| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
! $Id: thermcell.F90 3102 2017-12-03 20:27:42Z oboucher $ |
| 3 |
|
|
|
| 4 |
|
✗ |
SUBROUTINE calcul_sec(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, pu, & |
| 5 |
|
✗ |
pv, pt, po, zmax, wmax, zw2, lmix & ! s |
| 6 |
|
|
! ,pu_therm,pv_therm |
| 7 |
|
|
, r_aspect, l_mix, w2di, tho) |
| 8 |
|
|
|
| 9 |
|
|
USE dimphy |
| 10 |
|
|
IMPLICIT NONE |
| 11 |
|
|
|
| 12 |
|
|
! ======================================================================= |
| 13 |
|
|
|
| 14 |
|
|
! Calcul du transport verticale dans la couche limite en presence |
| 15 |
|
|
! de "thermiques" explicitement representes |
| 16 |
|
|
|
| 17 |
|
|
! R��criture � partir d'un listing papier � Habas, le 14/02/00 |
| 18 |
|
|
|
| 19 |
|
|
! le thermique est suppos� homog�ne et dissip� par m�lange avec |
| 20 |
|
|
! son environnement. la longueur l_mix contr�le l'efficacit� du |
| 21 |
|
|
! m�lange |
| 22 |
|
|
|
| 23 |
|
|
! Le calcul du transport des diff�rentes esp�ces se fait en prenant |
| 24 |
|
|
! en compte: |
| 25 |
|
|
! 1. un flux de masse montant |
| 26 |
|
|
! 2. un flux de masse descendant |
| 27 |
|
|
! 3. un entrainement |
| 28 |
|
|
! 4. un detrainement |
| 29 |
|
|
|
| 30 |
|
|
! ======================================================================= |
| 31 |
|
|
|
| 32 |
|
|
! ----------------------------------------------------------------------- |
| 33 |
|
|
! declarations: |
| 34 |
|
|
! ------------- |
| 35 |
|
|
|
| 36 |
|
|
include "YOMCST.h" |
| 37 |
|
|
|
| 38 |
|
|
! arguments: |
| 39 |
|
|
! ---------- |
| 40 |
|
|
|
| 41 |
|
|
INTEGER ngrid, nlay, w2di |
| 42 |
|
|
REAL tho |
| 43 |
|
|
REAL ptimestep, l_mix, r_aspect |
| 44 |
|
|
REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
| 45 |
|
|
REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
| 46 |
|
|
REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
| 47 |
|
|
REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
| 48 |
|
|
REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
| 49 |
|
|
REAL pphi(ngrid, nlay) |
| 50 |
|
|
|
| 51 |
|
|
INTEGER idetr |
| 52 |
|
|
SAVE idetr |
| 53 |
|
|
DATA idetr/3/ |
| 54 |
|
|
!$OMP THREADPRIVATE(idetr) |
| 55 |
|
|
! local: |
| 56 |
|
|
! ------ |
| 57 |
|
|
|
| 58 |
|
✗ |
INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
| 59 |
|
|
REAL zsortie1d(klon) |
| 60 |
|
|
! CR: on remplace lmax(klon,klev+1) |
| 61 |
|
✗ |
INTEGER lmax(klon), lmin(klon), lentr(klon) |
| 62 |
|
✗ |
REAL linter(klon) |
| 63 |
|
|
REAL zmix(klon), fracazmix(klon) |
| 64 |
|
|
! RC |
| 65 |
|
✗ |
REAL zmax(klon), zw, zw2(klon, klev+1), ztva(klon, klev) |
| 66 |
|
|
|
| 67 |
|
✗ |
REAL zlev(klon, klev+1), zlay(klon, klev) |
| 68 |
|
✗ |
REAL zh(klon, klev), zdhadj(klon, klev) |
| 69 |
|
✗ |
REAL ztv(klon, klev) |
| 70 |
|
✗ |
REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
| 71 |
|
|
REAL wh(klon, klev+1) |
| 72 |
|
|
REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
| 73 |
|
|
REAL zla(klon, klev+1) |
| 74 |
|
|
REAL zwa(klon, klev+1) |
| 75 |
|
|
REAL zld(klon, klev+1) |
| 76 |
|
|
! real zwd(klon,klev+1) |
| 77 |
|
|
REAL zsortie(klon, klev) |
| 78 |
|
|
REAL zva(klon, klev) |
| 79 |
|
|
REAL zua(klon, klev) |
| 80 |
|
|
REAL zoa(klon, klev) |
| 81 |
|
|
|
| 82 |
|
|
REAL zha(klon, klev) |
| 83 |
|
✗ |
REAL wa_moy(klon, klev+1) |
| 84 |
|
|
REAL fraca(klon, klev+1) |
| 85 |
|
|
REAL fracc(klon, klev+1) |
| 86 |
|
|
REAL zf, zf2 |
| 87 |
|
|
REAL thetath2(klon, klev), wth2(klon, klev) |
| 88 |
|
|
! common/comtherm/thetath2,wth2 |
| 89 |
|
|
|
| 90 |
|
|
REAL count_time |
| 91 |
|
|
! integer isplit,nsplit |
| 92 |
|
|
INTEGER isplit, nsplit, ialt |
| 93 |
|
|
PARAMETER (nsplit=10) |
| 94 |
|
|
DATA isplit/0/ |
| 95 |
|
|
SAVE isplit |
| 96 |
|
|
!$OMP THREADPRIVATE(isplit) |
| 97 |
|
|
|
| 98 |
|
|
LOGICAL sorties |
| 99 |
|
✗ |
REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
| 100 |
|
✗ |
REAL zpspsk(klon, klev) |
| 101 |
|
|
|
| 102 |
|
|
! real wmax(klon,klev),wmaxa(klon) |
| 103 |
|
✗ |
REAL wmax(klon), wmaxa(klon) |
| 104 |
|
✗ |
REAL wa(klon, klev, klev+1) |
| 105 |
|
|
REAL wd(klon, klev+1) |
| 106 |
|
|
REAL larg_part(klon, klev, klev+1) |
| 107 |
|
|
REAL fracd(klon, klev+1) |
| 108 |
|
|
REAL xxx(klon, klev+1) |
| 109 |
|
✗ |
REAL larg_cons(klon, klev+1) |
| 110 |
|
✗ |
REAL larg_detr(klon, klev+1) |
| 111 |
|
✗ |
REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
| 112 |
|
|
REAL pu_therm(klon, klev), pv_therm(klon, klev) |
| 113 |
|
|
REAL fm(klon, klev+1), entr(klon, klev) |
| 114 |
|
✗ |
REAL fmc(klon, klev+1) |
| 115 |
|
|
|
| 116 |
|
|
! CR:nouvelles variables |
| 117 |
|
✗ |
REAL f_star(klon, klev+1), entr_star(klon, klev) |
| 118 |
|
✗ |
REAL entr_star_tot(klon), entr_star2(klon) |
| 119 |
|
✗ |
REAL zalim(klon) |
| 120 |
|
✗ |
INTEGER lalim(klon) |
| 121 |
|
✗ |
REAL norme(klon) |
| 122 |
|
|
REAL f(klon), f0(klon) |
| 123 |
|
✗ |
REAL zlevinter(klon) |
| 124 |
|
|
LOGICAL therm |
| 125 |
|
|
LOGICAL first |
| 126 |
|
|
DATA first/.FALSE./ |
| 127 |
|
|
SAVE first |
| 128 |
|
|
!$OMP THREADPRIVATE(first) |
| 129 |
|
|
! RC |
| 130 |
|
|
|
| 131 |
|
|
CHARACTER *2 str2 |
| 132 |
|
|
CHARACTER *10 str10 |
| 133 |
|
|
|
| 134 |
|
|
CHARACTER (LEN=20) :: modname = 'calcul_sec' |
| 135 |
|
|
CHARACTER (LEN=80) :: abort_message |
| 136 |
|
|
|
| 137 |
|
|
|
| 138 |
