| Line |
Branch |
Exec |
Source |
| 1 |
|
✗ |
SUBROUTINE SRTM_SETCOEF & |
| 2 |
|
|
& ( KLEV , KNMOL ,& |
| 3 |
|
|
& PAVEL , PTAVEL , PZ , PTZ , PTBOUND ,& |
| 4 |
|
|
& PCOLDRY , PWKL ,& |
| 5 |
|
|
& KLAYTROP, KLAYSWTCH, KLAYLOW ,& |
| 6 |
|
|
& PCO2MULT, PCOLCH4 , PCOLCO2 , PCOLH2O , PCOLMOL , PCOLN2O , PCOLO2 , PCOLO3 ,& |
| 7 |
|
|
& PFORFAC , PFORFRAC , KINDFOR , PSELFFAC, PSELFFRAC, KINDSELF ,& |
| 8 |
|
|
& PFAC00 , PFAC01 , PFAC10 , PFAC11 ,& |
| 9 |
|
|
& KJP , KJT , KJT1 & |
| 10 |
|
|
& ) |
| 11 |
|
|
|
| 12 |
|
|
! J. Delamere, AER, Inc. (version 2.5, 02/04/01) |
| 13 |
|
|
|
| 14 |
|
|
! Modifications: |
| 15 |
|
|
! JJMorcrette 030224 rewritten / adapted to ECMWF F90 system |
| 16 |
|
|
! M.Hamrud 01-Oct-2003 CY28 Cleaning |
| 17 |
|
|
|
| 18 |
|
|
! Purpose: For a given atmosphere, calculate the indices and |
| 19 |
|
|
! fractions related to the pressure and temperature interpolations. |
| 20 |
|
|
|
| 21 |
|
|
USE PARKIND1 ,ONLY : JPIM ,JPRB |
| 22 |
|
|
USE YOMHOOK ,ONLY : LHOOK, DR_HOOK |
| 23 |
|
|
|
| 24 |
|
|
USE PARSRTM , ONLY : JPLAY |
| 25 |
|
|
USE YOESRTWN, ONLY : PREFLOG, TREF |
| 26 |
|
|
!! USE YOESWN , ONLY : NDBUG |
| 27 |
|
|
|
| 28 |
|
|
IMPLICIT NONE |
| 29 |
|
|
|
| 30 |
|
|
!-- Input arguments |
| 31 |
|
|
|
| 32 |
|
|
INTEGER(KIND=JPIM),INTENT(IN) :: KLEV |
| 33 |
|
|
INTEGER(KIND=JPIM) :: KNMOL ! Argument NOT used |
| 34 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: PAVEL(JPLAY) |
| 35 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: PTAVEL(JPLAY) |
| 36 |
|
|
REAL(KIND=JPRB) :: PZ(0:JPLAY) ! Argument NOT used |
| 37 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: PTZ(0:JPLAY) |
| 38 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: PTBOUND |
| 39 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: PCOLDRY(JPLAY) |
| 40 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: PWKL(35,JPLAY) |
| 41 |
|
|
INTEGER(KIND=JPIM),INTENT(OUT) :: KLAYTROP |
| 42 |
|
|
INTEGER(KIND=JPIM),INTENT(OUT) :: KLAYSWTCH |
| 43 |
|
|
INTEGER(KIND=JPIM),INTENT(OUT) :: KLAYLOW |
| 44 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PCO2MULT(JPLAY) |
| 45 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLCH4(JPLAY) |
| 46 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLCO2(JPLAY) |
| 47 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLH2O(JPLAY) |
| 48 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLMOL(JPLAY) |
