| Line |
Branch |
Exec |
Source |
| 1 |
|
✗ |
subroutine thermcell_dv2(ngrid,nlay,ptimestep,fm,entr,masse & |
| 2 |
|
|
& ,fraca,larga & |
| 3 |
|
|
& ,u,v,du,dv,ua,va,lev_out) |
| 4 |
|
|
USE print_control_mod, ONLY: prt_level,lunout |
| 5 |
|
|
implicit none |
| 6 |
|
|
|
| 7 |
|
|
!======================================================================= |
| 8 |
|
|
! |
| 9 |
|
|
! Calcul du transport verticale dans la couche limite en presence |
| 10 |
|
|
! de "thermiques" explicitement representes |
| 11 |
|
|
! calcul du dq/dt une fois qu'on connait les ascendances |
| 12 |
|
|
! |
| 13 |
|
|
! Vectorisation, FH : 2010/03/08 |
| 14 |
|
|
! |
| 15 |
|
|
!======================================================================= |
| 16 |
|
|
|
| 17 |
|
|
|
| 18 |
|
|
integer ngrid,nlay |
| 19 |
|
|
|
| 20 |
|
|
real ptimestep |
| 21 |
|
|
real masse(ngrid,nlay),fm(ngrid,nlay+1) |
| 22 |
|
|
real fraca(ngrid,nlay+1) |
| 23 |
|
|
real larga(ngrid) |
| 24 |
|
|
real entr(ngrid,nlay) |
| 25 |
|
|
real u(ngrid,nlay) |
| 26 |
|
|
real ua(ngrid,nlay) |
| 27 |
|
|
real du(ngrid,nlay) |
| 28 |
|
|
real v(ngrid,nlay) |
| 29 |
|
|
real va(ngrid,nlay) |
| 30 |
|
|
real dv(ngrid,nlay) |
| 31 |
|
|
integer lev_out ! niveau pour les print |
| 32 |
|
|
|
| 33 |
|
✗ |
real qa(ngrid,nlay),detr(ngrid,nlay),zf,zf2 |
| 34 |
|
✗ |
real wvd(ngrid,nlay+1),wud(ngrid,nlay+1) |
| 35 |
|
✗ |
real gamma0(ngrid,nlay+1),gamma(ngrid,nlay+1) |
| 36 |
|
✗ |
real ue(ngrid,nlay),ve(ngrid,nlay) |
| 37 |
|
✗ |
LOGICAL ltherm(ngrid,nlay) |
| 38 |
|
✗ |
real dua(ngrid,nlay),dva(ngrid,nlay) |
| 39 |
|
|
integer iter |
| 40 |
|
|
|
| 41 |
|
|
integer ig,k,nlarga0 |
| 42 |
|
|
|
| 43 |
|
|
!------------------------------------------------------------------------- |
| 44 |
|
|
|
| 45 |
|
|
! calcul du detrainement |
| 46 |
|
|
!--------------------------- |
| 47 |
|
|
|
| 48 |
|
|
! print*,'THERMCELL DV2 OPTIMISE 3' |
| 49 |
|
|
|
| 50 |
|
✗ |
nlarga0=0. |
| 51 |
|
|
|
| 52 |
|
✗ |
do k=1,nlay |
| 53 |
|
✗ |
do ig=1,ngrid |
| 54 |
|
✗ |
detr(ig,k)=fm(ig,k)-fm(ig,k+1)+entr(ig,k) |
| 55 |
|
|
enddo |
| 56 |
|
|
enddo |
| 57 |
|
|
|
| 58 |
|
|
! calcul de la valeur dans les ascendances |
| 59 |
|
✗ |
do ig=1,ngrid |
| 60 |
|
✗ |
ua(ig,1)=u(ig,1) |
| 61 |
|
✗ |
va(ig,1)=v(ig,1) |
| 62 |
|
✗ |
ue(ig,1)=u(ig,1) |
| 63 |
|
✗ |
ve(ig,1)=v(ig,1) |
| 64 |
|
|
enddo |
| 65 |
|
|
|
| 66 |
|
✗ |