|
|
! LOGICAL vtest(klon),down |
| 139 |
|
|
|
| 140 |
|
|
EXTERNAL scopy |
| 141 |
|
|
|
| 142 |
|
|
INTEGER ncorrec |
| 143 |
|
|
SAVE ncorrec |
| 144 |
|
|
DATA ncorrec/0/ |
| 145 |
|
|
!$OMP THREADPRIVATE(ncorrec) |
| 146 |
|
|
|
| 147 |
|
|
|
| 148 |
|
|
! ----------------------------------------------------------------------- |
| 149 |
|
|
! initialisation: |
| 150 |
|
|
! --------------- |
| 151 |
|
|
|
| 152 |
|
|
sorties = .TRUE. |
| 153 |
|
✗ |
IF (ngrid/=klon) THEN |
| 154 |
|
✗ |
PRINT * |
| 155 |
|
✗ |
PRINT *, 'STOP dans convadj' |
| 156 |
|
✗ |
PRINT *, 'ngrid =', ngrid |
| 157 |
|
✗ |
PRINT *, 'klon =', klon |
| 158 |
|
|
END IF |
| 159 |
|
|
|
| 160 |
|
|
! ----------------------------------------------------------------------- |
| 161 |
|
|
! incrementation eventuelle de tendances precedentes: |
| 162 |
|
|
! --------------------------------------------------- |
| 163 |
|
|
|
| 164 |
|
|
! print*,'0 OK convect8' |
| 165 |
|
|
|
| 166 |
|
✗ |
DO l = 1, nlay |
| 167 |
|
✗ |
DO ig = 1, ngrid |
| 168 |
|
✗ |
zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
| 169 |
|
✗ |
zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
| 170 |
|
✗ |
zu(ig, l) = pu(ig, l) |
| 171 |
|
✗ |
zv(ig, l) = pv(ig, l) |
| 172 |
|
✗ |
zo(ig, l) = po(ig, l) |
| 173 |
|
✗ |
ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
| 174 |
|
|
END DO |
| 175 |
|
|
END DO |
| 176 |
|
|
|
| 177 |
|
|
! print*,'1 OK convect8' |
| 178 |
|
|
! -------------------- |
| 179 |
|
|
|
| 180 |
|
|
|
| 181 |
|
|
! + + + + + + + + + + + |
| 182 |
|
|
|
| 183 |
|
|
|
| 184 |
|
|
! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
| 185 |
|
|
! wh,wt,wo ... |
| 186 |
|
|
|
| 187 |
|
|
! + + + + + + + + + + + zh,zu,zv,zo,rho |
| 188 |
|
|
|
| 189 |
|
|
|
| 190 |
|
|
! -------------------- zlev(1) |
| 191 |
|
|
! \\\\\\\\\\\\\\\\\\\ |
| 192 |
|
|
|
| 193 |
|
|
|
| 194 |
|
|
! ----------------------------------------------------------------------- |
| 195 |
|
|
! Calcul des altitudes des couches |
| 196 |
|
|
! ----------------------------------------------------------------------- |
| 197 |
|
|
|
| 198 |
|
✗ |
DO l = 2, nlay |
| 199 |
|
✗ |
DO ig = 1, ngrid |
| 200 |
|
✗ |
zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
| 201 |
|
|
END DO |
| 202 |
|
|
END DO |
| 203 |
|
✗ |
DO ig = 1, ngrid |
| 204 |
|
✗ |
zlev(ig, 1) = 0. |
| 205 |
|
✗ |
zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
| 206 |
|
|
END DO |
| 207 |
|
✗ |
DO l = 1, nlay |
| 208 |
|
✗ |
DO ig = 1, ngrid |
| 209 |
|
✗ |
zlay(ig, l) = pphi(ig, l)/rg |
| 210 |
|
|
END DO |
| 211 |
|
|
END DO |
| 212 |
|
|
|
| 213 |
|
|
! print*,'2 OK convect8' |
| 214 |
|
|
! ----------------------------------------------------------------------- |
| 215 |
|
|
! Calcul des densites |
| 216 |
|
|
! ----------------------------------------------------------------------- |
| 217 |
|
|
|
| 218 |
|
✗ |
DO l = 1, nlay |
| 219 |
|
✗ |
DO ig = 1, ngrid |
| 220 |
|
✗ |
rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
| 221 |
|
|
END DO |
| 222 |
|
|
END DO |
| 223 |
|
|
|
| 224 |
|
✗ |
DO l = 2, nlay |
| 225 |
|
✗ |
DO ig = 1, ngrid |
| 226 |
|
✗ |
rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
| 227 |
|
|
END DO |
| 228 |
|
|
END DO |
| 229 |
|
|
|
| 230 |
|
✗ |
DO k = 1, nlay |
| 231 |
|
✗ |
DO l = 1, nlay + 1 |
| 232 |
|
✗ |
DO ig = 1, ngrid |
| 233 |
|
✗ |
wa(ig, k, l) = 0. |
| 234 |
|
|
END DO |
| 235 |
|
|
END DO |
| 236 |
|
|
END DO |
| 237 |
|
|
|
| 238 |
|
|
! print*,'3 OK convect8' |
| 239 |
|
|
! ------------------------------------------------------------------ |
| 240 |
|
|
! Calcul de w2, quarre de w a partir de la cape |
| 241 |
|
|
! a partir de w2, on calcule wa, vitesse de l'ascendance |
| 242 |
|
|
|
| 243 |
|
|
! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
| 244 |
|
|
! w2 est stoke dans wa |
| 245 |
|
|
|
| 246 |
|
|
! ATTENTION: dans convect8, on n'utilise le calcule des wa |
| 247 |
|
|
! independants par couches que pour calculer l'entrainement |
| 248 |
|
|
! a la base et la hauteur max de l'ascendance. |
| 249 |
|
|
|
| 250 |
|
|
! Indicages: |
| 251 |
|
|
! l'ascendance provenant du niveau k traverse l'interface l avec |
| 252 |
|
|
! une vitesse wa(k,l). |
| 253 |
|
|
|
| 254 |
|
|
! -------------------- |
| 255 |
|
|
|
| 256 |
|
|
! + + + + + + + + + + |
| 257 |
|
|
|
| 258 |
|
|
! wa(k,l) ---- -------------------- l |
| 259 |
|
|
! / ! /||\ + + + + + + + + + + |
| 260 |
|
|
! || |
| 261 |
|
|
! || -------------------- |
| 262 |
|
|
! || |
| 263 |
|
|
! || + + + + + + + + + + |
| 264 |
|
|
! || |
| 265 |
|
|
! || -------------------- |
| 266 |
|
|
! ||__ |
| 267 |
|
|
! |___ + + + + + + + + + + k |
| 268 |
|
|
|
| 269 |
|
|
! -------------------- |
| 270 |
|
|
|
| 271 |
|
|
|
| 272 |
|
|
|
| 273 |
|
|
! ------------------------------------------------------------------ |
| 274 |
|
|
|
| 275 |
|
|
! CR: ponderation entrainement des couches instables |
| 276 |
|
|
! def des entr_star tels que entr=f*entr_star |
| 277 |
|
✗ |
DO l = 1, klev |
| 278 |
|
✗ |
DO ig = 1, ngrid |
| 279 |
|
✗ |
entr_star(ig, l) = 0. |
| 280 |
|
|
END DO |
| 281 |
|
|
END DO |
| 282 |
|
|
! determination de la longueur de la couche d entrainement |
| 283 |
|
✗ |
DO ig = 1, ngrid |
| 284 |
|
✗ |
lentr(ig) = 1 |
| 285 |
|
|
END DO |
| 286 |
|
|
|
| 287 |
|
|
! on ne considere que les premieres couches instables |
