu)+zti2(jl)*(xp(4,jnu)+zti2(jl)*(xp(5,jnu)+zti2(jl)*(xp(6,jnu)))))) |
| 4395 |
|
✗ |
pbint(jl, kflev+1) = pbint(jl, kflev+1) + zres(jl) |
| 4396 |
|
✗ |
pb(jl, jnu, kflev+1) = zres(jl) |
| 4397 |
|
✗ |
zblev(jl, kflev+1) = zres(jl) |
| 4398 |
|
✗ |
pbtop(jl, jnu) = zres(jl) |
| 4399 |
|
✗ |
pbsur(jl, jnu) = zres2(jl) |
| 4400 |
|
✗ |
pbsuin(jl) = pbsuin(jl) + zres2(jl) |
| 4401 |
|
|
END DO |
| 4402 |
|
|
|
| 4403 |
|
|
! * 1.3 GRADIENTS IN SUB-LAYERS |
| 4404 |
|
|
! ----------------------- |
| 4405 |
|
|
|
| 4406 |
|
|
|
| 4407 |
|
✗ |
DO jk = 1, kflev |
| 4408 |
|
✗ |
jk2 = 2*jk |
| 4409 |
|
✗ |
jk1 = jk2 - 1 |
| 4410 |
|
✗ |
DO jl = 1, kdlon |
| 4411 |
|
✗ |
pdbsl(jl, jnu, jk1) = zblay(jl, jk) - zblev(jl, jk) |
| 4412 |
|
✗ |
pdbsl(jl, jnu, jk2) = zblev(jl, jk+1) - zblay(jl, jk) |
| 4413 |
|
|
END DO |
| 4414 |
|
|
END DO |
| 4415 |
|
|
|
| 4416 |
|
|
END DO |
| 4417 |
|
|
|
| 4418 |
|
|
! * 2.0 CHOOSE THE RELEVANT SETS OF PADE APPROXIMANTS |
| 4419 |
|
|
! --------------------------------------------- |
| 4420 |
|
|
|
| 4421 |
|
|
|
| 4422 |
|
|
|
| 4423 |
|
|
|
| 4424 |
|
✗ |
DO jl = 1, kdlon |
| 4425 |
|
✗ |
zdsto1 = (ptl(jl,kflev+1)-tintp(1))/tstp |
| 4426 |
|
✗ |
ixtox = max(1, min(mxixt,int(zdsto1+1.))) |
| 4427 |
|
✗ |
zdstox = (ptl(jl,kflev+1)-tintp(ixtox))/tstp |
| 4428 |
|
✗ |
IF (zdstox<0.5) THEN |
| 4429 |
|
|
indto = ixtox |
| 4430 |
|
|
ELSE |
| 4431 |
|
✗ |
indto = ixtox + 1 |
| 4432 |
|
|
END IF |
| 4433 |
|
✗ |
indb(jl) = indto |
| 4434 |
|
✗ |
zdst1 = (ptl(jl,1)-tintp(1))/tstp |
| 4435 |
|
✗ |
ixtx = max(1, min(mxixt,int(zdst1+1.))) |
| 4436 |
|
✗ |
zdstx = (ptl(jl,1)-tintp(ixtx))/tstp |
| 4437 |
|
✗ |
IF (zdstx<0.5) THEN |
| 4438 |
|
|
indt = ixtx |
| 4439 |
|
|
ELSE |
| 4440 |
|
✗ |
indt = ixtx + 1 |
| 4441 |
|
|
END IF |
| 4442 |
|
✗ |
inds(jl) = indt |
| 4443 |
|
|
END DO |
| 4444 |
|
|
|
| 4445 |
|
✗ |
DO jf = 1, 2 |
| 4446 |
|
✗ |
DO jg = 1, 8 |
| 4447 |
|
✗ |
DO jl = 1, kdlon |
| 4448 |
|
✗ |
indsu = inds(jl) |
| 4449 |
|
✗ |
pgasur(jl, jg, jf) = ga(indsu, 2*jg-1, jf) |
| 4450 |
|
✗ |
pgbsur(jl, jg, jf) = gb(indsu, 2*jg-1, jf) |
| 4451 |
|
✗ |
indtp = indb(jl) |
| 4452 |
|
✗ |
pgatop(jl, jg, jf) = ga(indtp, 2*jg-1, jf) |
| 4453 |
|
✗ |
pgbtop(jl, jg, jf) = gb(indtp, 2*jg-1, jf) |
| 4454 |
|
|
END DO |
| 4455 |
|
|
END DO |
| 4456 |
|
|
END DO |
| 4457 |
|
|
|
| 4458 |
|
✗ |
DO jk = 1, kflev |
| 4459 |
|
✗ |
DO jl = 1, kdlon |
| 4460 |
|
✗ |
zdst1 = (ptave(jl,jk)-tintp(1))/tstp |
| 4461 |
|
✗ |
ixtx = max(1, min(mxixt,int(zdst1+1.))) |
| 4462 |
|
✗ |
zdstx = (ptave(jl,jk)-tintp(ixtx))/tstp |
| 4463 |
|
✗ |
IF (zdstx<0.5) THEN |
| 4464 |
|
|
indt = ixtx |
| 4465 |
|
|
ELSE |
| 4466 |
|
✗ |
indt = ixtx + 1 |
| 4467 |
|
|
END IF |
| 4468 |
|
✗ |
indb(jl) = indt |
| 4469 |
|
|
END DO |
| 4470 |
|
|
|
| 4471 |
|
✗ |
DO jf = 1, 2 |
| 4472 |
|
✗ |
DO jg = 1, 8 |
| 4473 |
|
✗ |
DO jl = 1, kdlon |
| 4474 |
|
✗ |
indt = indb(jl) |
| 4475 |
|
✗ |
pga(jl, jg, jf, jk) = ga(indt, 2*jg, jf) |
| 4476 |
|
✗ |
pgb(jl, jg, jf, jk) = gb(indt, 2*jg, jf) |
| 4477 |
|
|
END DO |
| 4478 |
|
|
END DO |
| 4479 |
|
|
END DO |
| 4480 |
|
|
END DO |
| 4481 |
|
|
|
| 4482 |
|
|
! ------------------------------------------------------------------ |
| 4483 |
|
|
|
| 4484 |
|
✗ |
RETURN |
| 4485 |
|
|
END SUBROUTINE lwb_lmdar4 |
| 4486 |
|
✗ |
SUBROUTINE lwv_lmdar4(kuaer, ktraer, klim, pabcu, pb, pbint, pbsuin, pbsur, & |
| 4487 |
|
✗ |
pbtop, pdbsl, pemis, ppmb, ptave, pga, pgb, pgasur, pgbsur, pgatop, & |
| 4488 |
|
✗ |
pgbtop, pcntrb, pcts, pfluc) |
| 4489 |
|
|
USE dimphy |
| 4490 |
|
|
IMPLICIT NONE |
| 4491 |
|
|
include "raddimlw.h" |
| 4492 |
|
|
include "YOMCST.h" |
| 4493 |
|
|
|
| 4494 |
|
|
! ----------------------------------------------------------------------- |
| 4495 |
|
|
! PURPOSE. |
| 4496 |
|
|
! -------- |
| 4497 |
|
|
! CARRIES OUT THE VERTICAL INTEGRATION TO GIVE LONGWAVE |
| 4498 |
|
|
! FLUXES OR RADIANCES |
| 4499 |
|
|
|
| 4500 |
|
|
! METHOD. |
| 4501 |
|
|
! ------- |
| 4502 |
|
|
|
| 4503 |
|
|
! 1. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING BETWEEN |
| 4504 |
|
|
! CONTRIBUTIONS BY - THE NEARBY LAYERS |
| 4505 |
|
|
! - THE DISTANT LAYERS |
| 4506 |
|
|
! - THE BOUNDARY TERMS |
| 4507 |
|
|
! 2. COMPUTES THE CLEAR-SKY DOWNWARD AND UPWARD EMISSIVITIES. |
| 4508 |
|
|
|
| 4509 |
|
|
! REFERENCE. |
| 4510 |
|
|
! ---------- |
| 4511 |
|
|
|
| 4512 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 4513 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 4514 |
|
|
|
| 4515 |
|
|
! AUTHOR. |
| 4516 |
|
|
! ------- |
| 4517 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 4518 |
|
|
|
| 4519 |
|
|
! MODIFICATIONS. |
| 4520 |
|
|
! -------------- |
| 4521 |
|
|
! ORIGINAL : 89-07-14 |
| 4522 |
|
|
! ----------------------------------------------------------------------- |
| 4523 |
|
|
|
| 4524 |
|
|
! * ARGUMENTS: |
| 4525 |
|
|
INTEGER kuaer, ktraer, klim |
| 4526 |
|
|
|
| 4527 |
|
|
REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! EFFECTIVE ABSORBER AMOUNTS |
| 4528 |
|
|
REAL (KIND=8) pb(kdlon, ninter, kflev+1) ! SPECTRAL HALF-LEVEL PLANCK FUNCTIONS |
| 4529 |
|
|
REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF-LEVEL PLANCK FUNCTIONS |
| 4530 |
|
|
REAL (KIND=8) pbsur(kdlon, ninter) ! SURFACE SPECTRAL PLANCK FUNCTION |
| 4531 |
|
|
REAL (KIND=8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
| 4532 |
|
|
REAL (KIND=8) pbtop(kdlon, ninter) ! T.O.A. SPECTRAL PLANCK FUNCTION |
| 4533 |
|
|
REAL (KIND=8) pdbsl(kdlon, ninter, kflev*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
| 4534 |
|
|
REAL (KIND=8) pemis(kdlon) ! SURFACE EMISSIVITY |
| 4535 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) ! HALF-LEVEL PRESSURE (MB) |
| 4536 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) ! TEMPERATURE |
| 4537 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
| 4538 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
| 4539 |
|
|
REAL (KIND=8) pgasur(kdlon, 8, 2) ! PADE APPROXIMANTS |
| 4540 |
|
|
REAL (KIND=8) pgbsur(kdlon, 8, 2) ! PADE APPROXIMANTS |
| 4541 |
|
|
REAL (KIND=8) pgatop(kdlon, 8, 2) ! PADE APPROXIMANTS |
| 4542 |
|
|
REAL (KIND=8) pgbtop(kdlon, 8, 2) ! PADE APPROXIMANTS |
| 4543 |
|
|
|
| 4544 |
|
|
REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) ! CLEAR-SKY ENERGY EXCHANGE MATRIX |
