| Line |
Branch |
Exec |
Source |
| 1 |
|
✗ |
SUBROUTINE thermcell_2002(ngrid, nlay, ptimestep, iflag_thermals, pplay, & |
| 2 |
|
✗ |
pplev, pphi, pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0, & |
| 3 |
|
✗ |
fraca, wa_moy, r_aspect, l_mix, w2di, tho) |
| 4 |
|
|
|
| 5 |
|
|
USE dimphy |
| 6 |
|
|
USE write_field_phy |
| 7 |
|
|
IMPLICIT NONE |
| 8 |
|
|
|
| 9 |
|
|
! ======================================================================= |
| 10 |
|
|
|
| 11 |
|
|
! Calcul du transport verticale dans la couche limite en presence |
| 12 |
|
|
! de "thermiques" explicitement representes |
| 13 |
|
|
|
| 14 |
|
|
! R��criture � partir d'un listing papier � Habas, le 14/02/00 |
| 15 |
|
|
|
| 16 |
|
|
! le thermique est suppos� homog�ne et dissip� par m�lange avec |
| 17 |
|
|
! son environnement. la longueur l_mix contr�le l'efficacit� du |
| 18 |
|
|
! m�lange |
| 19 |
|
|
|
| 20 |
|
|
! Le calcul du transport des diff�rentes esp�ces se fait en prenant |
| 21 |
|
|
! en compte: |
| 22 |
|
|
! 1. un flux de masse montant |
| 23 |
|
|
! 2. un flux de masse descendant |
| 24 |
|
|
! 3. un entrainement |
| 25 |
|
|
! 4. un detrainement |
| 26 |
|
|
|
| 27 |
|
|
! ======================================================================= |
| 28 |
|
|
|
| 29 |
|
|
! ----------------------------------------------------------------------- |
| 30 |
|
|
! declarations: |
| 31 |
|
|
! ------------- |
| 32 |
|
|
|
| 33 |
|
|
include "YOMCST.h" |
| 34 |
|
|
|
| 35 |
|
|
! arguments: |
| 36 |
|
|
! ---------- |
| 37 |
|
|
|
| 38 |
|
|
INTEGER ngrid, nlay, w2di, iflag_thermals |
| 39 |
|
|
REAL tho |
| 40 |
|
|
REAL ptimestep, l_mix, r_aspect |
| 41 |
|
|
REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
| 42 |
|
|
REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
| 43 |
|
|
REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
| 44 |
|
|
REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
| 45 |
|
|
REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
| 46 |
|
|
REAL pphi(ngrid, nlay) |
| 47 |
|
✗ |
REAL fraca(ngrid, nlay+1), zw2(ngrid, nlay+1) |
| 48 |
|
|
|
| 49 |
|
|
INTEGER, SAVE :: idetr = 3, lev_out = 1 |
| 50 |
|
|
!$OMP THREADPRIVATE(idetr,lev_out) |
| 51 |
|
|
|
| 52 |
|
|
! local: |
| 53 |
|
|
! ------ |
| 54 |
|
|
|
| 55 |
|
|
INTEGER, SAVE :: dvdq = 0, flagdq = 0, dqimpl = 1 |
| 56 |
|
|
LOGICAL, SAVE :: debut = .TRUE. |
| 57 |
|
|
!$OMP THREADPRIVATE(dvdq,flagdq,debut,dqimpl) |
| 58 |
|
|
|
| 59 |
|
✗ |
INTEGER ig, k, l, lmax(klon, klev+1), lmaxa(klon), lmix(klon) |
| 60 |
|
✗ |
REAL zmax(klon), zw, zz, ztva(klon, klev), zzz |
| 61 |
|
|
|
| 62 |
|
✗ |
REAL zlev(klon, klev+1), zlay(klon, klev) |
| 63 |
|
✗ |
REAL zh(klon, klev), zdhadj(klon, klev) |
| 64 |
|
✗ |
REAL ztv(klon, klev) |
| 65 |
|
✗ |
REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
| 66 |
|
|
REAL wh(klon, klev+1) |
| 67 |
|
|
REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
| 68 |
|
|
REAL zla(klon, klev+1) |
| 69 |
|
|
REAL zwa(klon, klev+1) |
| 70 |
|
|
REAL zld(klon, klev+1) |
| 71 |
|
|
REAL zwd(klon, klev+1) |
| 72 |
|
|
REAL zsortie(klon, klev) |
| 73 |
|
✗ |
REAL zva(klon, klev) |
| 74 |
|
✗ |
REAL zua(klon, klev) |
| 75 |
|
✗ |
REAL zoa(klon, klev) |
| 76 |
|
|
|
| 77 |
|
✗ |
REAL zha(klon, klev) |
| 78 |
|
|
REAL wa_moy(klon, klev+1) |
| 79 |
|
✗ |
REAL fracc(klon, klev+1) |
| 80 |
|
|
REAL zf, zf2 |
| 81 |
|
✗ |
REAL thetath2(klon, klev), wth2(klon, klev) |
| 82 |
|
|
! common/comtherm/thetath2,wth2 |
| 83 |
|
|
|
| 84 |
|
|
REAL count_time |
| 85 |
|
|
|
| 86 |
|
|
LOGICAL sorties |
| 87 |
|
✗ |
REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
| 88 |
|
✗ |
REAL zpspsk(klon, klev) |
| 89 |
|
|
|
| 90 |
|
✗ |
REAL wmax(klon, klev), wmaxa(klon) |
| 91 |
|
|
|
| 92 |
|
✗ |
REAL wa(klon, klev, klev+1) |
| 93 |
|
✗ |
REAL wd(klon, klev+1) |
| 94 |
|
|
REAL larg_part(klon, klev, klev+1) |
| 95 |
|
✗ |
REAL fracd(klon, klev+1) |
| 96 |
|
✗ |
REAL xxx(klon, klev+1) |
| 97 |
|
✗ |
REAL larg_cons(klon, klev+1) |
| 98 |
|
✗ |
REAL larg_detr(klon, klev+1) |
| 99 |
|
✗ |
REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
| 100 |
|
✗ |
REAL pu_therm(klon, klev), pv_therm(klon, klev) |
| 101 |
|
✗ |
REAL fm(klon, klev+1), entr(klon, klev) |
| 102 |
|
✗ |
REAL fmc(klon, klev+1) |
| 103 |
|
|
|
| 104 |
|
|
CHARACTER (LEN=2) :: str2 |
| 105 |
|
|
CHARACTER (LEN=10) :: str10 |
| 106 |
|
|
|
| 107 |
|
|
CHARACTER (LEN=20) :: modname = 'thermcell2002' |
| 108 |
|
|
CHARACTER (LEN=80) :: abort_message |
| 109 |
|
|
|
| 110 |
|
|
LOGICAL vtest(klon), down |
| 111 |
|
|
|
| 112 |
|
|
EXTERNAL scopy |
| 113 |
|
|
|
| 114 |
|
|
INTEGER ncorrec, ll |
| 115 |
|
|
SAVE ncorrec |
| 116 |
|
|
DATA ncorrec/0/ |
| 117 |
|
|
!$OMP THREADPRIVATE(ncorrec) |
| 118 |
|
|
|
| 119 |
|
|
|
| 120 |
|
|
! ----------------------------------------------------------------------- |
| 121 |
|
|
! initialisation: |
| 122 |
|
|
! --------------- |
| 123 |
|
|
|
| 124 |
|
|
sorties = .TRUE. |
| 125 |
|
✗ |
IF (ngrid/=klon) THEN |
| 126 |
|
✗ |
PRINT * |
| 127 |
|
✗ |
PRINT *, 'STOP dans convadj' |
| 128 |
|
✗ |
PRINT *, 'ngrid =', ngrid |
| 129 |
|
✗ |
PRINT *, 'klon =', klon |
| 130 |
|
|
END IF |
| 131 |
|
|
|
| 132 |
|
|
! ----------------------------------------------------------------------- |
| 133 |
|
|
! incrementation eventuelle de tendances precedentes: |
| 134 |
|
|
! --------------------------------------------------- |
| 135 |
|
|
|
| 136 |
|
|
! print*,'0 OK convect8' |
| 137 |
|
|
|
| 138 |
|
✗ |
DO l = 1, nlay |
| 139 |
|
✗ |
DO ig = 1, ngrid |
| 140 |
|
✗ |
zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
| 141 |
|
✗ |
zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
| 142 |
|
✗ |
zu(ig, l) = pu(ig, l) |
| 143 |
|
✗ |
zv(ig, l) = pv(ig, l) |
| 144 |
|
✗ |
zo(ig, l) = po(ig, l) |
| 145 |
|
✗ |
ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
| 146 |
|
|
END DO |
| 147 |
|
|
END DO |
| 148 |
|
|
|
| 149 |
|
|
! print*,'1 OK convect8' |
| 150 |
|
|
! -------------------- |
| 151 |
|
|
|
| 152 |
|
|
|
| 153 |
|
|
! + + + + + + + + + + + |
| 154 |
|
|
|
| 155 |
|
|
|
| 156 |
|
|
! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
| 157 |
|
|
! wh,wt,wo ... |
| 158 |
|
|
|
| 159 |
|
|
! + + + + + + + + + + + zh,zu,zv,zo,rho |
| 160 |
|
|
|
| 161 |
|
|
|
| 162 |
|
|
! -------------------- zlev(1) |
| 163 |
|
|
! \\\\\\\\\\\\\\\\\\\ |
| 164 |
|
|
|
| 165 |
|
|
|
| 166 |
|
|
! ----------------------------------------------------------------------- |
| 167 |
|
|
! Calcul des altitudes des couches |
| 168 |
|
|
! ----------------------------------------------------------------------- |
| 169 |
|
|
|
| 170 |
|
✗ |
IF (debut) THEN |
| 171 |
|
✗ |
flagdq = (iflag_thermals-1000)/100 |
| 172 |
|
✗ |
dvdq = (iflag_thermals-(1000+flagdq*100))/10 |
| 173 |
|
✗ |
IF (flagdq==2) dqimpl = -1 |
| 174 |
|
✗ |
IF (flagdq==3) dqimpl = 1 |
| 175 |
|
✗ |
debut = .FALSE. |
| 176 |
|
|
END IF |
| 177 |
|
✗ |
PRINT *, 'TH flag th ', iflag_thermals, flagdq, dvdq, dqimpl |
| 178 |
|
|
|
| 179 |
|
✗ |
DO l = 2, nlay |
| 180 |
|
✗ |
DO ig = 1, ngrid |
| 181 |
|
✗ |
zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
| 182 |
|
|
END DO |
| 183 |
|
|
END DO |
| 184 |
|
✗ |
DO ig = 1, ngrid |
| 185 |
|
✗ |
zlev(ig, 1) = 0. |
| 186 |
|
✗ |
zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
| 187 |
|
|
END DO |
| 188 |
|
✗ |
DO l = 1, nlay |
| 189 |
|
✗ |
DO ig = 1, ngrid |
| 190 |
|
✗ |
zlay(ig, l) = pphi(ig, l)/rg |
| 191 |
|
|
END DO |
| 192 |
|
|
END DO |
| 193 |
|
|
|
| 194 |
|
|
! print*,'2 OK convect8' |
| 195 |
|
|
! ----------------------------------------------------------------------- |
| 196 |
|
|
! Calcul des densites |
| 197 |
|
|
! ----------------------------------------------------------------------- |
| 198 |
|
|
|
| 199 |
|
✗ |
DO l = 1, nlay |
| 200 |
|
✗ |
DO ig = 1, ngrid |
| 201 |
|
✗ |
rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
| 202 |
|
|
END DO |
| 203 |
|
|
END DO |
| 204 |
|
|
|
| 205 |
|
✗ |
DO l = 2, nlay |
| 206 |
|
✗ |
DO ig = 1, ngrid |
| 207 |
|
✗ |
rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
| 208 |
|
|
END DO |
| 209 |
|
|
END DO |
| 210 |
|
|
|
| 211 |
|
✗ |
DO k = 1, nlay |
| 212 |
|
✗ |
DO l = 1, nlay + 1 |
| 213 |
|
✗ |
DO ig = 1, ngrid |
| 214 |
|
✗ |
wa(ig, k, l) = 0. |
| 215 |
|
|
END DO |
| 216 |
|
|
END DO |
| 217 |
|
|
END DO |
| 218 |
|
|
|
| 219 |
|
|
! print*,'3 OK convect8' |
| 220 |
|
|
! ------------------------------------------------------------------ |
| 221 |
|
|
! Calcul de w2, quarre de w a partir de la cape |
| 222 |
|
|
! a partir de w2, on calcule wa, vitesse de l'ascendance |
| 223 |
|
|
|
| 224 |
|
|
! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
| 225 |
|
|
! w2 est stoke dans wa |
| 226 |
|
|
|
| 227 |
|
|
! ATTENTION: dans convect8, on n'utilise le calcule des wa |
| 228 |
|
|
! independants par couches que pour calculer l'entrainement |
| 229 |
|
|
! a la base et la hauteur max de l'ascendance. |
| 230 |
|
|
|
| 231 |
|
|
! Indicages: |
| 232 |
|
|
! l'ascendance provenant du niveau k traverse l'interface l avec |
| 233 |
|
|
! une vitesse wa(k,l). |
| 234 |
|
|
|
| 235 |
|
|
! -------------------- |
| 236 |
|
|
|
| 237 |
|
|
! + + + + + + + + + + |
| 238 |
|
|
|
| 239 |
|
|
! wa(k,l) ---- -------------------- l |
| 240 |
|
|
! / ! /||\ + + + + + + + + + + |
| 241 |
|
|
! || |
| 242 |
|
|
! || -------------------- |
| 243 |
|
|
! || |
| 244 |
|
|
! || + + + + + + + + + + |
| 245 |
|
|
! || |
| 246 |
|
|
! || -------------------- |
| 247 |
|
|
! ||__ |
| 248 |
|
|
! |___ + + + + + + + + + + k |
| 249 |
|
|
|
| 250 |
|
|
! -------------------- |
| 251 |
|
|
|
| 252 |
|
|
|
| 253 |
|
|
|
| 254 |
|
|
! ------------------------------------------------------------------ |
| 255 |
|
|
|
| 256 |
|
|
|
| 257 |
|
✗ |
DO k = 1, nlay - 1 |
| 258 |
|
✗ |
DO ig = 1, ngrid |
| 259 |
|
✗ |
wa(ig, k, k) = 0. |
| 260 |
|
|
wa(ig, k, k+1) = 2.*rg*(ztv(ig,k)-ztv(ig,k+1))/ztv(ig, k+1)* & |
| 261 |
|
✗ |
(zlev(ig,k+1)-zlev(ig,k)) |
| 262 |
|
|
END DO |
| 263 |
|
✗ |
DO l = k + 1, nlay - 1 |
| 264 |
|
✗ |
DO ig = 1, ngrid |
| 265 |
|
|
wa(ig, k, l+1) = wa(ig, k, l) + 2.*rg*(ztv(ig,k)-ztv(ig,l))/ztv(ig, l & |
| 266 |
|
✗ |
)*(zlev(ig,l+1)-zlev(ig,l)) |
| 267 |
|
|
END DO |
| 268 |
|
|
END DO |
| 269 |
|
✗ |
DO ig = 1, ngrid |
| 270 |
|
✗ |
wa(ig, k, nlay+1) = 0. |
| 271 |
|
|
END DO |
| 272 |
|
|
END DO |
| 273 |
|
|
|
| 274 |
|
|
! print*,'4 OK convect8' |
| 275 |
|
|
! Calcul de la couche correspondant a la hauteur du thermique |
| 276 |
|
✗ |
DO k = 1, nlay - 1 |
| 277 |
|
✗ |
DO ig = 1, ngrid |
| 278 |
|
✗ |
lmax(ig, k) = k |
| 279 |
|
|
END DO |
| 280 |
|
✗ |
DO l = nlay, k + 1, -1 |
| 281 |
|
✗ |
DO ig = 1, ngrid |
| 282 |
|
✗ |
IF (wa(ig,k,l)<=1.E-10) lmax(ig, k) = l - 1 |
| 283 |
|
|
END DO |
| 284 |
|
|
END DO |
| 285 |
|
|
END DO |
| 286 |
|
|
|
| 287 |
|
|
! print*,'5 OK convect8' |
| 288 |
|
|
! Calcule du w max du thermique |
| 289 |
|
✗ |
DO k = 1, nlay |
| 290 |
|
✗ |
DO ig = 1, ngrid |
| 291 |
|
✗ |
wmax(ig, k) = 0. |
| 292 |
|
|
END DO |
| 293 |
|
|
END DO |
| 294 |
|
|
|
| 295 |
|
✗ |
DO k = 1, nlay - 1 |
| 296 |
|
✗ |
DO l = k, nlay |
| 297 |
|
✗ |
DO ig = 1, ngrid |
| 298 |
|
✗ |
IF (l<=lmax(ig,k)) THEN |
| 299 |
|
✗ |
wa(ig, k, l) = sqrt(wa(ig,k,l)) |
| 300 |
|
✗ |
wmax(ig, k) = max(wmax(ig,k), wa(ig,k,l)) |
| 301 |
|
|
ELSE |
| 302 |
|
✗ |
wa(ig, k, l) = 0. |
| 303 |
|
|
END IF |
| 304 |
|
|
END DO |
| 305 |
|
|
END DO |
| 306 |
|
|
END DO |
| 307 |
|
|
|
| 308 |
|
✗ |
DO k = 1, nlay - 1 |
| 309 |
|
✗ |
DO ig = 1, ngrid |
| 310 |
|
✗ |
pu_therm(ig, k) = sqrt(wmax(ig,k)) |
| 311 |
|
✗ |
pv_therm(ig, k) = sqrt(wmax(ig,k)) |
| 312 |
|
|
END DO |
| 313 |
|
|
END DO |
| 314 |
|
|
|
| 315 |
|
|
! print*,'6 OK convect8' |
| 316 |
|
|
! Longueur caracteristique correspondant a la hauteur des thermiques. |
| 317 |
|
✗ |
DO ig = 1, ngrid |
| 318 |
|
✗ |
zmax(ig) = 500. |
| 319 |
|
|
END DO |
| 320 |
|
|
! print*,'LMAX LMAX LMAX ' |
| 321 |
|
✗ |
DO k = 1, nlay - 1 |
| 322 |
|
✗ |
DO ig = 1, ngrid |
| 323 |
|
✗ |
zmax(ig) = max(zmax(ig), zlev(ig,lmax(ig,k))-zlev(ig,k)) |
| 324 |
|
|
END DO |
| 325 |
|
|
! print*,k,lmax(1,k) |
| 326 |
|
|
END DO |
| 327 |
|
|
! print*,'ZMAX ZMAX ZMAX ',zmax |
| 328 |
|
|
! call dump2d(iim,jjm-1,zmax(2:ngrid-1),'ZMAX ') |
| 329 |
|
|
|
| 330 |
|
|
! print*,'OKl336' |
| 331 |
|
|
! Calcul de l'entrainement. |
| 332 |
|
|
! Le rapport d'aspect relie la largeur de l'ascendance a l'epaisseur |
| 333 |
|
|
! de la couche d'alimentation en partant du principe que la vitesse |
| 334 |
|
|
! maximum dans l'ascendance est la vitesse d'entrainement horizontale. |
| 335 |
|
✗ |
DO k = 1, nlay |
| 336 |
|
✗ |
DO ig = 1, ngrid |
| 337 |
|
|
zzz = rho(ig, k)*wmax(ig, k)*(zlev(ig,k+1)-zlev(ig,k))/ & |
| 338 |
|
✗ |
(zmax(ig)*r_aspect) |
| 339 |
|
✗ |
IF (w2di==2) THEN |
| 340 |
|
✗ |
entr(ig, k) = entr(ig, k) + ptimestep*(zzz-entr(ig,k))/tho |
| 341 |
|
|
ELSE |
| 342 |
|
✗ |
entr(ig, k) = zzz |
| 343 |
|
|
END IF |
| 344 |
|
✗ |
ztva(ig, k) = ztv(ig, k) |
| 345 |
|
|
END DO |
| 346 |
|
|
END DO |
| 347 |
|
|
|
| 348 |
|
|
|
| 349 |
|
|
! print*,'7 OK convect8' |
| 350 |
|
✗ |
DO k = 1, klev + 1 |
| 351 |
|
✗ |
DO ig = 1, ngrid |
| 352 |
|
✗ |
zw2(ig, k) = 0. |
| 353 |
|
✗ |
fmc(ig, k) = 0. |
| 354 |
|
✗ |
larg_cons(ig, k) = 0. |
| 355 |
|
✗ |
larg_detr(ig, k) = 0. |
| 356 |
|
✗ |
wa_moy(ig, k) = 0. |
| 357 |
|
|
END DO |
| 358 |
|
|
END DO |
| 359 |
|
|
|
| 360 |
|
|
! print*,'8 OK convect8' |
| 361 |
|
✗ |
DO ig = 1, ngrid |
| 362 |
|
✗ |
lmaxa(ig) = 1 |
| 363 |
|
✗ |
lmix(ig) = 1 |
| 364 |
|
✗ |
wmaxa(ig) = 0. |
| 365 |
|
|
END DO |
| 366 |
|
|
|
| 367 |
|
|
|
| 368 |
|
|
! print*,'OKl372' |
| 369 |
|
✗ |
DO l = 1, nlay - 2 |
| 370 |
|
✗ |
DO ig = 1, ngrid |
| 371 |
|
|
! if (zw2(ig,l).lt.1.e-10.and.ztv(ig,l).gt.ztv(ig,l+1)) then |
| 372 |
|
|
! print*,'COUCOU ',l,zw2(ig,l),ztv(ig,l),ztv(ig,l+1) |
| 373 |
|
✗ |
IF (zw2(ig,l)<1.E-10 .AND. ztv(ig,l)>ztv(ig,l+1) .AND. & |
| 374 |
|
|
entr(ig,l)>1.E-10) THEN |
| 375 |
|
|
! print*,'COUCOU cas 1' |
| 376 |
|
|
! Initialisation de l'ascendance |
| 377 |
|
|
! lmix(ig)=1 |
| 378 |
|
✗ |
ztva(ig, l) = ztv(ig, l) |
| 379 |
|
✗ |
fmc(ig, l) = 0. |
| 380 |
|
✗ |
fmc(ig, l+1) = entr(ig, l) |
| 381 |
|
✗ |
zw2(ig, l) = 0. |
| 382 |
|
|
! if (.not.ztv(ig,l+1).gt.150.) then |
| 383 |
|
|
! print*,'ig,l+1,ztv(ig,l+1)' |
| 384 |
|
|
! print*, ig,l+1,ztv(ig,l+1) |
| 385 |
|
|
! endif |
| 386 |
|
|
zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
| 387 |
|
✗ |
(zlev(ig,l+1)-zlev(ig,l)) |
| 388 |
|
✗ |
larg_detr(ig, l) = 0. |
| 389 |
|
✗ |
ELSE IF (zw2(ig,l)>=1.E-10 .AND. fmc(ig,l)+entr(ig,l)>1.E-10) THEN |
| 390 |
|
|
! Incrementation... |
| 391 |
|
✗ |
fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