| 288 |
|
|
therm = .FALSE. |
| 289 |
|
✗ |
DO k = nlay - 2, 1, -1 |
| 290 |
|
✗ |
DO ig = 1, ngrid |
| 291 |
|
✗ |
IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
| 292 |
|
✗ |
lentr(ig) = k + 1 |
| 293 |
|
|
therm = .TRUE. |
| 294 |
|
|
END IF |
| 295 |
|
|
END DO |
| 296 |
|
|
END DO |
| 297 |
|
|
! limitation de la valeur du lentr |
| 298 |
|
|
! do ig=1,ngrid |
| 299 |
|
|
! lentr(ig)=min(5,lentr(ig)) |
| 300 |
|
|
! enddo |
| 301 |
|
|
! determination du lmin: couche d ou provient le thermique |
| 302 |
|
✗ |
DO ig = 1, ngrid |
| 303 |
|
✗ |
lmin(ig) = 1 |
| 304 |
|
|
END DO |
| 305 |
|
✗ |
DO ig = 1, ngrid |
| 306 |
|
✗ |
DO l = nlay, 2, -1 |
| 307 |
|
✗ |
IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
| 308 |
|
✗ |
lmin(ig) = l - 1 |
| 309 |
|
|
END IF |
| 310 |
|
|
END DO |
| 311 |
|
|
END DO |
| 312 |
|
|
! initialisations |
| 313 |
|
✗ |
DO ig = 1, ngrid |
| 314 |
|
✗ |
zalim(ig) = 0. |
| 315 |
|
✗ |
norme(ig) = 0. |
| 316 |
|
✗ |
lalim(ig) = 1 |
| 317 |
|
|
END DO |
| 318 |
|
✗ |
DO k = 1, klev - 1 |
| 319 |
|
✗ |
DO ig = 1, ngrid |
| 320 |
|
|
zalim(ig) = zalim(ig) + zlev(ig, k)*max(0., (ztv(ig,k)-ztv(ig, & |
| 321 |
|
✗ |
k+1))/(zlev(ig,k+1)-zlev(ig,k))) |
| 322 |
|
|
! s *(zlev(ig,k+1)-zlev(ig,k)) |
| 323 |
|
|
norme(ig) = norme(ig) + max(0., (ztv(ig,k)-ztv(ig,k+1))/(zlev(ig, & |
| 324 |
|
✗ |
k+1)-zlev(ig,k))) |
| 325 |
|
|
! s *(zlev(ig,k+1)-zlev(ig,k)) |
| 326 |
|
|
END DO |
| 327 |
|
|
END DO |
| 328 |
|
✗ |
DO ig = 1, ngrid |
| 329 |
|
✗ |
IF (norme(ig)>1.E-10) THEN |
| 330 |
|
✗ |
zalim(ig) = max(10.*zalim(ig)/norme(ig), zlev(ig,2)) |
| 331 |
|
|
! zalim(ig)=min(zalim(ig),zlev(ig,lentr(ig))) |
| 332 |
|
|
END IF |
| 333 |
|
|
END DO |
| 334 |
|
|
! d�termination du lalim correspondant |
| 335 |
|
✗ |
DO k = 1, klev - 1 |
| 336 |
|
✗ |
DO ig = 1, ngrid |
| 337 |
|
✗ |
IF ((zalim(ig)>zlev(ig,k)) .AND. (zalim(ig)<=zlev(ig,k+1))) THEN |
| 338 |
|
✗ |
lalim(ig) = k |
| 339 |
|
|
END IF |
| 340 |
|
|
END DO |
| 341 |
|
|
END DO |
| 342 |
|
|
|
| 343 |
|
|
! definition de l'entrainement des couches |
| 344 |
|
✗ |
DO l = 1, klev - 1 |
| 345 |
|
✗ |
DO ig = 1, ngrid |
| 346 |
|
✗ |
IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<lentr(ig)) THEN |
| 347 |
|
|
entr_star(ig, l) = max((ztv(ig,l)-ztv(ig,l+1)), 0.) & ! s |
| 348 |
|
|
! *(zlev(ig,l+1)-zlev(ig,l)) |
| 349 |
|
✗ |
*sqrt(zlev(ig,l+1)) |
| 350 |
|
|
! autre def |
| 351 |
|
|
! entr_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
| 352 |
|
|
! s /zlev(ig,lentr(ig)+2)))**(3./2.) |
| 353 |
|
|
END IF |
| 354 |
|
|
END DO |
| 355 |
|
|
END DO |
| 356 |
|
|
! nouveau test |
| 357 |
|
|
! if (therm) then |
| 358 |
|
|
DO l = 1, klev - 1 |
| 359 |
|
|
DO ig = 1, ngrid |
| 360 |
|
|
IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lalim(ig) .AND. & |
| 361 |
|
|
zalim(ig)>1.E-10) THEN |
| 362 |
|
|
! if (l.le.lentr(ig)) then |
| 363 |
|
|
! entr_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
| 364 |
|
|
! s /zalim(ig)))**(3./2.) |
| 365 |
|
|
! write(10,*)zlev(ig,l),entr_star(ig,l) |
| 366 |
|
|
END IF |
| 367 |
|
|
END DO |
| 368 |
|
|
END DO |
| 369 |
|
|
! endif |
| 370 |
|
|
! pas de thermique si couche 1 stable |
| 371 |
|
✗ |
DO ig = 1, ngrid |
| 372 |
|
✗ |
IF (lmin(ig)>5) THEN |
| 373 |
|
✗ |
DO l = 1, klev |
| 374 |
|
✗ |
entr_star(ig, l) = 0. |
| 375 |
|
|
END DO |
| 376 |
|
|
END IF |
| 377 |
|
|
END DO |
| 378 |
|
|
! calcul de l entrainement total |
| 379 |
|
✗ |
DO ig = 1, ngrid |
| 380 |
|
✗ |
entr_star_tot(ig) = 0. |
| 381 |
|
|
END DO |
| 382 |
|
✗ |
DO ig = 1, ngrid |
| 383 |
|
✗ |
DO k = 1, klev |
| 384 |
|
✗ |
entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
| 385 |
|
|
END DO |
| 386 |
|
|
END DO |
| 387 |
|
|
! Calcul entrainement normalise |
| 388 |
|
✗ |
DO ig = 1, ngrid |
| 389 |
|
✗ |
IF (entr_star_tot(ig)>1.E-10) THEN |
| 390 |
|
|
! do l=1,lentr(ig) |
| 391 |
|
✗ |
DO l = 1, klev |
| 392 |
|
|
! def possibles pour entr_star: zdthetadz, dthetadz, zdtheta |
| 393 |
|
✗ |
entr_star(ig, l) = entr_star(ig, l)/entr_star_tot(ig) |
| 394 |
|
|
END DO |
| 395 |
|
|
END IF |
| 396 |
|
|
END DO |
| 397 |
|
|
|
| 398 |
|
|
! print*,'fin calcul entr_star' |
| 399 |
|
✗ |
DO k = 1, klev |
| 400 |
|
✗ |
DO ig = 1, ngrid |
| 401 |
|
✗ |
ztva(ig, k) = ztv(ig, k) |
| 402 |
|
|
END DO |
| 403 |
|
|
END DO |
| 404 |
|
|
! RC |
| 405 |
|
|
! print*,'7 OK convect8' |
| 406 |
|
✗ |
DO k = 1, klev + 1 |
| 407 |
|
✗ |
DO ig = 1, ngrid |
| 408 |
|
✗ |
zw2(ig, k) = 0. |
| 409 |
|
✗ |
fmc(ig, k) = 0. |
| 410 |
|
|
! CR |
| 411 |
|
✗ |
f_star(ig, k) = 0. |
| 412 |
|
|
! RC |
| 413 |
|
✗ |
larg_cons(ig, k) = 0. |
| 414 |
|
✗ |
larg_detr(ig, k) = 0. |
| 415 |
|
✗ |
wa_moy(ig, k) = 0. |
| 416 |
|
|
END DO |
| 417 |
|
|
END DO |
| 418 |
|
|
|
| 419 |
|
|
! print*,'8 OK convect8' |
| 420 |
|
✗ |
DO ig = 1, ngrid |
| 421 |
|
✗ |
linter(ig) = 1. |
| 422 |
|
✗ |
lmaxa(ig) = 1 |
| 423 |
|
✗ |
lmix(ig) = 1 |
| 424 |
|
✗ |
wmaxa(ig) = 0. |
| 425 |
|
|
END DO |
| 426 |
|
|
|
| 427 |
|
|
! CR: |
| 428 |
|
✗ |
DO l = 1, nlay - 2 |
| 429 |
|
✗ |
DO ig = 1, ngrid |
| 430 |
|
✗ |
IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
| 431 |
|
|
zw2(ig,l)<1E-10) THEN |
| 432 |
|
✗ |
f_star(ig, l+1) = entr_star(ig, l) |
| 433 |
|
|
! test:calcul de dteta |
| 434 |
|
|
zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
| 435 |
|
✗ |
(zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
| 436 |
|
✗ |
larg_detr(ig, l) = 0. |
| 437 |
|
✗ |
ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
| 438 |
|
|
l)>1.E-10)) THEN |
| 439 |
|
✗ |
f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
| 440 |
|
|
ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
| 441 |
|
✗ |
f_star(ig, l+1) |
| 442 |
|
|
zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
| 443 |
|
✗ |
2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 444 |
|
|
END IF |
| 445 |
|
|
! determination de zmax continu par interpolation lineaire |
| 446 |
|
✗ |
IF (zw2(ig,l+1)<0.) THEN |
| 447 |
|
|
! test |
| 448 |
|
|
IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
| 449 |
|
|
! print*,'pb linter' |
| 450 |
|
|
END IF |
| 451 |
|
|
linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
| 452 |
|
✗ |
ig,l)) |
| 453 |
|
✗ |
zw2(ig, l+1) = 0. |
| 454 |
|
✗ |
lmaxa(ig) = l |
| 455 |
|
|
ELSE |
| 456 |
|
|
IF (zw2(ig,l+1)<0.) THEN |
| 457 |
|
|
! print*,'pb1 zw2<0' |
| 458 |
|
|
END IF |
| 459 |
|
✗ |
wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
| 460 |
|
|
END IF |
| 461 |
|
✗ |
IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
| 462 |
|
|
! lmix est le niveau de la couche ou w (wa_moy) est maximum |
| 463 |
|
✗ |
lmix(ig) = l + 1 |
| 464 |
|
✗ |
wmaxa(ig) = wa_moy(ig, l+1) |
| 465 |
|
|
END IF |
| 466 |
|
|
END DO |
| 467 |
|
|
END DO |
| 468 |
|
|
! print*,'fin calcul zw2' |
| 469 |
|
|
|
| 470 |
|
|
! Calcul de la couche correspondant a la hauteur du thermique |
| 471 |
|
✗ |
DO ig = 1, ngrid |
| 472 |
|
✗ |
lmax(ig) = lentr(ig) |
| 473 |
|
|
! lmax(ig)=lalim(ig) |
| 474 |
|
|
END DO |
| 475 |
|
✗ |
DO ig = 1, ngrid |
| 476 |
|
✗ |
DO l = nlay, lentr(ig) + 1, -1 |
| 477 |
|
|
! do l=nlay,lalim(ig)+1,-1 |
| 478 |
|
✗ |
IF (zw2(ig,l)<=1.E-10) THEN |
| 479 |
|
✗ |
lmax(ig) = l - 1 |
| 480 |
|
|
END IF |
| 481 |
|
|
END DO |
| 482 |
|
|
END DO |
| 483 |
|
|
! pas de thermique si couche 1 stable |
| 484 |
|
✗ |
DO ig = 1, ngrid |
| 485 |
|
✗ |
IF (lmin(ig)>5) THEN |
| 486 |
|
✗ |
lmax(ig) = 1 |
| 487 |
|
✗ |
lmin(ig) = 1 |
| 488 |
|
✗ |
lentr(ig) = 1 |
| 489 |
|
✗ |
lalim(ig) = 1 |
| 490 |
|
|
END IF |
| 491 |
|
|
END DO |
| 492 |
|
|
|
| 493 |
|
|
! Determination de zw2 max |
| 494 |
|
✗ |
DO ig = 1, ngrid |
| 495 |
|
✗ |
wmax(ig) = 0. |
| 496 |
|
|
END DO |
| 497 |
|
|
|
| 498 |
|
✗ |
DO l = 1, nlay |
| 499 |
|
✗ |
DO ig = 1, ngrid |
| 500 |
|
✗ |
IF (l<=lmax(ig)) THEN |
| 501 |
|
|
IF (zw2(ig,l)<0.) THEN |
| 502 |
|
|
! print*,'pb2 zw2<0' |
| 503 |
|
|
END IF |
| 504 |
|
✗ |
zw2(ig, l) = sqrt(zw2(ig,l)) |
| 505 |
|
✗ |
wmax(ig) = max(wmax(ig), zw2(ig,l)) |
| 506 |
|
|
ELSE |
| 507 |
|
✗ |
zw2(ig, l) = 0. |
| 508 |
|
|
END IF |
| 509 |
|
|
END DO |
| 510 |
|
|
END DO |
| 511 |
|
|
|
| 512 |
|
|
! Longueur caracteristique correspondant a la hauteur des thermiques. |
| 513 |
|
✗ |
DO ig = 1, ngrid |
| 514 |
|
✗ |
zmax(ig) = 0. |
| 515 |
|
✗ |
zlevinter(ig) = zlev(ig, 1) |
| 516 |
|
|
END DO |
| 517 |
|
✗ |
DO ig = 1, ngrid |
| 518 |
|
|
! calcul de zlevinter |
| 519 |
|
|
zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
| 520 |
|
✗ |
zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
| 521 |
|
✗ |
zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
| 522 |
|
|
END DO |
| 523 |
|
|
DO ig = 1, ngrid |
| 524 |
|
|
! write(8,*)zmax(ig),lmax(ig),lentr(ig),lmin(ig) |
| 525 |
|
|
END DO |
| 526 |
|
|
! on stope apr�s les calculs de zmax et wmax |
| 527 |
|
|
RETURN |
| 528 |
|
|
|
| 529 |
|
|
! print*,'avant fermeture' |
| 530 |
|
|
! Fermeture,determination de f |
| 531 |
|
|
! Attention! entrainement normalis� ou pas? |
| 532 |
|
|
DO ig = 1, ngrid |
| 533 |
|
|
entr_star2(ig) = 0. |
| 534 |
|
|
END DO |
| 535 |
|
|
DO ig = 1, ngrid |
| 536 |
|
|
IF (entr_star_tot(ig)<1.E-10) THEN |
| 537 |
|
|
f(ig) = 0. |
| 538 |
|
|
ELSE |
| 539 |
|
|
DO k = lmin(ig), lentr(ig) |
| 540 |
|
|
! do k=lmin(ig),lalim(ig) |
| 541 |
|
|
entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
| 542 |
|
|
zlev(ig,k+1)-zlev(ig,k))) |
| 543 |
|
|
END DO |
| 544 |
|
|
! Nouvelle fermeture |
| 545 |
|
|
f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig)) |
| 546 |
|
|
! s *entr_star_tot(ig) |
| 547 |
|
|
! test |
| 548 |
|
|
! if (first) then |
| 549 |
|
|
f(ig) = f(ig) + (f0(ig)-f(ig))*exp(-ptimestep/zmax(ig)*wmax(ig)) |
| 550 |
|
|
! endif |
| 551 |
|
|
END IF |
| 552 |
|
|
f0(ig) = f(ig) |
| 553 |
|
|
! first=.true. |
| 554 |
|
|
END DO |
| 555 |
|
|
! print*,'apres fermeture' |
| 556 |
|
|
! on stoppe apr�s la fermeture |
| 557 |
|
|
RETURN |
| 558 |
|
|
! Calcul de l'entrainement |
| 559 |
|
|
DO k = 1, klev |
| 560 |
|
|
DO ig = 1, ngrid |
| 561 |
|
|
entr(ig, k) = f(ig)*entr_star(ig, k) |
| 562 |
|
|
END DO |
| 563 |
|
|
END DO |
| 564 |
|
|
! on stoppe apr�s le calcul de entr |
| 565 |
|
|
! RETURN |
| 566 |
|
|
! CR:test pour entrainer moins que la masse |
| 567 |
|
|
! do ig=1,ngrid |
| 568 |
|
|
! do l=1,lentr(ig) |
| 569 |
|
|
! if ((entr(ig,l)*ptimestep).gt.(0.9*masse(ig,l))) then |
| 570 |
|
|
! entr(ig,l+1)=entr(ig,l+1)+entr(ig,l) |
| 571 |
|
|
! s -0.9*masse(ig,l)/ptimestep |
| 572 |
|
|
! entr(ig,l)=0.9*masse(ig,l)/ptimestep |
| 573 |
|
|
! endif |
| 574 |
|
|
! enddo |
| 575 |
|
|
! enddo |
| 576 |
|
|
! CR: fin test |
| 577 |
|
|
! Calcul des flux |
| 578 |
|
|
DO ig = 1, ngrid |
| 579 |
|
|