| 4545 |
|
|
REAL (KIND=8) pcts(kdlon, kflev) ! COOLING-TO-SPACE TERM |
| 4546 |
|
|
REAL (KIND=8) pfluc(kdlon, 2, kflev+1) ! CLEAR-SKY RADIATIVE FLUXES |
| 4547 |
|
|
! ----------------------------------------------------------------------- |
| 4548 |
|
|
! LOCAL VARIABLES: |
| 4549 |
|
✗ |
REAL (KIND=8) zadjd(kdlon, kflev+1) |
| 4550 |
|
✗ |
REAL (KIND=8) zadju(kdlon, kflev+1) |
| 4551 |
|
✗ |
REAL (KIND=8) zdbdt(kdlon, ninter, kflev) |
| 4552 |
|
✗ |
REAL (KIND=8) zdisd(kdlon, kflev+1) |
| 4553 |
|
✗ |
REAL (KIND=8) zdisu(kdlon, kflev+1) |
| 4554 |
|
|
|
| 4555 |
|
|
INTEGER jk, jl |
| 4556 |
|
|
! ----------------------------------------------------------------------- |
| 4557 |
|
|
|
| 4558 |
|
✗ |
DO jk = 1, kflev + 1 |
| 4559 |
|
✗ |
DO jl = 1, kdlon |
| 4560 |
|
✗ |
zadjd(jl, jk) = 0. |
| 4561 |
|
✗ |
zadju(jl, jk) = 0. |
| 4562 |
|
✗ |
zdisd(jl, jk) = 0. |
| 4563 |
|
✗ |
zdisu(jl, jk) = 0. |
| 4564 |
|
|
END DO |
| 4565 |
|
|
END DO |
| 4566 |
|
|
|
| 4567 |
|
✗ |
DO jk = 1, kflev |
| 4568 |
|
✗ |
DO jl = 1, kdlon |
| 4569 |
|
✗ |
pcts(jl, jk) = 0. |
| 4570 |
|
|
END DO |
| 4571 |
|
|
END DO |
| 4572 |
|
|
|
| 4573 |
|
|
! * CONTRIBUTION FROM ADJACENT LAYERS |
| 4574 |
|
|
|
| 4575 |
|
|
CALL lwvn_lmdar4(kuaer, ktraer, pabcu, pdbsl, pga, pgb, zadjd, zadju, & |
| 4576 |
|
✗ |
pcntrb, zdbdt) |
| 4577 |
|
|
! * CONTRIBUTION FROM DISTANT LAYERS |
| 4578 |
|
|
|
| 4579 |
|
|
CALL lwvd_lmdar4(kuaer, ktraer, pabcu, zdbdt, pga, pgb, pcntrb, zdisd, & |
| 4580 |
|
✗ |
zdisu) |
| 4581 |
|
|
|
| 4582 |
|
|
! * EXCHANGE WITH THE BOUNDARIES |
| 4583 |
|
|
|
| 4584 |
|
|
CALL lwvb_lmdar4(kuaer, ktraer, klim, pabcu, zadjd, zadju, pb, pbint, & |
| 4585 |
|
|
pbsuin, pbsur, pbtop, zdisd, zdisu, pemis, ppmb, pga, pgb, pgasur, & |
| 4586 |
|
✗ |
pgbsur, pgatop, pgbtop, pcts, pfluc) |
| 4587 |
|
|
|
| 4588 |
|
|
|
| 4589 |
|
✗ |
RETURN |
| 4590 |
|
|
END SUBROUTINE lwv_lmdar4 |
| 4591 |
|
✗ |
SUBROUTINE lwvb_lmdar4(kuaer, ktraer, klim, pabcu, padjd, padju, pb, pbint, & |
| 4592 |
|
✗ |
pbsui, pbsur, pbtop, pdisd, pdisu, pemis, ppmb, pga, pgb, pgasur, pgbsur, & |
| 4593 |
|
✗ |
pgatop, pgbtop, pcts, pfluc) |
| 4594 |
|
|
USE dimphy |
| 4595 |
|
|
IMPLICIT NONE |
| 4596 |
|
|
include "raddimlw.h" |
| 4597 |
|
|
include "radopt.h" |
| 4598 |
|
|
|
| 4599 |
|
|
! ----------------------------------------------------------------------- |
| 4600 |
|
|
! PURPOSE. |
| 4601 |
|
|
! -------- |
| 4602 |
|
|
! INTRODUCES THE EFFECTS OF THE BOUNDARIES IN THE VERTICAL |
| 4603 |
|
|
! INTEGRATION |
| 4604 |
|
|
|
| 4605 |
|
|
! METHOD. |
| 4606 |
|
|
! ------- |
| 4607 |
|
|
|
| 4608 |
|
|
! 1. COMPUTES THE ENERGY EXCHANGE WITH TOP AND SURFACE OF THE |
| 4609 |
|
|
! ATMOSPHERE |
| 4610 |
|
|
! 2. COMPUTES THE COOLING-TO-SPACE AND HEATING-FROM-GROUND |
| 4611 |
|
|
! TERMS FOR THE APPROXIMATE COOLING RATE ABOVE 10 HPA |
| 4612 |
|
|
! 3. ADDS UP ALL CONTRIBUTIONS TO GET THE CLEAR-SKY FLUXES |
| 4613 |
|
|
|
| 4614 |
|
|
! REFERENCE. |
| 4615 |
|
|
! ---------- |
| 4616 |
|
|
|
| 4617 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 4618 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 4619 |
|
|
|
| 4620 |
|
|
! AUTHOR. |
| 4621 |
|
|
! ------- |
| 4622 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 4623 |
|
|
|
| 4624 |
|
|
! MODIFICATIONS. |
| 4625 |
|
|
! -------------- |
| 4626 |
|
|
! ORIGINAL : 89-07-14 |
| 4627 |
|
|
! Voigt lines (loop 2413 to 2427) - JJM & PhD - 01/96 |
| 4628 |
|
|
! ----------------------------------------------------------------------- |
| 4629 |
|
|
|
| 4630 |
|
|
! * 0.1 ARGUMENTS |
| 4631 |
|
|
! --------- |
| 4632 |
|
|
|
| 4633 |
|
|
INTEGER kuaer, ktraer, klim |
| 4634 |
|
|
|
| 4635 |
|
|
REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! ABSORBER AMOUNTS |
| 4636 |
|
|
REAL (KIND=8) padjd(kdlon, kflev+1) ! CONTRIBUTION BY ADJACENT LAYERS |
| 4637 |
|
|
REAL (KIND=8) padju(kdlon, kflev+1) ! CONTRIBUTION BY ADJACENT LAYERS |
| 4638 |
|
|
REAL (KIND=8) pb(kdlon, ninter, kflev+1) ! SPECTRAL HALF-LEVEL PLANCK FUNCTIONS |
| 4639 |
|
|
REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF-LEVEL PLANCK FUNCTIONS |
| 4640 |
|
|
REAL (KIND=8) pbsur(kdlon, ninter) ! SPECTRAL SURFACE PLANCK FUNCTION |
| 4641 |
|
|
REAL (KIND=8) pbsui(kdlon) ! SURFACE PLANCK FUNCTION |
| 4642 |
|
|
REAL (KIND=8) pbtop(kdlon, ninter) ! SPECTRAL T.O.A. PLANCK FUNCTION |
| 4643 |
|
|
REAL (KIND=8) pdisd(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
| 4644 |
|
|
REAL (KIND=8) pdisu(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
| 4645 |
|
|
REAL (KIND=8) pemis(kdlon) ! SURFACE EMISSIVITY |
| 4646 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) ! PRESSURE MB |
| 4647 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
| 4648 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
| 4649 |
|
|
REAL (KIND=8) pgasur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
| 4650 |
|
|
REAL (KIND=8) pgbsur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
| 4651 |
|
|
REAL (KIND=8) pgatop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
| 4652 |
|
|
REAL (KIND=8) pgbtop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
| 4653 |
|
|
|
| 4654 |
|
|
REAL (KIND=8) pfluc(kdlon, 2, kflev+1) ! CLEAR-SKY RADIATIVE FLUXES |
| 4655 |
|
|
REAL (KIND=8) pcts(kdlon, kflev) ! COOLING-TO-SPACE TERM |
| 4656 |
|
|
|
| 4657 |
|
|
! * LOCAL VARIABLES: |
| 4658 |
|
|
|
| 4659 |
|
✗ |
REAL (KIND=8) zbgnd(kdlon) |
| 4660 |
|
✗ |
REAL (KIND=8) zfd(kdlon) |
| 4661 |
|
✗ |
REAL (KIND=8) zfn10(kdlon) |
| 4662 |
|
✗ |
REAL (KIND=8) zfu(kdlon) |
| 4663 |
|
✗ |
REAL (KIND=8) ztt(kdlon, ntra) |
| 4664 |
|
✗ |
REAL (KIND=8) ztt1(kdlon, ntra) |
| 4665 |
|
✗ |
REAL (KIND=8) ztt2(kdlon, ntra) |
| 4666 |
|
✗ |
REAL (KIND=8) zuu(kdlon, nua) |
| 4667 |
|
✗ |
REAL (KIND=8) zcnsol(kdlon) |
| 4668 |
|
✗ |
REAL (KIND=8) zcntop(kdlon) |
| 4669 |
|
|
|
| 4670 |
|
|
INTEGER jk, jl, ja |
| 4671 |
|
|
INTEGER jstra, jstru |
| 4672 |
|
|
INTEGER ind1, ind2, ind3, ind4, in, jlim |
| 4673 |
|
|
REAL (KIND=8) zctstr |
| 4674 |
|
|
|
| 4675 |
|
|
! ----------------------------------------------------------------------- |
| 4676 |
|
|
|
| 4677 |
|
|
! * 1. INITIALIZATION |
| 4678 |
|
|
! -------------- |
| 4679 |
|
|
|
| 4680 |