| 392 |
|
|
! if (.not.fmc(ig,l+1).gt.1.e-15) then |
| 393 |
|
|
! print*,'ig,l+1,fmc(ig,l+1)' |
| 394 |
|
|
! print*, ig,l+1,fmc(ig,l+1) |
| 395 |
|
|
! print*,'Fmc ',(fmc(ig,ll),ll=1,klev+1) |
| 396 |
|
|
! print*,'W2 ',(zw2(ig,ll),ll=1,klev+1) |
| 397 |
|
|
! print*,'Tv ',(ztv(ig,ll),ll=1,klev) |
| 398 |
|
|
! print*,'Entr ',(entr(ig,ll),ll=1,klev) |
| 399 |
|
|
! endif |
| 400 |
|
|
ztva(ig, l) = (fmc(ig,l)*ztva(ig,l-1)+entr(ig,l)*ztv(ig,l))/ & |
| 401 |
|
✗ |
fmc(ig, l+1) |
| 402 |
|
|
! mise a jour de la vitesse ascendante (l'air entraine de la couche |
| 403 |
|
|
! consideree commence avec une vitesse nulle). |
| 404 |
|
|
zw2(ig, l+1) = zw2(ig, l)*(fmc(ig,l)/fmc(ig,l+1))**2 + & |
| 405 |
|
✗ |
2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 406 |
|
|
END IF |
| 407 |
|
✗ |
IF (zw2(ig,l+1)<0.) THEN |
| 408 |
|
✗ |
zw2(ig, l+1) = 0. |
| 409 |
|
✗ |
lmaxa(ig) = l |
| 410 |
|
|
ELSE |
| 411 |
|
✗ |
wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
| 412 |
|
|
END IF |
| 413 |
|
✗ |
IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
| 414 |
|
|
! lmix est le niveau de la couche ou w (wa_moy) est maximum |
| 415 |
|
✗ |
lmix(ig) = l + 1 |
| 416 |
|
✗ |
wmaxa(ig) = wa_moy(ig, l+1) |
| 417 |
|
|
END IF |
| 418 |
|
|
! print*,'COUCOU cas 2 LMIX=',lmix(ig),wa_moy(ig,l+1),wmaxa(ig) |
| 419 |
|
|
END DO |
| 420 |
|
|
END DO |
| 421 |
|
|
|
| 422 |
|
|
! print*,'9 OK convect8' |
| 423 |
|
|
! print*,'WA1 ',wa_moy |
| 424 |
|
|
|
| 425 |
|
|
! determination de l'indice du debut de la mixed layer ou w decroit |
| 426 |
|
|
|
| 427 |
|
|
! calcul de la largeur de chaque ascendance dans le cas conservatif. |
| 428 |
|
|
! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
| 429 |
|
|
! d'une couche est �gale � la hauteur de la couche alimentante. |
| 430 |
|
|
! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
| 431 |
|
|
! de la vitesse d'entrainement horizontal dans la couche alimentante. |
| 432 |
|
|
|
| 433 |
|
|
! print*,'OKl439' |
| 434 |
|
✗ |
DO l = 2, nlay |
| 435 |
|
✗ |
DO ig = 1, ngrid |
| 436 |
|
✗ |
IF (l<=lmaxa(ig)) THEN |
| 437 |
|
✗ |
zw = max(wa_moy(ig,l), 1.E-10) |
| 438 |
|
✗ |
larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
| 439 |
|
|
END IF |
| 440 |
|
|
END DO |
| 441 |
|
|
END DO |
| 442 |
|
|
|
| 443 |
|
✗ |
DO l = 2, nlay |
| 444 |
|
✗ |
DO ig = 1, ngrid |
| 445 |
|
✗ |
IF (l<=lmaxa(ig)) THEN |
| 446 |
|
|
! if (idetr.eq.0) then |
| 447 |
|
|
! cette option est finalement en dur. |
| 448 |
|
✗ |
larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
| 449 |
|
|
! else if (idetr.eq.1) then |
| 450 |
|
|
! larg_detr(ig,l)=larg_cons(ig,l) |
| 451 |
|
|
! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
| 452 |
|
|
! else if (idetr.eq.2) then |
| 453 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 454 |
|
|
! s *sqrt(wa_moy(ig,l)) |
| 455 |
|
|
! else if (idetr.eq.4) then |
| 456 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 457 |
|
|
! s *wa_moy(ig,l) |
| 458 |
|
|
! endif |
| 459 |
|
|
END IF |
| 460 |
|
|
END DO |
| 461 |
|
|
END DO |
| 462 |
|
|
|
| 463 |
|
|
! print*,'10 OK convect8' |
| 464 |
|
|
! print*,'WA2 ',wa_moy |
| 465 |
|
|
! calcul de la fraction de la maille concern�e par l'ascendance en tenant |
| 466 |
|
|
! compte de l'epluchage du thermique. |
| 467 |
|
|
|
| 468 |
|
✗ |
DO l = 2, nlay |
| 469 |
|
✗ |
DO ig = 1, ngrid |
| 470 |
|
✗ |
IF (larg_cons(ig,l)>1.) THEN |
| 471 |
|
|
! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
| 472 |
|
✗ |
fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
| 473 |
|
✗ |
IF (l>lmix(ig)) THEN |
| 474 |
|
✗ |
xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
| 475 |
|
✗ |
IF (idetr==0) THEN |
| 476 |
|
✗ |
fraca(ig, l) = fraca(ig, lmix(ig)) |
| 477 |
|
✗ |
ELSE IF (idetr==1) THEN |
| 478 |
|
✗ |
fraca(ig, l) = fraca(ig, lmix(ig))*xxx(ig, l) |
| 479 |
|
✗ |
ELSE IF (idetr==2) THEN |
| 480 |
|
✗ |
fraca(ig, l) = fraca(ig, lmix(ig))*(1.-(1.-xxx(ig,l))**2) |
| 481 |
|
|
ELSE |
| 482 |
|
✗ |
fraca(ig, l) = fraca(ig, lmix(ig))*xxx(ig, l)**2 |
| 483 |
|
|
END IF |
| 484 |
|
|
END IF |
| 485 |
|
|
! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
| 486 |
|
✗ |
fraca(ig, l) = max(fraca(ig,l), 0.) |
| 487 |
|
✗ |
fraca(ig, l) = min(fraca(ig,l), 0.5) |
| 488 |
|
✗ |
fracd(ig, l) = 1. - fraca(ig, l) |
| 489 |
|
✗ |
fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
| 490 |
|
|
ELSE |
| 491 |
|
|
! wa_moy(ig,l)=0. |
| 492 |
|
✗ |
fraca(ig, l) = 0. |
| 493 |
|
✗ |
fracc(ig, l) = 0. |
| 494 |
|
✗ |
fracd(ig, l) = 1. |
| 495 |
|
|
END IF |
| 496 |
|
|
END DO |
| 497 |
|
|
END DO |
| 498 |
|
|
|
| 499 |
|
|
! print*,'11 OK convect8' |
| 500 |
|
|
! print*,'Ea3 ',wa_moy |
| 501 |
|
|
! ------------------------------------------------------------------ |
| 502 |
|
|
! Calcul de fracd, wd |
| 503 |
|
|
! somme wa - wd = 0 |
| 504 |
|
|
! ------------------------------------------------------------------ |
| 505 |
|
|
|
| 506 |
|
|
|
| 507 |
|
✗ |
DO ig = 1, ngrid |
| 508 |
|
✗ |
fm(ig, 1) = 0. |
| 509 |
|
✗ |
fm(ig, nlay+1) = 0. |
| 510 |
|
|
END DO |
| 511 |
|
|
|
| 512 |
|
✗ |
DO l = 2, nlay |
| 513 |
|
✗ |
DO ig = 1, ngrid |
| 514 |
|
✗ |
fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
| 515 |
|
|
END DO |
| 516 |
|
✗ |
DO ig = 1, ngrid |
| 517 |
|
✗ |
IF (fracd(ig,l)<0.1) THEN |
| 518 |
|
✗ |
abort_message = 'fracd trop petit' |
| 519 |
|
✗ |
CALL abort_physic(modname, abort_message, 1) |
| 520 |
|
|
ELSE |
| 521 |
|
|
! vitesse descendante "diagnostique" |
| 522 |
|
✗ |
wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
| 523 |
|
|
END IF |
| 524 |
|
|
END DO |
| 525 |
|
|
END DO |
| 526 |
|
|
|
| 527 |
|
✗ |
DO l = 1, nlay |
| 528 |
|
✗ |
DO ig = 1, ngrid |
| 529 |
|
|
! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 530 |
|
✗ |
masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
| 531 |
|
|
END DO |
| 532 |
|
|
END DO |
| 533 |
|
|
|
| 534 |
|
|
! print*,'12 OK convect8' |
| 535 |
|
|
! print*,'WA4 ',wa_moy |
| 536 |
|
|
! c------------------------------------------------------------------ |
| 537 |
|
|
! calcul du transport vertical |
| 538 |
|
|
! ------------------------------------------------------------------ |
| 539 |
|
|
|
| 540 |
|
|
GO TO 4444 |
| 541 |
|
|
! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
| 542 |
|
|
DO l = 2, nlay - 1 |
| 543 |
|
|
DO ig = 1, ngrid |
| 544 |
|
|
IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
| 545 |
|
|
ig,l+1)) THEN |
| 546 |
|
|
! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
| 547 |
|
|
! s ,fm(ig,l+1)*ptimestep |
| 548 |
|
|
! s ,' M=',masse(ig,l),masse(ig,l+1) |
| 549 |
|
|
END IF |
| 550 |
|
|
END DO |
| 551 |
|
|
END DO |
| 552 |
|
|
|
| 553 |
|
|
DO l = 1, nlay |
| 554 |
|
|
DO ig = 1, ngrid |
| 555 |
|
|
IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
| 556 |
|
|
! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
| 557 |
|
|
! s ,entr(ig,l)*ptimestep |
| 558 |
|
|
! s ,' M=',masse(ig,l) |
| 559 |
|
|
END IF |
| 560 |
|
|
END DO |
| 561 |
|
|
END DO |
| 562 |
|
|
|
| 563 |
|
|
DO l = 1, nlay |
| 564 |
|
|
DO ig = 1, ngrid |
| 565 |
|
|
IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
| 566 |
|
|
! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
| 567 |
|
|
! s ,' FM=',fm(ig,l) |
| 568 |
|
|
END IF |
| 569 |
|
|
IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
| 570 |
|
|
! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
| 571 |
|
|
! s ,' M=',masse(ig,l) |
| 572 |
|
|
! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
| 573 |
|
|
! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
| 574 |
|
|
! print*,'zlev(ig,l+1),zlev(ig,l)' |
| 575 |
|
|
! s ,zlev(ig,l+1),zlev(ig,l) |
| 576 |
|
|
! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
| 577 |
|
|
! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
| 578 |
|
|
END IF |
| 579 |
|
|
IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
| 580 |
|
|
! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
| 581 |
|
|
! s ,' E=',entr(ig,l) |
| 582 |
|
|
END IF |
| 583 |
|
|
END DO |
| 584 |
|
|
END DO |
| 585 |
|
|
|
| 586 |
|
|
4444 CONTINUE |
| 587 |
|
|
! print*,'OK 444 ' |
| 588 |
|
|
|
| 589 |
|
✗ |
IF (w2di==1) THEN |
| 590 |
|
✗ |
fm0 = fm0 + ptimestep*(fm-fm0)/tho |
| 591 |
|
✗ |
entr0 = entr0 + ptimestep*(entr-entr0)/tho |
| 592 |
|
|
ELSE |
| 593 |
|
✗ |
fm0 = fm |
| 594 |
|
✗ |
entr0 = entr |
| 595 |
|
|
END IF |
| 596 |
|
|
|
| 597 |
|
✗ |
IF (flagdq==0) THEN |
| 598 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
| 599 |
|
✗ |
zha) |
| 600 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
| 601 |
|
✗ |
zoa) |
| 602 |
|
✗ |
PRINT *, 'THERMALS OPT 1' |
| 603 |
|
✗ |
ELSE IF (flagdq==1) THEN |
| 604 |
|
|
CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
| 605 |
|
✗ |
zdhadj, zha) |
| 606 |
|
|
CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
| 607 |
|
✗ |
pdoadj, zoa) |
| 608 |
|
✗ |
PRINT *, 'THERMALS OPT 2' |
| 609 |
|
|
ELSE |
| 610 |
|
|
CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zh, & |
| 611 |
|
✗ |
zdhadj, zha, lev_out) |
| 612 |
|
|
CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zo, & |
| 613 |
|
✗ |
pdoadj, zoa, lev_out) |
| 614 |
|
✗ |
PRINT *, 'THERMALS OPT 3', dqimpl |
| 615 |
|
|
END IF |
| 616 |
|
|
|
| 617 |
|
✗ |
PRINT *, 'TH VENT ', dvdq |
| 618 |
|
✗ |
IF (dvdq==0) THEN |
| 619 |
|
|
! print*,'TH VENT OK ',dvdq |
| 620 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
| 621 |
|
✗ |
zua) |
| 622 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
| 623 |
|
✗ |
zva) |
| 624 |
|
✗ |
ELSE IF (dvdq==1) THEN |
| 625 |
|
|
CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
| 626 |
|
✗ |
zu, zv, pduadj, pdvadj, zua, zva) |
| 627 |
|
✗ |
ELSE IF (dvdq==2) THEN |
| 628 |
|
|
CALL thermcell_dv2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, & |
| 629 |
|
✗ |
zmax, zu, zv, pduadj, pdvadj, zua, zva, lev_out) |
| 630 |
|
✗ |
ELSE IF (dvdq==3) THEN |
| 631 |
|
|
CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zu, & |
| 632 |
|
✗ |
pduadj, zua, lev_out) |
| 633 |
|
|
CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zv, & |
| 634 |
|
✗ |
pdvadj, zva, lev_out) |
| 635 |
|
|
END IF |
| 636 |
|
|
|
| 637 |
|
|
! CALL writefield_phy('duadj',pduadj,klev) |
| 638 |
|
|
|
| 639 |
|
✗ |
DO l = 1, nlay |
| 640 |
|
✗ |
DO ig = 1, ngrid |
| 641 |
|
✗ |
zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
| 642 |
|
✗ |
zf2 = zf/(1.-zf) |
| 643 |
|
✗ |
thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
| 644 |
|
✗ |
wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
| 645 |
|
|
END DO |
| 646 |
|
|
END DO |
| 647 |
|
|
|
| 648 |
|
|
|
| 649 |
|
|
|
| 650 |
|
|
! print*,'13 OK convect8' |
| 651 |
|
|
! print*,'WA5 ',wa_moy |
| 652 |
|
✗ |
DO l = 1, nlay |
| 653 |
|
✗ |
DO ig = 1, ngrid |
| 654 |
|
✗ |
pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
| 655 |
|
|
END DO |
| 656 |
|
|
END DO |
| 657 |
|
|
|
| 658 |
|
|
|
| 659 |
|
|
! do l=1,nlay |
| 660 |
|
|
! do ig=1,ngrid |
| 661 |
|
|
! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
| 662 |
|
|
! print*,'WARN!!! ig=',ig,' l=',l |
| 663 |
|
|
! s ,' pdtadj=',pdtadj(ig,l) |
| 664 |
|
|
! endif |
| 665 |
|
|
! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
| 666 |
|
|
! print*,'WARN!!! ig=',ig,' l=',l |
| 667 |
|
|
! s ,' pdoadj=',pdoadj(ig,l) |
| 668 |
|
|
! endif |
| 669 |
|
|
! enddo |
| 670 |
|
|
! enddo |
| 671 |
|
|
|
| 672 |
|
|
! print*,'14 OK convect8' |
| 673 |
|
|
! ------------------------------------------------------------------ |
| 674 |
|
|
! Calculs pour les sorties |
| 675 |
|
|
! ------------------------------------------------------------------ |
| 676 |
|
|
|
| 677 |
|
|
IF (sorties) THEN |
| 678 |
|
|
DO l = 1, nlay |
| 679 |
|
|
DO ig = 1, ngrid |
| 680 |
|
|
zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
| 681 |
|
|
zld(ig, l) = fracd(ig, l)*zmax(ig) |
| 682 |
|
|
IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
| 683 |
|
|
(1.-fracd(ig,l)) |
| 684 |
|
|
END DO |
| 685 |
|
|
END DO |
| 686 |
|
|
|
| 687 |
|
|
DO l = 1, nlay |
| 688 |
|
|
DO ig = 1, ngrid |
| 689 |
|
|
detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
| 690 |
|
|
IF (detr(ig,l)<0.) THEN |
| 691 |
|
|
entr(ig, l) = entr(ig, l) - detr(ig, l) |
| 692 |
|
|
detr(ig, l) = 0. |
| 693 |
|
|
! print*,'WARNING !!! detrainement negatif ',ig,l |
| 694 |
|
|
END IF |
| 695 |
|
|
END DO |
| 696 |
|
|
END DO |
| 697 |
|
|
END IF |
| 698 |
|
|
|
| 699 |
|
|
! print*,'15 OK convect8' |
| 700 |
|
|
|
| 701 |
|
|
|
| 702 |
|
|
! if(wa_moy(1,4).gt.1.e-10) stop |
| 703 |
|
|
|
| 704 |
|
|
! print*,'19 OK convect8' |
| 705 |
|
✗ |
RETURN |
| 706 |
|
|
END SUBROUTINE thermcell_2002 |
| 707 |
|
|
|
| 708 |
|
✗ |
SUBROUTINE thermcell_cld(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, & |
| 709 |
|
✗ |
debut, pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0, zqla, & |
| 710 |
|
✗ |
lmax, zmax_sec, wmax_sec, zw_sec, lmix_sec, ratqscth, ratqsdiff & ! s |
| 711 |
|
|
! ,pu_therm,pv_therm |
| 712 |
|
|
, r_aspect, l_mix, w2di, tho) |
| 713 |
|
|
|
| 714 |
|
|
USE dimphy |
| 715 |
|
|
IMPLICIT NONE |
| 716 |
|
|
|
| 717 |
|
|
! ======================================================================= |
| 718 |
|
|
|
| 719 |
|
|
! Calcul du transport verticale dans la couche limite en presence |
| 720 |
|
|
! de "thermiques" explicitement representes |
| 721 |
|
|
|
| 722 |
|
|
! R��criture � partir d'un listing papier � Habas, le 14/02/00 |
| 723 |
|
|
|
| 724 |
|
|
! le thermique est suppos� homog�ne et dissip� par m�lange avec |
| 725 |
|
|
! son environnement. la longueur l_mix contr�le l'efficacit� du |
| 726 |
|
|
! m�lange |
| 727 |
|
|
|
| 728 |
|
|
! Le calcul du transport des diff�rentes esp�ces se fait en prenant |
| 729 |
|
|
! en compte: |
| 730 |
|
|
! 1. un flux de masse montant |
| 731 |
|
|
! 2. un flux de masse descendant |
| 732 |
|
|
! 3. un entrainement |
| 733 |
|
|
! 4. un detrainement |
| 734 |
|
|
|
| 735 |
|
|
! ======================================================================= |
| 736 |
|
|
|
| 737 |
|
|
! ----------------------------------------------------------------------- |
| 738 |
|
|
! declarations: |
| 739 |
|
|
! ------------- |
| 740 |
|
|
|
| 741 |
|
|
include "YOMCST.h" |
| 742 |
|
|
include "YOETHF.h" |
| 743 |
|
|
include "FCTTRE.h" |
| 744 |
|
|
|
| 745 |
|
|
! arguments: |
| 746 |
|
|
! ---------- |
| 747 |
|
|
|
| 748 |
|
|
INTEGER ngrid, nlay, w2di |
| 749 |
|
|
REAL tho |
| 750 |
|
|
REAL ptimestep, l_mix, r_aspect |
| 751 |
|
|
REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
| 752 |
|
|
REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
| 753 |
|
|
REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
| 754 |
|
|
REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
| 755 |
|
|
REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
| 756 |
|
|
REAL pphi(ngrid, nlay) |
| 757 |
|
|
|
| 758 |
|
|
INTEGER idetr |
| 759 |
|
|
SAVE idetr |
| 760 |
|
|
DATA idetr/3/ |
| 761 |
|
|
!$OMP THREADPRIVATE(idetr) |
| 762 |
|
|
|
| 763 |
|
|
! local: |
| 764 |
|
|
! ------ |
| 765 |
|
|
|
| 766 |
|
✗ |
INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
| 767 |
|
|
REAL zsortie1d(klon) |
| 768 |
|
|
! CR: on remplace lmax(klon,klev+1) |
| 769 |
|
✗ |
INTEGER lmax(klon), lmin(klon), lentr(klon) |
| 770 |
|
✗ |
REAL linter(klon) |
| 771 |
|
✗ |
REAL zmix(klon), fracazmix(klon) |
| 772 |
|
|
REAL alpha |
| 773 |
|
|
SAVE alpha |
| 774 |
|
|
DATA alpha/1./ |
| 775 |
|
|
!$OMP THREADPRIVATE(alpha) |
| 776 |
|
|
|
| 777 |
|
|
! RC |
| 778 |
|
✗ |
REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
| 779 |
|
|
REAL zmax_sec(klon) |
| 780 |
|
✗ |
REAL zmax_sec2(klon) |
| 781 |
|
|
REAL zw_sec(klon, klev+1) |
| 782 |
|
|
INTEGER lmix_sec(klon) |
| 783 |
|
✗ |
REAL w_est(klon, klev+1) |
| 784 |
|
|
! on garde le zmax du pas de temps precedent |
| 785 |
|
|
! real zmax0(klon) |
| 786 |
|
|
! save zmax0 |
| 787 |
|
|
! real zmix0(klon) |
| 788 |
|
|
! save zmix0 |
| 789 |
|
|
REAL, SAVE, ALLOCATABLE :: zmax0(:), zmix0(:) |
| 790 |
|
|
!$OMP THREADPRIVATE(zmax0, zmix0) |
| 791 |
|
|
|
| 792 |
|
✗ |
REAL zlev(klon, klev+1), zlay(klon, klev) |
| 793 |
|
✗ |
REAL deltaz(klon, klev) |
| 794 |
|
✗ |
REAL zh(klon, klev), zdhadj(klon, klev) |
| 795 |
|
✗ |
REAL zthl(klon, klev), zdthladj(klon, klev) |
| 796 |
|
✗ |
REAL ztv(klon, klev) |
| 797 |
|
✗ |
REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
| 798 |
|
✗ |
REAL zl(klon, klev) |
| 799 |
|
|
REAL wh(klon, klev+1) |
| 800 |
|
|
REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
| 801 |
|
|
REAL zla(klon, klev+1) |
| 802 |
|
|
REAL zwa(klon, klev+1) |
| 803 |
|
|
REAL zld(klon, klev+1) |
| 804 |
|
|
REAL zwd(klon, klev+1) |
| 805 |
|
|
REAL zsortie(klon, klev) |
| 806 |
|
✗ |
REAL zva(klon, klev) |
| 807 |
|
✗ |
REAL zua(klon, klev) |
| 808 |
|
✗ |
REAL zoa(klon, klev) |
| 809 |
|
|
|
| 810 |
|
✗ |
REAL zta(klon, klev) |
| 811 |
|
✗ |
REAL zha(klon, klev) |
| 812 |
|
✗ |
REAL wa_moy(klon, klev+1) |
| 813 |
|
✗ |
REAL fraca(klon, klev+1) |
| 814 |
|
✗ |
REAL fracc(klon, klev+1) |
| 815 |
|
|
REAL zf, zf2 |
| 816 |
|
|
REAL thetath2(klon, klev), wth2(klon, klev), wth3(klon, klev) |
| 817 |
|
|
REAL q2(klon, klev) |
| 818 |
|
✗ |
REAL dtheta(klon, klev) |
| 819 |
|
|
! common/comtherm/thetath2,wth2 |
| 820 |
|
|
|
| 821 |
|
|
REAL ratqscth(klon, klev) |
| 822 |
|
|
REAL sum |
| 823 |
|
|
REAL sumdiff |
| 824 |
|
|
REAL ratqsdiff(klon, klev) |
| 825 |
|
|
REAL count_time |
| 826 |
|
|
INTEGER ialt |
| 827 |
|
|
|
| 828 |
|
|
LOGICAL sorties |
| 829 |
|
✗ |
REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
| 830 |
|
✗ |
REAL zpspsk(klon, klev) |
| 831 |
|
|
|
| 832 |
|
|
! real wmax(klon,klev),wmaxa(klon) |
| 833 |
|
✗ |
REAL wmax(klon), wmaxa(klon) |
| 834 |
|
|
REAL wmax_sec(klon) |
| 835 |
|
✗ |
REAL wmax_sec2(klon) |
| 836 |
|
✗ |
REAL wa(klon, klev, klev+1) |
| 837 |
|
✗ |
REAL wd(klon, klev+1) |
| 838 |
|
|
REAL larg_part(klon, klev, klev+1) |
| 839 |
|
✗ |
REAL fracd(klon, klev+1) |
| 840 |
|
✗ |
REAL xxx(klon, klev+1) |
| 841 |
|
✗ |
REAL larg_cons(klon, klev+1) |
| 842 |
|
✗ |
REAL larg_detr(klon, klev+1) |
| 843 |
|
✗ |
REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
| 844 |
|
|
REAL massetot(klon, klev) |
| 845 |
|
✗ |
REAL detr0(klon, klev) |
| 846 |
|
✗ |
REAL alim0(klon, klev) |
| 847 |
|
|
REAL pu_therm(klon, klev), pv_therm(klon, klev) |
| 848 |
|
✗ |
REAL fm(klon, klev+1), entr(klon, klev) |
| 849 |
|
✗ |
REAL fmc(klon, klev+1) |
| 850 |
|
|
|
| 851 |
|
|
REAL zcor, zdelta, zcvm5, qlbef |
| 852 |
|
✗ |
REAL tbef(klon), qsatbef(klon) |
| 853 |
|
|
REAL dqsat_dt, dt, num, denom |
| 854 |
|
|
REAL reps, rlvcp, ddt0 |
| 855 |
|
✗ |
REAL ztla(klon, klev), zqla(klon, klev), zqta(klon, klev) |
| 856 |
|
|
! CR niveau de condensation |
| 857 |
|
|
REAL nivcon(klon) |
| 858 |
|
|
REAL zcon(klon) |
| 859 |
|
✗ |
REAL zqsat(klon, klev) |
| 860 |
|
✗ |
REAL zqsatth(klon, klev) |
| 861 |
|
|
PARAMETER (ddt0=.01) |
| 862 |
|
|
|
| 863 |
|
|
|
| 864 |
|
|
! CR:nouvelles variables |
| 865 |
|
✗ |
REAL f_star(klon, klev+1), entr_star(klon, klev) |
| 866 |
|
✗ |
REAL detr_star(klon, klev) |
| 867 |
|
✗ |
REAL alim_star_tot(klon), alim_star2(klon) |
| 868 |
|
✗ |
REAL entr_star_tot(klon) |
| 869 |
|
✗ |
REAL detr_star_tot(klon) |
| 870 |
|
✗ |
REAL alim_star(klon, klev) |
| 871 |
|
✗ |
REAL alim(klon, klev) |
| 872 |
|
✗ |
REAL nu(klon, klev) |
| 873 |
|
✗ |
REAL nu_e(klon, klev) |
| 874 |
|
|
REAL nu_min |
| 875 |
|
|
REAL nu_max |
| 876 |
|
|
REAL nu_r |
| 877 |
|
✗ |
REAL f(klon) |
| 878 |
|
|
! real f(klon), f0(klon) |
| 879 |
|
|
! save f0 |
| 880 |
|
|
REAL, SAVE, ALLOCATABLE :: f0(:) |
| 881 |
|
|
!$OMP THREADPRIVATE(f0) |
| 882 |
|
|
|
| 883 |
|
|
REAL f_old |
| 884 |
|
✗ |
REAL zlevinter(klon) |
| 885 |
|
|
LOGICAL, SAVE :: first = .TRUE. |
| 886 |
|
|
!$OMP THREADPRIVATE(first) |
| 887 |
|
|
! data first /.false./ |
| 888 |
|
|
! save first |
| 889 |
|
|
LOGICAL nuage |
| 890 |
|
|
! save nuage |
| 891 |
|
|
LOGICAL boucle |
| 892 |
|
|
LOGICAL therm |
| 893 |
|
|
LOGICAL debut |
| 894 |
|
|
LOGICAL rale |
| 895 |
|
✗ |
INTEGER test(klon) |
| 896 |
|
|
INTEGER signe_zw2 |
| 897 |
|
|
! RC |
| 898 |
|
|
|
| 899 |
|
|
CHARACTER *2 str2 |
| 900 |
|
|
CHARACTER *10 str10 |
| 901 |
|
|
|
| 902 |
|
|
CHARACTER (LEN=20) :: modname = 'thermcell_cld' |
| 903 |
|
|
CHARACTER (LEN=80) :: abort_message |
| 904 |
|
|
|
| 905 |
|
|
LOGICAL vtest(klon), down |
| 906 |
|
✗ |
LOGICAL zsat(klon) |
| 907 |
|
|
|
| 908 |
|
|
EXTERNAL scopy |
| 909 |
|
|
|
| 910 |
|
|
INTEGER ncorrec, ll |
| 911 |
|
|
SAVE ncorrec |
| 912 |
|
|
DATA ncorrec/0/ |
| 913 |
|
|
!$OMP THREADPRIVATE(ncorrec) |
| 914 |
|
|
|
| 915 |
|
|
|
| 916 |
|
|
|
| 917 |
|
|
! ----------------------------------------------------------------------- |
| 918 |
|
|
! initialisation: |
| 919 |
|
|
! --------------- |
| 920 |
|
|
|
| 921 |
|
✗ |
IF (first) THEN |
| 922 |
|
✗ |
ALLOCATE (zmix0(klon)) |
| 923 |
|
✗ |
ALLOCATE (zmax0(klon)) |
| 924 |
|
✗ |
ALLOCATE (f0(klon)) |
| 925 |
|
✗ |
first = .FALSE. |
| 926 |
|
|
END IF |
| 927 |
|
|
|
| 928 |
|
|
sorties = .FALSE. |
| 929 |
|
|
! print*,'NOUVEAU DETR PLUIE ' |
| 930 |
|
✗ |
IF (ngrid/=klon) THEN |
| 931 |
|
✗ |
PRINT * |
| 932 |
|
✗ |
PRINT *, 'STOP dans convadj' |
| 933 |
|
✗ |
PRINT *, 'ngrid =', ngrid |
| 934 |
|
✗ |
PRINT *, 'klon =', klon |
| 935 |
|
|
END IF |
| 936 |
|
|
|
| 937 |
|
|
! Initialisation |
| 938 |
|
✗ |
rlvcp = rlvtt/rcpd |
| 939 |
|
|
reps = rd/rv |
| 940 |
|
|
! initialisations de zqsat |
| 941 |
|
✗ |
DO ll = 1, nlay |
| 942 |
|
✗ |
DO ig = 1, ngrid |
| 943 |
|
✗ |
zqsat(ig, ll) = 0. |
| 944 |
|
✗ |
zqsatth(ig, ll) = 0. |
| 945 |
|
|
END DO |
| 946 |
|
|
END DO |
| 947 |
|
|
|
| 948 |
|
|
! on met le first a true pour le premier passage de la journ�e |
| 949 |
|
✗ |
DO ig = 1, klon |
| 950 |
|
✗ |
test(ig) = 0 |
| 951 |
|
|
END DO |
| 952 |
|
✗ |
IF (debut) THEN |
| 953 |
|
✗ |
DO ig = 1, klon |
| 954 |
|
✗ |
test(ig) = 1 |
| 955 |
|
✗ |
f0(ig) = 0. |
| 956 |
|
✗ |
zmax0(ig) = 0. |
| 957 |
|
|
END DO |
| 958 |
|
|
END IF |
| 959 |
|
✗ |
DO ig = 1, klon |
| 960 |
|
✗ |
IF ((.NOT. debut) .AND. (f0(ig)<1.E-10)) THEN |
| 961 |
|
✗ |
test(ig) = 1 |
| 962 |
|
|
END IF |
| 963 |
|
|
END DO |
| 964 |
|
|
! do ig=1,klon |
| 965 |
|
|
! print*,'test(ig)',test(ig),zmax0(ig) |
| 966 |
|
|
! enddo |
| 967 |
|
|
nuage = .FALSE. |
| 968 |
|
|
! ----------------------------------------------------------------------- |
| 969 |
|
|
! AM Calcul de T,q,ql a partir de Tl et qT |
| 970 |
|
|
! --------------------------------------------------- |
| 971 |
|
|
|
| 972 |
|
|
! Pr Tprec=Tl calcul de qsat |
| 973 |
|
|
! Si qsat>qT T=Tl, q=qT |
| 974 |
|
|
! Sinon DDT=(-Tprec+Tl+RLVCP (qT-qsat(T')) / (1+RLVCP dqsat/dt) |
| 975 |
|
|
! On cherche DDT < DDT0 |
| 976 |
|
|
|
| 977 |
|
|
! defaut |
| 978 |
|
✗ |
DO ll = 1, nlay |
| 979 |
|
✗ |
DO ig = 1, ngrid |
| 980 |
|
✗ |
zo(ig, ll) = po(ig, ll) |
| 981 |
|
✗ |
zl(ig, ll) = 0. |
| 982 |
|
✗ |
zh(ig, ll) = pt(ig, ll) |
| 983 |
|
|
END DO |
| 984 |
|
|
END DO |
| 985 |
|
✗ |
DO ig = 1, ngrid |
| 986 |
|
✗ |
zsat(ig) = .FALSE. |
| 987 |
|
|
END DO |
| 988 |
|
|
|
| 989 |
|
|
|
| 990 |
|
✗ |
DO ll = 1, nlay |
| 991 |
|
|
! les points insatures sont definitifs |
| 992 |
|
✗ |
DO ig = 1, ngrid |
| 993 |
|
✗ |
tbef(ig) = pt(ig, ll) |
| 994 |
|
✗ |
zdelta = max(0., sign(1.,rtt-tbef(ig))) |
| 995 |
|
✗ |
qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
| 996 |
|
✗ |
qsatbef(ig) = min(0.5, qsatbef(ig)) |
| 997 |
|
✗ |
zcor = 1./(1.-retv*qsatbef(ig)) |
| 998 |
|
✗ |
qsatbef(ig) = qsatbef(ig)*zcor |
| 999 |
|
✗ |
zsat(ig) = (max(0.,po(ig,ll)-qsatbef(ig))>1.E-10) |
| 1000 |
|
|
END DO |
| 1001 |
|
|
|
| 1002 |
|
✗ |
DO ig = 1, ngrid |
| 1003 |
|
✗ |
IF (zsat(ig) .AND. (1==1)) THEN |
| 1004 |
|
✗ |
qlbef = max(0., po(ig,ll)-qsatbef(ig)) |
| 1005 |
|
|
! si sature: ql est surestime, d'ou la sous-relax |
| 1006 |
|
✗ |
dt = 0.5*rlvcp*qlbef |
| 1007 |
|
|
! write(18,*),'DT0=',DT |
| 1008 |
|
|
! on pourra enchainer 2 ou 3 calculs sans Do while |
| 1009 |
|
✗ |
DO WHILE (abs(dt)>ddt0) |
| 1010 |
|
|
! il faut verifier si c,a conserve quand on repasse en insature ... |
| 1011 |
|
✗ |
tbef(ig) = tbef(ig) + dt |
| 1012 |
|
✗ |
zdelta = max(0., sign(1.,rtt-tbef(ig))) |
| 1013 |
|
✗ |
qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
| 1014 |
|
✗ |
qsatbef(ig) = min(0.5, qsatbef(ig)) |
| 1015 |
|
✗ |
zcor = 1./(1.-retv*qsatbef(ig)) |
| 1016 |
|
✗ |
qsatbef(ig) = qsatbef(ig)*zcor |
| 1017 |
|
|
! on veut le signe de qlbef |
| 1018 |
|
✗ |
qlbef = po(ig, ll) - qsatbef(ig) |
| 1019 |
|
|
zdelta = max(0., sign(1.,rtt-tbef(ig))) |
| 1020 |
|
✗ |
zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
| 1021 |
|
✗ |
zcor = 1./(1.-retv*qsatbef(ig)) |
| 1022 |
|
✗ |
dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
| 1023 |
|
✗ |
num = -tbef(ig) + pt(ig, ll) + rlvcp*qlbef |
| 1024 |
|
✗ |
denom = 1. + rlvcp*dqsat_dt |
| 1025 |
|
✗ |
IF (denom<1.E-10) THEN |
| 1026 |
|
✗ |
PRINT *, 'pb denom' |
| 1027 |
|
|
END IF |
| 1028 |
|
✗ |
dt = num/denom |
| 1029 |
|
|
END DO |
| 1030 |
|
|
! on ecrit de maniere conservative (sat ou non) |
| 1031 |
|
✗ |
zl(ig, ll) = max(0., qlbef) |
| 1032 |
|
|
! T = Tl +Lv/Cp ql |
| 1033 |
|
✗ |
zh(ig, ll) = pt(ig, ll) + rlvcp*zl(ig, ll) |
| 1034 |
|
✗ |
zo(ig, ll) = po(ig, ll) - zl(ig, ll) |
| 1035 |
|
|
END IF |
| 1036 |
|
|
! on ecrit zqsat |
| 1037 |
|
✗ |
zqsat(ig, ll) = qsatbef(ig) |
| 1038 |
|
|
END DO |
| 1039 |
|
|
END DO |
| 1040 |
|
|
! AM fin |
| 1041 |
|
|
|
| 1042 |
|
|
! ----------------------------------------------------------------------- |
| 1043 |
|
|
! incrementation eventuelle de tendances precedentes: |
| 1044 |
|
|
! --------------------------------------------------- |
| 1045 |
|
|
|
| 1046 |
|
|
! print*,'0 OK convect8' |
| 1047 |
|
|
|
| 1048 |
|
✗ |
DO l = 1, nlay |
| 1049 |
|
✗ |
DO ig = 1, ngrid |
| 1050 |
|
✗ |
zpspsk(ig, l) = (pplay(ig,l)/100000.)**rkappa |
| 1051 |
|
|
! zpspsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**RKAPPA |
| 1052 |
|
|
! zh(ig,l)=pt(ig,l)/zpspsk(ig,l) |
| 1053 |
|
✗ |
zu(ig, l) = pu(ig, l) |
| 1054 |
|
✗ |
zv(ig, l) = pv(ig, l) |
| 1055 |
|
|
! zo(ig,l)=po(ig,l) |
| 1056 |
|
|
! ztv(ig,l)=zh(ig,l)*(1.+0.61*zo(ig,l)) |
| 1057 |
|
|
! AM attention zh est maintenant le profil de T et plus le profil de |
| 1058 |
|
|
! theta ! |
| 1059 |
|
|
|
| 1060 |
|
|
! T-> Theta |
| 1061 |
|
✗ |
ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
| 1062 |
|
|
! AM Theta_v |
| 1063 |
|
✗ |
ztv(ig, l) = ztv(ig, l)*(1.+retv*(zo(ig,l))-zl(ig,l)) |
| 1064 |
|
|
! AM Thetal |
| 1065 |
|
✗ |
zthl(ig, l) = pt(ig, l)/zpspsk(ig, l) |
| 1066 |
|
|
|
| 1067 |
|
|
END DO |
| 1068 |
|
|
END DO |
| 1069 |
|
|
|
| 1070 |
|
|
! print*,'1 OK convect8' |
| 1071 |
|
|
! -------------------- |
| 1072 |
|
|
|
| 1073 |
|
|
|
| 1074 |
|
|
! + + + + + + + + + + + |
| 1075 |
|
|
|
| 1076 |
|
|
|
| 1077 |
|
|
! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
| 1078 |
|
|
! wh,wt,wo ... |
| 1079 |
|
|
|
| 1080 |
|
|
! + + + + + + + + + + + zh,zu,zv,zo,rho |
| 1081 |
|
|
|
| 1082 |
|
|
|
| 1083 |
|
|
! -------------------- zlev(1) |
| 1084 |
|
|
! \\\\\\\\\\\\\\\\\\\ |
| 1085 |
|
|
|
| 1086 |
|
|
|
| 1087 |
|
|
! ----------------------------------------------------------------------- |
| 1088 |
|
|
! Calcul des altitudes des couches |
| 1089 |
|
|
! ----------------------------------------------------------------------- |
| 1090 |
|
|
|
| 1091 |
|
✗ |
DO l = 2, nlay |
| 1092 |
|
✗ |
DO ig = 1, ngrid |
| 1093 |
|
✗ |
zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
| 1094 |
|
|
END DO |
| 1095 |
|
|
END DO |
| 1096 |
|
✗ |
DO ig = 1, ngrid |
| 1097 |
|
✗ |
zlev(ig, 1) = 0. |
| 1098 |
|
✗ |
zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
| 1099 |
|
|
END DO |
| 1100 |
|
✗ |
DO l = 1, nlay |
| 1101 |
|
✗ |
DO ig = 1, ngrid |
| 1102 |
|
✗ |
zlay(ig, l) = pphi(ig, l)/rg |
| 1103 |
|
|
END DO |
| 1104 |
|
|
END DO |
| 1105 |
|
|
! calcul de deltaz |
| 1106 |
|
✗ |
DO l = 1, nlay |
| 1107 |
|
✗ |
DO ig = 1, ngrid |
| 1108 |
|
✗ |
deltaz(ig, l) = zlev(ig, l+1) - zlev(ig, l) |
| 1109 |
|
|
END DO |
| 1110 |
|
|
END DO |
| 1111 |
|
|
|
| 1112 |
|
|
! print*,'2 OK convect8' |
| 1113 |
|
|
! ----------------------------------------------------------------------- |
| 1114 |
|
|
! Calcul des densites |
| 1115 |
|
|
! ----------------------------------------------------------------------- |
| 1116 |
|
|
|
| 1117 |
|
✗ |
DO l = 1, nlay |
| 1118 |
|
✗ |
DO ig = 1, ngrid |
| 1119 |
|
|
! rho(ig,l)=pplay(ig,l)/(zpspsk(ig,l)*RD*zh(ig,l)) |
| 1120 |
|
✗ |
rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*ztv(ig,l)) |
| 1121 |
|
|
END DO |
| 1122 |
|
|
END DO |
| 1123 |
|
|
|
| 1124 |
|
✗ |
DO l = 2, nlay |
| 1125 |
|
✗ |
DO ig = 1, ngrid |
| 1126 |
|
✗ |
rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
| 1127 |
|
|
END DO |
| 1128 |
|
|
END DO |
| 1129 |
|
|
|
| 1130 |
|
✗ |
DO k = 1, nlay |
| 1131 |
|
✗ |
DO l = 1, nlay + 1 |
| 1132 |
|
✗ |
DO ig = 1, ngrid |
| 1133 |
|
✗ |
wa(ig, k, l) = 0. |
| 1134 |
|
|
END DO |
| 1135 |
|
|
END DO |
| 1136 |
|
|
END DO |
| 1137 |
|
|
! Cr:ajout:calcul de la masse |
| 1138 |
|
✗ |
DO l = 1, nlay |
| 1139 |
|
✗ |
DO ig = 1, ngrid |
| 1140 |
|
|
! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 1141 |
|
✗ |
masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
| 1142 |
|
|
END DO |
| 1143 |
|
|
END DO |
| 1144 |
|
|
! print*,'3 OK convect8' |
| 1145 |
|
|