IF(prt_level>9)WRITE(lunout,*) & |
| 67 |
|
✗ |
& 'WARNING on initialise gamma(1:ngrid,1)=0.' |
| 68 |
|
✗ |
gamma(1:ngrid,1)=0. |
| 69 |
|
✗ |
do k=2,nlay |
| 70 |
|
✗ |
do ig=1,ngrid |
| 71 |
|
✗ |
ltherm(ig,k)=(fm(ig,k+1)+detr(ig,k))*ptimestep > 1.e-5*masse(ig,k) |
| 72 |
|
✗ |
if(ltherm(ig,k).and.larga(ig)>0.) then |
| 73 |
|
|
gamma0(ig,k)=masse(ig,k) & |
| 74 |
|
|
& *sqrt( 0.5*(fraca(ig,k+1)+fraca(ig,k)) ) & |
| 75 |
|
|
& *0.5/larga(ig) & |
| 76 |
|
✗ |
& *1. |
| 77 |
|
|
else |
| 78 |
|
✗ |
gamma0(ig,k)=0. |
| 79 |
|
|
endif |
| 80 |
|
✗ |
if (ltherm(ig,k).and.larga(ig)<=0.) nlarga0=nlarga0+1 |
| 81 |
|
|
enddo |
| 82 |
|
|
enddo |
| 83 |
|
|
|
| 84 |
|
✗ |
gamma(:,:)=0. |
| 85 |
|
|
|
| 86 |
|
✗ |
do k=2,nlay |
| 87 |
|
|
|
| 88 |
|
✗ |
do ig=1,ngrid |
| 89 |
|
✗ |
if (ltherm(ig,k)) then |
| 90 |
|
✗ |
dua(ig,k)=ua(ig,k-1)-u(ig,k-1) |
| 91 |
|
✗ |
dva(ig,k)=va(ig,k-1)-v(ig,k-1) |
| 92 |
|
|
else |
| 93 |
|
✗ |
ua(ig,k)=u(ig,k) |
| 94 |
|
✗ |
va(ig,k)=v(ig,k) |
| 95 |
|
✗ |
ue(ig,k)=u(ig,k) |
| 96 |
|
✗ |
ve(ig,k)=v(ig,k) |
| 97 |
|
|
endif |
| 98 |
|
|
enddo |
| 99 |
|
|
|
| 100 |
|
|
|
| 101 |
|
|
! Debut des iterations |
| 102 |
|
|
!---------------------- |
| 103 |
|
✗ |
do iter=1,5 |
| 104 |
|
✗ |
do ig=1,ngrid |
| 105 |
|
|
! Pour memoire : calcul prenant en compte la fraction reelle |
| 106 |
|
|
! zf=0.5*(fraca(ig,k)+fraca(ig,k+1)) |
| 107 |
|
|
! zf2=1./(1.-zf) |
| 108 |
|
|
! Calcul avec fraction infiniement petite |
| 109 |
|
|
zf=0. |
| 110 |
|
|
zf2=1. |
| 111 |
|
|
|
| 112 |
|
|
! la premi�re fois on multiplie le coefficient de freinage |
| 113 |
|
|
! par le module du vent dans la couche en dessous. |
| 114 |
|
|
! Mais pourquoi donc ??? |
| 115 |
|
✗ |
if (ltherm(ig,k)) then |
| 116 |
|
|
! On choisit une relaxation lineaire. |
| 117 |
|
|
! gamma(ig,k)=gamma0(ig,k) |
| 118 |
|
|
! On choisit une relaxation quadratique. |
| 119 |
|
✗ |
gamma(ig,k)=gamma0(ig,k)*sqrt(dua(ig,k)**2+dva(ig,k)**2) |
| 120 |
|
|
ua(ig,k)=(fm(ig,k)*ua(ig,k-1) & |
| 121 |
|
|
& +(zf2*entr(ig,k)+gamma(ig,k))*u(ig,k)) & |
| 122 |
|
|
& /(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2 & |
| 123 |
|
✗ |
& +gamma(ig,k)) |
| 124 |
|
|
va(ig,k)=(fm(ig,k)*va(ig,k-1) & |
| 125 |
|
|
& +(zf2*entr(ig,k)+gamma(ig,k))*v(ig,k)) & |
| 126 |
|
|
& /(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2 & |
| 127 |
|
✗ |
& +gamma(ig,k)) |
| 128 |
|
|