|
|
|
| 4681 |
|
|
|
| 4682 |
|
|
! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
| 4683 |
|
|
! --------------------------------- |
| 4684 |
|
|
|
| 4685 |
|
|
|
| 4686 |
|
✗ |
DO ja = 1, ntra |
| 4687 |
|
✗ |
DO jl = 1, kdlon |
| 4688 |
|
✗ |
ztt(jl, ja) = 1.0 |
| 4689 |
|
✗ |
ztt1(jl, ja) = 1.0 |
| 4690 |
|
✗ |
ztt2(jl, ja) = 1.0 |
| 4691 |
|
|
END DO |
| 4692 |
|
|
END DO |
| 4693 |
|
|
|
| 4694 |
|
✗ |
DO ja = 1, nua |
| 4695 |
|
✗ |
DO jl = 1, kdlon |
| 4696 |
|
✗ |
zuu(jl, ja) = 1.0 |
| 4697 |
|
|
END DO |
| 4698 |
|
|
END DO |
| 4699 |
|
|
|
| 4700 |
|
|
! ------------------------------------------------------------------ |
| 4701 |
|
|
|
| 4702 |
|
|
! * 2. VERTICAL INTEGRATION |
| 4703 |
|
|
! -------------------- |
| 4704 |
|
|
|
| 4705 |
|
|
|
| 4706 |
|
|
ind1 = 0 |
| 4707 |
|
|
ind3 = 0 |
| 4708 |
|
|
ind4 = 1 |
| 4709 |
|
|
ind2 = 1 |
| 4710 |
|
|
|
| 4711 |
|
|
! * 2.3 EXCHANGE WITH TOP OF THE ATMOSPHERE |
| 4712 |
|
|
! ----------------------------------- |
| 4713 |
|
|
|
| 4714 |
|
|
|
| 4715 |
|
✗ |
DO jk = 1, kflev |
| 4716 |
|
✗ |
in = (jk-1)*ng1p1 + 1 |
| 4717 |
|
|
|
| 4718 |
|
✗ |
DO ja = 1, kuaer |
| 4719 |
|
✗ |
DO jl = 1, kdlon |
| 4720 |
|
✗ |
zuu(jl, ja) = pabcu(jl, ja, in) |
| 4721 |
|
|
END DO |
| 4722 |
|
|
END DO |
| 4723 |
|
|
|
| 4724 |
|
|
|
| 4725 |
|
✗ |
CALL lwtt_lmdar4(pgatop(1,1,1), pgbtop(1,1,1), zuu, ztt) |
| 4726 |
|
|
|
| 4727 |
|
✗ |
DO jl = 1, kdlon |
| 4728 |
|
|
zcntop(jl) = pbtop(jl, 1)*ztt(jl, 1)*ztt(jl, 10) + & |
| 4729 |
|
|
pbtop(jl, 2)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
| 4730 |
|
|
pbtop(jl, 3)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
| 4731 |
|
|
pbtop(jl, 4)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
| 4732 |
|
|
pbtop(jl, 5)*ztt(jl, 3)*ztt(jl, 14) + pbtop(jl, 6)*ztt(jl, 6)*ztt(jl, & |
| 4733 |
|
✗ |
15) |
| 4734 |
|
✗ |
zfd(jl) = zcntop(jl) - pbint(jl, jk) - pdisd(jl, jk) - padjd(jl, jk) |
| 4735 |
|
✗ |
pfluc(jl, 2, jk) = zfd(jl) |
| 4736 |
|
|
END DO |
| 4737 |
|
|
|
| 4738 |
|
|
END DO |
| 4739 |
|
|
|
| 4740 |
|
✗ |
jk = kflev + 1 |
| 4741 |
|
|
in = (jk-1)*ng1p1 + 1 |
| 4742 |
|
|
|
| 4743 |
|
✗ |
DO jl = 1, kdlon |
| 4744 |
|
|
zcntop(jl) = pbtop(jl, 1) + pbtop(jl, 2) + pbtop(jl, 3) + pbtop(jl, 4) + & |
| 4745 |
|
✗ |
pbtop(jl, 5) + pbtop(jl, 6) |
| 4746 |
|
✗ |
zfd(jl) = zcntop(jl) - pbint(jl, jk) - pdisd(jl, jk) - padjd(jl, jk) |
| 4747 |
|
✗ |
pfluc(jl, 2, jk) = zfd(jl) |
| 4748 |
|
|
END DO |
| 4749 |
|
|
|
| 4750 |
|
|
! * 2.4 COOLING-TO-SPACE OF LAYERS ABOVE 10 HPA |
| 4751 |
|
|
! --------------------------------------- |
| 4752 |
|
|
|
| 4753 |
|
|
|
| 4754 |
|
|
|
| 4755 |
|
|
! * 2.4.1 INITIALIZATION |
| 4756 |
|
|
! -------------- |
| 4757 |
|
|
|
| 4758 |
|
|
|
| 4759 |
|
|
jlim = kflev |
| 4760 |
|
|
|
| 4761 |
|
|
IF (.NOT. levoigt) THEN |
| 4762 |
|
✗ |
DO jk = kflev, 1, -1 |
| 4763 |
|
✗ |
IF (ppmb(1,jk)<10.0) THEN |
| 4764 |
|
|
jlim = jk |
| 4765 |
|
|
END IF |
| 4766 |
|
|
END DO |
| 4767 |
|
|
END IF |
| 4768 |
|
✗ |
klim = jlim |
| 4769 |
|
|
|
| 4770 |
|
|
IF (.NOT. levoigt) THEN |
| 4771 |
|
✗ |
DO ja = 1, ktraer |
| 4772 |
|
✗ |
DO jl = 1, kdlon |
| 4773 |
|
✗ |
ztt1(jl, ja) = 1.0 |
| 4774 |
|
|
END DO |
| 4775 |
|
|
END DO |
| 4776 |
|
|
|
| 4777 |
|
|
! * 2.4.2 LOOP OVER LAYERS ABOVE 10 HPA |
| 4778 |
|
|
! ----------------------------- |
| 4779 |
|
|
|
| 4780 |
|
|
|
| 4781 |
|
✗ |
DO jstra = kflev, jlim, -1 |
| 4782 |
|
✗ |
jstru = (jstra-1)*ng1p1 + 1 |
| 4783 |
|
|
|
| 4784 |
|
✗ |
DO ja = 1, kuaer |
| 4785 |
|
✗ |
DO jl = 1, kdlon |
| 4786 |
|
✗ |
zuu(jl, ja) = pabcu(jl, ja, jstru) |
| 4787 |
|
|
END DO |
| 4788 |
|
|
END DO |
| 4789 |
|
|
|
| 4790 |
|
|
|
| 4791 |
|
✗ |
CALL lwtt_lmdar4(pga(1,1,1,jstra), pgb(1,1,1,jstra), zuu, ztt) |
| 4792 |
|
|
|
| 4793 |
|
✗ |
DO jl = 1, kdlon |
| 4794 |
|
|
zctstr = (pb(jl,1,jstra)+pb(jl,1,jstra+1))* & |
| 4795 |
|
|
(ztt1(jl,1)*ztt1(jl,10)-ztt(jl,1)*ztt(jl,10)) + & |
| 4796 |
|
|
(pb(jl,2,jstra)+pb(jl,2,jstra+1))*(ztt1(jl,2)*ztt1(jl,7)*ztt1(jl,11 & |
| 4797 |
|
|
)-ztt(jl,2)*ztt(jl,7)*ztt(jl,11)) + (pb(jl,3,jstra)+pb(jl,3,jstra+1 & |
| 4798 |
|
|
))*(ztt1(jl,4)*ztt1(jl,8)*ztt1(jl,12)-ztt(jl,4)*ztt(jl,8)*ztt(jl,12 & |
| 4799 |
|
|
)) + (pb(jl,4,jstra)+pb(jl,4,jstra+1))*(ztt1(jl,5)*ztt1(jl,9)*ztt1( & |
| 4800 |
|
|
jl,13)-ztt(jl,5)*ztt(jl,9)*ztt(jl,13)) + (pb(jl,5,jstra)+pb(jl,5, & |
| 4801 |
|
|
jstra+1))*(ztt1(jl,3)*ztt1(jl,14)-ztt(jl,3)*ztt(jl,14)) + & |
| 4802 |
|
|
(pb(jl,6,jstra)+pb(jl,6,jstra+1))*(ztt1(jl,6)*ztt1(jl,15)-ztt(jl,6) & |
| 4803 |
|
✗ |
*ztt(jl,15)) |
| 4804 |
|
✗ |
pcts(jl, jstra) = zctstr*0.5 |
| 4805 |
|
|
END DO |
| 4806 |
|
✗ |
DO ja = 1, ktraer |
| 4807 |
|
✗ |
DO jl = 1, kdlon |
| 4808 |
|
✗ |
ztt1(jl, ja) = ztt(jl, ja) |
| 4809 |
|
|
END DO |
| 4810 |
|
|
END DO |
| 4811 |
|
|
END DO |
| 4812 |
|
|
END IF |
| 4813 |
|
|
! Mise a zero de securite pour PCTS en cas de LEVOIGT |
| 4814 |
|
|
IF (levoigt) THEN |
| 4815 |
|
|
DO jstra = 1, kflev |
| 4816 |
|
|
DO jl = 1, kdlon |
| 4817 |
|
|
pcts(jl, jstra) = 0. |
| 4818 |
|
|
END DO |
| 4819 |
|
|
END DO |
| 4820 |
|
|
END IF |
| 4821 |
|
|
|
| 4822 |
|
|
! * 2.5 EXCHANGE WITH LOWER LIMIT |
| 4823 |
|
|
! ------------------------- |
| 4824 |
|
|
|
| 4825 |
|
|
|
| 4826 |
|
✗ |
DO jl = 1, kdlon |
| 4827 |
|
|
zbgnd(jl) = pbsui(jl)*pemis(jl) - (1.-pemis(jl))*pfluc(jl, 2, 1) - & |
| 4828 |
|
✗ |
pbint(jl, 1) |
| 4829 |
|
|
END DO |
| 4830 |
|
|
|
| 4831 |
|
|
jk = 1 |
| 4832 |
|
|
in = (jk-1)*ng1p1 + 1 |
| 4833 |
|
|
|
| 4834 |
|
✗ |
DO jl = 1, kdlon |
| 4835 |
|
|
zcnsol(jl) = pbsur(jl, 1) + pbsur(jl, 2) + pbsur(jl, 3) + pbsur(jl, 4) + & |
| 4836 |
|
✗ |
pbsur(jl, 5) + pbsur(jl, 6) |
| 4837 |
|
✗ |
zcnsol(jl) = zcnsol(jl)*zbgnd(jl)/pbsui(jl) |
| 4838 |
|
✗ |
zfu(jl) = zcnsol(jl) + pbint(jl, jk) - pdisu(jl, jk) - padju(jl, jk) |
| 4839 |
|
✗ |
pfluc(jl, 1, jk) = zfu(jl) |
| 4840 |
|
|
END DO |
| 4841 |
|
|
|
| 4842 |
|
✗ |
DO jk = 2, kflev + 1 |
| 4843 |
|
✗ |
in = (jk-1)*ng1p1 + 1 |
| 4844 |
|
|
|
| 4845 |
|
|
|
| 4846 |
|
✗ |
DO ja = 1, kuaer |
| 4847 |
|
✗ |
DO jl = 1, kdlon |
| 4848 |
|
✗ |
zuu(jl, ja) = pabcu(jl, ja, 1) - pabcu(jl, ja, in) |
| 4849 |
|
|
END DO |
| 4850 |
|
|
END DO |
| 4851 |
|
|
|
| 4852 |
|
|
|
| 4853 |
|
✗ |
CALL lwtt_lmdar4(pgasur(1,1,1), pgbsur(1,1,1), zuu, ztt) |
| 4854 |