DO l = 1, lmax(ig) - 1 |
| 580 |
|
|
fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
| 581 |
|
|
END DO |
| 582 |
|
|
END DO |
| 583 |
|
|
|
| 584 |
|
|
! RC |
| 585 |
|
|
|
| 586 |
|
|
|
| 587 |
|
|
! print*,'9 OK convect8' |
| 588 |
|
|
! print*,'WA1 ',wa_moy |
| 589 |
|
|
|
| 590 |
|
|
! determination de l'indice du debut de la mixed layer ou w decroit |
| 591 |
|
|
|
| 592 |
|
|
! calcul de la largeur de chaque ascendance dans le cas conservatif. |
| 593 |
|
|
! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
| 594 |
|
|
! d'une couche est �gale � la hauteur de la couche alimentante. |
| 595 |
|
|
! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
| 596 |
|
|
! de la vitesse d'entrainement horizontal dans la couche alimentante. |
| 597 |
|
|
|
| 598 |
|
|
DO l = 2, nlay |
| 599 |
|
|
DO ig = 1, ngrid |
| 600 |
|
|
IF (l<=lmaxa(ig)) THEN |
| 601 |
|
|
zw = max(wa_moy(ig,l), 1.E-10) |
| 602 |
|
|
larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
| 603 |
|
|
END IF |
| 604 |
|
|
END DO |
| 605 |
|
|
END DO |
| 606 |
|
|
|
| 607 |
|
|
DO l = 2, nlay |
| 608 |
|
|
DO ig = 1, ngrid |
| 609 |
|
|
IF (l<=lmaxa(ig)) THEN |
| 610 |
|
|
! if (idetr.eq.0) then |
| 611 |
|
|
! cette option est finalement en dur. |
| 612 |
|
|
IF ((l_mix*zlev(ig,l))<0.) THEN |
| 613 |
|
|
! print*,'pb l_mix*zlev<0' |
| 614 |
|
|
END IF |
| 615 |
|
|
! CR: test: nouvelle def de lambda |
| 616 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 617 |
|
|
IF (zw2(ig,l)>1.E-10) THEN |
| 618 |
|
|
larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
| 619 |
|
|
ELSE |
| 620 |
|
|
larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
| 621 |
|
|
END IF |
| 622 |
|
|
! RC |
| 623 |
|
|
! else if (idetr.eq.1) then |
| 624 |
|
|
! larg_detr(ig,l)=larg_cons(ig,l) |
| 625 |
|
|
! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
| 626 |
|
|
! else if (idetr.eq.2) then |
| 627 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 628 |
|
|
! s *sqrt(wa_moy(ig,l)) |
| 629 |
|
|
! else if (idetr.eq.4) then |
| 630 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 631 |
|
|
! s *wa_moy(ig,l) |
| 632 |
|
|
! endif |
| 633 |
|
|
END IF |
| 634 |
|
|
END DO |
| 635 |
|
|
END DO |
| 636 |
|
|
|
| 637 |
|
|
! print*,'10 OK convect8' |
| 638 |
|
|
! print*,'WA2 ',wa_moy |
| 639 |
|
|
! calcul de la fraction de la maille concern�e par l'ascendance en tenant |
| 640 |
|
|
! compte de l'epluchage du thermique. |
| 641 |
|
|
|
| 642 |
|
|
! CR def de zmix continu (profil parabolique des vitesses) |
| 643 |
|
|
DO ig = 1, ngrid |
| 644 |
|
|
IF (lmix(ig)>1.) THEN |
| 645 |
|
|
! test |
| 646 |
|
|
IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
| 647 |
|
|
(zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
| 648 |
|
|
zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
| 649 |
|
|
(zlev(ig,lmix(ig)))))>1E-10) THEN |
| 650 |
|
|
|
| 651 |
|
|
zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
| 652 |
|
|
)**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
| 653 |
|
|
lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
| 654 |
|
|
(2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
| 655 |
|
|
(zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
| 656 |
|
|
zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
| 657 |
|
|
ELSE |
| 658 |
|
|
zmix(ig) = zlev(ig, lmix(ig)) |
| 659 |
|
|
! print*,'pb zmix' |
| 660 |
|
|
END IF |
| 661 |
|
|
ELSE |
| 662 |
|
|
zmix(ig) = 0. |
| 663 |
|
|
END IF |
| 664 |
|
|
! test |
| 665 |
|
|
IF ((zmax(ig)-zmix(ig))<0.) THEN |
| 666 |
|
|
zmix(ig) = 0.99*zmax(ig) |
| 667 |
|
|
! print*,'pb zmix>zmax' |
| 668 |
|
|
END IF |
| 669 |
|
|
END DO |
| 670 |
|
|
|
| 671 |
|
|
! calcul du nouveau lmix correspondant |
| 672 |
|
|
DO ig = 1, ngrid |
| 673 |
|
|
DO l = 1, klev |
| 674 |
|
|
IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
| 675 |
|
|
lmix(ig) = l |
| 676 |
|
|
END IF |
| 677 |
|
|
END DO |
| 678 |
|
|
END DO |
| 679 |
|
|
|
| 680 |
|
|
DO l = 2, nlay |
| 681 |
|
|
DO ig = 1, ngrid |
| 682 |
|
|
IF (larg_cons(ig,l)>1.) THEN |
| 683 |
|
|
! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
| 684 |
|
|
fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
| 685 |
|
|
! test |
| 686 |
|
|
fraca(ig, l) = max(fraca(ig,l), 0.) |
| 687 |
|
|
fraca(ig, l) = min(fraca(ig,l), 0.5) |
| 688 |
|
|
fracd(ig, l) = 1. - fraca(ig, l) |
| 689 |
|
|
fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
| 690 |
|
|
ELSE |
| 691 |
|
|
! wa_moy(ig,l)=0. |
| 692 |
|
|
fraca(ig, l) = 0. |
| 693 |
|
|
fracc(ig, l) = 0. |
| 694 |
|
|
fracd(ig, l) = 1. |
| 695 |
|
|
END IF |
| 696 |
|
|
END DO |
| 697 |
|
|
END DO |
| 698 |
|
|
! CR: calcul de fracazmix |
| 699 |
|
|
DO ig = 1, ngrid |
| 700 |
|
|
fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
| 701 |
|
|
(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
| 702 |
|
|
fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
| 703 |
|
|
,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
| 704 |
|
|
END DO |
| 705 |
|
|
|
| 706 |
|
|
DO l = 2, nlay |
| 707 |
|
|
DO ig = 1, ngrid |
| 708 |
|
|
IF (larg_cons(ig,l)>1.) THEN |
| 709 |
|
|
IF (l>lmix(ig)) THEN |
| 710 |
|
|
! test |
| 711 |
|
|
IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
| 712 |
|
|
! print*,'pb xxx' |
| 713 |
|
|
xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
| 714 |
|
|
