| Directory: | ./ |
|---|---|
| File: | phys/thermcell_alim.f90 |
| Date: | 2022-01-11 19:19:34 |
| Exec | Total | Coverage | |
|---|---|---|---|
| Lines: | 18 | 50 | 36.0% |
| Branches: | 19 | 60 | 31.7% |
| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | ! | ||
| 2 | ! $Id: thermcell_plume.F90 2311 2015-06-25 07:45:24Z emillour $ | ||
| 3 | ! | ||
| 4 | 480 | SUBROUTINE thermcell_alim(flag,ngrid,klev,ztv,d_temp,zlev,alim_star,lalim) | |
| 5 | IMPLICIT NONE | ||
| 6 | |||
| 7 | !-------------------------------------------------------------------------- | ||
| 8 | ! FH : 2015/11/06 | ||
| 9 | ! thermcell_alim: calcule la distribution verticale de l'alimentation | ||
| 10 | ! laterale a la base des panaches thermiques | ||
| 11 | !-------------------------------------------------------------------------- | ||
| 12 | |||
| 13 | ! | ||
| 14 | ! $Header$ | ||
| 15 | ! | ||
| 16 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 17 | ! veillez � n'utiliser que des ! pour les commentaires | ||
| 18 | ! et � bien positionner les & des lignes de continuation | ||
| 19 | ! (les placer en colonne 6 et en colonne 73) | ||
| 20 | ! | ||
| 21 | ! | ||
| 22 | ! A1.0 Fundamental constants | ||
| 23 | REAL RPI,RCLUM,RHPLA,RKBOL,RNAVO | ||
| 24 | ! A1.1 Astronomical constants | ||
| 25 | REAL RDAY,REA,REPSM,RSIYEA,RSIDAY,ROMEGA | ||
| 26 | ! A1.1.bis Constantes concernant l'orbite de la Terre: | ||
| 27 | REAL R_ecc, R_peri, R_incl | ||
| 28 | ! A1.2 Geoide | ||
| 29 | REAL RA,RG,R1SA | ||
| 30 | ! A1.3 Radiation | ||
| 31 | ! REAL RSIGMA,RI0 | ||
| 32 | REAL RSIGMA | ||
| 33 | ! A1.4 Thermodynamic gas phase | ||
| 34 | REAL RMO3,RMCO2,RMC,RMCH4,RMN2O,RMCFC11,RMCFC12 | ||
| 35 | REAL R,RMD,RMV,RD,RV,RCPD,RCPV,RCVD,RCVV | ||
| 36 | REAL RKAPPA,RETV, eps_w | ||
| 37 | ! A1.5,6 Thermodynamic liquid,solid phases | ||
| 38 | REAL RCW,RCS | ||
| 39 | ! A1.7 Thermodynamic transition of phase | ||
| 40 | REAL RLVTT,RLSTT,RLMLT,RTT,RATM | ||
| 41 | ! A1.8 Curve of saturation | ||
| 42 | REAL RESTT,RALPW,RBETW,RGAMW,RALPS,RBETS,RGAMS | ||
| 43 | REAL RALPD,RBETD,RGAMD | ||
| 44 | ! | ||
| 45 | COMMON/YOMCST/RPI ,RCLUM ,RHPLA ,RKBOL ,RNAVO & | ||
| 46 | & ,RDAY ,REA ,REPSM ,RSIYEA,RSIDAY,ROMEGA & | ||
| 47 | & ,R_ecc, R_peri, R_incl & | ||
| 48 | & ,RA ,RG ,R1SA & | ||
| 49 | & ,RSIGMA & | ||
| 50 | & ,R ,RMD ,RMV ,RD ,RV ,RCPD & | ||
| 51 | & ,RMO3 ,RMCO2 ,RMC ,RMCH4 ,RMN2O ,RMCFC11 ,RMCFC12 & | ||
| 52 | & ,RCPV ,RCVD ,RCVV ,RKAPPA,RETV, eps_w & | ||
| 53 | & ,RCW ,RCS & | ||
| 54 | & ,RLVTT ,RLSTT ,RLMLT ,RTT ,RATM & | ||
