| Line |
Branch |
Exec |
Source |
| 1 |
|
✗ |
subroutine thermcell_dtke(ngrid,nlay,nsrf,ptimestep,fm0,entr0, & |
| 2 |
|
✗ |
& rg,pplev,tke) |
| 3 |
|
|
USE print_control_mod, ONLY: prt_level |
| 4 |
|
|
implicit none |
| 5 |
|
|
|
| 6 |
|
|
!======================================================================= |
| 7 |
|
|
! |
| 8 |
|
|
! Calcul du transport verticale dans la couche limite en presence |
| 9 |
|
|
! de "thermiques" explicitement representes |
| 10 |
|
|
! calcul du dq/dt une fois qu'on connait les ascendances |
| 11 |
|
|
! |
| 12 |
|
|
!======================================================================= |
| 13 |
|
|
|
| 14 |
|
|
integer ngrid,nlay,nsrf |
| 15 |
|
|
|
| 16 |
|
|
real ptimestep |
| 17 |
|
✗ |
real masse0(ngrid,nlay),fm0(ngrid,nlay+1),pplev(ngrid,nlay+1) |
| 18 |
|
|
real entr0(ngrid,nlay),rg |
| 19 |
|
|
real tke(ngrid,nlay,nsrf) |
| 20 |
|
✗ |
real detr0(ngrid,nlay) |
| 21 |
|
|
|
| 22 |
|
|
|
| 23 |
|
✗ |
real masse(ngrid,nlay),fm(ngrid,nlay+1) |
| 24 |
|
✗ |
real entr(ngrid,nlay) |
| 25 |
|
✗ |
real q(ngrid,nlay) |
| 26 |
|
|
integer lev_out ! niveau pour les print |
| 27 |
|
|
|
| 28 |
|
✗ |
real qa(ngrid,nlay),detr(ngrid,nlay),wqd(ngrid,nlay+1) |
| 29 |
|
|
|
| 30 |
|
|
real zzm |
| 31 |
|
|
|
| 32 |
|
|
integer ig,k |
| 33 |
|
|
integer isrf |
| 34 |
|
|
|
| 35 |
|
|
|
| 36 |
|
|
lev_out=0 |
| 37 |
|
|
|
| 38 |
|
|
|
| 39 |
|
✗ |
if (prt_level.ge.1) print*,'Q2 THERMCEL_DQ 0' |
| 40 |
|
|
|
| 41 |
|
|
! calcul du detrainement |
| 42 |
|
✗ |
do k=1,nlay |
| 43 |
|
✗ |
detr0(:,k)=fm0(:,k)-fm0(:,k+1)+entr0(:,k) |
| 44 |
|
✗ |
masse0(:,k)=(pplev(:,k)-pplev(:,k+1))/RG |
| 45 |
|
|
enddo |
| 46 |
|
|
|
| 47 |
|
|
|
| 48 |
|
|
! Decalage vertical des entrainements et detrainements. |
| 49 |
|
✗ |
masse(:,1)=0.5*masse0(:,1) |
| 50 |
|
✗ |
entr(:,1)=0.5*entr0(:,1) |
| 51 |
|
✗ |
detr(:,1)=0.5*detr0(:,1) |
| 52 |
|
✗ |
fm(:,1)=0. |
| 53 |
|
✗ |
do k=1,nlay-1 |
| 54 |
|
✗ |
masse(:,k+1)=0.5*(masse0(:,k)+masse0(:,k+1)) |
| 55 |
|
✗ |
entr(:,k+1)=0.5*(entr0(:,k)+entr0(:,k+1)) |
| 56 |
|
✗ |
detr(:,k+1)=0.5*(detr0(:,k)+detr0(:,k+1)) |
| 57 |
|
✗ |
fm(:,k+1)=fm(:,k)+entr(:,k)-detr(:,k) |
| 58 |
|
|
enddo |
| 59 |
|
✗ |
fm(:,nlay+1)=0. |
| 60 |
|
|
|
| 61 |
|
|
! calcul de la valeur dans les ascendances |
| 62 |
|
✗ |
do ig=1,ngrid |
| 63 |
|
✗ |
qa(ig,1)=q(ig,1) |
| 64 |
|
|
enddo |
| 65 |
|
|
|
| 66 |
|
|
|
| 67 |
|
|
|
| 68 |
|
✗ |
do isrf=1,nsrf |
| 69 |
|
|
|
| 70 |
|
✗ |
q(:,:)=tke(:,:,isrf) |
| 71 |
|
|
|
| 72 |
|
|
if (1==1) then |
| 73 |
|
✗ |
do k=2,nlay |
| 74 |
|
✗ |
do ig=1,ngrid |
| 75 |
|
✗ |
if ((fm(ig,k+1)+detr(ig,k))*ptimestep.gt. & |
| 76 |
|
|
& 1.e-5*masse(ig,k)) then |
| 77 |
|
|
qa(ig,k)=(fm(ig,k)*qa(ig,k-1)+entr(ig,k)*q(ig,k)) & |
| 78 |
|
✗ |
& /(fm(ig,k+1)+detr(ig,k)) |
| 79 |
|
|
else |
| 80 |
|
✗ |
qa(ig,k)=q(ig,k) |
| 81 |
|
|
endif |
| 82 |
|
|
if (qa(ig,k).lt.0.) then |
| 83 |
|
|
! print*,'qa<0!!!' |
| 84 |
|
|
endif |
| 85 |
|
✗ |
if (q(ig,k).lt.0.) then |
| 86 |
|
|
! print*,'q<0!!!' |
| 87 |
|
|
endif |
| 88 |
|
|
enddo |
| 89 |
|
|
enddo |
| 90 |
|
|
|
| 91 |
|
|
! Calcul du flux subsident |
| 92 |
|
|
|
| 93 |
|
✗ |
do k=2,nlay |
| 94 |
|
✗ |
do ig=1,ngrid |
| 95 |
|
✗ |
wqd(ig,k)=fm(ig,k)*q(ig,k) |
| 96 |
|
✗ |
if (wqd(ig,k).lt.0.) then |
| 97 |
|
|
! print*,'wqd<0!!!' |
| 98 |
|
|
endif |
| 99 |
|
|
enddo |
| 100 |
|
|
enddo |
| 101 |
|
✗ |
do ig=1,ngrid |
| 102 |
|
✗ |
wqd(ig,1)=0. |
| 103 |
|
✗ |
wqd(ig,nlay+1)=0. |
| 104 |
|
|
enddo |
| 105 |
|
|
|
| 106 |
|
|
|
| 107 |
|
|
! Calcul des tendances |
| 108 |
|
✗ |
do k=1,nlay |
| 109 |
|
✗ |
do ig=1,ngrid |
| 110 |
|
|
q(ig,k)=q(ig,k)+(detr(ig,k)*qa(ig,k)-entr(ig,k)*q(ig,k) & |
| 111 |
|
|
& -wqd(ig,k)+wqd(ig,k+1)) & |
| 112 |
|
✗ |
& *ptimestep/masse(ig,k) |
| 113 |
|
|
enddo |
| 114 |
|
|
enddo |
| 115 |
|
|
|
| 116 |
|
|
endif |
| 117 |
|
|
|
| 118 |
|
✗ |
tke(:,:,isrf)=q(:,:) |
| 119 |
|
|
|
| 120 |
|
|
enddo |
| 121 |
|
|
|
| 122 |
|
✗ |
return |
| 123 |
|
|
end |
| 124 |
|
|
|