| Directory: | ./ |
|---|---|
| File: | phys/soil.f90 |
| Date: | 2022-01-11 19:19:34 |
| Exec | Total | Coverage | |
|---|---|---|---|
| Lines: | 78 | 100 | 78.0% |
| Branches: | 53 | 80 | 66.2% |
| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | ! | ||
| 2 | ! $Header$ | ||
| 3 | ! | ||
| 4 | 911247 | SUBROUTINE soil(ptimestep, indice, knon, snow, ptsrf, qsol, & | |
| 5 | 1440 | lon, lat, ptsoil, pcapcal, pfluxgrd) | |
| 6 | |||
| 7 | USE dimphy | ||
| 8 | USE mod_phys_lmdz_para | ||
| 9 | USE indice_sol_mod | ||
| 10 | USE print_control_mod, ONLY: lunout | ||
| 11 | |||
| 12 | IMPLICIT NONE | ||
| 13 | |||
| 14 | !======================================================================= | ||
| 15 | ! | ||
| 16 | ! Auteur: Frederic Hourdin 30/01/92 | ||
| 17 | ! ------- | ||
| 18 | ! | ||
| 19 | ! Object: Computation of : the soil temperature evolution | ||
| 20 | ! ------- the surfacic heat capacity "Capcal" | ||
| 21 | ! the surface conduction flux pcapcal | ||
| 22 | ! | ||
| 23 | ! Update: 2021/07 : soil thermal inertia, formerly a constant value, | ||
| 24 | ! ------ can also be now a function of soil moisture (F Cheruy's idea) | ||
| 25 | ! depending on iflag_inertie, read from physiq.def via conf_phys_m.F90 | ||
| 26 | ! ("Stage L3" Eve Rebouillat, with E Vignon, A Sima, F Cheruy) | ||
| 27 | ! | ||
| 28 | ! Method: Implicit time integration | ||
| 29 | ! ------- | ||
| 30 | ! Consecutive ground temperatures are related by: | ||
| 31 | ! T(k+1) = C(k) + D(k)*T(k) (*) | ||
| 32 | ! The coefficients C and D are computed at the t-dt time-step. | ||
| 33 | ! Routine structure: | ||
| 34 | ! 1) C and D coefficients are computed from the old temperature | ||
| 35 | ! 2) new temperatures are computed using (*) | ||
| 36 | ! 3) C and D coefficients are computed from the new temperature | ||
| 37 | ! profile for the t+dt time-step | ||
| 38 | ! 4) the coefficients A and B are computed where the diffusive | ||
| 39 | ! fluxes at the t+dt time-step is given by | ||
| 40 | ! Fdiff = A + B Ts(t+dt) | ||
| 41 | ! or Fdiff = F0 + Capcal (Ts(t+dt)-Ts(t))/dt | ||
| 42 | ! with F0 = A + B (Ts(t)) | ||
| 43 | ! Capcal = B*dt | ||
| 44 | ! | ||
| 45 | ! Interface: | ||
| 46 | ! ---------- | ||
| 47 | ! | ||
| 48 | ! Arguments: | ||
| 49 | ! ---------- | ||
| 50 | ! ptimestep physical timestep (s) | ||
| 51 | ! indice sub-surface index | ||
| 52 | ! snow(klon) snow | ||
| 53 | ! ptsrf(klon) surface temperature at time-step t (K) | ||
| 54 | ! qsol(klon) soil moisture (kg/m2 or mm) | ||
| 55 | ! lon(klon) longitude in radian | ||
| 56 | ! lat(klon) latitude in radian | ||
| 57 | ! ptsoil(klon,nsoilmx) temperature inside the ground (K) | ||
| 58 | ! pcapcal(klon) surfacic specific heat (W*m-2*s*K-1) | ||
| 59 | ! pfluxgrd(klon) surface diffusive flux from ground (Wm-2) | ||
| 60 | ! | ||
| 61 | !======================================================================= | ||
| 62 | INCLUDE "YOMCST.h" | ||
| 63 | INCLUDE "dimsoil.h" | ||
| 64 | INCLUDE "comsoil.h" | ||
| 65 | !----------------------------------------------------------------------- | ||
| 66 | ! Arguments | ||
| 67 | ! --------- | ||
| 68 | REAL, INTENT(IN) :: ptimestep | ||
| 69 | INTEGER, INTENT(IN) :: indice, knon !, knindex | ||