! ------------------------------------------------------------------ |
| 1146 |
|
|
! Calcul de w2, quarre de w a partir de la cape |
| 1147 |
|
|
! a partir de w2, on calcule wa, vitesse de l'ascendance |
| 1148 |
|
|
|
| 1149 |
|
|
! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
| 1150 |
|
|
! w2 est stoke dans wa |
| 1151 |
|
|
|
| 1152 |
|
|
! ATTENTION: dans convect8, on n'utilise le calcule des wa |
| 1153 |
|
|
! independants par couches que pour calculer l'entrainement |
| 1154 |
|
|
! a la base et la hauteur max de l'ascendance. |
| 1155 |
|
|
|
| 1156 |
|
|
! Indicages: |
| 1157 |
|
|
! l'ascendance provenant du niveau k traverse l'interface l avec |
| 1158 |
|
|
! une vitesse wa(k,l). |
| 1159 |
|
|
|
| 1160 |
|
|
! -------------------- |
| 1161 |
|
|
|
| 1162 |
|
|
! + + + + + + + + + + |
| 1163 |
|
|
|
| 1164 |
|
|
! wa(k,l) ---- -------------------- l |
| 1165 |
|
|
! / ! /||\ + + + + + + + + + + |
| 1166 |
|
|
! || |
| 1167 |
|
|
! || -------------------- |
| 1168 |
|
|
! || |
| 1169 |
|
|
! || + + + + + + + + + + |
| 1170 |
|
|
! || |
| 1171 |
|
|
! || -------------------- |
| 1172 |
|
|
! ||__ |
| 1173 |
|
|
! |___ + + + + + + + + + + k |
| 1174 |
|
|
|
| 1175 |
|
|
! -------------------- |
| 1176 |
|
|
|
| 1177 |
|
|
|
| 1178 |
|
|
|
| 1179 |
|
|
! ------------------------------------------------------------------ |
| 1180 |
|
|
|
| 1181 |
|
|
! CR: ponderation entrainement des couches instables |
| 1182 |
|
|
! def des alim_star tels que alim=f*alim_star |
| 1183 |
|
✗ |
DO l = 1, klev |
| 1184 |
|
✗ |
DO ig = 1, ngrid |
| 1185 |
|
✗ |
alim_star(ig, l) = 0. |
| 1186 |
|
✗ |
alim(ig, l) = 0. |
| 1187 |
|
|
END DO |
| 1188 |
|
|
END DO |
| 1189 |
|
|
! determination de la longueur de la couche d entrainement |
| 1190 |
|
✗ |
DO ig = 1, ngrid |
| 1191 |
|
✗ |
lentr(ig) = 1 |
| 1192 |
|
|
END DO |
| 1193 |
|
|
|
| 1194 |
|
|
! on ne considere que les premieres couches instables |
| 1195 |
|
|
therm = .FALSE. |
| 1196 |
|
✗ |
DO k = nlay - 2, 1, -1 |
| 1197 |
|
✗ |
DO ig = 1, ngrid |
| 1198 |
|
✗ |
IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
| 1199 |
|
✗ |
lentr(ig) = k + 1 |
| 1200 |
|
|
therm = .TRUE. |
| 1201 |
|
|
END IF |
| 1202 |
|
|
END DO |
| 1203 |
|
|
END DO |
| 1204 |
|
|
|
| 1205 |
|
|
! determination du lmin: couche d ou provient le thermique |
| 1206 |
|
✗ |
DO ig = 1, ngrid |
| 1207 |
|
✗ |
lmin(ig) = 1 |
| 1208 |
|
|
END DO |
| 1209 |
|
✗ |
DO ig = 1, ngrid |
| 1210 |
|
✗ |
DO l = nlay, 2, -1 |
| 1211 |
|
✗ |
IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
| 1212 |
|
✗ |
lmin(ig) = l - 1 |
| 1213 |
|
|
END IF |
| 1214 |
|
|
END DO |
| 1215 |
|
|
END DO |
| 1216 |
|
|
|
| 1217 |
|
|
! definition de l'entrainement des couches |
| 1218 |
|
✗ |
DO l = 1, klev - 1 |
| 1219 |
|
✗ |
DO ig = 1, ngrid |
| 1220 |
|
✗ |
IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<lentr(ig)) THEN |
| 1221 |
|
|
! def possibles pour alim_star: zdthetadz, dthetadz, zdtheta |
| 1222 |
|
|
alim_star(ig, l) = max((ztv(ig,l)-ztv(ig,l+1)), 0.) & ! s |
| 1223 |
|
|
! *(zlev(ig,l+1)-zlev(ig,l)) |
| 1224 |
|
✗ |
*sqrt(zlev(ig,l+1)) |
| 1225 |
|
|
! alim_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
| 1226 |
|
|
! s /zlev(ig,lentr(ig)+2)))**(3./2.) |
| 1227 |
|
|
END IF |
| 1228 |
|
|
END DO |
| 1229 |
|
|
END DO |
| 1230 |
|
|
|
| 1231 |
|
|
! pas de thermique si couche 1 stable |
| 1232 |
|
✗ |
DO ig = 1, ngrid |
| 1233 |
|
|
! if (lmin(ig).gt.1) then |
| 1234 |
|
|
! CRnouveau test |
| 1235 |
|
✗ |
IF (alim_star(ig,1)<1.E-10) THEN |
| 1236 |
|
✗ |
DO l = 1, klev |
| 1237 |
|
✗ |
alim_star(ig, l) = 0. |
| 1238 |
|
|
END DO |
| 1239 |
|
|
END IF |
| 1240 |
|
|
END DO |
| 1241 |
|
|
! calcul de l entrainement total |
| 1242 |
|
✗ |
DO ig = 1, ngrid |
| 1243 |
|
✗ |
alim_star_tot(ig) = 0. |
| 1244 |
|
✗ |
entr_star_tot(ig) = 0. |
| 1245 |
|
✗ |
detr_star_tot(ig) = 0. |
| 1246 |
|
|
END DO |
| 1247 |
|
✗ |
DO ig = 1, ngrid |
| 1248 |
|
✗ |
DO k = 1, klev |
| 1249 |
|
✗ |
alim_star_tot(ig) = alim_star_tot(ig) + alim_star(ig, k) |
| 1250 |
|
|
END DO |
| 1251 |
|
|
END DO |
| 1252 |
|
|
|
| 1253 |
|
|
! Calcul entrainement normalise |
| 1254 |
|
✗ |
DO ig = 1, ngrid |
| 1255 |
|
✗ |
IF (alim_star_tot(ig)>1.E-10) THEN |
| 1256 |
|
|
! do l=1,lentr(ig) |
| 1257 |
|
✗ |
DO l = 1, klev |
| 1258 |
|
|
! def possibles pour entr_star: zdthetadz, dthetadz, zdtheta |
| 1259 |
|
✗ |
alim_star(ig, l) = alim_star(ig, l)/alim_star_tot(ig) |
| 1260 |
|
|
END DO |
| 1261 |
|
|
END IF |
| 1262 |
|
|
END DO |
| 1263 |
|
|
|
| 1264 |
|
|
! print*,'fin calcul alim_star' |
| 1265 |
|
|
|
| 1266 |
|
|
! AM:initialisations |
| 1267 |
|
✗ |
DO k = 1, nlay |
| 1268 |
|
✗ |
DO ig = 1, ngrid |
| 1269 |
|
✗ |
ztva(ig, k) = ztv(ig, k) |
| 1270 |
|
✗ |
ztla(ig, k) = zthl(ig, k) |
| 1271 |
|
✗ |
zqla(ig, k) = 0. |
| 1272 |
|
✗ |
zqta(ig, k) = po(ig, k) |
| 1273 |
|
✗ |
zsat(ig) = .FALSE. |
| 1274 |
|
|
END DO |
| 1275 |
|
|
END DO |
| 1276 |
|
✗ |
DO k = 1, klev |
| 1277 |
|
✗ |
DO ig = 1, ngrid |
| 1278 |
|
✗ |
detr_star(ig, k) = 0. |
| 1279 |
|
✗ |
entr_star(ig, k) = 0. |
| 1280 |
|
✗ |
detr(ig, k) = 0. |
| 1281 |
|
✗ |
entr(ig, k) = 0. |
| 1282 |
|
|
END DO |
| 1283 |
|
|
END DO |
| 1284 |
|
|
! print*,'7 OK convect8' |
| 1285 |
|
✗ |
DO k = 1, klev + 1 |
| 1286 |
|
✗ |
DO ig = 1, ngrid |
| 1287 |
|
✗ |
zw2(ig, k) = 0. |
| 1288 |
|
✗ |
fmc(ig, k) = 0. |
| 1289 |
|
|
! CR |
| 1290 |
|
✗ |
f_star(ig, k) = 0. |
| 1291 |
|
|
! RC |
| 1292 |
|
✗ |
larg_cons(ig, k) = 0. |
| 1293 |
|
✗ |
larg_detr(ig, k) = 0. |
| 1294 |
|
✗ |
wa_moy(ig, k) = 0. |
| 1295 |
|
|
END DO |
| 1296 |
|
|
END DO |
| 1297 |
|
|
|
| 1298 |
|
|
! n print*,'8 OK convect8' |
| 1299 |
|
✗ |
DO ig = 1, ngrid |
| 1300 |
|
✗ |
linter(ig) = 1. |
| 1301 |
|
✗ |
lmaxa(ig) = 1 |
| 1302 |
|
✗ |
lmix(ig) = 1 |
| 1303 |
|
✗ |
wmaxa(ig) = 0. |
| 1304 |
|
|
END DO |
| 1305 |
|
|
|
| 1306 |
|
✗ |
nu_min = l_mix |
| 1307 |
|
✗ |
nu_max = 1000. |
| 1308 |
|
|
! do ig=1,ngrid |
| 1309 |
|
|
! nu_max=wmax_sec(ig) |
| 1310 |
|
|
! enddo |
| 1311 |
|
✗ |
DO ig = 1, ngrid |
| 1312 |
|
✗ |
DO k = 1, klev |
| 1313 |
|
✗ |
nu(ig, k) = 0. |
| 1314 |
|
✗ |
nu_e(ig, k) = 0. |
| 1315 |
|
|
END DO |
| 1316 |
|
|
END DO |
| 1317 |
|
|
! Calcul de l'exc�s de temp�rature du � la diffusion turbulente |
| 1318 |
|
✗ |
DO ig = 1, ngrid |
| 1319 |
|
✗ |
DO l = 1, klev |
| 1320 |
|
✗ |
dtheta(ig, l) = 0. |
| 1321 |
|
|
END DO |
| 1322 |
|
|
END DO |
| 1323 |
|
✗ |
DO ig = 1, ngrid |
| 1324 |
|
✗ |
DO l = 1, lentr(ig) - 1 |
| 1325 |
|
|
dtheta(ig, l) = sqrt(10.*0.4*zlev(ig,l+1)**2*1.*((ztv(ig,l+1)- & |
| 1326 |
|
✗ |
ztv(ig,l))/(zlev(ig,l+1)-zlev(ig,l)))**2) |
| 1327 |
|
|
END DO |
| 1328 |
|
|
END DO |
| 1329 |
|
|
! do l=1,nlay-2 |
| 1330 |
|
✗ |
DO l = 1, klev - 1 |
| 1331 |
|
✗ |
DO ig = 1, ngrid |
| 1332 |
|
✗ |
IF (ztv(ig,l)>ztv(ig,l+1) .AND. alim_star(ig,l)>1.E-10 .AND. & |
| 1333 |
|
|
zw2(ig,l)<1E-10) THEN |
| 1334 |
|
|
! AM |
| 1335 |
|
|
! test:on rajoute un exc�s de T dans couche alim |
| 1336 |
|
|
! ztla(ig,l)=zthl(ig,l)+dtheta(ig,l) |
| 1337 |
|
✗ |
ztla(ig, l) = zthl(ig, l) |
| 1338 |
|
|
! test: on rajoute un exc�s de q dans la couche alim |
| 1339 |
|
|
! zqta(ig,l)=po(ig,l)+0.001 |
| 1340 |
|
✗ |
zqta(ig, l) = po(ig, l) |
| 1341 |
|
✗ |
zqla(ig, l) = zl(ig, l) |
| 1342 |
|
|
! AM |
| 1343 |
|
✗ |
f_star(ig, l+1) = alim_star(ig, l) |
| 1344 |
|
|
! test:calcul de dteta |
| 1345 |
|
|
zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
| 1346 |
|
✗ |
(zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
| 1347 |
|
✗ |
w_est(ig, l+1) = zw2(ig, l+1) |
| 1348 |
|
✗ |
larg_detr(ig, l) = 0. |
| 1349 |
|
|
! print*,'coucou boucle 1' |
| 1350 |
|
✗ |
ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+alim_star(ig, & |
| 1351 |
|
|
l))>1.E-10) THEN |
| 1352 |
|
|
! print*,'coucou boucle 2' |
| 1353 |
|
|
! estimation du detrainement a partir de la geometrie du pas |
| 1354 |
|
|
! precedent |
| 1355 |
|
✗ |
IF ((test(ig)==1) .OR. ((.NOT. debut) .AND. (f0(ig)<1.E-10))) THEN |
| 1356 |
|
✗ |
detr_star(ig, l) = 0. |
| 1357 |
|
✗ |
entr_star(ig, l) = 0. |
| 1358 |
|
|
! print*,'coucou test(ig)',test(ig),f0(ig),zmax0(ig) |
| 1359 |
|
|
ELSE |
| 1360 |
|
|
! print*,'coucou debut detr' |
| 1361 |
|
|
! tests sur la definition du detr |
| 1362 |
|
✗ |
IF (zqla(ig,l-1)>1.E-10) THEN |
| 1363 |
|
|
nuage = .TRUE. |
| 1364 |
|
|
END IF |
| 1365 |
|
|
|
| 1366 |
|
|
w_est(ig, l+1) = zw2(ig, l)*((f_star(ig,l))**2)/(f_star(ig,l)+ & |
| 1367 |
|
|
alim_star(ig,l))**2 + 2.*rg*(ztva(ig,l-1)-ztv(ig,l))/ztv(ig, l)*( & |
| 1368 |
|
✗ |
zlev(ig,l+1)-zlev(ig,l)) |
| 1369 |
|
✗ |
IF (w_est(ig,l+1)<0.) THEN |
| 1370 |
|
✗ |
w_est(ig, l+1) = zw2(ig, l) |
| 1371 |
|
|
END IF |
| 1372 |
|
✗ |
IF (l>2) THEN |
| 1373 |
|
|
IF ((w_est(ig,l+1)>w_est(ig,l)) .AND. (zlev(ig, & |
| 1374 |
|
✗ |
l+1)<zmax_sec(ig)) .AND. (zqla(ig,l-1)<1.E-10)) THEN |
| 1375 |
|
|
detr_star(ig, l) = max(0., (rhobarz(ig, & |
| 1376 |
|
|
l+1)*sqrt(w_est(ig,l+1))*sqrt(nu(ig,l)* & |
| 1377 |
|
|
zlev(ig,l+1))-rhobarz(ig,l)*sqrt(w_est(ig,l))*sqrt(nu(ig,l)* & |
| 1378 |
|
✗ |
zlev(ig,l)))/(r_aspect*zmax_sec(ig))) |
| 1379 |
|
✗ |
ELSE IF ((zlev(ig,l+1)<zmax_sec(ig)) .AND. (zqla(ig, & |
| 1380 |
|
|
l-1)<1.E-10)) THEN |
| 1381 |
|
|
detr_star(ig, l) = -f0(ig)*f_star(ig, lmix(ig))/(rhobarz(ig, & |
| 1382 |
|
|
lmix(ig))*wmaxa(ig))*(rhobarz(ig,l+1)*sqrt(w_est(ig, & |
| 1383 |
|
|
l+1))*((zmax_sec(ig)-zlev(ig,l+1))/((zmax_sec(ig)-zlev(ig, & |
| 1384 |
|
|
lmix(ig)))))**2.-rhobarz(ig,l)*sqrt(w_est(ig, & |
| 1385 |
|
|
l))*((zmax_sec(ig)-zlev(ig,l))/((zmax_sec(ig)-zlev(ig,lmix(ig & |
| 1386 |
|
✗ |
)))))**2.) |
| 1387 |
|
|
ELSE |
| 1388 |
|
|
detr_star(ig, l) = 0.002*f0(ig)*f_star(ig, l)* & |
| 1389 |
|
✗ |
(zlev(ig,l+1)-zlev(ig,l)) |
| 1390 |
|
|
|
| 1391 |
|
|
END IF |
| 1392 |
|
|
ELSE |
| 1393 |
|
✗ |
detr_star(ig, l) = 0. |
| 1394 |
|
|
END IF |
| 1395 |
|
|
|
| 1396 |
|
✗ |
detr_star(ig, l) = detr_star(ig, l)/f0(ig) |
| 1397 |
|
✗ |
IF (nuage) THEN |
| 1398 |
|
✗ |
entr_star(ig, l) = 0.4*detr_star(ig, l) |
| 1399 |
|
|
ELSE |
| 1400 |
|
✗ |
entr_star(ig, l) = 0.4*detr_star(ig, l) |
| 1401 |
|
|
END IF |
| 1402 |
|
|
|
| 1403 |
|
✗ |
IF ((detr_star(ig,l))>f_star(ig,l)) THEN |
| 1404 |
|
✗ |
detr_star(ig, l) = f_star(ig, l) |
| 1405 |
|
|
! entr_star(ig,l)=0. |
| 1406 |
|
|
END IF |
| 1407 |
|
|
|
| 1408 |
|
✗ |
IF ((l<lentr(ig))) THEN |
| 1409 |
|
✗ |
entr_star(ig, l) = 0. |
| 1410 |
|
|
! detr_star(ig,l)=0. |
| 1411 |
|
|
END IF |
| 1412 |
|
|
|
| 1413 |
|
|
! print*,'ok detr_star' |
| 1414 |
|
|
END IF |
| 1415 |
|
|
! prise en compte du detrainement dans le calcul du flux |
| 1416 |
|
|
f_star(ig, l+1) = f_star(ig, l) + alim_star(ig, l) + & |
| 1417 |
|
✗ |
entr_star(ig, l) - detr_star(ig, l) |
| 1418 |
|
|
! test |
| 1419 |
|
|
! if (f_star(ig,l+1).lt.0.) then |
| 1420 |
|
|
! f_star(ig,l+1)=0. |
| 1421 |
|
|
! entr_star(ig,l)=0. |
| 1422 |
|
|
! detr_star(ig,l)=f_star(ig,l)+alim_star(ig,l) |
| 1423 |
|
|
! endif |
| 1424 |
|
|
! test sur le signe de f_star |
| 1425 |
|
✗ |
IF (f_star(ig,l+1)>1.E-10) THEN |
| 1426 |
|
|
! then |
| 1427 |
|
|
! test |
| 1428 |
|
|
! if (((f_star(ig,l+1)+detr_star(ig,l)).gt.1.e-10)) then |
| 1429 |
|
|
! AM on melange Tl et qt du thermique |
| 1430 |
|
|
! on rajoute un exc�s de T dans la couche alim |
| 1431 |
|
|
! if (l.lt.lentr(ig)) then |
| 1432 |
|
|
! ztla(ig,l)=(f_star(ig,l)*ztla(ig,l-1)+ |
| 1433 |
|
|
! s |
| 1434 |
|
|
! (alim_star(ig,l)+entr_star(ig,l))*(zthl(ig,l)+dtheta(ig,l))) |
| 1435 |
|
|
! s /(f_star(ig,l+1)+detr_star(ig,l)) |
| 1436 |
|
|
! else |
| 1437 |
|
|
ztla(ig, l) = (f_star(ig,l)*ztla(ig,l-1)+(alim_star(ig, & |
| 1438 |
|
✗ |
l)+entr_star(ig,l))*zthl(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
| 1439 |
|
|
! s /(f_star(ig,l+1)) |
| 1440 |
|
|
! endif |
| 1441 |
|
|
! on rajoute un exc�s de q dans la couche alim |
| 1442 |
|
|
! if (l.lt.lentr(ig)) then |
| 1443 |
|
|
! zqta(ig,l)=(f_star(ig,l)*zqta(ig,l-1)+ |
| 1444 |
|
|
! s (alim_star(ig,l)+entr_star(ig,l))*(po(ig,l)+0.001)) |
| 1445 |
|
|
! s /(f_star(ig,l+1)+detr_star(ig,l)) |
| 1446 |
|
|
! else |
| 1447 |
|
|
zqta(ig, l) = (f_star(ig,l)*zqta(ig,l-1)+(alim_star(ig, & |
| 1448 |
|
✗ |
l)+entr_star(ig,l))*po(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
| 1449 |
|
|
! s /(f_star(ig,l+1)) |
| 1450 |
|
|
! endif |
| 1451 |
|
|
! AM on en deduit thetav et ql du thermique |
| 1452 |
|
|
! CR test |
| 1453 |
|
|
! Tbef(ig)=ztla(ig,l)*zpspsk(ig,l) |
| 1454 |
|
✗ |
tbef(ig) = ztla(ig, l)*zpspsk(ig, l) |
| 1455 |
|
✗ |
zdelta = max(0., sign(1.,rtt-tbef(ig))) |
| 1456 |
|
✗ |
qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
| 1457 |
|
✗ |
qsatbef(ig) = min(0.5, qsatbef(ig)) |
| 1458 |
|
✗ |
zcor = 1./(1.-retv*qsatbef(ig)) |
| 1459 |
|
✗ |
qsatbef(ig) = qsatbef(ig)*zcor |
| 1460 |
|
✗ |
zsat(ig) = (max(0.,zqta(ig,l)-qsatbef(ig))>1.E-10) |
| 1461 |
|
|
|
| 1462 |
|
✗ |
IF (zsat(ig) .AND. (1==1)) THEN |
| 1463 |
|
|
qlbef = max(0., zqta(ig,l)-qsatbef(ig)) |
| 1464 |
|
✗ |
dt = 0.5*rlvcp*qlbef |
| 1465 |
|
|
! write(17,*)'DT0=',DT |
| 1466 |
|
✗ |
DO WHILE (abs(dt)>ddt0) |
| 1467 |
|
|
! print*,'aie' |
| 1468 |
|
✗ |
tbef(ig) = tbef(ig) + dt |
| 1469 |
|
✗ |
zdelta = max(0., sign(1.,rtt-tbef(ig))) |
| 1470 |
|
✗ |
qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
| 1471 |
|
✗ |
qsatbef(ig) = min(0.5, qsatbef(ig)) |
| 1472 |
|
✗ |
zcor = 1./(1.-retv*qsatbef(ig)) |
| 1473 |
|
✗ |
qsatbef(ig) = qsatbef(ig)*zcor |
| 1474 |
|
✗ |
qlbef = zqta(ig, l) - qsatbef(ig) |
| 1475 |
|
|
|
| 1476 |
|
|
zdelta = max(0., sign(1.,rtt-tbef(ig))) |
| 1477 |
|
✗ |
zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
| 1478 |
|
✗ |
zcor = 1./(1.-retv*qsatbef(ig)) |
| 1479 |
|
✗ |
dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
| 1480 |
|
✗ |
num = -tbef(ig) + ztla(ig, l)*zpspsk(ig, l) + rlvcp*qlbef |
| 1481 |
|
✗ |
denom = 1. + rlvcp*dqsat_dt |
| 1482 |
|
✗ |
IF (denom<1.E-10) THEN |
| 1483 |
|
✗ |
PRINT *, 'pb denom' |
| 1484 |
|
|
END IF |
| 1485 |
|
✗ |
dt = num/denom |
| 1486 |
|
|
! write(17,*)'DT=',DT |
| 1487 |
|
|
END DO |
| 1488 |
|
|
zqla(ig, l) = max(0., zqta(ig,l)-qsatbef(ig)) |
| 1489 |
|
✗ |
zqla(ig, l) = max(0., qlbef) |
| 1490 |
|
|
! zqla(ig,l)=0. |
| 1491 |
|
|
END IF |
| 1492 |
|
|
! zqla(ig,l) = max(0.,zqta(ig,l)-qsatbef(ig)) |
| 1493 |
|
|
|
| 1494 |
|
|
! on ecrit de maniere conservative (sat ou non) |
| 1495 |
|
|
! T = Tl +Lv/Cp ql |
| 1496 |
|
|
! CR rq utilisation de humidite specifique ou rapport de melange? |
| 1497 |
|
✗ |
ztva(ig, l) = ztla(ig, l)*zpspsk(ig, l) + rlvcp*zqla(ig, l) |
| 1498 |
|
✗ |
ztva(ig, l) = ztva(ig, l)/zpspsk(ig, l) |
| 1499 |
|
|
! on rajoute le calcul de zha pour diagnostiques (temp potentielle) |
| 1500 |
|
✗ |
zha(ig, l) = ztva(ig, l) |
| 1501 |
|
|
! if (l.lt.lentr(ig)) then |
| 1502 |
