| Line |
Branch |
Exec |
Source |
| 1 |
|
✗ |
SUBROUTINE SRTM_TAUMOL28 & |
| 2 |
|
|
& ( KLEV,& |
| 3 |
|
|
& P_FAC00 , P_FAC01 , P_FAC10 , P_FAC11,& |
| 4 |
|
|
& K_JP , K_JT , K_JT1 , P_ONEMINUS,& |
| 5 |
|
|
& P_COLMOL , P_COLO2 , P_COLO3,& |
| 6 |
|
|
& K_LAYTROP,& |
| 7 |
|
|
& P_SFLUXZEN, P_TAUG , P_TAUR & |
| 8 |
|
|
& ) |
| 9 |
|
|
|
| 10 |
|
|
! Written by Eli J. Mlawer, Atmospheric & Environmental Research. |
| 11 |
|
|
|
| 12 |
|
|
! BAND 28: 38000-50000 cm-1 (low - O3,O2; high - O3,O2) |
| 13 |
|
|
|
| 14 |
|
|
! Modifications |
| 15 |
|
|
! M.Hamrud 01-Oct-2003 CY28 Cleaning |
| 16 |
|
|
|
| 17 |
|
|
! JJMorcrette 2003-02-24 adapted to ECMWF environment |
| 18 |
|
|
|
| 19 |
|
|
! PARAMETER (MG=16, MXLAY=203, NBANDS=14) |
| 20 |
|
|
|
| 21 |
|
|
USE PARKIND1 ,ONLY : JPIM ,JPRB |
| 22 |
|
|
USE YOMHOOK ,ONLY : LHOOK, DR_HOOK |
| 23 |
|
|
|
| 24 |
|
|
USE PARSRTM , ONLY : JPLAY, JPG, NG28 |
| 25 |
|
|
USE YOESRTA28, ONLY : ABSA, ABSB & |
| 26 |
|
|
& , SFLUXREFC, RAYL & |
| 27 |
|
|
& , LAYREFFR, STRRAT |
| 28 |
|
|
USE YOESRTWN , ONLY : NSPA, NSPB |
| 29 |
|
|
|
| 30 |
|
|
IMPLICIT NONE |
| 31 |
|
|
|
| 32 |
|
|
!-- Output |
| 33 |
|
|
INTEGER(KIND=JPIM),INTENT(IN) :: KLEV |
| 34 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC00(JPLAY) |
| 35 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC01(JPLAY) |
| 36 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC10(JPLAY) |
| 37 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC11(JPLAY) |
| 38 |
|
|
INTEGER(KIND=JPIM),INTENT(IN) :: K_JP(JPLAY) |
| 39 |
|
|
INTEGER(KIND=JPIM),INTENT(IN) :: K_JT(JPLAY) |
| 40 |
|
|
INTEGER(KIND=JPIM),INTENT(IN) :: K_JT1(JPLAY) |
| 41 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: P_ONEMINUS |
| 42 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: P_COLMOL(JPLAY) |
| 43 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: P_COLO2(JPLAY) |
| 44 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: P_COLO3(JPLAY) |
| 45 |
|
|
INTEGER(KIND=JPIM),INTENT(IN) :: K_LAYTROP |
| 46 |
|
|
|
| 47 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: P_SFLUXZEN(JPG) |
| 48 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAUG(JPLAY,JPG) |
| 49 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAUR(JPLAY,JPG) |
| 50 |
|
|
!- from INTFAC |
| 51 |
|
|
!- from INTIND |
| 52 |
|
|
!- from PRECISE |
| 53 |
|
|
!- from PROFDATA |
| 54 |
|
|
!- from SELF |
| 55 |
|
|
INTEGER(KIND=JPIM) :: IG, IND0, IND1, JS, I_LAY, I_LAYSOLFR, I_NLAYERS |
| 56 |
|
|
|
| 57 |
|
|
REAL(KIND=JPRB) :: Z_FAC000, Z_FAC001, Z_FAC010, Z_FAC011, Z_FAC100, Z_FAC101,& |
| 58 |
|
|
& Z_FAC110, Z_FAC111, Z_FS, Z_SPECCOMB, Z_SPECMULT, Z_SPECPARM, & |