| 70 | REAL, DIMENSION(klon), INTENT(IN) :: snow | ||
| 71 | REAL, DIMENSION(klon), INTENT(IN) :: ptsrf | ||
| 72 | REAL, DIMENSION(klon), INTENT(IN) :: qsol | ||
| 73 | REAL, DIMENSION(klon), INTENT(IN) :: lon | ||
| 74 | REAL, DIMENSION(klon), INTENT(IN) :: lat | ||
| 75 | |||
| 76 | REAL, DIMENSION(klon,nsoilmx), INTENT(INOUT) :: ptsoil | ||
| 77 | REAL, DIMENSION(klon), INTENT(OUT) :: pcapcal | ||
| 78 | REAL, DIMENSION(klon), INTENT(OUT) :: pfluxgrd | ||
| 79 | |||
| 80 | !----------------------------------------------------------------------- | ||
| 81 | ! Local variables | ||
| 82 | ! --------------- | ||
| 83 | INTEGER :: ig, jk, ierr | ||
| 84 | REAL :: min_period,dalph_soil | ||
| 85 | REAL, DIMENSION(nsoilmx) :: zdz2 | ||
| 86 | REAL :: z1s | ||
| 87 | 2880 | REAL, DIMENSION(klon) :: ztherm_i | |
| 88 | 2880 | REAL, DIMENSION(klon,nsoilmx,nbsrf) :: C_coef, D_coef | |
| 89 | |||
| 90 | ! Local saved variables | ||
| 91 | ! --------------------- | ||
| 92 | REAL, SAVE :: lambda | ||
| 93 | !$OMP THREADPRIVATE(lambda) | ||
| 94 | REAL, DIMENSION(nsoilmx), SAVE :: dz1, dz2 | ||
| 95 | !$OMP THREADPRIVATE(dz1,dz2) | ||
| 96 | LOGICAL, SAVE :: firstcall=.TRUE. | ||
| 97 | !$OMP THREADPRIVATE(firstcall) | ||
| 98 | |||
| 99 | !----------------------------------------------------------------------- | ||
| 100 | ! Depthts: | ||
| 101 | ! -------- | ||
| 102 | REAL fz,rk,fz1,rk1,rk2 | ||
| 103 | fz(rk)=fz1*(dalph_soil**rk-1.)/(dalph_soil-1.) | ||
| 104 | |||
| 105 | |||
| 106 | !----------------------------------------------------------------------- | ||
| 107 | ! Calculation of some constants | ||
| 108 | ! NB! These constants do not depend on the sub-surfaces | ||
| 109 | !----------------------------------------------------------------------- | ||
| 110 | |||
| 111 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 1439 times.
|
1440 | IF (firstcall) THEN |
| 112 | !----------------------------------------------------------------------- | ||
| 113 | ! ground levels | ||
| 114 | ! grnd=z/l where l is the skin depth of the diurnal cycle: | ||
| 115 | !----------------------------------------------------------------------- | ||
| 116 | |||
| 117 | 1 | min_period=1800. ! en secondes | |
| 118 | 1 | dalph_soil=2. ! rapport entre les epaisseurs de 2 couches succ. | |
| 119 | !$OMP MASTER | ||
| 120 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | IF (is_mpi_root) THEN |
| 121 | 1 | OPEN(99,file='soil.def',status='old',form='formatted',iostat=ierr) | |
| 122 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | IF (ierr == 0) THEN ! Read file only if it exists |
| 123 | ✗ | READ(99,*) min_period | |
| 124 | ✗ | READ(99,*) dalph_soil | |
| 125 | ✗ | WRITE(lunout,*)'Discretization for the soil model' | |
| 126 | ✗ | WRITE(lunout,*)'First level e-folding depth',min_period, & | |
| 127 | ✗ | ' dalph',dalph_soil | |
| 128 | ✗ | CLOSE(99) | |
| 129 | END IF | ||
| 130 | ENDIF | ||
| 131 | !$OMP END MASTER | ||
| 132 | 1 | CALL bcast(min_period) | |
| 133 | 1 | CALL bcast(dalph_soil) | |
| 134 | |||
| 135 | ! la premiere couche represente un dixieme de cycle diurne | ||
| 136 | 1 | fz1=SQRT(min_period/3.14) | |
| 137 | |||
| 138 |
2/2✓ Branch 0 taken 11 times.