| 49 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLN2O(JPLAY) |
| 50 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLO2(JPLAY) |
| 51 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLO3(JPLAY) |
| 52 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PFORFAC(JPLAY) |
| 53 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PFORFRAC(JPLAY) |
| 54 |
|
|
INTEGER(KIND=JPIM),INTENT(OUT) :: KINDFOR(JPLAY) |
| 55 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PSELFFAC(JPLAY) |
| 56 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PSELFFRAC(JPLAY) |
| 57 |
|
|
INTEGER(KIND=JPIM),INTENT(OUT) :: KINDSELF(JPLAY) |
| 58 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PFAC00(JPLAY) |
| 59 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PFAC01(JPLAY) |
| 60 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PFAC10(JPLAY) |
| 61 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PFAC11(JPLAY) |
| 62 |
|
|
INTEGER(KIND=JPIM),INTENT(OUT) :: KJP(JPLAY) |
| 63 |
|
|
INTEGER(KIND=JPIM),INTENT(OUT) :: KJT(JPLAY) |
| 64 |
|
|
INTEGER(KIND=JPIM),INTENT(OUT) :: KJT1(JPLAY) |
| 65 |
|
|
!-- Output arguments |
| 66 |
|
|
|
| 67 |
|
|
!-- local integers |
| 68 |
|
|
|
| 69 |
|
|
INTEGER(KIND=JPIM) :: I_NLAYERS, INDBOUND, INDLEV0, JK |
| 70 |
|
|
INTEGER(KIND=JPIM) :: JP1 |
| 71 |
|
|
|
| 72 |
|
|
!-- local reals |
| 73 |
|
|
|
| 74 |
|
|
REAL(KIND=JPRB) :: Z_STPFAC, Z_TBNDFRAC, Z_T0FRAC, Z_PLOG, Z_FP, Z_FT, Z_FT1, Z_WATER, Z_SCALEFAC |
| 75 |
|
|
REAL(KIND=JPRB) :: Z_FACTOR, Z_CO2REG, Z_COMPFP |
| 76 |
|
|
REAL(KIND=JPRB) :: ZHOOK_HANDLE |
| 77 |
|
|
|
| 78 |
|
|
|
| 79 |
|
|
|
| 80 |
|
|
|
| 81 |
|
✗ |
IF (LHOOK) CALL DR_HOOK('SRTM_SETCOEF',0,ZHOOK_HANDLE) |
| 82 |
|
✗ |
I_NLAYERS = KLEV |
| 83 |
|
|
|
| 84 |
|
|
Z_STPFAC = 296._JPRB/1013._JPRB |
| 85 |
|
|
|
| 86 |
|
|
INDBOUND = PTBOUND - 159._JPRB |
| 87 |
|
|
Z_TBNDFRAC = PTBOUND - INT(PTBOUND) |
| 88 |
|
|
INDLEV0 = PTZ(0) - 159._JPRB |
| 89 |
|
|
Z_T0FRAC = PTZ(0) - INT(PTZ(0)) |
| 90 |
|
|
|
| 91 |
|
✗ |
KLAYTROP = 0 |
| 92 |
|
✗ |
KLAYSWTCH = 0 |
| 93 |
|
✗ |
KLAYLOW = 0 |
| 94 |
|
|
|
| 95 |
|
|
!IF (NDBUG.LE.3) THEN |
| 96 |
|
|
! print *,'-------- Computed in SETCOEF --------' |
| 97 |
|
|
! print 8990 |
| 98 |
|
|
8990 format(18x,' T PFAC00, 01, 10, 11 PCO2MULT MOL & |
| 99 |
|
|
& CH4 CO2 H2O N2O O2 O3 SFAC & |
| 100 |
|
|
& SFRAC FFAC FFRAC ISLF IFOR') |
| 101 |
|
|
!END IF |
| 102 |
|
|
|
| 103 |
|