|
|
|
| 4855 |
|
✗ |
DO jl = 1, kdlon |
| 4856 |
|
|
zcnsol(jl) = pbsur(jl, 1)*ztt(jl, 1)*ztt(jl, 10) + & |
| 4857 |
|
|
pbsur(jl, 2)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
| 4858 |
|
|
pbsur(jl, 3)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
| 4859 |
|
|
pbsur(jl, 4)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
| 4860 |
|
|
pbsur(jl, 5)*ztt(jl, 3)*ztt(jl, 14) + pbsur(jl, 6)*ztt(jl, 6)*ztt(jl, & |
| 4861 |
|
✗ |
15) |
| 4862 |
|
✗ |
zcnsol(jl) = zcnsol(jl)*zbgnd(jl)/pbsui(jl) |
| 4863 |
|
✗ |
zfu(jl) = zcnsol(jl) + pbint(jl, jk) - pdisu(jl, jk) - padju(jl, jk) |
| 4864 |
|
✗ |
pfluc(jl, 1, jk) = zfu(jl) |
| 4865 |
|
|
END DO |
| 4866 |
|
|
|
| 4867 |
|
|
|
| 4868 |
|
|
END DO |
| 4869 |
|
|
|
| 4870 |
|
|
! * 2.7 CLEAR-SKY FLUXES |
| 4871 |
|
|
! ---------------- |
| 4872 |
|
|
|
| 4873 |
|
|
|
| 4874 |
|
|
IF (.NOT. levoigt) THEN |
| 4875 |
|
✗ |
DO jl = 1, kdlon |
| 4876 |
|
✗ |
zfn10(jl) = pfluc(jl, 1, jlim) + pfluc(jl, 2, jlim) |
| 4877 |
|
|
END DO |
| 4878 |
|
✗ |
DO jk = jlim + 1, kflev + 1 |
| 4879 |
|
✗ |
DO jl = 1, kdlon |
| 4880 |
|
✗ |
zfn10(jl) = zfn10(jl) + pcts(jl, jk-1) |
| 4881 |
|
✗ |
pfluc(jl, 1, jk) = zfn10(jl) |
| 4882 |
|
✗ |
pfluc(jl, 2, jk) = 0. |
| 4883 |
|
|
END DO |
| 4884 |
|
|
END DO |
| 4885 |
|
|
END IF |
| 4886 |
|
|
|
| 4887 |
|
|
! ------------------------------------------------------------------ |
| 4888 |
|
|
|
| 4889 |
|
✗ |
RETURN |
| 4890 |
|
|
END SUBROUTINE lwvb_lmdar4 |
| 4891 |
|
✗ |
SUBROUTINE lwvd_lmdar4(kuaer, ktraer, pabcu, pdbdt, pga, pgb, pcntrb, pdisd, & |
| 4892 |
|
|
pdisu) |
| 4893 |
|
|
USE dimphy |
| 4894 |
|
|
IMPLICIT NONE |
| 4895 |
|
|
include "raddimlw.h" |
| 4896 |
|
|
|
| 4897 |
|
|
! ----------------------------------------------------------------------- |
| 4898 |
|
|
! PURPOSE. |
| 4899 |
|
|
! -------- |
| 4900 |
|
|
! CARRIES OUT THE VERTICAL INTEGRATION ON THE DISTANT LAYERS |
| 4901 |
|
|
|
| 4902 |
|
|
! METHOD. |
| 4903 |
|
|
! ------- |
| 4904 |
|
|
|
| 4905 |
|
|
! 1. PERFORMS THE VERTICAL INTEGRATION CORRESPONDING TO THE |
| 4906 |
|
|
! CONTRIBUTIONS OF THE DISTANT LAYERS USING TRAPEZOIDAL RULE |
| 4907 |
|
|
|
| 4908 |
|
|
! REFERENCE. |
| 4909 |
|
|
! ---------- |
| 4910 |
|
|
|
| 4911 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 4912 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 4913 |
|
|
|
| 4914 |
|
|
! AUTHOR. |
| 4915 |
|
|
! ------- |
| 4916 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 4917 |
|
|
|
| 4918 |
|
|
! MODIFICATIONS. |
| 4919 |
|
|
! -------------- |
| 4920 |
|
|
! ORIGINAL : 89-07-14 |
| 4921 |
|
|
! ----------------------------------------------------------------------- |
| 4922 |
|
|
! * ARGUMENTS: |
| 4923 |
|
|
|
| 4924 |
|
|
INTEGER kuaer, ktraer |
| 4925 |
|
|
|
| 4926 |
|
|
REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! ABSORBER AMOUNTS |
| 4927 |
|
|
REAL (KIND=8) pdbdt(kdlon, ninter, kflev) ! LAYER PLANCK FUNCTION GRADIENT |
| 4928 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
| 4929 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
| 4930 |
|
|
|
| 4931 |
|
|
REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) ! ENERGY EXCHANGE MATRIX |
| 4932 |
|
|
REAL (KIND=8) pdisd(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
| 4933 |
|
|
REAL (KIND=8) pdisu(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
| 4934 |
|
|
|
| 4935 |
|
|
! * LOCAL VARIABLES: |
| 4936 |
|
|
|
| 4937 |
|
✗ |
REAL (KIND=8) zglayd(kdlon) |
| 4938 |
|
✗ |
REAL (KIND=8) zglayu(kdlon) |
| 4939 |
|
✗ |
REAL (KIND=8) ztt(kdlon, ntra) |
| 4940 |
|
✗ |
REAL (KIND=8) ztt1(kdlon, ntra) |
| 4941 |
|
✗ |
REAL (KIND=8) ztt2(kdlon, ntra) |
| 4942 |
|
|
|
| 4943 |
|
|
INTEGER jl, jk, ja, ikp1, ikn, ikd1, jkj, ikd2 |
| 4944 |
|
|
INTEGER ikjp1, ikm1, ikj, jlk, iku1, ijkl, iku2 |
| 4945 |
|
|
INTEGER ind1, ind2, ind3, ind4, itt |
| 4946 |
|
|
REAL (KIND=8) zww, zdzxdg, zdzxmg |
| 4947 |
|
|
|
| 4948 |
|
|
! * 1. INITIALIZATION |
| 4949 |
|
|
! -------------- |
| 4950 |
|
|
|
| 4951 |
|
|
|
| 4952 |
|
|
! * 1.1 INITIALIZE LAYER CONTRIBUTIONS |
| 4953 |
|
|
! ------------------------------ |
| 4954 |
|
|
|
| 4955 |
|
|
|
| 4956 |
|
✗ |
DO jk = 1, kflev + 1 |
| 4957 |
|
✗ |
DO jl = 1, kdlon |
| 4958 |
|
✗ |
pdisd(jl, jk) = 0. |
| 4959 |
|
✗ |
pdisu(jl, jk) = 0. |
| 4960 |
|
|
END DO |
| 4961 |
|
|
END DO |
| 4962 |
|
|
|
| 4963 |
|
|
! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
| 4964 |
|
|
! --------------------------------- |
| 4965 |
|
|
|
| 4966 |
|
|
|
| 4967 |
|
|
|
| 4968 |
|
✗ |
DO ja = 1, ntra |
| 4969 |
|
✗ |
DO jl = 1, kdlon |
| 4970 |
|
✗ |
ztt(jl, ja) = 1.0 |
| 4971 |
|
✗ |
ztt1(jl, ja) = 1.0 |
| 4972 |
|
✗ |
ztt2(jl, ja) = 1.0 |
| 4973 |
|
|
END DO |
| 4974 |
|
|
END DO |
| 4975 |
|
|
|
| 4976 |
|
|
! ------------------------------------------------------------------ |
| 4977 |
|
|
|
| 4978 |
|
|
! * 2. VERTICAL INTEGRATION |
| 4979 |
|
|
! -------------------- |
| 4980 |
|
|
|
| 4981 |
|
|
|
| 4982 |
|
|
ind1 = 0 |
| 4983 |
|
|
ind3 = 0 |
| 4984 |
|
|
ind4 = 1 |
| 4985 |
|
|
ind2 = 1 |
| 4986 |
|
|
|
| 4987 |
|
|
! * 2.2 CONTRIBUTION FROM DISTANT LAYERS |
| 4988 |
|
|
! --------------------------------- |
| 4989 |
|
|
|
| 4990 |
|
|
|
| 4991 |
|
|
|
| 4992 |
|
|
! * 2.2.1 DISTANT AND ABOVE LAYERS |
| 4993 |
|
|
! ------------------------ |
| 4994 |
|
|
|
| 4995 |
|
|
|
| 4996 |
|
|
|
| 4997 |
|
|
|
| 4998 |
|
|
! * 2.2.2 FIRST UPPER LEVEL |
| 4999 |
|
|
! ----------------- |
| 5000 |
|
|
|
| 5001 |
|
|
|
| 5002 |
|
✗ |
DO jk = 1, kflev - 1 |
| 5003 |
|
✗ |
ikp1 = jk + 1 |
| 5004 |
|
✗ |
ikn = (jk-1)*ng1p1 + 1 |
| 5005 |
|
✗ |
ikd1 = jk*ng1p1 + 1 |
| 5006 |
|
|
|
| 5007 |
|
|
CALL lwttm_lmdar4(pga(1,1,1,jk), pgb(1,1,1,jk), pabcu(1,1,ikn), & |
| 5008 |
|
✗ |
pabcu(1,1,ikd1), ztt1) |
| 5009 |
|
|
|
| 5010 |
|
|
! * 2.2.3 HIGHER UP |
| 5011 |
|
|
! --------- |
| 5012 |
|
|
|
| 5013 |
|
|
|
| 5014 |
|
|
itt = 1 |
| 5015 |
|
✗ |
DO jkj = ikp1, kflev |
| 5016 |
|
✗ |
IF (itt==1) THEN |
| 5017 |
|
|
itt = 2 |
| 5018 |
|
|
ELSE |
| 5019 |
|
|
itt = 1 |
| 5020 |
|
|
END IF |
| 5021 |
|
✗ |
ikjp1 = jkj + 1 |
| 5022 |
|
✗ |
ikd2 = jkj*ng1p1 + 1 |
| 5023 |
|
|
|
| 5024 |
|
✗ |
IF (itt==1) THEN |
| 5025 |
|
|
CALL lwttm_lmdar4(pga(1,1,1,jkj), pgb(1,1,1,jkj), pabcu(1,1,ikn), & |
| 5026 |