✓ Branch 1 taken 1 times.
|
12 | DO jk=1,nsoilmx |
| 139 | 11 | rk1=jk | |
| 140 | 11 | rk2=jk-1 | |
| 141 | 12 | dz2(jk)=fz(rk1)-fz(rk2) | |
| 142 | ENDDO | ||
| 143 |
2/2✓ Branch 0 taken 10 times.
✓ Branch 1 taken 1 times.
|
11 | DO jk=1,nsoilmx-1 |
| 144 | 10 | rk1=jk+.5 | |
| 145 | 10 | rk2=jk-.5 | |
| 146 | 11 | dz1(jk)=1./(fz(rk1)-fz(rk2)) | |
| 147 | ENDDO | ||
| 148 | 1 | lambda=fz(.5)*dz1(1) | |
| 149 | 1 | WRITE(lunout,*)'full layers, intermediate layers (seconds)' | |
| 150 |
2/2✓ Branch 0 taken 11 times.
✓ Branch 1 taken 1 times.
|
12 | DO jk=1,nsoilmx |
| 151 | 11 | rk=jk | |
| 152 | 11 | rk1=jk+.5 | |
| 153 | 11 | rk2=jk-.5 | |
| 154 | 11 | WRITE(lunout,*)'fz=', & | |
| 155 | 23 | fz(rk1)*fz(rk2)*3.14,fz(rk)*fz(rk)*3.14 | |
| 156 | ENDDO | ||
| 157 | |||
| 158 | 1 | firstcall =.FALSE. | |
| 159 | END IF | ||
| 160 | |||
| 161 | |||
| 162 | !----------------------------------------------------------------------- | ||
| 163 | ! Calcul de l'inertie thermique a partir de la variable rnat. | ||
| 164 | ! on initialise a inertie_sic meme au-dessus d'un point de mer au cas | ||
| 165 | ! ou le point de mer devienne point de glace au pas suivant | ||
| 166 | ! on corrige si on a un point de terre avec ou sans glace | ||
| 167 | ! | ||
| 168 | ! iophys can be used to write the ztherm_i variable in a phys.nc file | ||
| 169 | ! and check the results; to do so, add "CALL iophys_ini" in physiq_mod | ||
| 170 | ! and add knindex to the list of inputs in all the calls to soil.F90 | ||
| 171 | ! (and to soil.F90 itself !) | ||
| 172 | !----------------------------------------------------------------------- | ||
| 173 | |||
| 174 |
2/2✓ Branch 0 taken 480 times.
✓ Branch 1 taken 960 times.
|
1440 | IF (indice == is_sic) THEN |
| 175 |
2/2✓ Branch 0 taken 104835 times.
✓ Branch 1 taken 480 times.
|
105315 | DO ig = 1, knon |
| 176 | 105315 | ztherm_i(ig) = inertie_sic | |
| 177 | ENDDO | ||
| 178 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 480 times.
|
480 | IF (iflag_sic == 0) THEN |
| 179 | ✗ | DO ig = 1, knon | |
| 180 | ✗ | IF (snow(ig) > 0.0) ztherm_i(ig) = inertie_sno | |
| 181 | ENDDO | ||
| 182 | ! Otherwise sea-ice keeps the same inertia, even when covered by snow | ||
| 183 | ENDIF | ||
| 184 | ! CALL iophys_ecrit_index('ztherm_sic', 1, 'ztherm_sic', 'USI', & | ||
| 185 | ! knon, knindex, ztherm_i) | ||
| 186 |
2/2✓ Branch 0 taken 480 times.
✓ Branch 1 taken 480 times.
|
960 | ELSE IF (indice == is_lic) THEN |
| 187 |
2/2✓ Branch 0 taken 480 times.
✓ Branch 1 taken 72960 times.
|
73440 | DO ig = 1, knon |
| 188 | 72960 | ztherm_i(ig) = inertie_lic | |
| 189 |
2/2✓ Branch 0 taken 55058 times.
✓ Branch 1 taken 17902 times.
|
73440 | IF (snow(ig) > 0.0) ztherm_i(ig) = inertie_sno |
| 190 | ENDDO | ||
| 191 | ! CALL iophys_ecrit_index('ztherm_lic', 1, 'ztherm_lic', 'USI', & | ||
| 192 | ! knon, knindex, ztherm_i) | ||
| 193 |
1/2✓ Branch 0 taken 480 times.