ELSE |
| 715 |
|
|
xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
| 716 |
|
|
END IF |
| 717 |
|
|
IF (idetr==0) THEN |
| 718 |
|
|
fraca(ig, l) = fracazmix(ig) |
| 719 |
|
|
ELSE IF (idetr==1) THEN |
| 720 |
|
|
fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
| 721 |
|
|
ELSE IF (idetr==2) THEN |
| 722 |
|
|
fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
| 723 |
|
|
ELSE |
| 724 |
|
|
fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
| 725 |
|
|
END IF |
| 726 |
|
|
! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
| 727 |
|
|
fraca(ig, l) = max(fraca(ig,l), 0.) |
| 728 |
|
|
fraca(ig, l) = min(fraca(ig,l), 0.5) |
| 729 |
|
|
fracd(ig, l) = 1. - fraca(ig, l) |
| 730 |
|
|
fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
| 731 |
|
|
END IF |
| 732 |
|
|
END IF |
| 733 |
|
|
END DO |
| 734 |
|
|
END DO |
| 735 |
|
|
|
| 736 |
|
|
! print*,'fin calcul fraca' |
| 737 |
|
|
! print*,'11 OK convect8' |
| 738 |
|
|
! print*,'Ea3 ',wa_moy |
| 739 |
|
|
! ------------------------------------------------------------------ |
| 740 |
|
|
! Calcul de fracd, wd |
| 741 |
|
|
! somme wa - wd = 0 |
| 742 |
|
|
! ------------------------------------------------------------------ |
| 743 |
|
|
|
| 744 |
|
|
|
| 745 |
|
|
DO ig = 1, ngrid |
| 746 |
|
|
fm(ig, 1) = 0. |
| 747 |
|
|
fm(ig, nlay+1) = 0. |
| 748 |
|
|
END DO |
| 749 |
|
|
|
| 750 |
|
|
DO l = 2, nlay |
| 751 |
|
|
DO ig = 1, ngrid |
| 752 |
|
|
fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
| 753 |
|
|
! CR:test |
| 754 |
|
|
IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
| 755 |
|
|
fm(ig, l) = fm(ig, l-1) |
| 756 |
|
|
! write(1,*)'ajustement fm, l',l |
| 757 |
|
|
END IF |
| 758 |
|
|
! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
| 759 |
|
|
! RC |
| 760 |
|
|
END DO |
| 761 |
|
|
DO ig = 1, ngrid |
| 762 |
|
|
IF (fracd(ig,l)<0.1) THEN |
| 763 |
|
|
abort_message = 'fracd trop petit' |
| 764 |
|
|
CALL abort_physic(modname, abort_message, 1) |
| 765 |
|
|
|
| 766 |
|
|
ELSE |
| 767 |
|
|
! vitesse descendante "diagnostique" |
| 768 |
|
|
wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
| 769 |
|
|
END IF |
| 770 |
|
|
END DO |
| 771 |
|
|
END DO |
| 772 |
|
|
|
| 773 |
|
|
DO l = 1, nlay |
| 774 |
|
|
DO ig = 1, ngrid |
| 775 |
|
|
! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 776 |
|
|
masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
| 777 |
|
|
END DO |
| 778 |
|
|
END DO |
| 779 |
|
|
|
| 780 |
|
|
! print*,'12 OK convect8' |
| 781 |
|
|
! print*,'WA4 ',wa_moy |
| 782 |
|
|
! c------------------------------------------------------------------ |
| 783 |
|
|
! calcul du transport vertical |
| 784 |
|
|
! ------------------------------------------------------------------ |
| 785 |
|
|
|
| 786 |
|
|
GO TO 4444 |
| 787 |
|
|
! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
| 788 |
|
|
DO l = 2, nlay - 1 |
| 789 |
|
|
DO ig = 1, ngrid |
| 790 |
|
|
IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
| 791 |
|
|
ig,l+1)) THEN |
| 792 |
|
|
! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
| 793 |
|
|
! s ,fm(ig,l+1)*ptimestep |
| 794 |
|
|
! s ,' M=',masse(ig,l),masse(ig,l+1) |
| 795 |
|
|
END IF |
| 796 |
|
|
END DO |
| 797 |
|
|
END DO |
| 798 |
|
|
|
| 799 |
|
|
DO l = 1, nlay |
| 800 |
|
|
DO ig = 1, ngrid |
| 801 |
|
|
IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
| 802 |
|
|
! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
| 803 |
|
|
! s ,entr(ig,l)*ptimestep |
| 804 |
|
|
! s ,' M=',masse(ig,l) |
| 805 |
|
|
END IF |
| 806 |
|
|
END DO |
| 807 |
|
|
END DO |
| 808 |
|
|
|
| 809 |
|
|
DO l = 1, nlay |
| 810 |
|
|
DO ig = 1, ngrid |
| 811 |
|
|
IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
| 812 |
|
|
! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
| 813 |
|
|
! s ,' FM=',fm(ig,l) |
| 814 |
|
|
END IF |
| 815 |
|
|
IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
| 816 |
|
|
! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
| 817 |
|
|
! s ,' M=',masse(ig,l) |
| 818 |
|
|
! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
| 819 |
|
|
! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
| 820 |
|
|
! print*,'zlev(ig,l+1),zlev(ig,l)' |
| 821 |
|
|
! s ,zlev(ig,l+1),zlev(ig,l) |
| 822 |
|
|
! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
| 823 |
|
|
! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
| 824 |
|
|
END IF |
| 825 |
|
|
IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
| 826 |
|
|
! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
| 827 |
|
|
! s ,' E=',entr(ig,l) |
| 828 |
|
|
END IF |
| 829 |
|
|
END DO |
| 830 |
|
|
END DO |
| 831 |
|
|
|
| 832 |
|
|
4444 CONTINUE |
| 833 |
|
|
|
| 834 |
|
|
! CR:redefinition du entr |
| 835 |
|
|
DO l = 1, nlay |
| 836 |
|
|
DO ig = 1, ngrid |
| 837 |
|
|
detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
| 838 |
|
|
IF (detr(ig,l)<0.) THEN |
| 839 |
|
|
! entr(ig,l)=entr(ig,l)-detr(ig,l) |
| 840 |
|
|
fm(ig, l+1) = fm(ig, l) + entr(ig, l) |
| 841 |
|
|
detr(ig, l) = 0. |
| 842 |
|
|
! print*,'WARNING !!! detrainement negatif ',ig,l |
| 843 |
|
|
END IF |
| 844 |
|
|
END DO |
| 845 |
|
|
END DO |
| 846 |
|
|
! RC |
| 847 |
|
|
IF (w2di==1) THEN |
| 848 |
|
|
fm0 = fm0 + ptimestep*(fm-fm0)/tho |
| 849 |
|
|
entr0 = entr0 + ptimestep*(entr-entr0)/tho |
| 850 |
|
|
ELSE |
| 851 |
|
|