|
|
! ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) |
| 1503 |
|
|
! s -zqla(ig,l))-zqla(ig,l)) + 0.1 |
| 1504 |
|
|
! else |
| 1505 |
|
|
ztva(ig, l) = ztva(ig, l)*(1.+retv*(zqta(ig,l)-zqla(ig, & |
| 1506 |
|
✗ |
l))-zqla(ig,l)) |
| 1507 |
|
|
! endif |
| 1508 |
|
|
! ztva(ig,l) = ztla(ig,l)*zpspsk(ig,l)+RLvCp*zqla(ig,l) |
| 1509 |
|
|
! s /(1.-retv*zqla(ig,l)) |
| 1510 |
|
|
! ztva(ig,l) = ztva(ig,l)/zpspsk(ig,l) |
| 1511 |
|
|
! ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) |
| 1512 |
|
|
! s /(1.-retv*zqta(ig,l)) |
| 1513 |
|
|
! s -zqla(ig,l)/(1.-retv*zqla(ig,l))) |
| 1514 |
|
|
! s -zqla(ig,l)/(1.-retv*zqla(ig,l))) |
| 1515 |
|
|
! write(13,*)zqla(ig,l),zqla(ig,l)/(1.-retv*zqla(ig,l)) |
| 1516 |
|
|
! on ecrit zqsat |
| 1517 |
|
✗ |
zqsatth(ig, l) = qsatbef(ig) |
| 1518 |
|
|
! enddo |
| 1519 |
|
|
! DO ig=1,ngrid |
| 1520 |
|
|
! if (zw2(ig,l).ge.1.e-10.and. |
| 1521 |
|
|
! s f_star(ig,l)+entr_star(ig,l).gt.1.e-10) then |
| 1522 |
|
|
! mise a jour de la vitesse ascendante (l'air entraine de la couche |
| 1523 |
|
|
! consideree commence avec une vitesse nulle). |
| 1524 |
|
|
|
| 1525 |
|
|
! if (f_star(ig,l+1).gt.1.e-10) then |
| 1526 |
|
|
zw2(ig, l+1) = zw2(ig, l)* & ! s |
| 1527 |
|
|
! ((f_star(ig,l)-detr_star(ig,l))**2) |
| 1528 |
|
|
! s /f_star(ig,l+1)**2+ |
| 1529 |
|
|
((f_star(ig,l))**2)/(f_star(ig,l+1)+detr_star(ig,l))**2 + & ! s |
| 1530 |
|
|
! /(f_star(ig,l+1))**2+ |
| 1531 |
|
✗ |
2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 1532 |
|
|
! s *(f_star(ig,l)/f_star(ig,l+1))**2 |
| 1533 |
|
|
|
| 1534 |
|
|
END IF |
| 1535 |
|
|
END IF |
| 1536 |
|
|
|
| 1537 |
|
✗ |
IF (zw2(ig,l+1)<0.) THEN |
| 1538 |
|
|
linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
| 1539 |
|
✗ |
ig,l)) |
| 1540 |
|
✗ |
zw2(ig, l+1) = 0. |
| 1541 |
|
|
! print*,'linter=',linter(ig) |
| 1542 |
|
|
! else if ((zw2(ig,l+1).lt.1.e-10).and.(zw2(ig,l+1).ge.0.)) then |
| 1543 |
|
|
! linter(ig)=l+1 |
| 1544 |
|
|
! print*,'linter=l',zw2(ig,l),zw2(ig,l+1) |
| 1545 |
|
|
ELSE |
| 1546 |
|
✗ |
wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
| 1547 |
|
|
! wa_moy(ig,l+1)=zw2(ig,l+1) |
| 1548 |
|
|
END IF |
| 1549 |
|
✗ |
IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
| 1550 |
|
|
! lmix est le niveau de la couche ou w (wa_moy) est maximum |
| 1551 |
|
✗ |
lmix(ig) = l + 1 |
| 1552 |
|
✗ |
wmaxa(ig) = wa_moy(ig, l+1) |
| 1553 |
|
|
END IF |
| 1554 |
|
|
END DO |
| 1555 |
|
|
END DO |
| 1556 |
|
✗ |
PRINT *, 'fin calcul zw2' |
| 1557 |
|
|
|
| 1558 |
|
|
! Calcul de la couche correspondant a la hauteur du thermique |
| 1559 |
|
✗ |
DO ig = 1, ngrid |
| 1560 |
|
✗ |
lmax(ig) = lentr(ig) |
| 1561 |
|
|
END DO |
| 1562 |
|
✗ |
DO ig = 1, ngrid |
| 1563 |
|
✗ |
DO l = nlay, lentr(ig) + 1, -1 |
| 1564 |
|
✗ |
IF (zw2(ig,l)<=1.E-10) THEN |
| 1565 |
|
✗ |
lmax(ig) = l - 1 |
| 1566 |
|
|
END IF |
| 1567 |
|
|
END DO |
| 1568 |
|
|
END DO |
| 1569 |
|
|
! pas de thermique si couche 1 stable |
| 1570 |
|
✗ |
DO ig = 1, ngrid |
| 1571 |
|
✗ |
IF (lmin(ig)>1) THEN |
| 1572 |
|
✗ |
lmax(ig) = 1 |
| 1573 |
|
✗ |
lmin(ig) = 1 |
| 1574 |
|
✗ |
lentr(ig) = 1 |
| 1575 |
|
|
END IF |
| 1576 |
|
|
END DO |
| 1577 |
|
|
|
| 1578 |
|
|
! Determination de zw2 max |
| 1579 |
|
✗ |
DO ig = 1, ngrid |
| 1580 |
|
✗ |
wmax(ig) = 0. |
| 1581 |
|
|
END DO |
| 1582 |
|
|
|
| 1583 |
|
✗ |
DO l = 1, nlay |
| 1584 |
|
✗ |
DO ig = 1, ngrid |
| 1585 |
|
✗ |
IF (l<=lmax(ig)) THEN |
| 1586 |
|
✗ |
IF (zw2(ig,l)<0.) THEN |
| 1587 |
|
✗ |
PRINT *, 'pb2 zw2<0' |
| 1588 |
|
|
END IF |
| 1589 |
|
✗ |
zw2(ig, l) = sqrt(zw2(ig,l)) |
| 1590 |
|
✗ |
wmax(ig) = max(wmax(ig), zw2(ig,l)) |
| 1591 |
|
|
ELSE |
| 1592 |
|
✗ |
zw2(ig, l) = 0. |
| 1593 |
|
|
END IF |
| 1594 |
|
|
END DO |
| 1595 |
|
|
END DO |
| 1596 |
|
|
|
| 1597 |
|
|
! Longueur caracteristique correspondant a la hauteur des thermiques. |
| 1598 |
|
✗ |
DO ig = 1, ngrid |
| 1599 |
|
✗ |
zmax(ig) = 0. |
| 1600 |
|
✗ |
zlevinter(ig) = zlev(ig, 1) |
| 1601 |
|
|
END DO |
| 1602 |
|
✗ |
DO ig = 1, ngrid |
| 1603 |
|
|
! calcul de zlevinter |
| 1604 |
|
|
zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
| 1605 |
|
✗ |
zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
| 1606 |
|
|
! pour le cas ou on prend tjs lmin=1 |
| 1607 |
|
|
! zmax(ig)=max(zmax(ig),zlevinter(ig)-zlev(ig,lmin(ig))) |
| 1608 |
|
✗ |
zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,1)) |
| 1609 |
|
✗ |
zmax0(ig) = zmax(ig) |
| 1610 |
|
✗ |
WRITE (11, *) 'ig,lmax,linter', ig, lmax(ig), linter(ig) |
| 1611 |
|
✗ |
WRITE (12, *) 'ig,zlevinter,zmax', ig, zmax(ig), zlevinter(ig) |
| 1612 |
|
|
END DO |
| 1613 |
|
|
|
| 1614 |
|
|
! Calcul de zmax_sec et wmax_sec |
| 1615 |
|
|
CALL fermeture_seche(ngrid, nlay, pplay, pplev, pphi, zlev, rhobarz, f0, & |
| 1616 |
|
|
zpspsk, alim, zh, zo, lentr, lmin, nu_min, nu_max, r_aspect, zmax_sec2, & |
| 1617 |
|
✗ |
wmax_sec2) |
| 1618 |
|
|
|
| 1619 |
|
✗ |
PRINT *, 'avant fermeture' |
| 1620 |
|
|
! Fermeture,determination de f |
| 1621 |
|
|
! en lmax f=d-e |
| 1622 |
|
✗ |
DO ig = 1, ngrid |
| 1623 |
|
|
! entr_star(ig,lmax(ig))=0. |
| 1624 |
|
|
! f_star(ig,lmax(ig)+1)=0. |
| 1625 |
|
|
! detr_star(ig,lmax(ig))=f_star(ig,lmax(ig))+entr_star(ig,lmax(ig)) |
| 1626 |
|
|
! s +alim_star(ig,lmax(ig)) |
| 1627 |
|
|
END DO |
| 1628 |
|
|
|
| 1629 |
|
✗ |
DO ig = 1, ngrid |
| 1630 |
|
✗ |
alim_star2(ig) = 0. |
| 1631 |
|
|
END DO |
| 1632 |
|
|
! calcul de entr_star_tot |
| 1633 |
|
✗ |
DO ig = 1, ngrid |
| 1634 |
|
✗ |
DO k = 1, lmix(ig) |
| 1635 |
|
|
entr_star_tot(ig) = entr_star_tot(ig) & ! s |
| 1636 |
|
|
! +entr_star(ig,k) |
| 1637 |
|
✗ |
+alim_star(ig, k) |
| 1638 |
|
|
! s -detr_star(ig,k) |
| 1639 |
|
|
detr_star_tot(ig) = detr_star_tot(ig) & ! s |
| 1640 |
|
|
! +alim_star(ig,k) |
| 1641 |
|
✗ |
-detr_star(ig, k) + entr_star(ig, k) |
| 1642 |
|
|
END DO |
| 1643 |
|
|
END DO |
| 1644 |
|
|
|
| 1645 |
|
✗ |
DO ig = 1, ngrid |
| 1646 |
|
✗ |
IF (alim_star_tot(ig)<1.E-10) THEN |
| 1647 |
|
✗ |
f(ig) = 0. |
| 1648 |
|
|
ELSE |
| 1649 |
|
|
! do k=lmin(ig),lentr(ig) |
| 1650 |
|
✗ |
DO k = 1, lentr(ig) |
| 1651 |
|
|
alim_star2(ig) = alim_star2(ig) + alim_star(ig, k)**2/(rho(ig,k)*( & |
| 1652 |
|
✗ |
zlev(ig,k+1)-zlev(ig,k))) |
| 1653 |
|
|
END DO |
| 1654 |
|
✗ |
IF ((zmax_sec(ig)>1.E-10) .AND. (1==1)) THEN |
| 1655 |
|
✗ |
f(ig) = wmax_sec(ig)/(max(500.,zmax_sec(ig))*r_aspect*alim_star2(ig)) |
| 1656 |
|
|
f(ig) = f(ig) + (f0(ig)-f(ig))*exp((-ptimestep/zmax_sec(ig))*wmax_sec & |
| 1657 |
|
✗ |
(ig)) |
| 1658 |
|
|
ELSE |
| 1659 |
|
✗ |
f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*alim_star2(ig)) |
| 1660 |
|
✗ |
f(ig) = f(ig) + (f0(ig)-f(ig))*exp((-ptimestep/zmax(ig))*wmax(ig)) |
| 1661 |
|
|
END IF |
| 1662 |
|
|
END IF |
| 1663 |
|
✗ |
f0(ig) = f(ig) |
| 1664 |
|
|
END DO |
| 1665 |
|
✗ |
PRINT *, 'apres fermeture' |
| 1666 |
|
|
! Calcul de l'entrainement |
| 1667 |
|
✗ |
DO ig = 1, ngrid |
| 1668 |
|
✗ |
DO k = 1, klev |
| 1669 |
|
✗ |
alim(ig, k) = f(ig)*alim_star(ig, k) |
| 1670 |
|
|
END DO |
| 1671 |
|
|
END DO |
| 1672 |
|
|
! CR:test pour entrainer moins que la masse |
| 1673 |
|
|
! do ig=1,ngrid |
| 1674 |
|
|
! do l=1,lentr(ig) |
| 1675 |
|
|
! if ((alim(ig,l)*ptimestep).gt.(0.9*masse(ig,l))) then |
| 1676 |
|
|
! alim(ig,l+1)=alim(ig,l+1)+alim(ig,l) |
| 1677 |
|
|
! s -0.9*masse(ig,l)/ptimestep |
| 1678 |
|
|
! alim(ig,l)=0.9*masse(ig,l)/ptimestep |
| 1679 |
|
|
! endif |
| 1680 |
|
|
! enddo |
| 1681 |
|
|
! enddo |
| 1682 |
|
|
! calcul du d�trainement |
| 1683 |
|
✗ |
DO ig = 1, klon |
| 1684 |
|
✗ |
DO k = 1, klev |
| 1685 |
|
✗ |
detr(ig, k) = f(ig)*detr_star(ig, k) |
| 1686 |
|
✗ |
IF (detr(ig,k)<0.) THEN |
| 1687 |
|
|
! print*,'detr1<0!!!' |
| 1688 |
|
|
END IF |
| 1689 |
|
|
END DO |
| 1690 |
|
✗ |
DO k = 1, klev |
| 1691 |
|
✗ |
entr(ig, k) = f(ig)*entr_star(ig, k) |
| 1692 |
|
✗ |
IF (entr(ig,k)<0.) THEN |
| 1693 |
|
|
! print*,'entr1<0!!!' |
| 1694 |
|
|
END IF |
| 1695 |
|
|
END DO |
| 1696 |
|
|
END DO |
| 1697 |
|
|
|
| 1698 |
|
|
! do ig=1,ngrid |
| 1699 |
|
|
! do l=1,klev |
| 1700 |
|
|
! if (((detr(ig,l)+entr(ig,l)+alim(ig,l))*ptimestep).gt. |
| 1701 |
|
|
! s (masse(ig,l))) then |
| 1702 |
|
|
! print*,'d2+e2+a2>m2','ig=',ig,'l=',l,'lmax(ig)=',lmax(ig),'d+e+a=' |
| 1703 |
|
|
! s,(detr(ig,l)+entr(ig,l)+alim(ig,l))*ptimestep,'m=',masse(ig,l) |
| 1704 |
|
|
! endif |
| 1705 |
|
|
! enddo |
| 1706 |
|
|
! enddo |
| 1707 |
|
|
! Calcul des flux |
| 1708 |
|
|
|
| 1709 |
|
✗ |
DO ig = 1, ngrid |
| 1710 |
|
✗ |
DO l = 1, lmax(ig) |
| 1711 |
|
|
! do l=1,klev |
| 1712 |
|
|
! fmc(ig,l+1)=f(ig)*f_star(ig,l+1) |
| 1713 |
|
✗ |
fmc(ig, l+1) = fmc(ig, l) + alim(ig, l) + entr(ig, l) - detr(ig, l) |
| 1714 |
|
|
! print*,'??!!','ig=',ig,'l=',l,'lmax=',lmax(ig),'lmix=',lmix(ig), |
| 1715 |
|
|
! s 'e=',entr(ig,l),'d=',detr(ig,l),'a=',alim(ig,l),'f=',fmc(ig,l), |
| 1716 |
|
|
! s 'f+1=',fmc(ig,l+1) |
| 1717 |
|
✗ |
IF (fmc(ig,l+1)<0.) THEN |
| 1718 |
|
✗ |
PRINT *, 'fmc1<0', l + 1, lmax(ig), fmc(ig, l+1) |
| 1719 |
|
✗ |
fmc(ig, l+1) = fmc(ig, l) |
| 1720 |
|
✗ |
detr(ig, l) = alim(ig, l) + entr(ig, l) |
| 1721 |
|
|
! fmc(ig,l+1)=0. |
| 1722 |
|
|
! print*,'fmc1<0',l+1,lmax(ig),fmc(ig,l+1) |
| 1723 |
|
|
END IF |
| 1724 |
|
|
! if ((fmc(ig,l+1).gt.fmc(ig,l)).and.(l.gt.lentr(ig))) then |
| 1725 |
|
|
! f_old=fmc(ig,l+1) |
| 1726 |
|
|
! fmc(ig,l+1)=fmc(ig,l) |
| 1727 |
|
|
! detr(ig,l)=detr(ig,l)+f_old-fmc(ig,l+1) |
| 1728 |
|
|
! endif |
| 1729 |
|
|
|
| 1730 |
|
|
! if ((fmc(ig,l+1).gt.fmc(ig,l)).and.(l.gt.lentr(ig))) then |
| 1731 |
|
|
! f_old=fmc(ig,l+1) |
| 1732 |
|
|
! fmc(ig,l+1)=fmc(ig,l) |
| 1733 |
|
|
! detr(ig,l)=detr(ig,l)+f_old-fmc(ig,l) |
| 1734 |
|
|
! endif |
| 1735 |
|
|
! rajout du test sur alpha croissant |
| 1736 |
|
|
! if test |
| 1737 |
|
|
! if (1.eq.0) then |
| 1738 |
|
|
|
| 1739 |
|
✗ |
IF (l==klev) THEN |
| 1740 |
|
✗ |
PRINT *, 'THERMCELL PB ig=', ig, ' l=', l |
| 1741 |
|
✗ |
abort_message = 'THERMCELL PB' |
| 1742 |
|
✗ |
CALL abort_physic(modname, abort_message, 1) |
| 1743 |
|
|
END IF |
| 1744 |
|
|
! if ((zw2(ig,l+1).gt.1.e-10).and.(zw2(ig,l).gt.1.e-10).and. |
| 1745 |
|
|
! s (l.ge.lentr(ig)).and. |
| 1746 |
|
✗ |
IF ((zw2(ig,l+1)>1.E-10) .AND. (zw2(ig,l)>1.E-10) .AND. (l>=lentr(ig))) & |
| 1747 |
|
|
THEN |
| 1748 |
|
✗ |
IF (((fmc(ig,l+1)/(rhobarz(ig,l+1)*zw2(ig,l+1)))>(fmc(ig,l)/ & |
| 1749 |
|
|
(rhobarz(ig,l)*zw2(ig,l))))) THEN |
| 1750 |
|
|
f_old = fmc(ig, l+1) |
| 1751 |
|
|
fmc(ig, l+1) = fmc(ig, l)*rhobarz(ig, l+1)*zw2(ig, l+1)/ & |
| 1752 |
|
✗ |
(rhobarz(ig,l)*zw2(ig,l)) |
| 1753 |
|
✗ |
detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
| 1754 |
|
|
! detr(ig,l)=(fmc(ig,l+1)-fmc(ig,l))/(0.4-1.) |
| 1755 |
|
|
! entr(ig,l)=0.4*detr(ig,l) |
| 1756 |
|
|
! entr(ig,l)=fmc(ig,l+1)-fmc(ig,l)+detr(ig,l) |
| 1757 |
|
|
END IF |
| 1758 |
|
|
END IF |
| 1759 |
|
✗ |
IF ((fmc(ig,l+1)>fmc(ig,l)) .AND. (l>lentr(ig))) THEN |
| 1760 |
|
|
f_old = fmc(ig, l+1) |
| 1761 |
|
✗ |
fmc(ig, l+1) = fmc(ig, l) |
| 1762 |
|
✗ |
detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
| 1763 |
|
|
END IF |
| 1764 |
|
✗ |
IF (detr(ig,l)>fmc(ig,l)) THEN |
| 1765 |
|
✗ |
detr(ig, l) = fmc(ig, l) |
| 1766 |
|
✗ |
entr(ig, l) = fmc(ig, l+1) - alim(ig, l) |
| 1767 |
|
|
END IF |
| 1768 |
|
✗ |
IF (fmc(ig,l+1)<0.) THEN |
| 1769 |
|
✗ |
detr(ig, l) = detr(ig, l) + fmc(ig, l+1) |
| 1770 |
|
✗ |
fmc(ig, l+1) = 0. |
| 1771 |
|
✗ |
PRINT *, 'fmc2<0', l + 1, lmax(ig) |
| 1772 |
|
|
END IF |
| 1773 |
|
|
|
| 1774 |
|
|
! test pour ne pas avoir f=0 et d=e/=0 |
| 1775 |
|
|
! if (fmc(ig,l+1).lt.1.e-10) then |
| 1776 |
|
|
! detr(ig,l+1)=0. |
| 1777 |
|
|
! entr(ig,l+1)=0. |
| 1778 |
|
|
! zqla(ig,l+1)=0. |
| 1779 |
|
|
! zw2(ig,l+1)=0. |
| 1780 |
|
|
! lmax(ig)=l+1 |
| 1781 |
|
|
! zmax(ig)=zlev(ig,lmax(ig)) |
| 1782 |
|
|
! endif |
| 1783 |
|
✗ |
IF (zw2(ig,l+1)>1.E-10) THEN |
| 1784 |
|
✗ |
IF ((((fmc(ig,l+1))/(rhobarz(ig,l+1)*zw2(ig,l+1)))>1.)) THEN |
| 1785 |
|
|
f_old = fmc(ig, l+1) |
| 1786 |
|
✗ |
fmc(ig, l+1) = rhobarz(ig, l+1)*zw2(ig, l+1) |
| 1787 |
|
✗ |
zw2(ig, l+1) = 0. |
| 1788 |
|
✗ |
zqla(ig, l+1) = 0. |
| 1789 |
|
✗ |
detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
| 1790 |
|
✗ |
lmax(ig) = l + 1 |
| 1791 |
|
✗ |
zmax(ig) = zlev(ig, lmax(ig)) |
| 1792 |
|
✗ |
PRINT *, 'alpha>1', l + 1, lmax(ig) |
| 1793 |
|
|
END IF |
| 1794 |
|
|
END IF |
| 1795 |
|
|
! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
| 1796 |
|
|
! endif test |
| 1797 |
|
|
! endif |
| 1798 |
|
|
END DO |
| 1799 |
|
|
END DO |
| 1800 |
|
✗ |
DO ig = 1, ngrid |
| 1801 |
|
|
! if (fmc(ig,lmax(ig)+1).ne.0.) then |
| 1802 |
|
✗ |
fmc(ig, lmax(ig)+1) = 0. |
| 1803 |
|
✗ |
entr(ig, lmax(ig)) = 0. |
| 1804 |
|
|
detr(ig, lmax(ig)) = fmc(ig, lmax(ig)) + entr(ig, lmax(ig)) + & |
| 1805 |
|
✗ |
alim(ig, lmax(ig)) |
| 1806 |
|
|
! endif |
| 1807 |
|
|
END DO |
| 1808 |
|
|
! test sur le signe de fmc |
| 1809 |
|
✗ |
DO ig = 1, ngrid |
| 1810 |
|
✗ |
DO l = 1, klev + 1 |
| 1811 |
|
✗ |
IF (fmc(ig,l)<0.) THEN |
| 1812 |
|
✗ |
PRINT *, 'fm1<0!!!', 'ig=', ig, 'l=', l, 'a=', alim(ig, l-1), 'e=', & |
| 1813 |
|
✗ |
entr(ig, l-1), 'f=', fmc(ig, l-1), 'd=', detr(ig, l-1), 'f+1=', & |
| 1814 |
|
✗ |
fmc(ig, l) |
| 1815 |
|
|
END IF |
| 1816 |
|
|
END DO |
| 1817 |
|
|
END DO |
| 1818 |
|
|
! test de verification |
| 1819 |
|
✗ |
DO ig = 1, ngrid |
| 1820 |
|
✗ |
DO l = 1, lmax(ig) |
| 1821 |
|
|
IF ((abs(fmc(ig,l+1)-fmc(ig,l)-alim(ig,l)-entr(ig,l)+ & |
| 1822 |
|
|
detr(ig,l)))>1.E-4) THEN |
| 1823 |
|
|
! print*,'pbcm!!','ig=',ig,'l=',l,'lmax=',lmax(ig),'lmix=',lmix(ig), |
| 1824 |
|
|
! s 'e=',entr(ig,l),'d=',detr(ig,l),'a=',alim(ig,l),'f=',fmc(ig,l), |
| 1825 |
|
|
! s 'f+1=',fmc(ig,l+1) |
| 1826 |
|
|
END IF |
| 1827 |
|
✗ |
IF (detr(ig,l)<0.) THEN |
| 1828 |
|
✗ |
PRINT *, 'detrdemi<0!!!' |
| 1829 |
|
|
END IF |
| 1830 |
|
|
END DO |
| 1831 |
|
|
END DO |
| 1832 |
|
|
|
| 1833 |
|
|
! RC |
| 1834 |
|
|
! CR def de zmix continu (profil parabolique des vitesses) |
| 1835 |
|
✗ |
DO ig = 1, ngrid |
| 1836 |
|
✗ |
IF (lmix(ig)>1.) THEN |
| 1837 |
|
|
! test |
| 1838 |
|
✗ |
IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
| 1839 |
|
|
(zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
| 1840 |
|
|
zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
| 1841 |
|
|
(zlev(ig,lmix(ig)))))>1E-10) THEN |
| 1842 |
|
|
|
| 1843 |
|
|
zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
| 1844 |
|
|
)**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
| 1845 |
|
|
lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
| 1846 |
|
|
(2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
| 1847 |
|
|
(zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
| 1848 |
|
✗ |
zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
| 1849 |