|
✗ |
pabcu(1,1,ikd2), ztt1) |
| 5027 |
|
|
ELSE |
| 5028 |
|
|
CALL lwttm_lmdar4(pga(1,1,1,jkj), pgb(1,1,1,jkj), pabcu(1,1,ikn), & |
| 5029 |
|
✗ |
pabcu(1,1,ikd2), ztt2) |
| 5030 |
|
|
END IF |
| 5031 |
|
|
|
| 5032 |
|
✗ |
DO ja = 1, ktraer |
| 5033 |
|
✗ |
DO jl = 1, kdlon |
| 5034 |
|
✗ |
ztt(jl, ja) = (ztt1(jl,ja)+ztt2(jl,ja))*0.5 |
| 5035 |
|
|
END DO |
| 5036 |
|
|
END DO |
| 5037 |
|
|
|
| 5038 |
|
✗ |
DO jl = 1, kdlon |
| 5039 |
|
|
zww = pdbdt(jl, 1, jkj)*ztt(jl, 1)*ztt(jl, 10) + & |
| 5040 |
|
|
pdbdt(jl, 2, jkj)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
| 5041 |
|
|
pdbdt(jl, 3, jkj)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
| 5042 |
|
|
pdbdt(jl, 4, jkj)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
| 5043 |
|
|
pdbdt(jl, 5, jkj)*ztt(jl, 3)*ztt(jl, 14) + & |
| 5044 |
|
✗ |
pdbdt(jl, 6, jkj)*ztt(jl, 6)*ztt(jl, 15) |
| 5045 |
|
✗ |
zglayd(jl) = zww |
| 5046 |
|
|
zdzxdg = zglayd(jl) |
| 5047 |
|
✗ |
pdisd(jl, jk) = pdisd(jl, jk) + zdzxdg |
| 5048 |
|
✗ |
pcntrb(jl, jk, ikjp1) = zdzxdg |
| 5049 |
|
|
END DO |
| 5050 |
|
|
|
| 5051 |
|
|
|
| 5052 |
|
|
END DO |
| 5053 |
|
|
END DO |
| 5054 |
|
|
|
| 5055 |
|
|
! * 2.2.4 DISTANT AND BELOW LAYERS |
| 5056 |
|
|
! ------------------------ |
| 5057 |
|
|
|
| 5058 |
|
|
|
| 5059 |
|
|
|
| 5060 |
|
|
|
| 5061 |
|
|
! * 2.2.5 FIRST LOWER LEVEL |
| 5062 |
|
|
! ----------------- |
| 5063 |
|
|
|
| 5064 |
|
|
|
| 5065 |
|
✗ |
DO jk = 3, kflev + 1 |
| 5066 |
|
✗ |
ikn = (jk-1)*ng1p1 + 1 |
| 5067 |
|
|
ikm1 = jk - 1 |
| 5068 |
|
✗ |
ikj = jk - 2 |
| 5069 |
|
✗ |
iku1 = ikj*ng1p1 + 1 |
| 5070 |
|
|
|
| 5071 |
|
|
|
| 5072 |
|
|
CALL lwttm_lmdar4(pga(1,1,1,ikj), pgb(1,1,1,ikj), pabcu(1,1,iku1), & |
| 5073 |
|
✗ |
pabcu(1,1,ikn), ztt1) |
| 5074 |
|
|
|
| 5075 |
|
|
! * 2.2.6 DOWN BELOW |
| 5076 |
|
|
! ---------- |
| 5077 |
|
|
|
| 5078 |
|
|
|
| 5079 |
|
|
itt = 1 |
| 5080 |
|
✗ |
DO jlk = 1, ikj |
| 5081 |
|
✗ |
IF (itt==1) THEN |
| 5082 |
|
|
itt = 2 |
| 5083 |
|
|
ELSE |
| 5084 |
|
|
itt = 1 |
| 5085 |
|
|
END IF |
| 5086 |
|
✗ |
ijkl = ikm1 - jlk |
| 5087 |
|
✗ |
iku2 = (ijkl-1)*ng1p1 + 1 |
| 5088 |
|
|
|
| 5089 |
|
|
|
| 5090 |
|
✗ |
IF (itt==1) THEN |
| 5091 |
|
|
CALL lwttm_lmdar4(pga(1,1,1,ijkl), pgb(1,1,1,ijkl), pabcu(1,1,iku2), & |
| 5092 |
|
✗ |
pabcu(1,1,ikn), ztt1) |
| 5093 |
|
|
ELSE |
| 5094 |
|
|
CALL lwttm_lmdar4(pga(1,1,1,ijkl), pgb(1,1,1,ijkl), pabcu(1,1,iku2), & |
| 5095 |
|
✗ |
pabcu(1,1,ikn), ztt2) |
| 5096 |
|
|
END IF |
| 5097 |
|
|
|
| 5098 |
|
✗ |
DO ja = 1, ktraer |
| 5099 |
|
✗ |
DO jl = 1, kdlon |
| 5100 |
|
✗ |
ztt(jl, ja) = (ztt1(jl,ja)+ztt2(jl,ja))*0.5 |
| 5101 |
|
|
END DO |
| 5102 |
|
|
END DO |
| 5103 |
|
|
|
| 5104 |
|
✗ |
DO jl = 1, kdlon |
| 5105 |
|
|
zww = pdbdt(jl, 1, ijkl)*ztt(jl, 1)*ztt(jl, 10) + & |
| 5106 |
|
|
pdbdt(jl, 2, ijkl)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
| 5107 |
|
|
pdbdt(jl, 3, ijkl)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
| 5108 |
|
|
pdbdt(jl, 4, ijkl)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
| 5109 |
|
|
pdbdt(jl, 5, ijkl)*ztt(jl, 3)*ztt(jl, 14) + & |
| 5110 |
|
✗ |
pdbdt(jl, 6, ijkl)*ztt(jl, 6)*ztt(jl, 15) |
| 5111 |
|
✗ |
zglayu(jl) = zww |
| 5112 |
|
|
zdzxmg = zglayu(jl) |
| 5113 |
|
✗ |
pdisu(jl, jk) = pdisu(jl, jk) + zdzxmg |
| 5114 |
|
✗ |
pcntrb(jl, jk, ijkl) = zdzxmg |
| 5115 |
|
|
END DO |
| 5116 |
|
|
|
| 5117 |
|
|
|
| 5118 |
|
|
END DO |
| 5119 |
|
|
END DO |
| 5120 |
|
|
|
| 5121 |
|
✗ |
RETURN |
| 5122 |
|
|
END SUBROUTINE lwvd_lmdar4 |
| 5123 |
|
✗ |
SUBROUTINE lwvn_lmdar4(kuaer, ktraer, pabcu, pdbsl, pga, pgb, padjd, padju, & |
| 5124 |
|
✗ |
pcntrb, pdbdt) |
| 5125 |
|
|
USE dimphy |
| 5126 |
|
|
USE radiation_ar4_param, ONLY: wg1 |
| 5127 |
|
|
IMPLICIT NONE |
| 5128 |
|
|
include "raddimlw.h" |
| 5129 |
|
|
|
| 5130 |
|
|
! ----------------------------------------------------------------------- |
| 5131 |
|
|
! PURPOSE. |
| 5132 |
|
|
! -------- |
| 5133 |
|
|
! CARRIES OUT THE VERTICAL INTEGRATION ON NEARBY LAYERS |
| 5134 |
|
|
! TO GIVE LONGWAVE FLUXES OR RADIANCES |
| 5135 |
|
|
|
| 5136 |
|
|
! METHOD. |
| 5137 |
|
|
! ------- |
| 5138 |
|
|
|
| 5139 |
|
|
! 1. PERFORMS THE VERTICAL INTEGRATION CORRESPONDING TO THE |
| 5140 |
|
|
! CONTRIBUTIONS OF THE ADJACENT LAYERS USING A GAUSSIAN QUADRATURE |
| 5141 |
|
|
|
| 5142 |
|
|
! REFERENCE. |
| 5143 |
|
|
! ---------- |
| 5144 |
|
|
|
| 5145 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 5146 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 5147 |
|
|
|
| 5148 |
|
|
! AUTHOR. |
| 5149 |
|
|
! ------- |
| 5150 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 5151 |
|
|
|
| 5152 |
|
|
! MODIFICATIONS. |
| 5153 |
|
|
! -------------- |
| 5154 |
|
|
! ORIGINAL : 89-07-14 |
| 5155 |
|
|
! ----------------------------------------------------------------------- |
| 5156 |
|
|
|
| 5157 |
|
|
! * ARGUMENTS: |
| 5158 |
|
|
|
| 5159 |
|
|
INTEGER kuaer, ktraer |
| 5160 |
|
|
|
| 5161 |
|
|
REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! ABSORBER AMOUNTS |
| 5162 |
|
|
REAL (KIND=8) pdbsl(kdlon, ninter, kflev*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
| 5163 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
| 5164 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
| 5165 |
|
|
|
| 5166 |
|
|
REAL (KIND=8) padjd(kdlon, kflev+1) ! CONTRIBUTION OF ADJACENT LAYERS |
| 5167 |
|
|
REAL (KIND=8) padju(kdlon, kflev+1) ! CONTRIBUTION OF ADJACENT LAYERS |
| 5168 |
|
|
REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) ! CLEAR-SKY ENERGY EXCHANGE MATRIX |
| 5169 |
|
|
REAL (KIND=8) pdbdt(kdlon, ninter, kflev) ! LAYER PLANCK FUNCTION GRADIENT |
| 5170 |
|
|
|
| 5171 |
|
|
! * LOCAL ARRAYS: |
| 5172 |
|
|
|
| 5173 |
|
✗ |
REAL (KIND=8) zglayd(kdlon) |
| 5174 |
|
✗ |
REAL (KIND=8) zglayu(kdlon) |
| 5175 |
|
✗ |
REAL (KIND=8) ztt(kdlon, ntra) |
| 5176 |
|
✗ |
REAL (KIND=8) ztt1(kdlon, ntra) |
| 5177 |
|
✗ |
REAL (KIND=8) ztt2(kdlon, ntra) |
| 5178 |
|
✗ |
REAL (KIND=8) zuu(kdlon, nua) |
| 5179 |
|
|
|
| 5180 |
|
|
INTEGER jk, jl, ja, im12, ind, inu, ixu, jg |
| 5181 |
|
|
INTEGER ixd, ibs, idd, imu, jk1, jk2, jnu |
| 5182 |
|
|
REAL (KIND=8) zwtr |
| 5183 |
|
|
|
| 5184 |
|
|
! ----------------------------------------------------------------------- |
| 5185 |
|
|
|
| 5186 |