✗ |
DO JK = 1, I_NLAYERS |
| 104 |
|
|
! Find the two reference pressures on either side of the |
| 105 |
|
|
! layer pressure. Store them in JP and JP1. Store in FP the |
| 106 |
|
|
! fraction of the difference (in ln(pressure)) between these |
| 107 |
|
|
! two values that the layer pressure lies. |
| 108 |
|
|
|
| 109 |
|
✗ |
Z_PLOG = LOG(PAVEL(JK)) |
| 110 |
|
✗ |
KJP(JK) = INT(36. - 5*(Z_PLOG+0.04)) |
| 111 |
|
✗ |
IF (KJP(JK) < 1) THEN |
| 112 |
|
✗ |
KJP(JK) = 1 |
| 113 |
|
✗ |
ELSEIF (KJP(JK) > 58) THEN |
| 114 |
|
✗ |
KJP(JK) = 58 |
| 115 |
|
|
ENDIF |
| 116 |
|
✗ |
JP1 = KJP(JK) + 1 |
| 117 |
|
✗ |
Z_FP = 5. * (PREFLOG(KJP(JK)) - Z_PLOG) |
| 118 |
|
|
|
| 119 |
|
|
! Determine, for each reference pressure (JP and JP1), which |
| 120 |
|
|
! reference temperature (these are different for each |
| 121 |
|
|
! reference pressure) is nearest the layer temperature but does |
| 122 |
|
|
! not exceed it. Store these indices in JT and JT1, resp. |
| 123 |
|
|
! Store in FT (resp. FT1) the fraction of the way between JT |
| 124 |
|
|
! (JT1) and the next highest reference temperature that the |
| 125 |
|
|
! layer temperature falls. |
| 126 |
|
|
|
| 127 |
|
✗ |
KJT(JK) = INT(3. + (PTAVEL(JK)-TREF(KJP(JK)))/15.) |
| 128 |
|
✗ |
IF (KJT(JK) < 1) THEN |
| 129 |
|
✗ |
KJT(JK) = 1 |
| 130 |
|
✗ |
ELSEIF (KJT(JK) > 4) THEN |
| 131 |
|
✗ |
KJT(JK) = 4 |
| 132 |
|
|
ENDIF |
| 133 |
|
✗ |
Z_FT = ((PTAVEL(JK)-TREF(KJP(JK)))/15.) - REAL(KJT(JK)-3) |
| 134 |
|
✗ |
KJT1(JK) = INT(3. + (PTAVEL(JK)-TREF(JP1))/15.) |
| 135 |
|
✗ |
IF (KJT1(JK) < 1) THEN |
| 136 |
|
✗ |
KJT1(JK) = 1 |
| 137 |
|
✗ |
ELSEIF (KJT1(JK) > 4) THEN |
| 138 |
|
✗ |
KJT1(JK) = 4 |
| 139 |
|
|
ENDIF |
| 140 |
|
✗ |
Z_FT1 = ((PTAVEL(JK)-TREF(JP1))/15.) - REAL(KJT1(JK)-3) |
| 141 |
|
|
|
| 142 |
|
✗ |
Z_WATER = PWKL(1,JK)/PCOLDRY(JK) |
| 143 |
|
✗ |
Z_SCALEFAC = PAVEL(JK) * Z_STPFAC / PTAVEL(JK) |
| 144 |
|
|
|
| 145 |
|
|
! If the pressure is less than ~100mb, perform a different |
| 146 |
|
|
! set of species interpolations. |
| 147 |
|
|
|
| 148 |
|
✗ |
IF (Z_PLOG <= 4.56) GO TO 5300 |
| 149 |
|
✗ |
KLAYTROP = KLAYTROP + 1 |
| 150 |
|
✗ |
IF (Z_PLOG >= 6.62) KLAYLOW = KLAYLOW + 1 |
| 151 |
|
|
|
| 152 |
|
|
! Set up factors needed to separately include the water vapor |
| 153 |
|
|
! foreign-continuum in the calculation of absorption coefficient. |
| 154 |
|
|
|
| 155 |
|
✗ |
PFORFAC(JK) = Z_SCALEFAC / (1.+Z_WATER) |
| 156 |