| 55 | & ,RESTT ,RALPW ,RBETW ,RGAMW ,RALPS ,RBETS ,RGAMS & | ||
| 56 | & ,RALPD ,RBETD ,RGAMD | ||
| 57 | ! ------------------------------------------------------------------ | ||
| 58 | !$OMP THREADPRIVATE(/YOMCST/) | ||
| 59 | ! | ||
| 60 | ! $Id: YOETHF.h 2799 2017-02-24 18:50:33Z jyg $ | ||
| 61 | ! | ||
| 62 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 63 | ! veillez n'utiliser que des ! pour les commentaires | ||
| 64 | ! et bien positionner les & des lignes de continuation | ||
| 65 | ! (les placer en colonne 6 et en colonne 73) | ||
| 66 | ! | ||
| 67 | !* COMMON *YOETHF* DERIVED CONSTANTS SPECIFIC TO ECMWF THERMODYNAMICS | ||
| 68 | ! | ||
| 69 | ! *R__ES* *CONSTANTS USED FOR COMPUTATION OF SATURATION | ||
| 70 | ! MIXING RATIO OVER LIQUID WATER(*R_LES*) OR | ||
| 71 | ! ICE(*R_IES*). | ||
| 72 | ! *RVTMP2* *RVTMP2=RCPV/RCPD-1. | ||
| 73 | ! *RHOH2O* *DENSITY OF LIQUID WATER. (RATM/100.) | ||
| 74 | ! | ||
| 75 | REAL R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES | ||
| 76 | REAL RVTMP2, RHOH2O | ||
| 77 | REAL R5ALVCP,R5ALSCP,RALVDCP,RALSDCP,RALFDCP,RTWAT,RTBER,RTBERCU | ||
| 78 | REAL RTICE,RTICECU,RTWAT_RTICE_R,RTWAT_RTICECU_R,RKOOP1,RKOOP2 | ||
| 79 | LOGICAL OK_BAD_ECMWF_THERMO ! If TRUE, then variables set by rrtm/suphec.F90 | ||
| 80 | ! If FALSE, then variables set by suphel.F90 | ||
| 81 | COMMON /YOETHF/R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES, & | ||
| 82 | & RVTMP2, RHOH2O, & | ||
| 83 | & R5ALVCP,R5ALSCP,RALVDCP,RALSDCP, & | ||
| 84 | & RALFDCP,RTWAT,RTBER,RTBERCU, & | ||
| 85 | & RTICE,RTICECU,RTWAT_RTICE_R,RTWAT_RTICECU_R,RKOOP1,& | ||
| 86 | & RKOOP2, & | ||
| 87 | & OK_BAD_ECMWF_THERMO | ||
| 88 | |||
| 89 | !$OMP THREADPRIVATE(/YOETHF/) | ||
| 90 | ! | ||
| 91 | ! $Header$ | ||
| 92 | ! | ||
| 93 | ! | ||
| 94 | ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre | ||
| 95 | ! veillez n'utiliser que des ! pour les commentaires | ||
| 96 | ! et bien positionner les & des lignes de continuation | ||
| 97 | ! (les placer en colonne 6 et en colonne 73) | ||
| 98 | ! | ||
| 99 | ! ------------------------------------------------------------------ | ||
| 100 | ! This COMDECK includes the Thermodynamical functions for the cy39 | ||
| 101 | ! ECMWF Physics package. | ||
| 102 | ! Consistent with YOMCST Basic physics constants, assuming the | ||
| 103 | ! partial pressure of water vapour is given by a first order | ||
| 104 | ! Taylor expansion of Qs(T) w.r.t. to Temperature, using constants | ||
| 105 | ! in YOETHF | ||
| 106 | ! ------------------------------------------------------------------ | ||