|
|
ELSE |
| 1850 |
|
✗ |
zmix(ig) = zlev(ig, lmix(ig)) |
| 1851 |
|
✗ |
PRINT *, 'pb zmix' |
| 1852 |
|
|
END IF |
| 1853 |
|
|
ELSE |
| 1854 |
|
✗ |
zmix(ig) = 0. |
| 1855 |
|
|
END IF |
| 1856 |
|
|
! test |
| 1857 |
|
✗ |
IF ((zmax(ig)-zmix(ig))<=0.) THEN |
| 1858 |
|
✗ |
zmix(ig) = 0.9*zmax(ig) |
| 1859 |
|
|
! print*,'pb zmix>zmax' |
| 1860 |
|
|
END IF |
| 1861 |
|
|
END DO |
| 1862 |
|
✗ |
DO ig = 1, klon |
| 1863 |
|
✗ |
zmix0(ig) = zmix(ig) |
| 1864 |
|
|
END DO |
| 1865 |
|
|
|
| 1866 |
|
|
! calcul du nouveau lmix correspondant |
| 1867 |
|
✗ |
DO ig = 1, ngrid |
| 1868 |
|
✗ |
DO l = 1, klev |
| 1869 |
|
✗ |
IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
| 1870 |
|
✗ |
lmix(ig) = l |
| 1871 |
|
|
END IF |
| 1872 |
|
|
END DO |
| 1873 |
|
|
END DO |
| 1874 |
|
|
|
| 1875 |
|
|
! ne devrait pas arriver!!!!! |
| 1876 |
|
✗ |
DO ig = 1, ngrid |
| 1877 |
|
✗ |
DO l = 1, klev |
| 1878 |
|
✗ |
IF (detr(ig,l)>(fmc(ig,l)+alim(ig,l))+entr(ig,l)) THEN |
| 1879 |
|
✗ |
PRINT *, 'detr2>fmc2!!!', 'ig=', ig, 'l=', l, 'd=', detr(ig, l), & |
| 1880 |
|
✗ |
'f=', fmc(ig, l), 'lmax=', lmax(ig) |
| 1881 |
|
|
! detr(ig,l)=fmc(ig,l)+alim(ig,l)+entr(ig,l) |
| 1882 |
|
|
! entr(ig,l)=0. |
| 1883 |
|
|
! fmc(ig,l+1)=0. |
| 1884 |
|
|
! zw2(ig,l+1)=0. |
| 1885 |
|
|
! zqla(ig,l+1)=0. |
| 1886 |
|
✗ |
PRINT *, 'pb!fm=0 et f_star>0', l, lmax(ig) |
| 1887 |
|
|
! lmax(ig)=l |
| 1888 |
|
|
END IF |
| 1889 |
|
|
END DO |
| 1890 |
|
|
END DO |
| 1891 |
|
✗ |
DO ig = 1, ngrid |
| 1892 |
|
✗ |
DO l = lmax(ig) + 1, klev + 1 |
| 1893 |
|
|
! fmc(ig,l)=0. |
| 1894 |
|
|
! detr(ig,l)=0. |
| 1895 |
|
|
! entr(ig,l)=0. |
| 1896 |
|
|
! zw2(ig,l)=0. |
| 1897 |
|
|
! zqla(ig,l)=0. |
| 1898 |
|
|
END DO |
| 1899 |
|
|
END DO |
| 1900 |
|
|
|
| 1901 |
|
|
! Calcul du detrainement lors du premier passage |
| 1902 |
|
|
! print*,'9 OK convect8' |
| 1903 |
|
|
! print*,'WA1 ',wa_moy |
| 1904 |
|
|
|
| 1905 |
|
|
! determination de l'indice du debut de la mixed layer ou w decroit |
| 1906 |
|
|
|
| 1907 |
|
|
! calcul de la largeur de chaque ascendance dans le cas conservatif. |
| 1908 |
|
|
! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
| 1909 |
|
|
! d'une couche est �gale � la hauteur de la couche alimentante. |
| 1910 |
|
|
! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
| 1911 |
|
|
! de la vitesse d'entrainement horizontal dans la couche alimentante. |
| 1912 |
|
|
|
| 1913 |
|
✗ |
DO l = 2, nlay |
| 1914 |
|
✗ |
DO ig = 1, ngrid |
| 1915 |
|
✗ |
IF (l<=lmax(ig) .AND. (test(ig)==1)) THEN |
| 1916 |
|
✗ |
zw = max(wa_moy(ig,l), 1.E-10) |
| 1917 |
|
✗ |
larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
| 1918 |
|
|
END IF |
| 1919 |
|
|
END DO |
| 1920 |
|
|
END DO |
| 1921 |
|
|
|
| 1922 |
|
✗ |
DO l = 2, nlay |
| 1923 |
|
✗ |
DO ig = 1, ngrid |
| 1924 |
|
✗ |
IF (l<=lmax(ig) .AND. (test(ig)==1)) THEN |
| 1925 |
|
|
! if (idetr.eq.0) then |
| 1926 |
|
|
! cette option est finalement en dur. |
| 1927 |
|
✗ |
IF ((l_mix*zlev(ig,l))<0.) THEN |
| 1928 |
|
✗ |
PRINT *, 'pb l_mix*zlev<0' |
| 1929 |
|
|
END IF |
| 1930 |
|
|
! CR: test: nouvelle def de lambda |
| 1931 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 1932 |
|
✗ |
IF (zw2(ig,l)>1.E-10) THEN |
| 1933 |
|
✗ |
larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
| 1934 |
|
|
ELSE |
| 1935 |
|
✗ |
larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
| 1936 |
|
|
END IF |
| 1937 |
|
|
! else if (idetr.eq.1) then |
| 1938 |
|
|
! larg_detr(ig,l)=larg_cons(ig,l) |
| 1939 |
|
|
! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
| 1940 |
|
|
! else if (idetr.eq.2) then |
| 1941 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 1942 |
|
|
! s *sqrt(wa_moy(ig,l)) |
| 1943 |
|
|
! else if (idetr.eq.4) then |
| 1944 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 1945 |
|
|
! s *wa_moy(ig,l) |
| 1946 |
|
|
! endif |
| 1947 |
|
|
END IF |
| 1948 |
|
|
END DO |
| 1949 |
|
|
END DO |
| 1950 |
|
|
|
| 1951 |
|
|
! print*,'10 OK convect8' |
| 1952 |
|
|
! print*,'WA2 ',wa_moy |
| 1953 |
|
|
! cal1cul de la fraction de la maille concern�e par l'ascendance en tenant |
| 1954 |
|
|
! compte de l'epluchage du thermique. |
| 1955 |
|
|
|
| 1956 |
|
|
|
| 1957 |
|
✗ |
DO l = 2, nlay |
| 1958 |
|
✗ |
DO ig = 1, ngrid |
| 1959 |
|
✗ |
IF (larg_cons(ig,l)>1. .AND. (test(ig)==1)) THEN |
| 1960 |
|
|
! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
| 1961 |
|
✗ |
fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
| 1962 |
|
|
! test |
| 1963 |
|
✗ |
fraca(ig, l) = max(fraca(ig,l), 0.) |
| 1964 |
|
✗ |
fraca(ig, l) = min(fraca(ig,l), 0.5) |
| 1965 |
|
✗ |
fracd(ig, l) = 1. - fraca(ig, l) |
| 1966 |
|
✗ |
fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
| 1967 |
|
|
ELSE |
| 1968 |
|
|
! wa_moy(ig,l)=0. |
| 1969 |
|
✗ |
fraca(ig, l) = 0. |
| 1970 |
|
✗ |
fracc(ig, l) = 0. |
| 1971 |
|
✗ |
fracd(ig, l) = 1. |
| 1972 |
|
|
END IF |
| 1973 |
|
|
END DO |
| 1974 |
|
|
END DO |
| 1975 |
|
|
! CR: calcul de fracazmix |
| 1976 |
|
✗ |
DO ig = 1, ngrid |
| 1977 |
|
✗ |
IF (test(ig)==1) THEN |
| 1978 |
|
|
fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
| 1979 |
|
|
(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
| 1980 |
|
|
fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca( & |
| 1981 |
|
✗ |
ig,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
| 1982 |
|
|
END IF |
| 1983 |
|
|
END DO |
| 1984 |
|
|
|
| 1985 |
|
✗ |
DO l = 2, nlay |
| 1986 |
|
✗ |
DO ig = 1, ngrid |
| 1987 |
|
✗ |
IF (larg_cons(ig,l)>1. .AND. (test(ig)==1)) THEN |
| 1988 |
|
✗ |
IF (l>lmix(ig)) THEN |
| 1989 |
|
|
! test |
| 1990 |
|
✗ |
IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
| 1991 |
|
|
! print*,'pb xxx' |
| 1992 |
|
✗ |
xxx(ig, l) = (lmax(ig)+1.-l)/(lmax(ig)+1.-lmix(ig)) |
| 1993 |
|
|
ELSE |
| 1994 |
|
✗ |
xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
| 1995 |
|
|
END IF |
| 1996 |
|
✗ |
IF (idetr==0) THEN |
| 1997 |
|
✗ |
fraca(ig, l) = fracazmix(ig) |
| 1998 |
|
✗ |
ELSE IF (idetr==1) THEN |
| 1999 |
|
✗ |
fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
| 2000 |
|
✗ |
ELSE IF (idetr==2) THEN |
| 2001 |
|
✗ |
fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
| 2002 |
|
|
ELSE |
| 2003 |
|
✗ |
fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
| 2004 |
|
|
END IF |
| 2005 |
|
|
! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
| 2006 |
|
✗ |
fraca(ig, l) = max(fraca(ig,l), 0.) |
| 2007 |
|
✗ |
fraca(ig, l) = min(fraca(ig,l), 0.5) |
| 2008 |
|
✗ |
fracd(ig, l) = 1. - fraca(ig, l) |
| 2009 |
|
✗ |
fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
| 2010 |
|
|
END IF |
| 2011 |
|
|
END IF |
| 2012 |
|
|
END DO |
| 2013 |
|
|
END DO |
| 2014 |
|
|
|
| 2015 |
|
✗ |
PRINT *, 'fin calcul fraca' |
| 2016 |
|
|
! print*,'11 OK convect8' |
| 2017 |
|
|
! print*,'Ea3 ',wa_moy |
| 2018 |
|
|
! ------------------------------------------------------------------ |
| 2019 |
|
|
! Calcul de fracd, wd |
| 2020 |
|
|
! somme wa - wd = 0 |
| 2021 |
|
|
! ------------------------------------------------------------------ |
| 2022 |
|
|
|
| 2023 |
|
|
|
| 2024 |
|
✗ |
DO ig = 1, ngrid |
| 2025 |
|
✗ |
fm(ig, 1) = 0. |
| 2026 |
|
✗ |
fm(ig, nlay+1) = 0. |
| 2027 |
|
|
END DO |
| 2028 |
|
|
|
| 2029 |
|
✗ |
DO l = 2, nlay |
| 2030 |
|
✗ |
DO ig = 1, ngrid |
| 2031 |
|
✗ |
IF (test(ig)==1) THEN |
| 2032 |
|
✗ |
fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
| 2033 |
|
|
! CR:test |
| 2034 |
|
✗ |
IF (alim(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) & |
| 2035 |
|
|
THEN |
| 2036 |
|
✗ |
fm(ig, l) = fm(ig, l-1) |
| 2037 |
|
|
! write(1,*)'ajustement fm, l',l |
| 2038 |
|
|
END IF |
| 2039 |
|
|
! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
| 2040 |
|
|
! RC |
| 2041 |
|
|
END IF |
| 2042 |
|
|
END DO |
| 2043 |
|
✗ |
DO ig = 1, ngrid |
| 2044 |
|
✗ |
IF (fracd(ig,l)<0.1 .AND. (test(ig)==1)) THEN |
| 2045 |
|
✗ |
abort_message = 'fracd trop petit' |
| 2046 |
|
✗ |
CALL abort_physic(modname, abort_message, 1) |
| 2047 |
|
|
ELSE |
| 2048 |
|
|
! vitesse descendante "diagnostique" |
| 2049 |
|
✗ |
wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
| 2050 |
|
|
END IF |
| 2051 |
|
|
END DO |
| 2052 |
|
|
END DO |
| 2053 |
|
|
|
| 2054 |
|
✗ |
DO l = 1, nlay + 1 |
| 2055 |
|
✗ |
DO ig = 1, ngrid |
| 2056 |
|
✗ |
IF (test(ig)==0) THEN |
| 2057 |
|
✗ |
fm(ig, l) = fmc(ig, l) |
| 2058 |
|
|
END IF |
| 2059 |
|
|
END DO |
| 2060 |
|
|
END DO |
| 2061 |
|
|
|
| 2062 |
|
|
! fin du first |
| 2063 |
|
✗ |
DO l = 1, nlay |
| 2064 |
|
✗ |
DO ig = 1, ngrid |
| 2065 |
|
|
! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 2066 |
|
✗ |
masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
| 2067 |
|
|
END DO |
| 2068 |
|
|
END DO |
| 2069 |
|
|
|
| 2070 |
|
|
! print*,'12 OK convect8' |
| 2071 |
|
|
! print*,'WA4 ',wa_moy |
| 2072 |
|
|
! c------------------------------------------------------------------ |
| 2073 |
|
|
! calcul du transport vertical |
| 2074 |
|
|
! ------------------------------------------------------------------ |
| 2075 |
|
|
|
| 2076 |
|
|
GO TO 4444 |
| 2077 |
|
|
! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
| 2078 |
|
|
DO l = 2, nlay - 1 |
| 2079 |
|
|
DO ig = 1, ngrid |
| 2080 |
|
|
IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
| 2081 |
|
|
ig,l+1)) THEN |
| 2082 |
|
|
PRINT *, 'WARN!!! FM>M ig=', ig, ' l=', l, ' FM=', & |
| 2083 |
|
|
fm(ig, l+1)*ptimestep, ' M=', masse(ig, l), masse(ig, l+1) |
| 2084 |
|
|
END IF |
| 2085 |
|
|
END DO |
| 2086 |
|
|
END DO |
| 2087 |
|
|
|
| 2088 |
|
|
DO l = 1, nlay |
| 2089 |
|
|
DO ig = 1, ngrid |
| 2090 |
|
|
IF ((alim(ig,l)+entr(ig,l))*ptimestep>masse(ig,l)) THEN |
| 2091 |
|
|
PRINT *, 'WARN!!! E>M ig=', ig, ' l=', l, ' E==', & |
| 2092 |
|
|
(entr(ig,l)+alim(ig,l))*ptimestep, ' M=', masse(ig, l) |
| 2093 |
|
|
END IF |
| 2094 |
|
|
END DO |
| 2095 |
|
|
END DO |
| 2096 |
|
|
|
| 2097 |
|
|
DO l = 1, nlay |
| 2098 |
|
|
DO ig = 1, ngrid |
| 2099 |
|
|
IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
| 2100 |
|
|
! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
| 2101 |
|
|
! s ,' FM=',fm(ig,l) |
| 2102 |
|
|
END IF |
| 2103 |
|
|
IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
| 2104 |
|
|
! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
| 2105 |
|
|
! s ,' M=',masse(ig,l) |
| 2106 |
|
|
! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
| 2107 |
|
|
! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
| 2108 |
|
|
! print*,'zlev(ig,l+1),zlev(ig,l)' |
| 2109 |
|
|
! s ,zlev(ig,l+1),zlev(ig,l) |
| 2110 |
|
|
! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
| 2111 |
|
|
! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
| 2112 |
|
|
END IF |
| 2113 |
|
|
IF (.NOT. alim(ig,l)>=0. .OR. .NOT. alim(ig,l)<=10.) THEN |
| 2114 |
|
|
! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
| 2115 |
|
|
! s ,' E=',entr(ig,l) |
| 2116 |
|
|
END IF |
| 2117 |
|
|
END DO |
| 2118 |
|
|
END DO |
| 2119 |
|
|
|
| 2120 |
|
|
4444 CONTINUE |
| 2121 |
|
|
|
| 2122 |
|
|
! CR:redefinition du entr |
| 2123 |
|
|
! CR:test:on ne change pas la def du entr mais la def du fm |
| 2124 |
|
✗ |
DO l = 1, nlay |
| 2125 |
|
✗ |
DO ig = 1, ngrid |
| 2126 |
|
✗ |
IF (test(ig)==1) THEN |
| 2127 |
|
✗ |
detr(ig, l) = fm(ig, l) + alim(ig, l) - fm(ig, l+1) |
| 2128 |
|
✗ |
IF (detr(ig,l)<0.) THEN |
| 2129 |
|
|
! entr(ig,l)=entr(ig,l)-detr(ig,l) |
| 2130 |
|
✗ |
fm(ig, l+1) = fm(ig, l) + alim(ig, l) |
| 2131 |
|
✗ |
detr(ig, l) = 0. |
| 2132 |
|
|
! write(11,*)'l,ig,entr',l,ig,entr(ig,l) |
| 2133 |
|
|
! print*,'WARNING !!! detrainement negatif ',ig,l |
| 2134 |
|
|
END IF |
| 2135 |
|
|
END IF |
| 2136 |
|
|
END DO |
| 2137 |
|
|
END DO |
| 2138 |
|
|
! RC |
| 2139 |
|
|
|
| 2140 |
|
✗ |
IF (w2di==1) THEN |
| 2141 |
|
✗ |
fm0 = fm0 + ptimestep*(fm-fm0)/tho |
| 2142 |
|
✗ |
entr0 = entr0 + ptimestep*(alim+entr-entr0)/tho |
| 2143 |
|
|
ELSE |
| 2144 |
|
✗ |
fm0 = fm |
| 2145 |
|
✗ |
entr0 = alim + entr |
| 2146 |
|
✗ |
detr0 = detr |
| 2147 |
|
✗ |
alim0 = alim |
| 2148 |
|
|
! zoa=zqta |
| 2149 |
|
|
! entr0=alim |
| 2150 |
|
|
END IF |
| 2151 |
|
|
|
| 2152 |
|
|
IF (1==1) THEN |
| 2153 |
|
|
! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
| 2154 |
|
|
! . ,zh,zdhadj,zha) |
| 2155 |
|
|
! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
| 2156 |
|
|
! . ,zo,pdoadj,zoa) |
| 2157 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zthl, & |
| 2158 |
|
✗ |
zdthladj, zta) |
| 2159 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, po, pdoadj, & |
| 2160 |
|
✗ |
zoa) |
| 2161 |
|
|
ELSE |
| 2162 |
|
|
CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
| 2163 |
|
|
zdhadj, zha) |
| 2164 |
|
|
CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
| 2165 |
|
|
pdoadj, zoa) |
| 2166 |
|
|
END IF |
| 2167 |
|
|
|
| 2168 |
|
|
IF (1==0) THEN |
| 2169 |
|
|
CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
| 2170 |
|
|
zu, zv, pduadj, pdvadj, zua, zva) |
| 2171 |
|
|
ELSE |
| 2172 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
| 2173 |
|
✗ |
zua) |
| 2174 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
| 2175 |
|
✗ |
zva) |
| 2176 |
|
|
END IF |
| 2177 |
|
|
|
| 2178 |
|
|
! Calcul des moments |
| 2179 |
|
|
! do l=1,nlay |
| 2180 |
|
|
! do ig=1,ngrid |
| 2181 |
|
|
! zf=0.5*(fracc(ig,l)+fracc(ig,l+1)) |
| 2182 |
|
|
! zf2=zf/(1.-zf) |
| 2183 |
|
|
! thetath2(ig,l)=zf2*(zha(ig,l)-zh(ig,l))**2 |
| 2184 |
|
|
! wth2(ig,l)=zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
| 2185 |
|
|
! enddo |
| 2186 |
|
|
! enddo |
| 2187 |
|
|
|
| 2188 |
|
|
|
| 2189 |
|
|
|
| 2190 |
|
|
|
| 2191 |
|
|
|
| 2192 |
|
|
|
| 2193 |
|
|
! print*,'13 OK convect8' |
| 2194 |
|
|
! print*,'WA5 ',wa_moy |
| 2195 |
|
✗ |
DO l = 1, nlay |
| 2196 |
|
✗ |
DO ig = 1, ngrid |
| 2197 |
|
|
! pdtadj(ig,l)=zdhadj(ig,l)*zpspsk(ig,l) |
| 2198 |
|
✗ |
pdtadj(ig, l) = zdthladj(ig, l)*zpspsk(ig, l) |
| 2199 |
|
|
END DO |
| 2200 |
|
|
END DO |
| 2201 |
|
|
|
| 2202 |
|
|
|
| 2203 |
|
|
! do l=1,nlay |
| 2204 |
|
|
! do ig=1,ngrid |
| 2205 |
|
|
! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
| 2206 |
|
|
! print*,'WARN!!! ig=',ig,' l=',l |
| 2207 |
|
|
! s ,' pdtadj=',pdtadj(ig,l) |
| 2208 |
|
|
! endif |
| 2209 |
|
|
! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
| 2210 |
|
|
! print*,'WARN!!! ig=',ig,' l=',l |
| 2211 |
|
|
! s ,' pdoadj=',pdoadj(ig,l) |
| 2212 |
|
|
! endif |
| 2213 |
|
|
! enddo |
| 2214 |
|
|
! enddo |
| 2215 |
|
|
|
| 2216 |
|
|
! print*,'14 OK convect8' |
| 2217 |
|
|
! ------------------------------------------------------------------ |
| 2218 |
|
|
! Calculs pour les sorties |
| 2219 |
|
|
! ------------------------------------------------------------------ |
| 2220 |
|
|
! calcul de fraca pour les sorties |