✗ Branch 1 not taken.
|
480 | ELSE IF (indice == is_ter) THEN |
| 194 | ! | ||
| 195 | ! La relation entre l'inertie thermique du sol et qsol change d'apres | ||
| 196 | ! iflag_inertie, defini dans physiq.def, et appele via comsoil.h | ||
| 197 | ! | ||
| 198 |
2/2✓ Branch 0 taken 480 times.
✓ Branch 1 taken 247680 times.
|
248160 | DO ig = 1, knon |
| 199 | ! iflag_inertie=0 correspond au cas inertie=constant, comme avant | ||
| 200 |
1/2✓ Branch 0 taken 247680 times.
✗ Branch 1 not taken.
|
247680 | IF (iflag_inertie==0) THEN |
| 201 | 247680 | ztherm_i(ig) = inertie_sol | |
| 202 | ✗ | ELSE IF (iflag_inertie == 1) THEN | |
| 203 | ! I = a_qsol * qsol + b modele lineaire deduit d'une | ||
| 204 | ! regression lineaire I = a_mrsos * mrsos + b obtenue sur | ||
| 205 | ! sorties MO d'une simulation LMDZOR(CMIP6) sur l'annee 2000 | ||
| 206 | ! sur tous les points avec frac_snow=0 | ||
| 207 | ! Difference entre qsol et mrsos prise en compte par un | ||
| 208 | ! facteur d'echelle sur le coefficient directeur de regression: | ||
| 209 | ! fact = 35./150. = mrsos_max/qsol_max | ||
| 210 | ! et a_qsol = a_mrsos * fact (car a = dI/dHumidite) | ||
| 211 | ✗ | ztherm_i(ig) = 30.0 *35.0/150.0 *qsol(ig) +770.0 | |
| 212 | ! AS : pour qsol entre 0 - 150, on a I entre 770 - 1820 | ||
| 213 | ✗ | ELSE IF (iflag_inertie == 2) THEN | |
| 214 | ! deux regressions lineaires, sur les memes sorties, | ||
| 215 | ! distinguant le type de sol : sable ou autre (limons/argile) | ||
| 216 | ! Implementation simple : regression type "sable" seulement pour | ||
| 217 | ! Sahara, defini par une "boite" lat/lon (NB : en radians !! ) | ||
| 218 | ✗ | IF (lon(ig)>-0.35 .AND. lon(ig)<0.70 .AND. lat(ig)>0.17 .AND. lat(ig)<0.52) THEN | |
| 219 | ! Valeurs theoriquement entre 728 et 2373 ; qsol valeurs basses | ||
| 220 | ✗ | ztherm_i(ig) = 47. *35.0/150.0 *qsol(ig) +728. ! boite type "sable" pour Sahara | |
| 221 | ELSE | ||
| 222 | ! Valeurs theoriquement entre 550 et 1940 ; qsol valeurs moyennes et hautes | ||
| 223 | ✗ | ztherm_i(ig) = 41. *35.0/150.0 *qsol(ig) +505. | |
| 224 | ENDIF | ||
| 225 | ✗ | ELSE IF (iflag_inertie == 3) THEN | |
| 226 | ! AS : idee a tester : | ||
| 227 | ! si la relation doit etre une droite, | ||
| 228 | ! definissons-la en fonction des valeurs min et max de qsol (0:150), | ||
| 229 | ! et de l'inertie (900 : 2000 ou 2400 ; choix ici: 2000) | ||
| 230 | ! I = I_min + qsol * (I_max - I_min)/(qsol_max - qsol_min) | ||
| 231 | ✗ | ztherm_i(ig) = 900. + qsol(ig) * (2000. - 900.)/150. | |
| 232 | ELSE | ||
| 233 | ✗ | WRITE (lunout,*) "Le choix iflag_inertie = ",iflag_inertie," n'est pas defini. Veuillez choisir un entier entre 0 et 3" | |
| 234 | ENDIF | ||
| 235 | ! | ||
| 236 | ! Fin de l'introduction de la relation entre l'inertie thermique du sol et qsol | ||
| 237 | !------------------------------------------- | ||
| 238 | !AS : donc le moindre flocon de neige sur un point de grid | ||
| 239 | ! fait que l'inertie du point passe a la valeur pour neige ! | ||
| 240 |
2/2✓ Branch 0 taken 76279 times.