| 107 | REAL PTARG, PDELARG, P5ARG, PQSARG, PCOARG | ||
| 108 | REAL FOEEW, FOEDE, qsats, qsatl, dqsats, dqsatl | ||
| 109 | LOGICAL thermcep | ||
| 110 | PARAMETER (thermcep=.TRUE.) | ||
| 111 | ! | ||
| 112 | FOEEW ( PTARG,PDELARG ) = EXP ( & | ||
| 113 | & (R3LES*(1.-PDELARG)+R3IES*PDELARG) * (PTARG-RTT) & | ||
| 114 | & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG)) ) | ||
| 115 | ! | ||
| 116 | FOEDE ( PTARG,PDELARG,P5ARG,PQSARG,PCOARG ) = PQSARG*PCOARG*P5ARG & | ||
| 117 | & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG))**2 | ||
| 118 | ! | ||
| 119 | qsats(ptarg) = 100.0 * 0.622 * 10.0 & | ||
| 120 | & ** (2.07023 - 0.00320991 * ptarg & | ||
| 121 | & - 2484.896 / ptarg + 3.56654 * LOG10(ptarg)) | ||
| 122 | qsatl(ptarg) = 100.0 * 0.622 * 10.0 & | ||
| 123 | & ** (23.8319 - 2948.964 / ptarg & | ||
| 124 | & - 5.028 * LOG10(ptarg) & | ||
| 125 | & - 29810.16 * EXP( - 0.0699382 * ptarg) & | ||
| 126 | & + 25.21935 * EXP( - 2999.924 / ptarg)) | ||
| 127 | ! | ||
| 128 | dqsats(ptarg,pqsarg) = RLVTT/RCPD*pqsarg * (3.56654/ptarg & | ||
| 129 | & +2484.896*LOG(10.)/ptarg**2 & | ||
| 130 | & -0.00320991*LOG(10.)) | ||
| 131 | dqsatl(ptarg,pqsarg) = RLVTT/RCPD*pqsarg*LOG(10.)* & | ||
| 132 | & (2948.964/ptarg**2-5.028/LOG(10.)/ptarg & | ||
| 133 | & +25.21935*2999.924/ptarg**2*EXP(-2999.924/ptarg) & | ||
| 134 | & +29810.16*0.0699382*EXP(-0.0699382*ptarg)) | ||
| 135 | integer :: iflag_thermals,nsplit_thermals | ||
| 136 | |||
| 137 | !!! nrlmd le 10/04/2012 | ||
| 138 | integer :: iflag_trig_bl,iflag_clos_bl | ||
| 139 | integer :: tau_trig_shallow,tau_trig_deep | ||
| 140 | real :: s_trig | ||
| 141 | !!! fin nrlmd le 10/04/2012 | ||
| 142 | |||
| 143 | real,parameter :: r_aspect_thermals=2.,l_mix_thermals=30. | ||
| 144 | real :: alp_bl_k | ||
| 145 | real :: tau_thermals,fact_thermals_ed_dz | ||
| 146 | integer,parameter :: w2di_thermals=0 | ||
| 147 | integer :: isplit | ||
| 148 | |||
| 149 | integer :: iflag_coupl,iflag_clos,iflag_wake | ||
| 150 | integer :: iflag_thermals_ed,iflag_thermals_optflux,iflag_thermals_closure | ||
| 151 | |||
| 152 | common/ctherm1/iflag_thermals,nsplit_thermals,iflag_thermals_closure | ||
| 153 | common/ctherm2/tau_thermals,alp_bl_k,fact_thermals_ed_dz | ||
| 154 | common/ctherm4/iflag_coupl,iflag_clos,iflag_wake | ||
| 155 | common/ctherm5/iflag_thermals_ed,iflag_thermals_optflux | ||
| 156 | |||
| 157 | !!! nrlmd le 10/04/2012 | ||
| 158 | common/ctherm6/iflag_trig_bl,iflag_clos_bl | ||
| 159 | common/ctherm7/tau_trig_shallow,tau_trig_deep | ||