fm0 = fm |
| 852 |
|
|
entr0 = entr |
| 853 |
|
|
END IF |
| 854 |
|
|
|
| 855 |
|
|
IF (1==1) THEN |
| 856 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
| 857 |
|
|
zha) |
| 858 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
| 859 |
|
|
zoa) |
| 860 |
|
|
ELSE |
| 861 |
|
|
CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
| 862 |
|
|
zdhadj, zha) |
| 863 |
|
|
CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
| 864 |
|
|
pdoadj, zoa) |
| 865 |
|
|
END IF |
| 866 |
|
|
|
| 867 |
|
|
IF (1==0) THEN |
| 868 |
|
|
CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
| 869 |
|
|
zu, zv, pduadj, pdvadj, zua, zva) |
| 870 |
|
|
ELSE |
| 871 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
| 872 |
|
|
zua) |
| 873 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
| 874 |
|
|
zva) |
| 875 |
|
|
END IF |
| 876 |
|
|
|
| 877 |
|
|
DO l = 1, nlay |
| 878 |
|
|
DO ig = 1, ngrid |
| 879 |
|
|
zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
| 880 |
|
|
zf2 = zf/(1.-zf) |
| 881 |
|
|
thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
| 882 |
|
|
wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
| 883 |
|
|
END DO |
| 884 |
|
|
END DO |
| 885 |
|
|
|
| 886 |
|
|
|
| 887 |
|
|
|
| 888 |
|
|
! print*,'13 OK convect8' |
| 889 |
|
|
! print*,'WA5 ',wa_moy |
| 890 |
|
|
DO l = 1, nlay |
| 891 |
|
|
DO ig = 1, ngrid |
| 892 |
|
|
pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
| 893 |
|
|
END DO |
| 894 |
|
|
END DO |
| 895 |
|
|
|
| 896 |
|
|
|
| 897 |
|
|
! do l=1,nlay |
| 898 |
|
|
! do ig=1,ngrid |
| 899 |
|
|
! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
| 900 |
|
|
! print*,'WARN!!! ig=',ig,' l=',l |
| 901 |
|
|
! s ,' pdtadj=',pdtadj(ig,l) |
| 902 |
|
|
! endif |
| 903 |
|
|
! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
| 904 |
|
|
! print*,'WARN!!! ig=',ig,' l=',l |
| 905 |
|
|
! s ,' pdoadj=',pdoadj(ig,l) |
| 906 |
|
|
! endif |
| 907 |
|
|
! enddo |
| 908 |
|
|
! enddo |
| 909 |
|
|
|
| 910 |
|
|
! print*,'14 OK convect8' |
| 911 |
|
|
! ------------------------------------------------------------------ |
| 912 |
|
|
! Calculs pour les sorties |
| 913 |
|
|
! ------------------------------------------------------------------ |
| 914 |
|
|
|
| 915 |
|
|
IF (sorties) THEN |
| 916 |
|
|
DO l = 1, nlay |
| 917 |
|
|
DO ig = 1, ngrid |
| 918 |
|
|
zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
| 919 |
|
|
zld(ig, l) = fracd(ig, l)*zmax(ig) |
| 920 |
|
|
IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
| 921 |
|
|
(1.-fracd(ig,l)) |
| 922 |
|
|
END DO |
| 923 |
|
|
END DO |
| 924 |
|
|
|
| 925 |
|
|
! deja fait |
| 926 |
|
|
! do l=1,nlay |
| 927 |
|
|
! do ig=1,ngrid |
| 928 |
|
|
! detr(ig,l)=fm(ig,l)+entr(ig,l)-fm(ig,l+1) |
| 929 |
|
|
! if (detr(ig,l).lt.0.) then |
| 930 |
|
|
! entr(ig,l)=entr(ig,l)-detr(ig,l) |
| 931 |
|
|
! detr(ig,l)=0. |
| 932 |
|
|
! print*,'WARNING !!! detrainement negatif ',ig,l |
| 933 |
|
|
! endif |
| 934 |
|
|
! enddo |
| 935 |
|
|
! enddo |
| 936 |
|
|
|
| 937 |
|
|
! print*,'15 OK convect8' |
| 938 |
|
|
|
| 939 |
|
|
isplit = isplit + 1 |
| 940 |
|
|
|
| 941 |
|
|
|
| 942 |
|
|
! #define und |
| 943 |
|
|
GO TO 123 |
| 944 |
|
|
123 CONTINUE |
| 945 |
|
|
|
| 946 |
|
|
END IF |
| 947 |
|
|
|
| 948 |
|
|
! if(wa_moy(1,4).gt.1.e-10) stop |
| 949 |
|
|
|
| 950 |
|
|
! print*,'19 OK convect8' |
| 951 |
|
|
RETURN |
| 952 |
|
|
END SUBROUTINE calcul_sec |
| 953 |
|
|
|
| 954 |
|
✗ |
SUBROUTINE fermeture_seche(ngrid, nlay, pplay, pplev, pphi, zlev, rhobarz, & |
| 955 |
|
✗ |
f0, zpspsk, alim_star, zh, zo, lentr, lmin, nu_min, nu_max, r_aspect, & |
| 956 |
|
|
zmax, wmax) |
| 957 |
|
|
|
| 958 |
|
|
USE dimphy |
| 959 |
|
|
IMPLICIT NONE |
| 960 |
|
|
|
| 961 |
|
|
include "YOMCST.h" |
| 962 |
|
|
|
| 963 |
|
|
INTEGER ngrid, nlay |
| 964 |
|
|
REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
| 965 |
|
|
REAL pphi(ngrid, nlay) |
| 966 |
|
|
REAL zlev(klon, klev+1) |
| 967 |
|
|
REAL alim_star(klon, klev) |
| 968 |
|
|
REAL f0(klon) |
| 969 |
|
|
INTEGER lentr(klon) |
| 970 |
|
|
INTEGER lmin(klon) |
| 971 |
|
|
REAL zmax(klon) |
| 972 |
|
|
REAL wmax(klon) |
| 973 |
|
|
REAL nu_min |
| 974 |
|
|
REAL nu_max |
| 975 |
|
|
REAL r_aspect |
| 976 |
|
|
REAL rhobarz(klon, klev+1) |
| 977 |
|
|
REAL zh(klon, klev) |
| 978 |
|
|
REAL zo(klon, klev) |
| 979 |
|
|
REAL zpspsk(klon, klev) |
| 980 |
|
|
|
| 981 |
|
|
INTEGER ig, l |
| 982 |
|
|
|
| 983 |
|
✗ |
REAL f_star(klon, klev+1) |
| 984 |
|
✗ |
REAL detr_star(klon, klev) |
| 985 |
|
✗ |
REAL entr_star(klon, klev) |
| 986 |
|
✗ |
REAL zw2(klon, klev+1) |
| 987 |
|
✗ |
REAL linter(klon) |
| 988 |
|
✗ |
INTEGER lmix(klon) |
| 989 |
|
✗ |
INTEGER lmax(klon) |
| 990 |
|
✗ |
REAL zlevinter(klon) |
| 991 |
|
✗ |
REAL wa_moy(klon, klev+1) |
| 992 |
|
✗ |
REAL wmaxa(klon) |
| 993 |
|
✗ |
REAL ztv(klon, klev) |
| 994 |
|
✗ |
REAL ztva(klon, klev) |
| 995 |
|
✗ |
REAL nu(klon, klev) |
| 996 |
|
|
! real zmax0_sec(klon) |
| 997 |
|
|
! save zmax0_sec |
| 998 |
|
|
REAL, SAVE, ALLOCATABLE :: zmax0_sec(:) |
| 999 |
|
|
!$OMP THREADPRIVATE(zmax0_sec) |
| 1000 |
|
|
LOGICAL, SAVE :: first = .TRUE. |
| 1001 |
|
|
!$OMP THREADPRIVATE(first) |
| 1002 |
|
|
|
| 1003 |
|
✗ |
IF (first) THEN |
| 1004 |
|
✗ |
ALLOCATE (zmax0_sec(klon)) |
| 1005 |
|
✗ |
first = .FALSE. |
| 1006 |
|
|
END IF |
| 1007 |
|
|
|
| 1008 |
|