| 59 |
|
|
& Z_TAURAY |
| 60 |
|
|
REAL(KIND=JPRB) :: ZHOOK_HANDLE |
| 61 |
|
|
|
| 62 |
|
✗ |
IF (LHOOK) CALL DR_HOOK('SRTM_TAUMOL28',0,ZHOOK_HANDLE) |
| 63 |
|
✗ |
I_NLAYERS = KLEV |
| 64 |
|
|
|
| 65 |
|
|
! Compute the optical depth by interpolating in ln(pressure), |
| 66 |
|
|
! temperature, and appropriate species. Below LAYTROP, the water |
| 67 |
|
|
! vapor self-continuum is interpolated (in temperature) separately. |
| 68 |
|
|
|
| 69 |
|
✗ |
DO I_LAY = 1, K_LAYTROP |
| 70 |
|
✗ |
Z_SPECCOMB = P_COLO3(I_LAY) + STRRAT*P_COLO2(I_LAY) |
| 71 |
|
✗ |
Z_SPECPARM = P_COLO3(I_LAY)/Z_SPECCOMB |
| 72 |
|
✗ |
IF (Z_SPECPARM >= P_ONEMINUS) Z_SPECPARM = P_ONEMINUS |
| 73 |
|
✗ |
Z_SPECMULT = 8.*(Z_SPECPARM) |
| 74 |
|
✗ |
JS = 1 + INT(Z_SPECMULT) |
| 75 |
|
✗ |
Z_FS = MOD(Z_SPECMULT, 1.0_JPRB ) |
| 76 |
|
|
! Z_FAC000 = (1. - Z_FS) * P_FAC00(I_LAY) |
| 77 |
|
|
! Z_FAC010 = (1. - Z_FS) * P_FAC10(I_LAY) |
| 78 |
|
|
! Z_FAC100 = Z_FS * P_FAC00(I_LAY) |
| 79 |
|
|
! Z_FAC110 = Z_FS * P_FAC10(I_LAY) |
| 80 |
|
|
! Z_FAC001 = (1. - Z_FS) * P_FAC01(I_LAY) |
| 81 |
|
|
! Z_FAC011 = (1. - Z_FS) * P_FAC11(I_LAY) |
| 82 |
|
|
! Z_FAC101 = Z_FS * P_FAC01(I_LAY) |
| 83 |
|
|
! Z_FAC111 = Z_FS * P_FAC11(I_LAY) |
| 84 |
|
✗ |
IND0 = ((K_JP(I_LAY)-1)*5+(K_JT(I_LAY)-1))*NSPA(28) + JS |
| 85 |
|
✗ |
IND1 = (K_JP(I_LAY)*5+(K_JT1(I_LAY)-1))*NSPA(28) + JS |
| 86 |
|
✗ |
Z_TAURAY = P_COLMOL(I_LAY) * RAYL |
| 87 |
|
|
|
| 88 |
|
|
! DO IG = 1, NG(28) |
| 89 |
|
✗ |
DO IG = 1 , NG28 |
| 90 |
|
|
P_TAUG(I_LAY,IG) = Z_SPECCOMB * & |
| 91 |
|
|
! & (Z_FAC000 * ABSA(IND0,IG) + & |
| 92 |
|
|
! & Z_FAC100 * ABSA(IND0+1,IG) + & |
| 93 |
|
|
! & Z_FAC010 * ABSA(IND0+9,IG) + & |
| 94 |
|
|
! & Z_FAC110 * ABSA(IND0+10,IG) + & |
| 95 |
|
|
! & Z_FAC001 * ABSA(IND1,IG) + & |
| 96 |
|
|
! & Z_FAC101 * ABSA(IND1+1,IG) + & |
| 97 |
|
|
! & Z_FAC011 * ABSA(IND1+9,IG) + & |
| 98 |
|
|
! & Z_FAC111 * ABSA(IND1+10,IG)) |
| 99 |
|
|
& (& |
| 100 |
|
|
& (1. - Z_FS) * ( ABSA(IND0,IG) * P_FAC00(I_LAY) + & |
| 101 |
|
|
& ABSA(IND0+9,IG) * P_FAC10(I_LAY) + & |
| 102 |
|
|
& ABSA(IND1,IG) * P_FAC01(I_LAY) + & |
| 103 |
|
|
& ABSA(IND1+9,IG) * P_FAC11(I_LAY) ) + & |
| 104 |
|
|
& Z_FS * ( ABSA(IND0+1,IG) * P_FAC00(I_LAY) + & |
| 105 |
|
|
& ABSA(IND0+10,IG) * P_FAC10(I_LAY) + & |
| 106 |
|
|
& ABSA(IND1+1,IG) * P_FAC01(I_LAY) + & |
| 107 |
|
|
& ABSA(IND1+10,IG) * P_FAC11(I_LAY) ) & |
| 108 |
|
✗ |
& ) |
| 109 |
|
|
! & + TAURAY |
| 110 |
|
|
! SSA(LAY,IG) = TAURAY/TAUG(LAY,IG) |
| 111 |
|
✗ |
P_TAUR(I_LAY,IG) = Z_TAURAY |
| 112 |
|
|
ENDDO |
| 113 |
|
|
ENDDO |
| 114 |
|
|
|
| 115 |
|
|
I_LAYSOLFR = I_NLAYERS |
| 116 |
|
|
|
| 117 |