| 160 | common/ctherm8/s_trig | ||
| 161 | !!! fin nrlmd le 10/04/2012 | ||
| 162 | |||
| 163 | !$OMP THREADPRIVATE(/ctherm1/,/ctherm2/,/ctherm4/,/ctherm5/) | ||
| 164 | !$OMP THREADPRIVATE(/ctherm6/,/ctherm7/,/ctherm8/) | ||
| 165 | |||
| 166 | ! fort(10) ptimestep,ztv,zthl,po,zl,rhobarz,zlev,pplev,pphi,zpspsk,f0 | ||
| 167 | INTEGER, INTENT(IN) :: ngrid,klev | ||
| 168 | REAL, INTENT(IN) :: ztv(ngrid,klev) | ||
| 169 | REAL, INTENT(IN) :: d_temp(ngrid) | ||
| 170 | REAL, INTENT(IN) :: zlev(ngrid,klev+1) | ||
| 171 | REAL, INTENT(OUT) :: alim_star(ngrid,klev) | ||
| 172 | INTEGER, INTENT(OUT) :: lalim(ngrid) | ||
| 173 | INTEGER, INTENT(IN) :: flag | ||
| 174 | |||
| 175 | 960 | REAL :: alim_star_tot(ngrid),zi(ngrid),zh(ngrid) | |
| 176 | 480 | REAL :: zlay(ngrid,klev) | |
| 177 | REAL ztv_parcel | ||
| 178 | |||
| 179 | INTEGER ig,l | ||
| 180 | |||
| 181 | REAL h,z,falim | ||
| 182 | falim(h,z)=0.2*((z-h)**5+h**5) | ||
| 183 | |||
| 184 | |||
| 185 | !=================================================================== | ||
| 186 | |||
| 187 |
2/2✓ Branch 0 taken 477120 times.
✓ Branch 1 taken 480 times.
|
477600 | lalim(:)=1 |
| 188 |
2/2✓ Branch 0 taken 477120 times.
✓ Branch 1 taken 480 times.
|
477600 | alim_star_tot(:)=0. |
| 189 | |||
| 190 | !------------------------------------------------------------------------- | ||
| 191 | ! Definition de l'alimentation a l'origine dans thermcell_init | ||
| 192 | !------------------------------------------------------------------------- | ||
| 193 |
1/2✓ Branch 0 taken 480 times.
✗ Branch 1 not taken.
|
480 | IF (flag==0) THEN ! CMIP5 version |
| 194 |
2/2✓ Branch 0 taken 18240 times.
✓ Branch 1 taken 480 times.
|
18720 | do l=1,klev-1 |
| 195 |
2/2✓ Branch 0 taken 18130560 times.
✓ Branch 1 taken 18240 times.
|
18149280 | do ig=1,ngrid |
| 196 |
4/4✓ Branch 0 taken 645327 times.
✓ Branch 1 taken 17485233 times.
✓ Branch 2 taken 606965 times.
✓ Branch 3 taken 38362 times.
|
18148800 | if (ztv(ig,l)> ztv(ig,l+1) .and. ztv(ig,1)>=ztv(ig,l) ) then |
| 197 | alim_star(ig,l)=MAX((ztv(ig,l)-ztv(ig,l+1)),0.) & | ||
| 198 | 606965 | & *sqrt(zlev(ig,l+1)) | |
| 199 | 606965 | lalim(ig)=l+1 | |
| 200 | 606965 | alim_star_tot(ig)=alim_star_tot(ig)+alim_star(ig,l) | |
| 201 | endif | ||
| 202 | enddo | ||
| 203 | enddo | ||
| 204 |
2/2✓ Branch 0 taken 18720 times.
✓ Branch 1 taken 480 times.
|
19200 | do l=1,klev |
| 205 |
2/2✓ Branch 0 taken 18607680 times.
✓ Branch 1 taken 18720 times.
|
18626880 | do ig=1,ngrid |
| 206 |
2/2✓ Branch 0 taken 9688770 times.
✓ Branch 1 taken 8918910 times.