✗ |
DO l = 1, nlay |
| 1009 |
|
✗ |
DO ig = 1, ngrid |
| 1010 |
|
✗ |
ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
| 1011 |
|
✗ |
ztv(ig, l) = ztv(ig, l)*(1.+retv*zo(ig,l)) |
| 1012 |
|
|
END DO |
| 1013 |
|
|
END DO |
| 1014 |
|
✗ |
DO l = 1, nlay - 2 |
| 1015 |
|
✗ |
DO ig = 1, ngrid |
| 1016 |
|
✗ |
IF (ztv(ig,l)>ztv(ig,l+1) .AND. alim_star(ig,l)>1.E-10 .AND. & |
| 1017 |
|
|
zw2(ig,l)<1E-10) THEN |
| 1018 |
|
✗ |
f_star(ig, l+1) = alim_star(ig, l) |
| 1019 |
|
|
! test:calcul de dteta |
| 1020 |
|
|
zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
| 1021 |
|
✗ |
(zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
| 1022 |
|
✗ |
ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+alim_star(ig, & |
| 1023 |
|
|
l))>1.E-10) THEN |
| 1024 |
|
|
! estimation du detrainement a partir de la geometrie du pas |
| 1025 |
|
|
! precedent |
| 1026 |
|
|
! tests sur la definition du detr |
| 1027 |
|
|
nu(ig, l) = (nu_min+nu_max)/2.*(1.-(nu_max-nu_min)/(nu_max+nu_min)* & |
| 1028 |
|
✗ |
tanh((((ztva(ig,l-1)-ztv(ig,l))/ztv(ig,l))/0.0005))) |
| 1029 |
|
|
|
| 1030 |
|
|
detr_star(ig, l) = rhobarz(ig, l)*sqrt(zw2(ig,l))/ & |
| 1031 |
|
|
(r_aspect*zmax0_sec(ig))* & ! s |
| 1032 |
|
|
! /(r_aspect*zmax0(ig))* |
| 1033 |
|
|
(sqrt(nu(ig,l)*zlev(ig,l+1)/sqrt(zw2(ig,l)))-sqrt(nu(ig,l)*zlev(ig, & |
| 1034 |
|
✗ |
l)/sqrt(zw2(ig,l)))) |
| 1035 |
|
✗ |
detr_star(ig, l) = detr_star(ig, l)/f0(ig) |
| 1036 |
|
✗ |
IF ((detr_star(ig,l))>f_star(ig,l)) THEN |
| 1037 |
|
✗ |
detr_star(ig, l) = f_star(ig, l) |
| 1038 |
|
|
END IF |
| 1039 |
|
✗ |
entr_star(ig, l) = 0.9*detr_star(ig, l) |
| 1040 |
|
✗ |
IF ((l<lentr(ig))) THEN |
| 1041 |
|
✗ |
entr_star(ig, l) = 0. |
| 1042 |
|
|
! detr_star(ig,l)=0. |
| 1043 |
|
|
END IF |
| 1044 |
|
|
! print*,'ok detr_star' |
| 1045 |
|
|
! prise en compte du detrainement dans le calcul du flux |
| 1046 |
|
|
f_star(ig, l+1) = f_star(ig, l) + alim_star(ig, l) + & |
| 1047 |
|
✗ |
entr_star(ig, l) - detr_star(ig, l) |
| 1048 |
|
|
! test sur le signe de f_star |
| 1049 |
|
✗ |
IF ((f_star(ig,l+1)+detr_star(ig,l))>1.E-10) THEN |
| 1050 |
|
|
! AM on melange Tl et qt du thermique |
| 1051 |
|
|
ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+(entr_star(ig, & |
| 1052 |
|
✗ |
l)+alim_star(ig,l))*ztv(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
| 1053 |
|
|
zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/(f_star(ig, & |
| 1054 |
|
|
l+1)+detr_star(ig,l)))**2 + 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, & |
| 1055 |
|
✗ |
l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 1056 |
|
|
END IF |
| 1057 |
|
|
END IF |
| 1058 |
|
|
|
| 1059 |
|
✗ |
IF (zw2(ig,l+1)<0.) THEN |
| 1060 |
|
|
linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
| 1061 |
|
✗ |
ig,l)) |
| 1062 |
|
✗ |
zw2(ig, l+1) = 0. |
| 1063 |
|
|
! print*,'linter=',linter(ig) |
| 1064 |
|
|
ELSE |
| 1065 |
|
✗ |
wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
| 1066 |
|
|
END IF |
| 1067 |
|
✗ |
IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
| 1068 |
|
|
! lmix est le niveau de la couche ou w (wa_moy) est maximum |
| 1069 |
|
✗ |
lmix(ig) = l + 1 |
| 1070 |
|
✗ |
wmaxa(ig) = wa_moy(ig, l+1) |
| 1071 |
|
|
END IF |
| 1072 |
|
|
END DO |
| 1073 |
|
|
END DO |
| 1074 |
|
|
! print*,'fin calcul zw2' |
| 1075 |
|
|
|
| 1076 |
|
|
! Calcul de la couche correspondant a la hauteur du thermique |
| 1077 |
|
✗ |
DO ig = 1, ngrid |
| 1078 |
|
✗ |
lmax(ig) = lentr(ig) |
| 1079 |
|
|
END DO |
| 1080 |
|
✗ |
DO ig = 1, ngrid |
| 1081 |
|
✗ |
DO l = nlay, lentr(ig) + 1, -1 |
| 1082 |
|
✗ |
IF (zw2(ig,l)<=1.E-10) THEN |
| 1083 |
|
✗ |
lmax(ig) = l - 1 |
| 1084 |
|
|
END IF |
| 1085 |
|
|
END DO |
| 1086 |
|
|
END DO |
| 1087 |
|
|
! pas de thermique si couche 1 stable |
| 1088 |
|
✗ |
DO ig = 1, ngrid |
| 1089 |
|
✗ |
IF (lmin(ig)>1) THEN |
| 1090 |
|
✗ |
lmax(ig) = 1 |
| 1091 |
|
✗ |
lmin(ig) = 1 |
| 1092 |
|
✗ |
lentr(ig) = 1 |
| 1093 |
|
|
END IF |
| 1094 |
|
|
END DO |
| 1095 |
|
|
|
| 1096 |
|
|
! Determination de zw2 max |
| 1097 |
|
✗ |
DO ig = 1, ngrid |
| 1098 |
|
✗ |
wmax(ig) = 0. |
| 1099 |
|
|
END DO |
| 1100 |
|
|
|
| 1101 |
|
✗ |
DO l = 1, nlay |
| 1102 |
|
✗ |
DO ig = 1, ngrid |
| 1103 |
|
✗ |
IF (l<=lmax(ig)) THEN |
| 1104 |
|
|
IF (zw2(ig,l)<0.) THEN |
| 1105 |
|
|
! print*,'pb2 zw2<0' |
| 1106 |
|
|
END IF |
| 1107 |
|
✗ |
zw2(ig, l) = sqrt(zw2(ig,l)) |
| 1108 |
|
✗ |
wmax(ig) = max(wmax(ig), zw2(ig,l)) |
| 1109 |
|
|
ELSE |
| 1110 |
|
✗ |
zw2(ig, l) = 0. |
| 1111 |
|
|
END IF |
| 1112 |
|
|
END DO |
| 1113 |
|
|
END DO |
| 1114 |
|
|
|
| 1115 |
|
|
! Longueur caracteristique correspondant a la hauteur des thermiques. |
| 1116 |
|
✗ |
DO ig = 1, ngrid |
| 1117 |
|
✗ |
zmax(ig) = 0. |
| 1118 |
|
✗ |
zlevinter(ig) = zlev(ig, 1) |
| 1119 |
|
|
END DO |
| 1120 |
|
✗ |
DO ig = 1, ngrid |
| 1121 |
|
|
! calcul de zlevinter |
| 1122 |
|
|
zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
| 1123 |
|
✗ |
zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
| 1124 |
|
|
! pour le cas ou on prend tjs lmin=1 |
| 1125 |
|
|
! zmax(ig)=max(zmax(ig),zlevinter(ig)-zlev(ig,lmin(ig))) |
| 1126 |
|
✗ |
zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,1)) |
| 1127 |
|
✗ |
zmax0_sec(ig) = zmax(ig) |
| 1128 |
|
|
END DO |
| 1129 |
|
|
|
| 1130 |
|
✗ |
RETURN |
| 1131 |
|
|
END SUBROUTINE fermeture_seche |
| 1132 |
|
|
|