|
|
! * 1. INITIALIZATION |
| 5187 |
|
|
! -------------- |
| 5188 |
|
|
|
| 5189 |
|
|
|
| 5190 |
|
|
! * 1.1 INITIALIZE LAYER CONTRIBUTIONS |
| 5191 |
|
|
! ------------------------------ |
| 5192 |
|
|
|
| 5193 |
|
|
|
| 5194 |
|
✗ |
DO jk = 1, kflev + 1 |
| 5195 |
|
✗ |
DO jl = 1, kdlon |
| 5196 |
|
✗ |
padjd(jl, jk) = 0. |
| 5197 |
|
✗ |
padju(jl, jk) = 0. |
| 5198 |
|
|
END DO |
| 5199 |
|
|
END DO |
| 5200 |
|
|
|
| 5201 |
|
|
! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
| 5202 |
|
|
! --------------------------------- |
| 5203 |
|
|
|
| 5204 |
|
|
|
| 5205 |
|
✗ |
DO ja = 1, ntra |
| 5206 |
|
✗ |
DO jl = 1, kdlon |
| 5207 |
|
✗ |
ztt(jl, ja) = 1.0 |
| 5208 |
|
✗ |
ztt1(jl, ja) = 1.0 |
| 5209 |
|
✗ |
ztt2(jl, ja) = 1.0 |
| 5210 |
|
|
END DO |
| 5211 |
|
|
END DO |
| 5212 |
|
|
|
| 5213 |
|
✗ |
DO ja = 1, nua |
| 5214 |
|
✗ |
DO jl = 1, kdlon |
| 5215 |
|
✗ |
zuu(jl, ja) = 0. |
| 5216 |
|
|
END DO |
| 5217 |
|
|
END DO |
| 5218 |
|
|
|
| 5219 |
|
|
! ------------------------------------------------------------------ |
| 5220 |
|
|
|
| 5221 |
|
|
! * 2. VERTICAL INTEGRATION |
| 5222 |
|
|
! -------------------- |
| 5223 |
|
|
|
| 5224 |
|
|
|
| 5225 |
|
|
|
| 5226 |
|
|
! * 2.1 CONTRIBUTION FROM ADJACENT LAYERS |
| 5227 |
|
|
! --------------------------------- |
| 5228 |
|
|
|
| 5229 |
|
|
|
| 5230 |
|
✗ |
DO jk = 1, kflev |
| 5231 |
|
|
! * 2.1.1 DOWNWARD LAYERS |
| 5232 |
|
|
! --------------- |
| 5233 |
|
|
|
| 5234 |
|
|
|
| 5235 |
|
✗ |
im12 = 2*(jk-1) |
| 5236 |
|
✗ |
ind = (jk-1)*ng1p1 + 1 |
| 5237 |
|
|
ixd = ind |
| 5238 |
|
✗ |
inu = jk*ng1p1 + 1 |
| 5239 |
|
|
ixu = ind |
| 5240 |
|
|
|
| 5241 |
|
✗ |
DO jl = 1, kdlon |
| 5242 |
|
✗ |
zglayd(jl) = 0. |
| 5243 |
|
✗ |
zglayu(jl) = 0. |
| 5244 |
|
|
END DO |
| 5245 |
|
|
|
| 5246 |
|
✗ |
DO jg = 1, ng1 |
| 5247 |
|
✗ |
ibs = im12 + jg |
| 5248 |
|
✗ |
idd = ixd + jg |
| 5249 |
|
✗ |
DO ja = 1, kuaer |
| 5250 |
|
✗ |
DO jl = 1, kdlon |
| 5251 |
|
✗ |
zuu(jl, ja) = pabcu(jl, ja, ind) - pabcu(jl, ja, idd) |
| 5252 |
|
|
END DO |
| 5253 |
|
|
END DO |
| 5254 |
|
|
|
| 5255 |
|
|
|
| 5256 |
|
✗ |
CALL lwtt_lmdar4(pga(1,1,1,jk), pgb(1,1,1,jk), zuu, ztt) |
| 5257 |
|
|
|
| 5258 |
|
✗ |
DO jl = 1, kdlon |
| 5259 |
|
|
zwtr = pdbsl(jl, 1, ibs)*ztt(jl, 1)*ztt(jl, 10) + & |
| 5260 |
|
|
pdbsl(jl, 2, ibs)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
| 5261 |
|
|
pdbsl(jl, 3, ibs)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
| 5262 |
|
|
pdbsl(jl, 4, ibs)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
| 5263 |
|
|
pdbsl(jl, 5, ibs)*ztt(jl, 3)*ztt(jl, 14) + & |
| 5264 |
|
✗ |
pdbsl(jl, 6, ibs)*ztt(jl, 6)*ztt(jl, 15) |
| 5265 |
|
✗ |
zglayd(jl) = zglayd(jl) + zwtr*wg1(jg) |
| 5266 |
|
|
END DO |
| 5267 |
|
|
|
| 5268 |
|
|
! * 2.1.2 DOWNWARD LAYERS |
| 5269 |
|
|
! --------------- |
| 5270 |
|
|
|
| 5271 |
|
|
|
| 5272 |
|
|
imu = ixu + jg |
| 5273 |
|
✗ |
DO ja = 1, kuaer |
| 5274 |
|
✗ |
DO jl = 1, kdlon |
| 5275 |
|
✗ |
zuu(jl, ja) = pabcu(jl, ja, imu) - pabcu(jl, ja, inu) |
| 5276 |
|
|
END DO |
| 5277 |
|
|
END DO |
| 5278 |
|
|
|
| 5279 |
|
|
|
| 5280 |
|
✗ |
CALL lwtt_lmdar4(pga(1,1,1,jk), pgb(1,1,1,jk), zuu, ztt) |
| 5281 |
|
|
|
| 5282 |
|
✗ |
DO jl = 1, kdlon |
| 5283 |
|
|
zwtr = pdbsl(jl, 1, ibs)*ztt(jl, 1)*ztt(jl, 10) + & |
| 5284 |
|
|
pdbsl(jl, 2, ibs)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
| 5285 |
|
|
pdbsl(jl, 3, ibs)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
| 5286 |
|
|
pdbsl(jl, 4, ibs)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
| 5287 |
|
|
pdbsl(jl, 5, ibs)*ztt(jl, 3)*ztt(jl, 14) + & |
| 5288 |
|
✗ |
pdbsl(jl, 6, ibs)*ztt(jl, 6)*ztt(jl, 15) |
| 5289 |
|
✗ |
zglayu(jl) = zglayu(jl) + zwtr*wg1(jg) |
| 5290 |
|
|
END DO |
| 5291 |
|
|
|
| 5292 |
|
|
END DO |
| 5293 |
|
|
|
| 5294 |
|
✗ |
DO jl = 1, kdlon |
| 5295 |
|
✗ |
padjd(jl, jk) = zglayd(jl) |
| 5296 |
|
✗ |
pcntrb(jl, jk, jk+1) = zglayd(jl) |
| 5297 |
|
✗ |
padju(jl, jk+1) = zglayu(jl) |
| 5298 |
|
✗ |
pcntrb(jl, jk+1, jk) = zglayu(jl) |
| 5299 |
|
✗ |
pcntrb(jl, jk, jk) = 0.0 |
| 5300 |
|
|
END DO |
| 5301 |
|
|
|
| 5302 |
|
|
END DO |
| 5303 |
|
|
|
| 5304 |
|
✗ |
DO jk = 1, kflev |
| 5305 |
|
✗ |
jk2 = 2*jk |
| 5306 |
|
✗ |
jk1 = jk2 - 1 |
| 5307 |
|
✗ |
DO jnu = 1, ninter |
| 5308 |
|
✗ |
DO jl = 1, kdlon |
| 5309 |
|
✗ |
pdbdt(jl, jnu, jk) = pdbsl(jl, jnu, jk1) + pdbsl(jl, jnu, jk2) |
| 5310 |
|
|
END DO |
| 5311 |
|
|
END DO |
| 5312 |
|
|
END DO |
| 5313 |
|
|
|
| 5314 |
|
✗ |
RETURN |
| 5315 |
|
|
|
| 5316 |
|
|
END SUBROUTINE lwvn_lmdar4 |
| 5317 |
|
✗ |
SUBROUTINE lwtt_lmdar4(pga, pgb, puu, ptt) |
| 5318 |
|
|
USE dimphy |
| 5319 |
|
|
IMPLICIT NONE |
| 5320 |
|
|
include "raddimlw.h" |
| 5321 |
|
|
|
| 5322 |
|
|
! ----------------------------------------------------------------------- |
| 5323 |
|
|
! PURPOSE. |
| 5324 |
|
|
! -------- |
| 5325 |
|
|
! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
| 5326 |
|
|
! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
| 5327 |
|
|
! INTERVALS. |
| 5328 |
|
|
|
| 5329 |
|
|
! METHOD. |
| 5330 |
|
|
! ------- |
| 5331 |
|
|
|
| 5332 |
|
|
! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
| 5333 |
|
|
! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
| 5334 |
|
|
! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
| 5335 |
|
|
! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
| 5336 |
|
|
! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
| 5337 |
|
|
|
| 5338 |
|
|
! REFERENCE. |
| 5339 |
|
|
! ---------- |
| 5340 |
|
|
|
| 5341 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 5342 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 5343 |
|
|
|
| 5344 |
|
|
! AUTHOR. |
| 5345 |
|
|
! ------- |
| 5346 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 5347 |
|
|
|
| 5348 |
|
|
! MODIFICATIONS. |
| 5349 |
|
|
! -------------- |
| 5350 |
|
|
! ORIGINAL : 88-12-15 |
| 5351 |
|
|
|
| 5352 |
|
|
! ----------------------------------------------------------------------- |
| 5353 |
|
|
REAL (KIND=8) o1h, o2h |
| 5354 |
|
|
PARAMETER (o1h=2230.) |
| 5355 |
|
|
PARAMETER (o2h=100.) |
| 5356 |
|
|
REAL (KIND=8) rpialf0 |
| 5357 |
|
|
PARAMETER (rpialf0=2.0) |
| 5358 |
|
|
|
| 5359 |
|
|
! * ARGUMENTS: |
| 5360 |
|
|
|
| 5361 |
|
|
REAL (KIND=8) puu(kdlon, nua) |