|
✗ |
DO I_LAY = K_LAYTROP+1, I_NLAYERS |
| 118 |
|
✗ |
IF (K_JP(I_LAY-1) < LAYREFFR .AND. K_JP(I_LAY) >= LAYREFFR) & |
| 119 |
|
|
& I_LAYSOLFR = I_LAY |
| 120 |
|
✗ |
Z_SPECCOMB = P_COLO3(I_LAY) + STRRAT*P_COLO2(I_LAY) |
| 121 |
|
✗ |
Z_SPECPARM = P_COLO3(I_LAY)/Z_SPECCOMB |
| 122 |
|
✗ |
IF (Z_SPECPARM >= P_ONEMINUS) Z_SPECPARM = P_ONEMINUS |
| 123 |
|
✗ |
Z_SPECMULT = 4.*(Z_SPECPARM) |
| 124 |
|
✗ |
JS = 1 + INT(Z_SPECMULT) |
| 125 |
|
✗ |
Z_FS = MOD(Z_SPECMULT, 1.0_JPRB ) |
| 126 |
|
|
! Z_FAC000 = (1. - Z_FS) * P_FAC00(I_LAY) |
| 127 |
|
|
! Z_FAC010 = (1. - Z_FS) * P_FAC10(I_LAY) |
| 128 |
|
|
! Z_FAC100 = Z_FS * P_FAC00(I_LAY) |
| 129 |
|
|
! Z_FAC110 = Z_FS * P_FAC10(I_LAY) |
| 130 |
|
|
! Z_FAC001 = (1. - Z_FS) * P_FAC01(I_LAY) |
| 131 |
|
|
! Z_FAC011 = (1. - Z_FS) * P_FAC11(I_LAY) |
| 132 |
|
|
! Z_FAC101 = Z_FS * P_FAC01(I_LAY) |
| 133 |
|
|
! Z_FAC111 = Z_FS * P_FAC11(I_LAY) |
| 134 |
|
✗ |
IND0 = ((K_JP(I_LAY)-13)*5+(K_JT(I_LAY)-1))*NSPB(28) + JS |
| 135 |
|
✗ |
IND1 = ((K_JP(I_LAY)-12)*5+(K_JT1(I_LAY)-1))*NSPB(28) + JS |
| 136 |
|
✗ |
Z_TAURAY = P_COLMOL(I_LAY) * RAYL |
| 137 |
|
|
|
| 138 |
|
|
! DO IG = 1, NG(28) |
| 139 |
|
✗ |
DO IG = 1 , NG28 |
| 140 |
|
|
P_TAUG(I_LAY,IG) = Z_SPECCOMB * & |
| 141 |
|
|
! & (Z_FAC000 * ABSB(IND0,IG) + & |
| 142 |
|
|
! & Z_FAC100 * ABSB(IND0+1,IG) + & |
| 143 |
|
|
! & Z_FAC010 * ABSB(IND0+5,IG) + & |
| 144 |
|
|
! & Z_FAC110 * ABSB(IND0+6,IG) + & |
| 145 |
|
|
! & Z_FAC001 * ABSB(IND1,IG) + & |
| 146 |
|
|
! & Z_FAC101 * ABSB(IND1+1,IG) + & |
| 147 |
|
|
! & Z_FAC011 * ABSB(IND1+5,IG) + & |
| 148 |
|
|
! & Z_FAC111 * ABSB(IND1+6,IG)) |
| 149 |
|
|
& (& |
| 150 |
|
|
& (1. - Z_FS) * ( ABSB(IND0,IG) * P_FAC00(I_LAY) + & |
| 151 |
|
|
& ABSB(IND0+5,IG) * P_FAC10(I_LAY) + & |
| 152 |
|
|
& ABSB(IND1,IG) * P_FAC01(I_LAY) + & |
| 153 |
|
|
& ABSB(IND1+5,IG) * P_FAC11(I_LAY) ) + & |
| 154 |
|
|
& Z_FS * ( ABSB(IND0+1,IG) * P_FAC00(I_LAY) + & |
| 155 |
|
|
& ABSB(IND0+6,IG) * P_FAC10(I_LAY) + & |
| 156 |
|
|
& ABSB(IND1+1,IG) * P_FAC01(I_LAY) + & |
| 157 |
|
|
& ABSB(IND1+6,IG) * P_FAC11(I_LAY) ) & |
| 158 |
|
✗ |
& ) |
| 159 |
|
|
! & + TAURAY |
| 160 |
|
|
! SSA(LAY,IG) = TAURAY/TAUG(LAY,IG) |
| 161 |
|
✗ |
IF (I_LAY == I_LAYSOLFR) P_SFLUXZEN(IG) = SFLUXREFC(IG,JS) & |
| 162 |
|
✗ |
& + Z_FS * (SFLUXREFC(IG,JS+1) - SFLUXREFC(IG,JS)) |
| 163 |
|
✗ |
P_TAUR(I_LAY,IG) = Z_TAURAY |
| 164 |
|
|
ENDDO |
| 165 |
|
|
ENDDO |
| 166 |
|
|
|
| 167 |
|
|
!----------------------------------------------------------------------- |
| 168 |
|
✗ |
IF (LHOOK) CALL DR_HOOK('SRTM_TAUMOL28',1,ZHOOK_HANDLE) |
| 169 |
|
✗ |
END SUBROUTINE SRTM_TAUMOL28 |
| 170 |
|
|
|
| 171 |
|
|
|