! print*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua(ig,k),dva(ig,k) |
| 129 |
|
✗ |
dua(ig,k)=ua(ig,k)-u(ig,k) |
| 130 |
|
✗ |
dva(ig,k)=va(ig,k)-v(ig,k) |
| 131 |
|
✗ |
ue(ig,k)=(u(ig,k)-zf*ua(ig,k))*zf2 |
| 132 |
|
✗ |
ve(ig,k)=(v(ig,k)-zf*va(ig,k))*zf2 |
| 133 |
|
|
endif |
| 134 |
|
|
enddo |
| 135 |
|
|
! Fin des iterations |
| 136 |
|
|
!-------------------- |
| 137 |
|
|
enddo |
| 138 |
|
|
|
| 139 |
|
|
enddo ! k=2,nlay |
| 140 |
|
|
|
| 141 |
|
|
|
| 142 |
|
|
! Calcul du flux vertical de moment dans l'environnement. |
| 143 |
|
|
!--------------------------------------------------------- |
| 144 |
|
✗ |
do k=2,nlay |
| 145 |
|
✗ |
do ig=1,ngrid |
| 146 |
|
✗ |
wud(ig,k)=fm(ig,k)*ue(ig,k) |
| 147 |
|
✗ |
wvd(ig,k)=fm(ig,k)*ve(ig,k) |
| 148 |
|
|
enddo |
| 149 |
|
|
enddo |
| 150 |
|
✗ |
do ig=1,ngrid |
| 151 |
|
✗ |
wud(ig,1)=0. |
| 152 |
|
✗ |
wud(ig,nlay+1)=0. |
| 153 |
|
✗ |
wvd(ig,1)=0. |
| 154 |
|
✗ |
wvd(ig,nlay+1)=0. |
| 155 |
|
|
enddo |
| 156 |
|
|
|
| 157 |
|
|
! calcul des tendances. |
| 158 |
|
|
!----------------------- |
| 159 |
|
✗ |
do k=1,nlay |
| 160 |
|
✗ |
do ig=1,ngrid |
| 161 |
|
|
du(ig,k)=((detr(ig,k)+gamma(ig,k))*ua(ig,k) & |
| 162 |
|
|
& -(entr(ig,k)+gamma(ig,k))*ue(ig,k) & |
| 163 |
|
|
& -wud(ig,k)+wud(ig,k+1)) & |
| 164 |
|
✗ |
& /masse(ig,k) |
| 165 |
|
|
dv(ig,k)=((detr(ig,k)+gamma(ig,k))*va(ig,k) & |
| 166 |
|
|
& -(entr(ig,k)+gamma(ig,k))*ve(ig,k) & |
| 167 |
|
|
& -wvd(ig,k)+wvd(ig,k+1)) & |
| 168 |
|
✗ |
& /masse(ig,k) |
| 169 |
|
|
enddo |
| 170 |
|
|
enddo |
| 171 |
|
|
|
| 172 |
|
|
|
| 173 |
|
|
! Sorties eventuelles. |
| 174 |
|
|
!---------------------- |
| 175 |
|
|
|
| 176 |
|
✗ |
if(prt_level.GE.10) then |
| 177 |
|
✗ |
do k=1,nlay |
| 178 |
|
✗ |
do ig=1,ngrid |
| 179 |
|
✗ |
print*,'th_dv2 ig k gamma entr detr ua ue va ve wud wvd masse',ig,k,gamma(ig,k), & |
| 180 |
|
✗ |
& entr(ig,k),detr(ig,k),ua(ig,k),ue(ig,k),va(ig,k),ve(ig,k),wud(ig,k),wvd(ig,k),wud(ig,k+1),wvd(ig,k+1), & |
| 181 |
|
✗ |
& masse(ig,k) |
| 182 |
|
|
enddo |
| 183 |
|
|
enddo |
| 184 |
|
|
endif |
| 185 |
|
|
! |
| 186 |
|
✗ |
if (nlarga0>0) then |
| 187 |
|
✗ |
print*,'WARNING !!!!!! DANS THERMCELL_DV2 ' |
| 188 |
|
✗ |
print*,nlarga0,' points pour lesquels laraga=0. dans un thermique' |
| 189 |
|
✗ |
print*,'Il faudrait decortiquer ces points' |
| 190 |
|
|
endif |
| 191 |
|
|
|
| 192 |
|
✗ |
return |
| 193 |
|
|
end |
| 194 |
|
|
|