| 2221 |
|
✗ |
DO l = 2, klev |
| 2222 |
|
✗ |
DO ig = 1, klon |
| 2223 |
|
✗ |
IF (zw2(ig,l)>1.E-10) THEN |
| 2224 |
|
✗ |
fraca(ig, l) = fm(ig, l)/(rhobarz(ig,l)*zw2(ig,l)) |
| 2225 |
|
|
ELSE |
| 2226 |
|
✗ |
fraca(ig, l) = 0. |
| 2227 |
|
|
END IF |
| 2228 |
|
|
END DO |
| 2229 |
|
|
END DO |
| 2230 |
|
|
IF (sorties) THEN |
| 2231 |
|
|
DO l = 1, nlay |
| 2232 |
|
|
DO ig = 1, ngrid |
| 2233 |
|
|
zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
| 2234 |
|
|
zld(ig, l) = fracd(ig, l)*zmax(ig) |
| 2235 |
|
|
IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
| 2236 |
|
|
(1.-fracd(ig,l)) |
| 2237 |
|
|
END DO |
| 2238 |
|
|
END DO |
| 2239 |
|
|
! CR calcul du niveau de condensation |
| 2240 |
|
|
! initialisation |
| 2241 |
|
|
DO ig = 1, ngrid |
| 2242 |
|
|
nivcon(ig) = 0. |
| 2243 |
|
|
zcon(ig) = 0. |
| 2244 |
|
|
END DO |
| 2245 |
|
|
DO k = nlay, 1, -1 |
| 2246 |
|
|
DO ig = 1, ngrid |
| 2247 |
|
|
IF (zqla(ig,k)>1E-10) THEN |
| 2248 |
|
|
nivcon(ig) = k |
| 2249 |
|
|
zcon(ig) = zlev(ig, k) |
| 2250 |
|
|
END IF |
| 2251 |
|
|
! if (zcon(ig).gt.1.e-10) then |
| 2252 |
|
|
! nuage=.true. |
| 2253 |
|
|
! else |
| 2254 |
|
|
! nuage=.false. |
| 2255 |
|
|
! endif |
| 2256 |
|
|
END DO |
| 2257 |
|
|
END DO |
| 2258 |
|
|
|
| 2259 |
|
|
DO l = 1, nlay |
| 2260 |
|
|
DO ig = 1, ngrid |
| 2261 |
|
|
zf = fraca(ig, l) |
| 2262 |
|
|
zf2 = zf/(1.-zf) |
| 2263 |
|
|
thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l)/zpspsk(ig,l))**2 |
| 2264 |
|
|
wth2(ig, l) = zf2*(zw2(ig,l))**2 |
| 2265 |
|
|
! print*,'wth2=',wth2(ig,l) |
| 2266 |
|
|
wth3(ig, l) = zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l))*zw2(ig, l)* & |
| 2267 |
|
|
zw2(ig, l)*zw2(ig, l) |
| 2268 |
|
|
q2(ig, l) = zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
| 2269 |
|
|
! test: on calcul q2/po=ratqsc |
| 2270 |
|
|
! if (nuage) then |
| 2271 |
|
|
ratqscth(ig, l) = sqrt(q2(ig,l))/(po(ig,l)*1000.) |
| 2272 |
|
|
! else |
| 2273 |
|
|
! ratqscth(ig,l)=0. |
| 2274 |
|
|
! endif |
| 2275 |
|
|
END DO |
| 2276 |
|
|
END DO |
| 2277 |
|
|
! calcul du ratqscdiff |
| 2278 |
|
|
sum = 0. |
| 2279 |
|
|
sumdiff = 0. |
| 2280 |
|
|
ratqsdiff(:, :) = 0. |
| 2281 |
|
|
DO ig = 1, ngrid |
| 2282 |
|
|
DO l = 1, lentr(ig) |
| 2283 |
|
|
sum = sum + alim_star(ig, l)*zqta(ig, l)*1000. |
| 2284 |
|
|
END DO |
| 2285 |
|
|
END DO |
| 2286 |
|
|
DO ig = 1, ngrid |
| 2287 |
|
|
DO l = 1, lentr(ig) |
| 2288 |
|
|
zf = fraca(ig, l) |
| 2289 |
|
|
zf2 = zf/(1.-zf) |
| 2290 |
|
|
sumdiff = sumdiff + alim_star(ig, l)*(zqta(ig,l)*1000.-sum)**2 |
| 2291 |
|
|
! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
| 2292 |
|
|
! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
| 2293 |
|
|
END DO |
| 2294 |
|
|
END DO |
| 2295 |
|
|
DO l = 1, klev |
| 2296 |
|
|
DO ig = 1, ngrid |
| 2297 |
|
|
ratqsdiff(ig, l) = sqrt(sumdiff)/(po(ig,l)*1000.) |
| 2298 |
|
|
! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
| 2299 |
|
|
END DO |
| 2300 |
|
|
END DO |
| 2301 |
|
|
|
| 2302 |
|
|
END IF |
| 2303 |
|
|
|
| 2304 |
|
|
! print*,'19 OK convect8' |
| 2305 |
|
✗ |
RETURN |
| 2306 |
|
|
END SUBROUTINE thermcell_cld |
| 2307 |
|
|
|
| 2308 |
|
✗ |
SUBROUTINE thermcell_eau(ngrid, nlay, ptimestep, pplay, pplev, pphi, pu, pv, & |
| 2309 |
|
✗ |
pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
| 2310 |
|
|
! ,pu_therm,pv_therm |
| 2311 |
|
|
, r_aspect, l_mix, w2di, tho) |
| 2312 |
|
|
|
| 2313 |
|
|
USE dimphy |
| 2314 |
|
|
IMPLICIT NONE |
| 2315 |
|
|
|
| 2316 |
|
|
! ======================================================================= |
| 2317 |
|
|
|
| 2318 |
|
|
! Calcul du transport verticale dans la couche limite en presence |
| 2319 |
|
|
! de "thermiques" explicitement representes |
| 2320 |
|
|
|
| 2321 |
|
|
! R��criture � partir d'un listing papier � Habas, le 14/02/00 |
| 2322 |
|
|
|
| 2323 |
|
|
! le thermique est suppos� homog�ne et dissip� par m�lange avec |
| 2324 |
|
|
! son environnement. la longueur l_mix contr�le l'efficacit� du |
| 2325 |
|
|
! m�lange |
| 2326 |
|
|
|
| 2327 |
|
|
! Le calcul du transport des diff�rentes esp�ces se fait en prenant |
| 2328 |
|
|
! en compte: |
| 2329 |
|
|
! 1. un flux de masse montant |
| 2330 |
|
|
! 2. un flux de masse descendant |
| 2331 |
|
|
! 3. un entrainement |
| 2332 |
|
|
! 4. un detrainement |
| 2333 |
|
|
|
| 2334 |
|
|
! ======================================================================= |
| 2335 |
|
|
|
| 2336 |
|
|
! ----------------------------------------------------------------------- |
| 2337 |
|
|
! declarations: |
| 2338 |
|
|
! ------------- |
| 2339 |
|
|
|
| 2340 |
|
|
include "YOMCST.h" |
| 2341 |
|
|
include "YOETHF.h" |
| 2342 |
|
|
include "FCTTRE.h" |
| 2343 |
|
|
|
| 2344 |
|
|
! arguments: |
| 2345 |
|
|
! ---------- |
| 2346 |
|
|
|
| 2347 |
|
|
INTEGER ngrid, nlay, w2di |
| 2348 |
|
|
REAL tho |
| 2349 |
|
|
REAL ptimestep, l_mix, r_aspect |
| 2350 |
|
|
REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
| 2351 |
|
|
REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
| 2352 |
|
|
REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
| 2353 |
|
|
REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
| 2354 |
|
|
REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
| 2355 |
|
|
REAL pphi(ngrid, nlay) |
| 2356 |
|
|
|
| 2357 |
|
|
INTEGER idetr |
| 2358 |
|
|
SAVE idetr |
| 2359 |
|
|
DATA idetr/3/ |
| 2360 |
|
|
!$OMP THREADPRIVATE(idetr) |
| 2361 |
|
|
|
| 2362 |
|
|
! local: |
| 2363 |
|
|
! ------ |
| 2364 |
|
|
|
| 2365 |
|
✗ |
INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
| 2366 |
|
|
REAL zsortie1d(klon) |
| 2367 |
|
|
! CR: on remplace lmax(klon,klev+1) |
| 2368 |
|
✗ |
INTEGER lmax(klon), lmin(klon), lentr(klon) |
| 2369 |
|
✗ |
REAL linter(klon) |
| 2370 |
|
✗ |
REAL zmix(klon), fracazmix(klon) |
| 2371 |
|
|
! RC |
| 2372 |
|
✗ |
REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
| 2373 |
|
|
|
| 2374 |
|
✗ |
REAL zlev(klon, klev+1), zlay(klon, klev) |
| 2375 |
|
✗ |
REAL zh(klon, klev), zdhadj(klon, klev) |
| 2376 |
|
✗ |
REAL zthl(klon, klev), zdthladj(klon, klev) |
| 2377 |
|
✗ |
REAL ztv(klon, klev) |
| 2378 |
|
✗ |
REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
| 2379 |
|
✗ |
REAL zl(klon, klev) |
| 2380 |
|
|
REAL wh(klon, klev+1) |
| 2381 |
|
|
REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
| 2382 |
|
|
REAL zla(klon, klev+1) |
| 2383 |
|
|
REAL zwa(klon, klev+1) |
| 2384 |
|
|
REAL zld(klon, klev+1) |
| 2385 |
|
|
REAL zwd(klon, klev+1) |
| 2386 |
|
|
REAL zsortie(klon, klev) |
| 2387 |
|
✗ |
REAL zva(klon, klev) |
| 2388 |
|
✗ |
REAL zua(klon, klev) |
| 2389 |
|
✗ |
REAL zoa(klon, klev) |
| 2390 |
|
|
|
| 2391 |
|
✗ |
REAL zta(klon, klev) |
| 2392 |
|
✗ |
REAL zha(klon, klev) |
| 2393 |
|
✗ |
REAL wa_moy(klon, klev+1) |
| 2394 |
|
✗ |
REAL fraca(klon, klev+1) |
| 2395 |
|
✗ |
REAL fracc(klon, klev+1) |
| 2396 |
|
|
REAL zf, zf2 |
| 2397 |
|
✗ |
REAL thetath2(klon, klev), wth2(klon, klev) |
| 2398 |
|
|
! common/comtherm/thetath2,wth2 |
| 2399 |
|
|
|
| 2400 |
|
|
REAL count_time |
| 2401 |
|
|
INTEGER ialt |
| 2402 |
|
|
|
| 2403 |
|
|
LOGICAL sorties |
| 2404 |
|
✗ |
REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
| 2405 |
|
✗ |
REAL zpspsk(klon, klev) |
| 2406 |
|
|
|
| 2407 |
|
|
! real wmax(klon,klev),wmaxa(klon) |
| 2408 |
|
✗ |
REAL wmax(klon), wmaxa(klon) |
| 2409 |
|
✗ |
REAL wa(klon, klev, klev+1) |
| 2410 |
|
✗ |
REAL wd(klon, klev+1) |
| 2411 |
|
|
REAL larg_part(klon, klev, klev+1) |
| 2412 |
|
✗ |
REAL fracd(klon, klev+1) |
| 2413 |
|
✗ |
REAL xxx(klon, klev+1) |
| 2414 |
|
✗ |
REAL larg_cons(klon, klev+1) |
| 2415 |
|
✗ |
REAL larg_detr(klon, klev+1) |
| 2416 |
|
|
REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
| 2417 |
|
|
REAL pu_therm(klon, klev), pv_therm(klon, klev) |
| 2418 |
|
✗ |
REAL fm(klon, klev+1), entr(klon, klev) |
| 2419 |
|
✗ |
REAL fmc(klon, klev+1) |
| 2420 |
|
|
|
| 2421 |
|
|
REAL zcor, zdelta, zcvm5, qlbef |
| 2422 |
|
✗ |
REAL tbef(klon), qsatbef(klon) |
| 2423 |
|
|
REAL dqsat_dt, dt, num, denom |
| 2424 |
|
|
REAL reps, rlvcp, ddt0 |
| 2425 |
|
✗ |
REAL ztla(klon, klev), zqla(klon, klev), zqta(klon, klev) |
| 2426 |
|
|
|
| 2427 |
|
|
PARAMETER (ddt0=.01) |
| 2428 |
|
|
|
| 2429 |
|
|
! CR:nouvelles variables |
| 2430 |
|
✗ |
REAL f_star(klon, klev+1), entr_star(klon, klev) |
| 2431 |
|
✗ |
REAL entr_star_tot(klon), entr_star2(klon) |
| 2432 |
|
✗ |
REAL f(klon), f0(klon) |
| 2433 |
|
✗ |
REAL zlevinter(klon) |
| 2434 |
|
|
LOGICAL first |
| 2435 |
|
|
DATA first/.FALSE./ |
| 2436 |
|
|
SAVE first |
| 2437 |
|
|
!$OMP THREADPRIVATE(first) |
| 2438 |
|
|
|
| 2439 |
|
|
! RC |
| 2440 |
|
|
|
| 2441 |
|
|
CHARACTER *2 str2 |
| 2442 |
|
|
CHARACTER *10 str10 |
| 2443 |
|
|
|
| 2444 |
|
|
CHARACTER (LEN=20) :: modname = 'thermcell_eau' |
| 2445 |
|
|
CHARACTER (LEN=80) :: abort_message |
| 2446 |
|
|
|
| 2447 |
|
|
LOGICAL vtest(klon), down |
| 2448 |
|
✗ |
LOGICAL zsat(klon) |
| 2449 |
|
|
|
| 2450 |
|
|
EXTERNAL scopy |
| 2451 |
|
|
|
| 2452 |
|
|
INTEGER ncorrec, ll |
| 2453 |
|
|
SAVE ncorrec |
| 2454 |
|
|
DATA ncorrec/0/ |
| 2455 |
|
|
!$OMP THREADPRIVATE(ncorrec) |
| 2456 |
|
|
|
| 2457 |
|
|
|
| 2458 |
|
|
|
| 2459 |
|
|
! ----------------------------------------------------------------------- |
| 2460 |
|
|
! initialisation: |
| 2461 |
|
|
! --------------- |
| 2462 |
|
|
|
| 2463 |
|
|
sorties = .TRUE. |
| 2464 |
|
✗ |
IF (ngrid/=klon) THEN |
| 2465 |
|
✗ |
PRINT * |
| 2466 |
|
✗ |
PRINT *, 'STOP dans convadj' |
| 2467 |
|
✗ |
PRINT *, 'ngrid =', ngrid |
| 2468 |
|
✗ |
PRINT *, 'klon =', klon |
| 2469 |
|
|
END IF |
| 2470 |
|
|
|
| 2471 |
|
|
! Initialisation |
| 2472 |
|
✗ |
rlvcp = rlvtt/rcpd |
| 2473 |
|
|
reps = rd/rv |
| 2474 |
|
|
|
| 2475 |
|
|
! ----------------------------------------------------------------------- |
| 2476 |
|
|
! AM Calcul de T,q,ql a partir de Tl et qT |
| 2477 |
|
|
! --------------------------------------------------- |
| 2478 |
|
|
|
| 2479 |
|
|
! Pr Tprec=Tl calcul de qsat |
| 2480 |
|
|
! Si qsat>qT T=Tl, q=qT |
| 2481 |
|
|
! Sinon DDT=(-Tprec+Tl+RLVCP (qT-qsat(T')) / (1+RLVCP dqsat/dt) |
| 2482 |
|
|
! On cherche DDT < DDT0 |
| 2483 |
|
|
|
| 2484 |
|
|
! defaut |
| 2485 |
|
✗ |
DO ll = 1, nlay |
| 2486 |
|
✗ |
DO ig = 1, ngrid |
| 2487 |
|
✗ |
zo(ig, ll) = po(ig, ll) |
| 2488 |
|
✗ |
zl(ig, ll) = 0. |
| 2489 |
|
✗ |
zh(ig, ll) = pt(ig, ll) |
| 2490 |
|
|
END DO |
| 2491 |
|
|
END DO |
| 2492 |
|
✗ |
DO ig = 1, ngrid |
| 2493 |
|
✗ |
zsat(ig) = .FALSE. |
| 2494 |
|
|
END DO |
| 2495 |
|
|
|
| 2496 |
|
|
|
| 2497 |
|
✗ |
DO ll = 1, nlay |
| 2498 |
|
|
! les points insatures sont definitifs |
| 2499 |
|
✗ |
DO ig = 1, ngrid |
| 2500 |
|
✗ |
tbef(ig) = pt(ig, ll) |
| 2501 |
|
✗ |
zdelta = max(0., sign(1.,rtt-tbef(ig))) |
| 2502 |
|
✗ |
qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
| 2503 |
|
✗ |
qsatbef(ig) = min(0.5, qsatbef(ig)) |
| 2504 |
|
✗ |
zcor = 1./(1.-retv*qsatbef(ig)) |
| 2505 |
|
✗ |
qsatbef(ig) = qsatbef(ig)*zcor |
| 2506 |
|
✗ |
zsat(ig) = (max(0.,po(ig,ll)-qsatbef(ig))>0.00001) |
| 2507 |
|
|
END DO |
| 2508 |
|
|
|
| 2509 |
|
✗ |
DO ig = 1, ngrid |
| 2510 |
|
✗ |
IF (zsat(ig)) THEN |
| 2511 |
|
✗ |
qlbef = max(0., po(ig,ll)-qsatbef(ig)) |
| 2512 |
|
|
! si sature: ql est surestime, d'ou la sous-relax |
| 2513 |
|
✗ |
dt = 0.5*rlvcp*qlbef |
| 2514 |
|
|
! on pourra enchainer 2 ou 3 calculs sans Do while |
| 2515 |
|
✗ |
DO WHILE (dt>ddt0) |
| 2516 |
|
|
! il faut verifier si c,a conserve quand on repasse en insature ... |
| 2517 |
|
✗ |
tbef(ig) = tbef(ig) + dt |
| 2518 |
|
✗ |
zdelta = max(0., sign(1.,rtt-tbef(ig))) |
| 2519 |
|
✗ |
qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
| 2520 |
|
✗ |
qsatbef(ig) = min(0.5, qsatbef(ig)) |
| 2521 |
|
✗ |
zcor = 1./(1.-retv*qsatbef(ig)) |
| 2522 |
|
✗ |
qsatbef(ig) = qsatbef(ig)*zcor |
| 2523 |
|
|
! on veut le signe de qlbef |
| 2524 |
|
✗ |
qlbef = po(ig, ll) - qsatbef(ig) |
| 2525 |
|
|
! dqsat_dT |
| 2526 |
|
|
zdelta = max(0., sign(1.,rtt-tbef(ig))) |
| 2527 |
|
✗ |
zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
| 2528 |
|
✗ |
zcor = 1./(1.-retv*qsatbef(ig)) |
| 2529 |
|
✗ |
dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
| 2530 |
|
✗ |
num = -tbef(ig) + pt(ig, ll) + rlvcp*qlbef |
| 2531 |
|
✗ |
denom = 1. + rlvcp*dqsat_dt |
| 2532 |
|
✗ |
dt = num/denom |
| 2533 |
|
|
END DO |
| 2534 |
|
|
! on ecrit de maniere conservative (sat ou non) |
| 2535 |
|
✗ |
zl(ig, ll) = max(0., qlbef) |
| 2536 |
|
|
! T = Tl +Lv/Cp ql |
| 2537 |
|
✗ |
zh(ig, ll) = pt(ig, ll) + rlvcp*zl(ig, ll) |
| 2538 |
|
✗ |
zo(ig, ll) = po(ig, ll) - zl(ig, ll) |
| 2539 |
|
|
END IF |
| 2540 |
|
|
END DO |
| 2541 |
|
|
END DO |
| 2542 |
|
|
! AM fin |
| 2543 |
|
|
|
| 2544 |
|
|
! ----------------------------------------------------------------------- |
| 2545 |
|
|
! incrementation eventuelle de tendances precedentes: |
| 2546 |
|
|
! --------------------------------------------------- |
| 2547 |
|
|
|
| 2548 |
|
|
! print*,'0 OK convect8' |
| 2549 |
|
|
|
| 2550 |
|
✗ |
DO l = 1, nlay |
| 2551 |
|
✗ |
DO ig = 1, ngrid |
| 2552 |
|
✗ |
zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
| 2553 |
|
|
! zh(ig,l)=pt(ig,l)/zpspsk(ig,l) |
| 2554 |
|
✗ |
zu(ig, l) = pu(ig, l) |
| 2555 |
|
✗ |
zv(ig, l) = pv(ig, l) |
| 2556 |
|
|
! zo(ig,l)=po(ig,l) |
| 2557 |
|
|
! ztv(ig,l)=zh(ig,l)*(1.+0.61*zo(ig,l)) |
| 2558 |
|
|
! AM attention zh est maintenant le profil de T et plus le profil de |
| 2559 |
|
|
! theta ! |
| 2560 |
|
|
|
| 2561 |
|
|
! T-> Theta |
| 2562 |
|
✗ |
ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
| 2563 |
|
|
! AM Theta_v |
| 2564 |
|
✗ |
ztv(ig, l) = ztv(ig, l)*(1.+retv*(zo(ig,l))-zl(ig,l)) |
| 2565 |
|
|
! AM Thetal |
| 2566 |
|
✗ |
zthl(ig, l) = pt(ig, l)/zpspsk(ig, l) |
| 2567 |
|
|
|
| 2568 |
|
|
END DO |
| 2569 |
|
|
END DO |
| 2570 |
|
|
|
| 2571 |
|
|
! print*,'1 OK convect8' |
| 2572 |
|
|
! -------------------- |
| 2573 |
|
|
|
| 2574 |
|
|
|
| 2575 |
|
|
! + + + + + + + + + + + |
| 2576 |
|
|
|
| 2577 |
|
|
|
| 2578 |
|
|
! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
| 2579 |
|
|
! wh,wt,wo ... |
| 2580 |
|
|
|
| 2581 |
|
|
! + + + + + + + + + + + zh,zu,zv,zo,rho |
| 2582 |
|
|
|
| 2583 |
|
|
|
| 2584 |
|
|
! -------------------- zlev(1) |
| 2585 |
|
|
! \\\\\\\\\\\\\\\\\\\ |
| 2586 |
|
|
|
| 2587 |
|
|
|
| 2588 |
|
|
! ----------------------------------------------------------------------- |
| 2589 |
|
|
! Calcul des altitudes des couches |
| 2590 |
|
|
! ----------------------------------------------------------------------- |
| 2591 |
|
|
|
| 2592 |
|
✗ |
DO l = 2, nlay |
| 2593 |
|
✗ |
DO ig = 1, ngrid |
| 2594 |
|
✗ |
zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
| 2595 |
|
|