| 5362 |
|
|
REAL (KIND=8) ptt(kdlon, ntra) |
| 5363 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2) |
| 5364 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2) |
| 5365 |
|
|
|
| 5366 |
|
|
! * LOCAL VARIABLES: |
| 5367 |
|
|
|
| 5368 |
|
|
REAL (KIND=8) zz, zxd, zxn |
| 5369 |
|
|
REAL (KIND=8) zpu, zpu10, zpu11, zpu12, zpu13 |
| 5370 |
|
|
REAL (KIND=8) zeu, zeu10, zeu11, zeu12, zeu13 |
| 5371 |
|
|
REAL (KIND=8) zx, zy, zsq1, zsq2, zvxy, zuxy |
| 5372 |
|
|
REAL (KIND=8) zaercn, zto1, zto2, zxch4, zych4, zxn2o, zyn2o |
| 5373 |
|
|
REAL (KIND=8) zsqn21, zodn21, zsqh42, zodh42 |
| 5374 |
|
|
REAL (KIND=8) zsqh41, zodh41, zsqn22, zodn22, zttf11, zttf12 |
| 5375 |
|
|
REAL (KIND=8) zuu11, zuu12, za11, za12 |
| 5376 |
|
|
INTEGER jl, ja |
| 5377 |
|
|
|
| 5378 |
|
|
! ------------------------------------------------------------------ |
| 5379 |
|
|
|
| 5380 |
|
|
! * 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
| 5381 |
|
|
! ----------------------------------------------- |
| 5382 |
|
|
|
| 5383 |
|
|
|
| 5384 |
|
|
|
| 5385 |
|
|
! cdir collapse |
| 5386 |
|
✗ |
DO ja = 1, 8 |
| 5387 |
|
✗ |
DO jl = 1, kdlon |
| 5388 |
|
✗ |
zz = sqrt(puu(jl,ja)) |
| 5389 |
|
|
! ZXD(JL,1)=PGB( JL, 1,1) + ZZ(JL, 1)*(PGB( JL, 1,2) + ZZ(JL, 1)) |
| 5390 |
|
|
! ZXN(JL,1)=PGA( JL, 1,1) + ZZ(JL, 1)*(PGA( JL, 1,2) ) |
| 5391 |
|
|
! PTT(JL,1)=ZXN(JL,1)/ZXD(JL,1) |
| 5392 |
|
✗ |
zxd = pgb(jl, ja, 1) + zz*(pgb(jl,ja,2)+zz) |
| 5393 |
|
✗ |
zxn = pga(jl, ja, 1) + zz*(pga(jl,ja,2)) |
| 5394 |
|
✗ |
ptt(jl, ja) = zxn/zxd |
| 5395 |
|
|
END DO |
| 5396 |
|
|
END DO |
| 5397 |
|
|
|
| 5398 |
|
|
! ------------------------------------------------------------------ |
| 5399 |
|
|
|
| 5400 |
|
|
! * 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
| 5401 |
|
|
! --------------------------------------------------- |
| 5402 |
|
|
|
| 5403 |
|
|
|
| 5404 |
|
✗ |
DO jl = 1, kdlon |
| 5405 |
|
✗ |
ptt(jl, 9) = ptt(jl, 8) |
| 5406 |
|
|
|
| 5407 |
|
|
! - CONTINUUM ABSORPTION: E- AND P-TYPE |
| 5408 |
|
|
|
| 5409 |
|
✗ |
zpu = 0.002*puu(jl, 10) |
| 5410 |
|
✗ |
zpu10 = 112.*zpu |
| 5411 |
|
✗ |
zpu11 = 6.25*zpu |
| 5412 |
|
✗ |
zpu12 = 5.00*zpu |
| 5413 |
|
✗ |
zpu13 = 80.0*zpu |
| 5414 |
|
✗ |
zeu = puu(jl, 11) |
| 5415 |
|
✗ |
zeu10 = 12.*zeu |
| 5416 |
|
✗ |
zeu11 = 6.25*zeu |
| 5417 |
|
✗ |
zeu12 = 5.00*zeu |
| 5418 |
|
✗ |
zeu13 = 80.0*zeu |
| 5419 |
|
|
|
| 5420 |
|
|
! - OZONE ABSORPTION |
| 5421 |
|
|
|
| 5422 |
|
✗ |
zx = puu(jl, 12) |
| 5423 |
|
✗ |
zy = puu(jl, 13) |
| 5424 |
|
✗ |
zuxy = 4.*zx*zx/(rpialf0*zy) |
| 5425 |
|
✗ |
zsq1 = sqrt(1.+o1h*zuxy) - 1. |
| 5426 |
|
✗ |
zsq2 = sqrt(1.+o2h*zuxy) - 1. |
| 5427 |
|
✗ |
zvxy = rpialf0*zy/(2.*zx) |
| 5428 |
|
✗ |
zaercn = puu(jl, 17) + zeu12 + zpu12 |
| 5429 |
|
✗ |
zto1 = exp(-zvxy*zsq1-zaercn) |
| 5430 |
|
✗ |
zto2 = exp(-zvxy*zsq2-zaercn) |
| 5431 |
|
|
|
| 5432 |
|
|
! -- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
| 5433 |
|
|
|
| 5434 |
|
|
! * CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
| 5435 |
|
|
|
| 5436 |
|
|
! NEXOTIC=1 |
| 5437 |
|
|
! IF (NEXOTIC.EQ.1) THEN |
| 5438 |
|
✗ |
zxch4 = puu(jl, 19) |
| 5439 |
|
✗ |
zych4 = puu(jl, 20) |
| 5440 |
|
✗ |
zuxy = 4.*zxch4*zxch4/(0.103*zych4) |
| 5441 |
|
✗ |
zsqh41 = sqrt(1.+33.7*zuxy) - 1. |
| 5442 |
|
✗ |
zvxy = 0.103*zych4/(2.*zxch4) |
| 5443 |
|
✗ |
zodh41 = zvxy*zsqh41 |
| 5444 |
|
|
|
| 5445 |
|
|
! * N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
| 5446 |
|
|
|
| 5447 |
|
✗ |
zxn2o = puu(jl, 21) |
| 5448 |
|
✗ |
zyn2o = puu(jl, 22) |
| 5449 |
|
✗ |
zuxy = 4.*zxn2o*zxn2o/(0.416*zyn2o) |
| 5450 |
|
✗ |
zsqn21 = sqrt(1.+21.3*zuxy) - 1. |
| 5451 |
|
✗ |
zvxy = 0.416*zyn2o/(2.*zxn2o) |
| 5452 |
|
✗ |
zodn21 = zvxy*zsqn21 |
| 5453 |
|
|
|
| 5454 |
|
|
! * CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
| 5455 |
|
|
|
| 5456 |
|
✗ |
zuxy = 4.*zxch4*zxch4/(0.113*zych4) |
| 5457 |
|
✗ |
zsqh42 = sqrt(1.+400.*zuxy) - 1. |
| 5458 |
|
✗ |
zvxy = 0.113*zych4/(2.*zxch4) |
| 5459 |
|
✗ |
zodh42 = zvxy*zsqh42 |
| 5460 |
|
|
|
| 5461 |
|
|
! * N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
| 5462 |
|
|
|
| 5463 |
|
✗ |
zuxy = 4.*zxn2o*zxn2o/(0.197*zyn2o) |
| 5464 |
|
✗ |
zsqn22 = sqrt(1.+2000.*zuxy) - 1. |
| 5465 |
|
✗ |
zvxy = 0.197*zyn2o/(2.*zxn2o) |
| 5466 |
|
✗ |
zodn22 = zvxy*zsqn22 |
| 5467 |
|
|
|
| 5468 |
|
|
! * CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
| 5469 |
|
|
|
| 5470 |
|
✗ |
za11 = 2.*puu(jl, 23)*4.404E+05 |
| 5471 |
|
✗ |
zttf11 = 1. - za11*0.003225 |
| 5472 |
|
|
|
| 5473 |
|
|
! * CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
| 5474 |
|
|
|
| 5475 |
|
✗ |
za12 = 2.*puu(jl, 24)*6.7435E+05 |
| 5476 |
|
✗ |
zttf12 = 1. - za12*0.003225 |
| 5477 |
|
|
|
| 5478 |
|
✗ |
zuu11 = -puu(jl, 15) - zeu10 - zpu10 |
| 5479 |
|
✗ |
zuu12 = -puu(jl, 16) - zeu11 - zpu11 - zodh41 - zodn21 |
| 5480 |
|
✗ |
ptt(jl, 10) = exp(-puu(jl,14)) |
| 5481 |
|
✗ |
ptt(jl, 11) = exp(zuu11) |
| 5482 |
|
✗ |
ptt(jl, 12) = exp(zuu12)*zttf11*zttf12 |
| 5483 |
|
✗ |
ptt(jl, 13) = 0.7554*zto1 + 0.2446*zto2 |
| 5484 |
|
✗ |
ptt(jl, 14) = ptt(jl, 10)*exp(-zeu13-zpu13) |
| 5485 |
|
✗ |
ptt(jl, 15) = exp(-puu(jl,14)-zodh42-zodn22) |
| 5486 |
|
|
END DO |
| 5487 |
|
|
|
| 5488 |
|
✗ |
RETURN |
| 5489 |
|
|
END SUBROUTINE lwtt_lmdar4 |
| 5490 |
|
✗ |
SUBROUTINE lwttm_lmdar4(pga, pgb, puu1, puu2, ptt) |
| 5491 |
|
|
USE dimphy |
| 5492 |
|
|
IMPLICIT NONE |
| 5493 |
|
|
include "raddimlw.h" |
| 5494 |
|
|
|
| 5495 |
|
|
! ------------------------------------------------------------------ |
| 5496 |
|
|
! PURPOSE. |
| 5497 |
|
|
! -------- |
| 5498 |
|
|
! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
| 5499 |
|
|
! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
| 5500 |
|
|
! INTERVALS. |
| 5501 |
|
|
|
| 5502 |
|
|
! METHOD. |
| 5503 |
|
|
! ------- |
| 5504 |
|
|
|
| 5505 |
|
|
! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
| 5506 |
|
|
! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
| 5507 |
|
|
! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
| 5508 |
|
|
! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
| 5509 |
|
|
! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
| 5510 |
|
|
|
| 5511 |
|
|
! REFERENCE. |
| 5512 |
|
|
! ---------- |
| 5513 |
|
|
|