|
✗ |
Z_FACTOR = (332.0-PTAVEL(JK))/36.0 |
| 157 |
|
✗ |
KINDFOR(JK) = MIN(2, MAX(1, INT(Z_FACTOR))) |
| 158 |
|
✗ |
PFORFRAC(JK) = Z_FACTOR - REAL(KINDFOR(JK)) |
| 159 |
|
|
|
| 160 |
|
|
! Set up factors needed to separately include the water vapor |
| 161 |
|
|
! self-continuum in the calculation of absorption coefficient. |
| 162 |
|
|
|
| 163 |
|
✗ |
PSELFFAC(JK) = Z_WATER * PFORFAC(JK) |
| 164 |
|
✗ |
Z_FACTOR = (PTAVEL(JK)-188.0)/7.2 |
| 165 |
|
✗ |
KINDSELF(JK) = MIN(9, MAX(1, INT(Z_FACTOR)-7)) |
| 166 |
|
✗ |
PSELFFRAC(JK) = Z_FACTOR - REAL(KINDSELF(JK) + 7) |
| 167 |
|
|
|
| 168 |
|
|
! Calculate needed column amounts. |
| 169 |
|
|
|
| 170 |
|
✗ |
PCOLH2O(JK) = 1.E-20 * PWKL(1,JK) |
| 171 |
|
✗ |
PCOLCO2(JK) = 1.E-20 * PWKL(2,JK) |
| 172 |
|
✗ |
PCOLO3(JK) = 1.E-20 * PWKL(3,JK) |
| 173 |
|
|
! COLO3(LAY) = 0. |
| 174 |
|
|
! COLO3(LAY) = colo3(lay)/1.16 |
| 175 |
|
✗ |
PCOLN2O(JK) = 1.E-20 * PWKL(4,JK) |
| 176 |
|
✗ |
PCOLCH4(JK) = 1.E-20 * PWKL(6,JK) |
| 177 |
|
✗ |
PCOLO2(JK) = 1.E-20 * PWKL(7,JK) |
| 178 |
|
✗ |
PCOLMOL(JK) = 1.E-20 * PCOLDRY(JK) + PCOLH2O(JK) |
| 179 |
|
|
! colco2(lay) = 0. |
| 180 |
|
|
! colo3(lay) = 0. |
| 181 |
|
|
! coln2o(lay) = 0. |
| 182 |
|
|
! colch4(lay) = 0. |
| 183 |
|
|
! colo2(lay) = 0. |
| 184 |
|
|
! colmol(lay) = 0. |
| 185 |
|
✗ |
IF (PCOLCO2(JK) == 0.) PCOLCO2(JK) = 1.E-32 * PCOLDRY(JK) |
| 186 |
|
✗ |
IF (PCOLN2O(JK) == 0.) PCOLN2O(JK) = 1.E-32 * PCOLDRY(JK) |
| 187 |
|
✗ |
IF (PCOLCH4(JK) == 0.) PCOLCH4(JK) = 1.E-32 * PCOLDRY(JK) |
| 188 |
|
✗ |
IF (PCOLO2(JK) == 0.) PCOLO2(JK) = 1.E-32 * PCOLDRY(JK) |
| 189 |
|
|
! Using E = 1334.2 cm-1. |
| 190 |
|
✗ |
Z_CO2REG = 3.55E-24 * PCOLDRY(JK) |
| 191 |
|
|
PCO2MULT(JK)= (PCOLCO2(JK) - Z_CO2REG) * & |
| 192 |
|
✗ |
& 272.63*EXP(-1919.4/PTAVEL(JK))/(8.7604E-4*PTAVEL(JK)) |
| 193 |
|
✗ |
GO TO 5400 |
| 194 |
|
|
|
| 195 |
|
|
! Above LAYTROP. |
| 196 |
|
|
5300 CONTINUE |
| 197 |
|
|
|
| 198 |
|
|
! Set up factors needed to separately include the water vapor |
| 199 |
|
|
! foreign-continuum in the calculation of absorption coefficient. |
| 200 |
|
|
|
| 201 |
|
✗ |
PFORFAC(JK) = Z_SCALEFAC / (1.+Z_WATER) |
| 202 |
|
✗ |
Z_FACTOR = (PTAVEL(JK)-188.0)/36.0 |
| 203 |
|
✗ |
KINDFOR(JK) = 3 |
| 204 |
|
✗ |
PFORFRAC(JK) = Z_FACTOR - 1.0 |
| 205 |
|
|
|
| 206 |
|
|
! Calculate needed column amounts. |
| 207 |
|
|
|
| 208 |
|
✗ |
PCOLH2O(JK) = 1.E-20 * PWKL(1,JK) |
| 209 |
|
✗ |