|
18626400 | if (alim_star_tot(ig) > 1.e-10 ) then |
| 207 | 9688770 | alim_star(ig,l)=alim_star(ig,l)/alim_star_tot(ig) | |
| 208 | endif | ||
| 209 | enddo | ||
| 210 | enddo | ||
| 211 | 480 | alim_star_tot(:)=1. | |
| 212 | |||
| 213 | !------------------------------------------------------------------------- | ||
| 214 | ! Nouvelle definition avec possibilite d'introduire un DT en surface | ||
| 215 | ! On suppose que la forme du profile d'alimentation scale avec la hauteur | ||
| 216 | ! d'inversion calculée avec une particule partant de la premieere couche | ||
| 217 | |||
| 218 | ! Fonction f(z) = z ( h - z ) , avec h = zi/3 | ||
| 219 | ! On utilise l'integralle | ||
| 220 | ! Int_0^z f(z') dz' = z^2 ( h/2 - z/3 ) = falim(h,z) | ||
| 221 | ! Pour calculer l'alimentation des couches | ||
| 222 | !------------------------------------------------------------------------- | ||
| 223 | ELSE | ||
| 224 | ! Computing inversion height zi and zh=zi/3. | ||
| 225 | ✗ | zi(:)=0. | |
| 226 | ! Il faut recalculer zlay qui n'est pas dispo dans thermcell_plume | ||
| 227 | ! A changer eventuellement. | ||
| 228 | ✗ | do l=1,klev | |
| 229 | ✗ | zlay(:,l)=0.5*(zlev(:,l)+zlev(:,l+1)) | |
| 230 | enddo | ||
| 231 | |||
| 232 | ✗ | do l=klev-1,1,-1 | |
| 233 | ✗ | do ig=1,ngrid | |
| 234 | ✗ | ztv_parcel=ztv(ig,1)+d_temp(ig) | |
| 235 | ✗ | if (ztv_parcel<ztv(ig,l+1)) lalim(ig)=l | |
| 236 | enddo | ||
| 237 | enddo | ||
| 238 | |||
| 239 | ✗ | do ig=1,ngrid | |
| 240 | ✗ | l=lalim(ig) | |
| 241 | ✗ | IF (l==1) THEN | |
| 242 | ✗ | zi(ig)=0. | |
| 243 | ELSE | ||
| 244 | ✗ | ztv_parcel=ztv(ig,1)+d_temp(ig) | |
| 245 | ✗ | zi(ig)=zlay(ig,l)+(zlay(ig,l+1)-zlay(ig,l))/(ztv(ig,l+1)-ztv(ig,l))*(ztv_parcel-ztv(ig,l)) | |
| 246 | ENDIF | ||
| 247 | enddo | ||
| 248 | |||
| 249 | ✗ | zh(:)=zi(:)/2. | |
| 250 | ✗ | alim_star_tot(:)=0. | |
| 251 | ✗ | alim_star(:,:)=0. | |
| 252 | ✗ | lalim(:)=0 | |
| 253 | ✗ | do l=1,klev-1 | |
| 254 | ✗ | do ig=1,ngrid | |
| 255 | ✗ | IF (zh(ig)==0.) THEN | |
| 256 | ✗ | alim_star(ig,l)=0. | |
| 257 | ✗ | lalim(ig)=1 | |
| 258 | ✗ | ELSE IF (zlev(ig,l+1)<=zh(ig)) THEN | |
| 259 | ✗ | alim_star(ig,l)=(falim(zh(ig),zlev(ig,l+1))-falim(zh(ig),zlev(ig,l)))/falim(zh(ig),zh(ig)) | |
| 260 | ✗ | lalim(ig)=l | |
| 261 | ✗ | ELSE IF (zlev(ig,l)<=zh(ig)) THEN | |
| 262 | ✗ | alim_star(ig,l)=(falim(zh(ig),zh(ig))-falim(zh(ig),zlev(ig,l)))/falim(zh(ig),zh(ig)) | |
| 263 | ✗ | lalim(ig)=l | |
| 264 | ELSE | ||
| 265 | ✗ | alim_star(ig,l)=0. | |
| 266 | ENDIF | ||
| 267 | ENDDO | ||
| 268 | ✗ | alim_star_tot(:)=alim_star_tot(:)+alim_star(:,l) | |
| 269 | ENDDO | ||
| 270 | ✗ | IF (ngrid==1) print*,'NEW ALIM CALCUL DE ZI ',alim_star_tot,lalim,zi,zh | |
| 271 | ✗ | alim_star_tot(:)=1. | |
| 272 | |||
| 273 | ENDIF | ||
| 274 | |||
| 275 | |||
| 276 | 480 | RETURN | |
| 277 | END | ||
| 278 |