✓ Branch 1 taken 171401 times.
|
248160 | IF (snow(ig) > 0.0) ztherm_i(ig) = inertie_sno |
| 241 | |||
| 242 | ENDDO | ||
| 243 | ! CALL iophys_ecrit_index('ztherm_ter', 1, 'ztherm_ter', 'USI', & | ||
| 244 | ! knon, knindex, ztherm_i) | ||
| 245 | ✗ | ELSE IF (indice == is_oce) THEN | |
| 246 | ✗ | DO ig = 1, knon | |
| 247 | ! This is just in case, but SST should be used by the model anyway | ||
| 248 | ✗ | ztherm_i(ig) = inertie_sic | |
| 249 | ENDDO | ||
| 250 | ! CALL iophys_ecrit_index('ztherm_oce', 1, 'ztherm_oce', 'USI', & | ||
| 251 | ! knon, knindex, ztherm_i) | ||
| 252 | ELSE | ||
| 253 | ✗ | WRITE(lunout,*) "valeur d indice non prevue", indice | |
| 254 | ✗ | call abort_physic("soil", "", 1) | |
| 255 | ENDIF | ||
| 256 | |||
| 257 | |||
| 258 | !----------------------------------------------------------------------- | ||
| 259 | ! 1) | ||
| 260 | ! Calculation of Cgrf and Dgrd coefficients using soil temperature from | ||
| 261 | ! previous time step. | ||
| 262 | ! | ||
| 263 | ! These variables are recalculated on the local compressed grid instead | ||
| 264 | ! of saved in restart file. | ||
| 265 | !----------------------------------------------------------------------- | ||
| 266 |
2/2✓ Branch 0 taken 15840 times.
✓ Branch 1 taken 1440 times.
|
17280 | DO jk=1,nsoilmx |
| 267 | 17280 | zdz2(jk)=dz2(jk)/ptimestep | |
| 268 | ENDDO | ||
| 269 | |||
| 270 |
2/2✓ Branch 0 taken 425475 times.
✓ Branch 1 taken 1440 times.
|
426915 | DO ig=1,knon |
| 271 | 425475 | z1s = zdz2(nsoilmx)+dz1(nsoilmx-1) | |
| 272 | C_coef(ig,nsoilmx-1,indice)= & | ||
| 273 | 425475 | zdz2(nsoilmx)*ptsoil(ig,nsoilmx)/z1s | |
| 274 | 426915 | D_coef(ig,nsoilmx-1,indice)=dz1(nsoilmx-1)/z1s | |
| 275 | ENDDO | ||
| 276 | |||
| 277 |
2/2✓ Branch 0 taken 12960 times.
✓ Branch 1 taken 1440 times.
|
14400 | DO jk=nsoilmx-1,2,-1 |
| 278 |
2/2✓ Branch 0 taken 3829275 times.
✓ Branch 1 taken 12960 times.
|
3843675 | DO ig=1,knon |
| 279 | z1s = 1./(zdz2(jk)+dz1(jk-1)+dz1(jk) & | ||
| 280 | 3829275 | *(1.-D_coef(ig,jk,indice))) | |
| 281 | C_coef(ig,jk-1,indice)= & | ||
| 282 | 3829275 | (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*C_coef(ig,jk,indice)) * z1s | |
| 283 | 3842235 | D_coef(ig,jk-1,indice)=dz1(jk-1)*z1s | |
| 284 | ENDDO | ||
| 285 | ENDDO | ||
| 286 | |||
| 287 | !----------------------------------------------------------------------- | ||
| 288 | ! 2) | ||
| 289 | ! Computation of the soil temperatures using the Cgrd and Dgrd | ||
| 290 | ! coefficient computed above | ||
| 291 | ! | ||
| 292 | !----------------------------------------------------------------------- | ||
| 293 | |||
| 294 | ! Surface temperature | ||
| 295 |
2/2✓ Branch 0 taken 425475 times.
✓ Branch 1 taken 1440 times.
|
426915 | DO ig=1,knon |
| 296 | ptsoil(ig,1)=(lambda*C_coef(ig,1,indice)+ptsrf(ig))/ & | ||
| 297 | 426915 | (lambda*(1.-D_coef(ig,1,indice))+1.) | |
| 298 | ENDDO | ||
| 299 | |||
| 300 | ! Other temperatures | ||
| 301 |
2/2✓ Branch 0 taken 14400 times.