PCOLCO2(JK) = 1.E-20 * PWKL(2,JK) |
| 210 |
|
✗ |
PCOLO3(JK) = 1.E-20 * PWKL(3,JK) |
| 211 |
|
✗ |
PCOLN2O(JK) = 1.E-20 * PWKL(4,JK) |
| 212 |
|
✗ |
PCOLCH4(JK) = 1.E-20 * PWKL(6,JK) |
| 213 |
|
✗ |
PCOLO2(JK) = 1.E-20 * PWKL(7,JK) |
| 214 |
|
✗ |
PCOLMOL(JK) = 1.E-20 * PCOLDRY(JK) + PCOLH2O(JK) |
| 215 |
|
✗ |
IF (PCOLCO2(JK) == 0.) PCOLCO2(JK) = 1.E-32 * PCOLDRY(JK) |
| 216 |
|
✗ |
IF (PCOLN2O(JK) == 0.) PCOLN2O(JK) = 1.E-32 * PCOLDRY(JK) |
| 217 |
|
✗ |
IF (PCOLCH4(JK) == 0.) PCOLCH4(JK) = 1.E-32 * PCOLDRY(JK) |
| 218 |
|
✗ |
IF (PCOLO2(JK) == 0.) PCOLO2(JK) = 1.E-32 * PCOLDRY(JK) |
| 219 |
|
✗ |
Z_CO2REG = 3.55E-24 * PCOLDRY(JK) |
| 220 |
|
|
PCO2MULT(JK)= (PCOLCO2(JK) - Z_CO2REG) * & |
| 221 |
|
✗ |
& 272.63*EXP(-1919.4/PTAVEL(JK))/(8.7604E-4*PTAVEL(JK)) |
| 222 |
|
|
|
| 223 |
|
✗ |
PSELFFAC(JK) =0.0_JPRB |
| 224 |
|
✗ |
PSELFFRAC(JK)=0.0_JPRB |
| 225 |
|
✗ |
KINDSELF(JK) = 0 |
| 226 |
|
|
|
| 227 |
|
|
5400 CONTINUE |
| 228 |
|
|
|
| 229 |
|
|
! We have now isolated the layer ln pressure and temperature, |
| 230 |
|
|
! between two reference pressures and two reference temperatures |
| 231 |
|
|
! (for each reference pressure). We multiply the pressure |
| 232 |
|
|
! fraction FP with the appropriate temperature fractions to get |
| 233 |
|
|
! the factors that will be needed for the interpolation that yields |
| 234 |
|
|
! the optical depths (performed in routines TAUGBn for band n). |
| 235 |
|
|
|
| 236 |
|
✗ |
Z_COMPFP = 1. - Z_FP |
| 237 |
|
✗ |
PFAC10(JK) = Z_COMPFP * Z_FT |
| 238 |
|
✗ |
PFAC00(JK) = Z_COMPFP * (1. - Z_FT) |
| 239 |
|
✗ |
PFAC11(JK) = Z_FP * Z_FT1 |
| 240 |
|
✗ |
PFAC01(JK) = Z_FP * (1. - Z_FT1) |
| 241 |
|
|
|
| 242 |
|
|
! IF (NDBUG.LE.3) THEN |
| 243 |
|
|
! print 9000,LAY,LAYTROP,JP(LAY),JT(LAY),JT1(LAY),TAVEL(LAY) & |
| 244 |
|
|
! &,FAC00(LAY),FAC01(LAY),FAC10(LAY),FAC11(LAY) & |
| 245 |
|
|
! &,CO2MULT(LAY),COLMOL(LAY),COLCH4(LAY),COLCO2(LAY),COLH2O(LAY) & |
| 246 |
|
|
! &,COLN2O(LAY),COLO2(LAY),COLO3(LAY),SELFFAC(LAY),SELFFRAC(LAY) & |
| 247 |
|
|
! &,FORFAC(LAY),FORFRAC(LAY),INDSELF(LAY),INDFOR(LAY) |
| 248 |
|
|
9000 format(1x,2I3,3I4,F6.1,4F7.2,12E9.2,2I5) |
| 249 |
|
|
! END IF |
| 250 |
|
|
|
| 251 |
|
|
ENDDO |
| 252 |
|
|
|
| 253 |
|
|
!----------------------------------------------------------------------- |
| 254 |
|
✗ |
IF (LHOOK) CALL DR_HOOK('SRTM_SETCOEF',1,ZHOOK_HANDLE) |
| 255 |
|
✗ |
END SUBROUTINE SRTM_SETCOEF |
| 256 |
|
|
|
| 257 |
|
|
|