| 5514 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
| 5515 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
| 5516 |
|
|
|
| 5517 |
|
|
! AUTHOR. |
| 5518 |
|
|
! ------- |
| 5519 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
| 5520 |
|
|
|
| 5521 |
|
|
! MODIFICATIONS. |
| 5522 |
|
|
! -------------- |
| 5523 |
|
|
! ORIGINAL : 88-12-15 |
| 5524 |
|
|
|
| 5525 |
|
|
! ----------------------------------------------------------------------- |
| 5526 |
|
|
REAL (KIND=8) o1h, o2h |
| 5527 |
|
|
PARAMETER (o1h=2230.) |
| 5528 |
|
|
PARAMETER (o2h=100.) |
| 5529 |
|
|
REAL (KIND=8) rpialf0 |
| 5530 |
|
|
PARAMETER (rpialf0=2.0) |
| 5531 |
|
|
|
| 5532 |
|
|
! * ARGUMENTS: |
| 5533 |
|
|
|
| 5534 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2) ! PADE APPROXIMANTS |
| 5535 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2) ! PADE APPROXIMANTS |
| 5536 |
|
|
REAL (KIND=8) puu1(kdlon, nua) ! ABSORBER AMOUNTS FROM TOP TO LEVEL 1 |
| 5537 |
|
|
REAL (KIND=8) puu2(kdlon, nua) ! ABSORBER AMOUNTS FROM TOP TO LEVEL 2 |
| 5538 |
|
|
REAL (KIND=8) ptt(kdlon, ntra) ! TRANSMISSION FUNCTIONS |
| 5539 |
|
|
|
| 5540 |
|
|
! * LOCAL VARIABLES: |
| 5541 |
|
|
|
| 5542 |
|
|
INTEGER ja, jl |
| 5543 |
|
|
REAL (KIND=8) zz, zxd, zxn |
| 5544 |
|
|
REAL (KIND=8) zpu, zpu10, zpu11, zpu12, zpu13 |
| 5545 |
|
|
REAL (KIND=8) zeu, zeu10, zeu11, zeu12, zeu13 |
| 5546 |
|
|
REAL (KIND=8) zx, zy, zuxy, zsq1, zsq2, zvxy, zaercn, zto1, zto2 |
| 5547 |
|
|
REAL (KIND=8) zxch4, zych4, zsqh41, zodh41 |
| 5548 |
|
|
REAL (KIND=8) zxn2o, zyn2o, zsqn21, zodn21, zsqh42, zodh42 |
| 5549 |
|
|
REAL (KIND=8) zsqn22, zodn22, za11, zttf11, za12, zttf12 |
| 5550 |
|
|
REAL (KIND=8) zuu11, zuu12 |
| 5551 |
|
|
|
| 5552 |
|
|
! ------------------------------------------------------------------ |
| 5553 |
|
|
|
| 5554 |
|
|
! * 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
| 5555 |
|
|
! ----------------------------------------------- |
| 5556 |
|
|
|
| 5557 |
|
|
|
| 5558 |
|
|
|
| 5559 |
|
|
|
| 5560 |
|
|
! CDIR ON_ADB(PUU1) |
| 5561 |
|
|
! CDIR ON_ADB(PUU2) |
| 5562 |
|
|
! CDIR COLLAPSE |
| 5563 |
|
✗ |
DO ja = 1, 8 |
| 5564 |
|
✗ |
DO jl = 1, kdlon |
| 5565 |
|
✗ |
zz = sqrt(puu1(jl,ja)-puu2(jl,ja)) |
| 5566 |
|
✗ |
zxd = pgb(jl, ja, 1) + zz*(pgb(jl,ja,2)+zz) |
| 5567 |
|
✗ |
zxn = pga(jl, ja, 1) + zz*(pga(jl,ja,2)) |
| 5568 |
|
✗ |
ptt(jl, ja) = zxn/zxd |
| 5569 |
|
|
END DO |
| 5570 |
|
|
END DO |
| 5571 |
|
|
|
| 5572 |
|
|
! ------------------------------------------------------------------ |
| 5573 |
|
|
|
| 5574 |
|
|
! * 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
| 5575 |
|
|
! --------------------------------------------------- |
| 5576 |
|
|
|
| 5577 |
|
|
|
| 5578 |
|
✗ |
DO jl = 1, kdlon |
| 5579 |
|
✗ |
ptt(jl, 9) = ptt(jl, 8) |
| 5580 |
|
|
|
| 5581 |
|
|
! - CONTINUUM ABSORPTION: E- AND P-TYPE |
| 5582 |
|
|
|
| 5583 |
|
✗ |
zpu = 0.002*(puu1(jl,10)-puu2(jl,10)) |
| 5584 |
|
✗ |
zpu10 = 112.*zpu |
| 5585 |
|
✗ |
zpu11 = 6.25*zpu |
| 5586 |
|
✗ |
zpu12 = 5.00*zpu |
| 5587 |
|
✗ |
zpu13 = 80.0*zpu |
| 5588 |
|
✗ |
zeu = (puu1(jl,11)-puu2(jl,11)) |
| 5589 |
|
✗ |
zeu10 = 12.*zeu |
| 5590 |
|
✗ |
zeu11 = 6.25*zeu |
| 5591 |
|
✗ |
zeu12 = 5.00*zeu |
| 5592 |
|
✗ |
zeu13 = 80.0*zeu |
| 5593 |
|
|
|
| 5594 |
|
|
! - OZONE ABSORPTION |
| 5595 |
|
|
|
| 5596 |
|
✗ |
zx = (puu1(jl,12)-puu2(jl,12)) |
| 5597 |
|
✗ |
zy = (puu1(jl,13)-puu2(jl,13)) |
| 5598 |
|
✗ |
zuxy = 4.*zx*zx/(rpialf0*zy) |
| 5599 |
|
✗ |
zsq1 = sqrt(1.+o1h*zuxy) - 1. |
| 5600 |
|
✗ |
zsq2 = sqrt(1.+o2h*zuxy) - 1. |
| 5601 |
|
✗ |
zvxy = rpialf0*zy/(2.*zx) |
| 5602 |
|
✗ |
zaercn = (puu1(jl,17)-puu2(jl,17)) + zeu12 + zpu12 |
| 5603 |
|
✗ |
zto1 = exp(-zvxy*zsq1-zaercn) |
| 5604 |
|
✗ |
zto2 = exp(-zvxy*zsq2-zaercn) |
| 5605 |
|
|
|
| 5606 |
|
|
! -- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
| 5607 |
|
|
|
| 5608 |
|
|
! * CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
| 5609 |
|
|
|
| 5610 |
|
✗ |
zxch4 = (puu1(jl,19)-puu2(jl,19)) |
| 5611 |
|
✗ |
zych4 = (puu1(jl,20)-puu2(jl,20)) |
| 5612 |
|
✗ |
zuxy = 4.*zxch4*zxch4/(0.103*zych4) |
| 5613 |
|
✗ |
zsqh41 = sqrt(1.+33.7*zuxy) - 1. |
| 5614 |
|
✗ |
zvxy = 0.103*zych4/(2.*zxch4) |
| 5615 |
|
✗ |
zodh41 = zvxy*zsqh41 |
| 5616 |
|
|
|
| 5617 |
|
|
! * N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
| 5618 |
|
|
|
| 5619 |
|
✗ |
zxn2o = (puu1(jl,21)-puu2(jl,21)) |
| 5620 |
|
✗ |
zyn2o = (puu1(jl,22)-puu2(jl,22)) |
| 5621 |
|
✗ |
zuxy = 4.*zxn2o*zxn2o/(0.416*zyn2o) |
| 5622 |
|
✗ |
zsqn21 = sqrt(1.+21.3*zuxy) - 1. |
| 5623 |
|
✗ |
zvxy = 0.416*zyn2o/(2.*zxn2o) |
| 5624 |
|
✗ |
zodn21 = zvxy*zsqn21 |
| 5625 |
|
|
|
| 5626 |
|
|
! * CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
| 5627 |
|
|
|
| 5628 |
|
✗ |
zuxy = 4.*zxch4*zxch4/(0.113*zych4) |
| 5629 |
|
✗ |
zsqh42 = sqrt(1.+400.*zuxy) - 1. |
| 5630 |
|
✗ |
zvxy = 0.113*zych4/(2.*zxch4) |
| 5631 |
|
✗ |
zodh42 = zvxy*zsqh42 |
| 5632 |
|
|
|
| 5633 |
|
|
! * N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
| 5634 |
|
|
|
| 5635 |
|
✗ |
zuxy = 4.*zxn2o*zxn2o/(0.197*zyn2o) |
| 5636 |
|
✗ |
zsqn22 = sqrt(1.+2000.*zuxy) - 1. |
| 5637 |
|
✗ |
zvxy = 0.197*zyn2o/(2.*zxn2o) |
| 5638 |
|
✗ |
zodn22 = zvxy*zsqn22 |
| 5639 |
|
|
|
| 5640 |
|
|
! * CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
| 5641 |
|
|
|
| 5642 |
|
✗ |
za11 = (puu1(jl,23)-puu2(jl,23))*4.404E+05 |
| 5643 |
|
✗ |
zttf11 = 1. - za11*0.003225 |
| 5644 |
|
|
|
| 5645 |
|
|
! * CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
| 5646 |
|
|
|
| 5647 |
|
✗ |
za12 = (puu1(jl,24)-puu2(jl,24))*6.7435E+05 |
| 5648 |
|
✗ |
zttf12 = 1. - za12*0.003225 |
| 5649 |
|
|
|
| 5650 |
|
✗ |
zuu11 = -(puu1(jl,15)-puu2(jl,15)) - zeu10 - zpu10 |
| 5651 |
|
✗ |
zuu12 = -(puu1(jl,16)-puu2(jl,16)) - zeu11 - zpu11 - zodh41 - zodn21 |
| 5652 |
|
✗ |
ptt(jl, 10) = exp(-(puu1(jl,14)-puu2(jl,14))) |
| 5653 |
|
✗ |
ptt(jl, 11) = exp(zuu11) |
| 5654 |
|
✗ |
ptt(jl, 12) = exp(zuu12)*zttf11*zttf12 |
| 5655 |
|
✗ |
ptt(jl, 13) = 0.7554*zto1 + 0.2446*zto2 |
| 5656 |
|
✗ |
ptt(jl, 14) = ptt(jl, 10)*exp(-zeu13-zpu13) |
| 5657 |
|
✗ |
ptt(jl, 15) = exp(-(puu1(jl,14)-puu2(jl,14))-zodh42-zodn22) |
| 5658 |
|
|
END DO |
| 5659 |
|
|
|
| 5660 |
|
✗ |
RETURN |
| 5661 |
|
|
END SUBROUTINE lwttm_lmdar4 |
| 5662 |
|
|
|