✓ Branch 1 taken 1440 times.
|
15840 | DO jk=1,nsoilmx-1 |
| 302 |
2/2✓ Branch 0 taken 4254750 times.
✓ Branch 1 taken 14400 times.
|
4270590 | DO ig=1,knon |
| 303 | ptsoil(ig,jk+1)=C_coef(ig,jk,indice)+D_coef(ig,jk,indice) & | ||
| 304 | 4269150 | *ptsoil(ig,jk) | |
| 305 | ENDDO | ||
| 306 | ENDDO | ||
| 307 | |||
| 308 |
2/2✓ Branch 0 taken 480 times.
✓ Branch 1 taken 960 times.
|
1440 | IF (indice == is_sic) THEN |
| 309 |
2/2✓ Branch 0 taken 480 times.
✓ Branch 1 taken 104835 times.
|
105315 | DO ig = 1 , knon |
| 310 | 105315 | ptsoil(ig,nsoilmx) = RTT - 1.8 | |
| 311 | END DO | ||
| 312 | ENDIF | ||
| 313 | |||
| 314 | !----------------------------------------------------------------------- | ||
| 315 | ! 3) | ||
| 316 | ! Calculate the Cgrd and Dgrd coefficient corresponding to actual soil | ||
| 317 | ! temperature | ||
| 318 | !----------------------------------------------------------------------- | ||
| 319 |
2/2✓ Branch 0 taken 425475 times.
✓ Branch 1 taken 1440 times.
|
426915 | DO ig=1,knon |
| 320 | 425475 | z1s = zdz2(nsoilmx)+dz1(nsoilmx-1) | |
| 321 | 425475 | C_coef(ig,nsoilmx-1,indice) = zdz2(nsoilmx)*ptsoil(ig,nsoilmx)/z1s | |
| 322 | 426915 | D_coef(ig,nsoilmx-1,indice) = dz1(nsoilmx-1)/z1s | |
| 323 | ENDDO | ||
| 324 | |||
| 325 |
2/2✓ Branch 0 taken 12960 times.
✓ Branch 1 taken 1440 times.
|
14400 | DO jk=nsoilmx-1,2,-1 |
| 326 |
2/2✓ Branch 0 taken 3829275 times.
✓ Branch 1 taken 12960 times.
|
3843675 | DO ig=1,knon |
| 327 | z1s = 1./(zdz2(jk)+dz1(jk-1)+dz1(jk) & | ||
| 328 | 3829275 | *(1.-D_coef(ig,jk,indice))) | |
| 329 | C_coef(ig,jk-1,indice) = & | ||
| 330 | 3829275 | (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*C_coef(ig,jk,indice)) * z1s | |
| 331 | 3842235 | D_coef(ig,jk-1,indice) = dz1(jk-1)*z1s | |
| 332 | ENDDO | ||
| 333 | ENDDO | ||
| 334 | |||
| 335 | !----------------------------------------------------------------------- | ||
| 336 | ! 4) | ||
| 337 | ! Computation of the surface diffusive flux from ground and | ||
| 338 | ! calorific capacity of the ground | ||
| 339 | !----------------------------------------------------------------------- | ||
| 340 |
2/2✓ Branch 0 taken 425475 times.
✓ Branch 1 taken 1440 times.
|
426915 | DO ig=1,knon |
| 341 | pfluxgrd(ig) = ztherm_i(ig)*dz1(1)* & | ||
| 342 | 425475 | (C_coef(ig,1,indice)+(D_coef(ig,1,indice)-1.)*ptsoil(ig,1)) | |
| 343 | pcapcal(ig) = ztherm_i(ig)* & | ||
| 344 | 425475 | (dz2(1)+ptimestep*(1.-D_coef(ig,1,indice))*dz1(1)) | |
| 345 | 425475 | z1s = lambda*(1.-D_coef(ig,1,indice))+1. | |
| 346 | 425475 | pcapcal(ig) = pcapcal(ig)/z1s | |
| 347 | pfluxgrd(ig) = pfluxgrd(ig) & | ||
| 348 | + pcapcal(ig) * (ptsoil(ig,1) * z1s & | ||
| 349 | - lambda * C_coef(ig,1,indice) & | ||
| 350 | - ptsrf(ig)) & | ||
| 351 | 426915 | /ptimestep | |
| 352 | ENDDO | ||
| 353 | |||
| 354 | 1440 | END SUBROUTINE soil | |
| 355 |