END DO |
| 2596 |
|
|
END DO |
| 2597 |
|
✗ |
DO ig = 1, ngrid |
| 2598 |
|
✗ |
zlev(ig, 1) = 0. |
| 2599 |
|
✗ |
zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
| 2600 |
|
|
END DO |
| 2601 |
|
✗ |
DO l = 1, nlay |
| 2602 |
|
✗ |
DO ig = 1, ngrid |
| 2603 |
|
✗ |
zlay(ig, l) = pphi(ig, l)/rg |
| 2604 |
|
|
END DO |
| 2605 |
|
|
END DO |
| 2606 |
|
|
|
| 2607 |
|
|
! print*,'2 OK convect8' |
| 2608 |
|
|
! ----------------------------------------------------------------------- |
| 2609 |
|
|
! Calcul des densites |
| 2610 |
|
|
! ----------------------------------------------------------------------- |
| 2611 |
|
|
|
| 2612 |
|
✗ |
DO l = 1, nlay |
| 2613 |
|
✗ |
DO ig = 1, ngrid |
| 2614 |
|
|
! rho(ig,l)=pplay(ig,l)/(zpspsk(ig,l)*RD*zh(ig,l)) |
| 2615 |
|
✗ |
rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*ztv(ig,l)) |
| 2616 |
|
|
END DO |
| 2617 |
|
|
END DO |
| 2618 |
|
|
|
| 2619 |
|
✗ |
DO l = 2, nlay |
| 2620 |
|
✗ |
DO ig = 1, ngrid |
| 2621 |
|
✗ |
rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
| 2622 |
|
|
END DO |
| 2623 |
|
|
END DO |
| 2624 |
|
|
|
| 2625 |
|
✗ |
DO k = 1, nlay |
| 2626 |
|
✗ |
DO l = 1, nlay + 1 |
| 2627 |
|
✗ |
DO ig = 1, ngrid |
| 2628 |
|
✗ |
wa(ig, k, l) = 0. |
| 2629 |
|
|
END DO |
| 2630 |
|
|
END DO |
| 2631 |
|
|
END DO |
| 2632 |
|
|
|
| 2633 |
|
|
! print*,'3 OK convect8' |
| 2634 |
|
|
! ------------------------------------------------------------------ |
| 2635 |
|
|
! Calcul de w2, quarre de w a partir de la cape |
| 2636 |
|
|
! a partir de w2, on calcule wa, vitesse de l'ascendance |
| 2637 |
|
|
|
| 2638 |
|
|
! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
| 2639 |
|
|
! w2 est stoke dans wa |
| 2640 |
|
|
|
| 2641 |
|
|
! ATTENTION: dans convect8, on n'utilise le calcule des wa |
| 2642 |
|
|
! independants par couches que pour calculer l'entrainement |
| 2643 |
|
|
! a la base et la hauteur max de l'ascendance. |
| 2644 |
|
|
|
| 2645 |
|
|
! Indicages: |
| 2646 |
|
|
! l'ascendance provenant du niveau k traverse l'interface l avec |
| 2647 |
|
|
! une vitesse wa(k,l). |
| 2648 |
|
|
|
| 2649 |
|
|
! -------------------- |
| 2650 |
|
|
|
| 2651 |
|
|
! + + + + + + + + + + |
| 2652 |
|
|
|
| 2653 |
|
|
! wa(k,l) ---- -------------------- l |
| 2654 |
|
|
! / ! /||\ + + + + + + + + + + |
| 2655 |
|
|
! || |
| 2656 |
|
|
! || -------------------- |
| 2657 |
|
|
! || |
| 2658 |
|
|
! || + + + + + + + + + + |
| 2659 |
|
|
! || |
| 2660 |
|
|
! || -------------------- |
| 2661 |
|
|
! ||__ |
| 2662 |
|
|
! |___ + + + + + + + + + + k |
| 2663 |
|
|
|
| 2664 |
|
|
! -------------------- |
| 2665 |
|
|
|
| 2666 |
|
|
|
| 2667 |
|
|
|
| 2668 |
|
|
! ------------------------------------------------------------------ |
| 2669 |
|
|
|
| 2670 |
|
|
! CR: ponderation entrainement des couches instables |
| 2671 |
|
|
! def des entr_star tels que entr=f*entr_star |
| 2672 |
|
✗ |
DO l = 1, klev |
| 2673 |
|
✗ |
DO ig = 1, ngrid |
| 2674 |
|
✗ |
entr_star(ig, l) = 0. |
| 2675 |
|
|
END DO |
| 2676 |
|
|
END DO |
| 2677 |
|
|
! determination de la longueur de la couche d entrainement |
| 2678 |
|
✗ |
DO ig = 1, ngrid |
| 2679 |
|
✗ |
lentr(ig) = 1 |
| 2680 |
|
|
END DO |
| 2681 |
|
|
|
| 2682 |
|
|
! on ne considere que les premieres couches instables |
| 2683 |
|
✗ |
DO k = nlay - 1, 1, -1 |
| 2684 |
|
✗ |
DO ig = 1, ngrid |
| 2685 |
|
✗ |
IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<ztv(ig,k+2)) THEN |
| 2686 |
|
✗ |
lentr(ig) = k |
| 2687 |
|
|
END IF |
| 2688 |
|
|
END DO |
| 2689 |
|
|
END DO |
| 2690 |
|
|
|
| 2691 |
|
|
! determination du lmin: couche d ou provient le thermique |
| 2692 |
|
✗ |
DO ig = 1, ngrid |
| 2693 |
|
✗ |
lmin(ig) = 1 |
| 2694 |
|
|
END DO |
| 2695 |
|
✗ |
DO ig = 1, ngrid |
| 2696 |
|
✗ |
DO l = nlay, 2, -1 |
| 2697 |
|
✗ |
IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
| 2698 |
|
✗ |
lmin(ig) = l - 1 |
| 2699 |
|
|
END IF |
| 2700 |
|
|
END DO |
| 2701 |
|
|
END DO |
| 2702 |
|
|
|
| 2703 |
|
|
! definition de l'entrainement des couches |
| 2704 |
|
✗ |
DO l = 1, klev - 1 |
| 2705 |
|
✗ |
DO ig = 1, ngrid |
| 2706 |
|
✗ |
IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
| 2707 |
|
✗ |
entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))*(zlev(ig,l+1)-zlev(ig,l)) |
| 2708 |
|
|
END IF |
| 2709 |
|
|
END DO |
| 2710 |
|
|
END DO |
| 2711 |
|
|
! pas de thermique si couche 1 stable |
| 2712 |
|
✗ |
DO ig = 1, ngrid |
| 2713 |
|
✗ |
IF (lmin(ig)>1) THEN |
| 2714 |
|
✗ |
DO l = 1, klev |
| 2715 |
|
✗ |
entr_star(ig, l) = 0. |
| 2716 |
|
|
END DO |
| 2717 |
|
|
END IF |
| 2718 |
|
|
END DO |
| 2719 |
|
|
! calcul de l entrainement total |
| 2720 |
|
✗ |
DO ig = 1, ngrid |
| 2721 |
|
✗ |
entr_star_tot(ig) = 0. |
| 2722 |
|
|
END DO |
| 2723 |
|
✗ |
DO ig = 1, ngrid |
| 2724 |
|
✗ |
DO k = 1, klev |
| 2725 |
|
✗ |
entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
| 2726 |
|
|
END DO |
| 2727 |
|
|
END DO |
| 2728 |
|
|
|
| 2729 |
|
✗ |
DO k = 1, klev |
| 2730 |
|
✗ |
DO ig = 1, ngrid |
| 2731 |
|
✗ |
ztva(ig, k) = ztv(ig, k) |
| 2732 |
|
|
END DO |
| 2733 |
|
|
END DO |
| 2734 |
|
|
! RC |
| 2735 |
|
|
! AM:initialisations |
| 2736 |
|
✗ |
DO k = 1, nlay |
| 2737 |
|
✗ |
DO ig = 1, ngrid |
| 2738 |
|
✗ |
ztva(ig, k) = ztv(ig, k) |
| 2739 |
|
✗ |
ztla(ig, k) = zthl(ig, k) |
| 2740 |
|
✗ |
zqla(ig, k) = 0. |
| 2741 |
|
✗ |
zqta(ig, k) = po(ig, k) |
| 2742 |
|
✗ |
zsat(ig) = .FALSE. |
| 2743 |
|
|
END DO |
| 2744 |
|
|
END DO |
| 2745 |
|
|
|
| 2746 |
|
|
! print*,'7 OK convect8' |
| 2747 |
|
✗ |
DO k = 1, klev + 1 |
| 2748 |
|
✗ |
DO ig = 1, ngrid |
| 2749 |
|
✗ |
zw2(ig, k) = 0. |
| 2750 |
|
✗ |
fmc(ig, k) = 0. |
| 2751 |
|
|
! CR |
| 2752 |
|
✗ |
f_star(ig, k) = 0. |
| 2753 |
|
|
! RC |
| 2754 |
|
✗ |
larg_cons(ig, k) = 0. |
| 2755 |
|
✗ |
larg_detr(ig, k) = 0. |
| 2756 |
|
✗ |
wa_moy(ig, k) = 0. |
| 2757 |
|
|
END DO |
| 2758 |
|
|
END DO |
| 2759 |
|
|
|
| 2760 |
|
|
! print*,'8 OK convect8' |
| 2761 |
|
✗ |
DO ig = 1, ngrid |
| 2762 |
|
✗ |
linter(ig) = 1. |
| 2763 |
|
✗ |
lmaxa(ig) = 1 |
| 2764 |
|
✗ |
lmix(ig) = 1 |
| 2765 |
|
✗ |
wmaxa(ig) = 0. |
| 2766 |
|
|
END DO |
| 2767 |
|
|
|
| 2768 |
|
|
! CR: |
| 2769 |
|
✗ |
DO l = 1, nlay - 2 |
| 2770 |
|
✗ |
DO ig = 1, ngrid |
| 2771 |
|
✗ |
IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
| 2772 |
|
✗ |
zw2(ig,l)<1E-10) THEN |
| 2773 |
|
|
! AM |
| 2774 |
|
✗ |
ztla(ig, l) = zthl(ig, l) |
| 2775 |
|
✗ |
zqta(ig, l) = po(ig, l) |
| 2776 |
|
✗ |
zqla(ig, l) = zl(ig, l) |
| 2777 |
|
|
! AM |
| 2778 |
|
✗ |
f_star(ig, l+1) = entr_star(ig, l) |
| 2779 |
|
|
! test:calcul de dteta |
| 2780 |
|
|
zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
| 2781 |
|
✗ |
(zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
| 2782 |
|
✗ |
larg_detr(ig, l) = 0. |
| 2783 |
|
✗ |
ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
| 2784 |
|
|
l)>1.E-10)) THEN |
| 2785 |
|
✗ |
f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
| 2786 |
|
|
|
| 2787 |
|
|
! AM on melange Tl et qt du thermique |
| 2788 |
|
|
ztla(ig, l) = (f_star(ig,l)*ztla(ig,l-1)+entr_star(ig,l)*zthl(ig,l))/ & |
| 2789 |
|
✗ |
f_star(ig, l+1) |
| 2790 |
|
|
zqta(ig, l) = (f_star(ig,l)*zqta(ig,l-1)+entr_star(ig,l)*po(ig,l))/ & |
| 2791 |
|
✗ |
f_star(ig, l+1) |
| 2792 |
|
|
|
| 2793 |
|
|
! ztva(ig,l)=(f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l) |
| 2794 |
|
|
! s *ztv(ig,l))/f_star(ig,l+1) |
| 2795 |
|
|
|
| 2796 |
|
|
! AM on en deduit thetav et ql du thermique |
| 2797 |
|
✗ |
tbef(ig) = ztla(ig, l)*zpspsk(ig, l) |
| 2798 |
|
✗ |
zdelta = max(0., sign(1.,rtt-tbef(ig))) |
| 2799 |
|
✗ |
qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
| 2800 |
|
✗ |
qsatbef(ig) = min(0.5, qsatbef(ig)) |
| 2801 |
|
✗ |
zcor = 1./(1.-retv*qsatbef(ig)) |
| 2802 |
|
✗ |
qsatbef(ig) = qsatbef(ig)*zcor |
| 2803 |
|
✗ |
zsat(ig) = (max(0.,zqta(ig,l)-qsatbef(ig))>0.00001) |
| 2804 |
|
|
END IF |
| 2805 |
|
|
END DO |
| 2806 |
|
✗ |
DO ig = 1, ngrid |
| 2807 |
|
✗ |
IF (zsat(ig)) THEN |
| 2808 |
|
✗ |
qlbef = max(0., zqta(ig,l)-qsatbef(ig)) |
| 2809 |
|
✗ |
dt = 0.5*rlvcp*qlbef |
| 2810 |
|
✗ |
DO WHILE (dt>ddt0) |
| 2811 |
|
✗ |
tbef(ig) = tbef(ig) + dt |
| 2812 |
|
✗ |
zdelta = max(0., sign(1.,rtt-tbef(ig))) |
| 2813 |
|
✗ |
qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
| 2814 |
|
✗ |
qsatbef(ig) = min(0.5, qsatbef(ig)) |
| 2815 |
|
✗ |
zcor = 1./(1.-retv*qsatbef(ig)) |
| 2816 |
|
✗ |
qsatbef(ig) = qsatbef(ig)*zcor |
| 2817 |
|
✗ |
qlbef = zqta(ig, l) - qsatbef(ig) |
| 2818 |
|
|
|
| 2819 |
|
|
zdelta = max(0., sign(1.,rtt-tbef(ig))) |
| 2820 |
|
✗ |
zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
| 2821 |
|
✗ |
zcor = 1./(1.-retv*qsatbef(ig)) |
| 2822 |
|
✗ |
dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
| 2823 |
|
✗ |
num = -tbef(ig) + ztla(ig, l)*zpspsk(ig, l) + rlvcp*qlbef |
| 2824 |
|
✗ |
denom = 1. + rlvcp*dqsat_dt |
| 2825 |
|
✗ |
dt = num/denom |
| 2826 |
|
|
END DO |
| 2827 |
|
✗ |
zqla(ig, l) = max(0., zqta(ig,l)-qsatbef(ig)) |
| 2828 |
|
|
END IF |
| 2829 |
|
|
! on ecrit de maniere conservative (sat ou non) |
| 2830 |
|
|
! T = Tl +Lv/Cp ql |
| 2831 |
|
✗ |
ztva(ig, l) = ztla(ig, l)*zpspsk(ig, l) + rlvcp*zqla(ig, l) |
| 2832 |
|
✗ |
ztva(ig, l) = ztva(ig, l)/zpspsk(ig, l) |
| 2833 |
|
✗ |
ztva(ig, l) = ztva(ig, l)*(1.+retv*(zqta(ig,l)-zqla(ig,l))-zqla(ig,l)) |
| 2834 |
|
|
|
| 2835 |
|
|
END DO |
| 2836 |
|
✗ |
DO ig = 1, ngrid |
| 2837 |
|
✗ |
IF (zw2(ig,l)>=1.E-10 .AND. f_star(ig,l)+entr_star(ig,l)>1.E-10) THEN |
| 2838 |
|
|
! mise a jour de la vitesse ascendante (l'air entraine de la couche |
| 2839 |
|
|
! consideree commence avec une vitesse nulle). |
| 2840 |
|
|
|
| 2841 |
|
|
zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
| 2842 |
|
✗ |
2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 2843 |
|
|
END IF |
| 2844 |
|
|
! determination de zmax continu par interpolation lineaire |
| 2845 |
|
✗ |
IF (zw2(ig,l+1)<0.) THEN |
| 2846 |
|
|
linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
| 2847 |
|
✗ |
ig,l)) |
| 2848 |
|
✗ |
zw2(ig, l+1) = 0. |
| 2849 |
|
✗ |
lmaxa(ig) = l |
| 2850 |
|
|
ELSE |
| 2851 |
|
✗ |
wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
| 2852 |
|
|
END IF |
| 2853 |
|
✗ |
IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
| 2854 |
|
|
! lmix est le niveau de la couche ou w (wa_moy) est maximum |
| 2855 |
|
✗ |
lmix(ig) = l + 1 |
| 2856 |
|
✗ |
wmaxa(ig) = wa_moy(ig, l+1) |
| 2857 |
|
|
END IF |
| 2858 |
|
|
END DO |
| 2859 |
|
|
END DO |
| 2860 |
|
|
|
| 2861 |
|
|
! Calcul de la couche correspondant a la hauteur du thermique |
| 2862 |
|
✗ |
DO ig = 1, ngrid |
| 2863 |
|
✗ |
lmax(ig) = lentr(ig) |
| 2864 |
|
|
END DO |
| 2865 |
|
✗ |
DO ig = 1, ngrid |
| 2866 |
|
✗ |
DO l = nlay, lentr(ig) + 1, -1 |
| 2867 |
|
✗ |
IF (zw2(ig,l)<=1.E-10) THEN |
| 2868 |
|
✗ |
lmax(ig) = l - 1 |
| 2869 |
|
|
END IF |
| 2870 |
|
|
END DO |
| 2871 |
|
|
END DO |
| 2872 |
|
|
! pas de thermique si couche 1 stable |
| 2873 |
|
✗ |
DO ig = 1, ngrid |
| 2874 |
|
✗ |
IF (lmin(ig)>1) THEN |
| 2875 |
|
✗ |
lmax(ig) = 1 |
| 2876 |
|
✗ |
lmin(ig) = 1 |
| 2877 |
|
|
END IF |
| 2878 |
|
|
END DO |
| 2879 |
|
|
|
| 2880 |
|
|
! Determination de zw2 max |
| 2881 |
|
✗ |
DO ig = 1, ngrid |
| 2882 |
|
✗ |
wmax(ig) = 0. |
| 2883 |
|
|
END DO |
| 2884 |
|
|
|
| 2885 |
|
✗ |
DO l = 1, nlay |
| 2886 |
|
✗ |
DO ig = 1, ngrid |
| 2887 |
|
✗ |
IF (l<=lmax(ig)) THEN |
| 2888 |
|
✗ |
zw2(ig, l) = sqrt(zw2(ig,l)) |
| 2889 |
|
✗ |
wmax(ig) = max(wmax(ig), zw2(ig,l)) |
| 2890 |
|
|
ELSE |
| 2891 |
|
✗ |
zw2(ig, l) = 0. |
| 2892 |
|
|
END IF |
| 2893 |
|
|
END DO |
| 2894 |
|
|
END DO |
| 2895 |
|
|
|
| 2896 |
|
|
! Longueur caracteristique correspondant a la hauteur des thermiques. |
| 2897 |
|
✗ |
DO ig = 1, ngrid |
| 2898 |
|
✗ |
zmax(ig) = 500. |
| 2899 |
|
✗ |
zlevinter(ig) = zlev(ig, 1) |
| 2900 |
|
|
END DO |
| 2901 |
|
✗ |
DO ig = 1, ngrid |
| 2902 |
|
|
! calcul de zlevinter |
| 2903 |
|
|
zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
| 2904 |
|
✗ |
zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
| 2905 |
|
✗ |
zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
| 2906 |
|
|
END DO |
| 2907 |
|
|
|
| 2908 |
|
|
! Fermeture,determination de f |
| 2909 |
|
✗ |
DO ig = 1, ngrid |
| 2910 |
|
✗ |
entr_star2(ig) = 0. |
| 2911 |
|
|
END DO |
| 2912 |
|
✗ |
DO ig = 1, ngrid |
| 2913 |
|
✗ |
IF (entr_star_tot(ig)<1.E-10) THEN |
| 2914 |
|
✗ |
f(ig) = 0. |
| 2915 |
|
|
ELSE |
| 2916 |
|
✗ |
DO k = lmin(ig), lentr(ig) |
| 2917 |
|
|
entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
| 2918 |
|
✗ |
zlev(ig,k+1)-zlev(ig,k))) |
| 2919 |
|
|
END DO |
| 2920 |
|
|
! Nouvelle fermeture |
| 2921 |
|
✗ |
f(ig) = wmax(ig)/(zmax(ig)*r_aspect*entr_star2(ig))*entr_star_tot(ig) |
| 2922 |
|
|
! test |
| 2923 |
|
✗ |
IF (first) THEN |
| 2924 |
|
✗ |
f(ig) = f(ig) + (f0(ig)-f(ig))*exp(-ptimestep/zmax(ig)*wmax(ig)) |
| 2925 |
|
|
END IF |
| 2926 |
|
|
END IF |
| 2927 |
|
✗ |
f0(ig) = f(ig) |
| 2928 |
|
✗ |
first = .TRUE. |
| 2929 |
|
|
END DO |
| 2930 |
|
|
|
| 2931 |
|
|
! Calcul de l'entrainement |
| 2932 |
|
✗ |
DO k = 1, klev |
| 2933 |
|
✗ |
DO ig = 1, ngrid |
| 2934 |
|
✗ |
entr(ig, k) = f(ig)*entr_star(ig, k) |
| 2935 |
|
|
END DO |
| 2936 |
|
|
END DO |
| 2937 |
|
|
! Calcul des flux |
| 2938 |
|
✗ |
DO ig = 1, ngrid |
| 2939 |
|
✗ |
DO l = 1, lmax(ig) - 1 |
| 2940 |
|
✗ |
fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
| 2941 |
|
|
END DO |
| 2942 |
|
|
END DO |
| 2943 |
|
|
|
| 2944 |
|
|
! RC |
| 2945 |
|
|
|
| 2946 |
|
|
|
| 2947 |
|
|
! print*,'9 OK convect8' |
| 2948 |
|
|
! print*,'WA1 ',wa_moy |
| 2949 |
|
|
|
| 2950 |
|
|
! determination de l'indice du debut de la mixed layer ou w decroit |
| 2951 |
|
|
|
| 2952 |
|
|
! calcul de la largeur de chaque ascendance dans le cas conservatif. |
| 2953 |
|
|
! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
| 2954 |
|
|
! d'une couche est �gale � la hauteur de la couche alimentante. |
| 2955 |
|
|
! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
| 2956 |
|
|
! de la vitesse d'entrainement horizontal dans la couche alimentante. |
| 2957 |
|
|
|
| 2958 |
|
✗ |
DO l = 2, nlay |
| 2959 |
|
✗ |
DO ig = 1, ngrid |
| 2960 |
|
✗ |
IF (l<=lmaxa(ig)) THEN |
| 2961 |
|
✗ |
zw = max(wa_moy(ig,l), 1.E-10) |
| 2962 |
|
✗ |
larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
| 2963 |
|
|
END IF |
| 2964 |
|
|
END DO |
| 2965 |
|
|
END DO |
| 2966 |
|
|
|
| 2967 |
|
✗ |
DO l = 2, nlay |
| 2968 |
|
✗ |
DO ig = 1, ngrid |
| 2969 |
|
✗ |
IF (l<=lmaxa(ig)) THEN |
| 2970 |
|
|
! if (idetr.eq.0) then |
| 2971 |
|
|
! cette option est finalement en dur. |
| 2972 |
|
✗ |
larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
| 2973 |
|
|
! else if (idetr.eq.1) then |
| 2974 |
|
|
! larg_detr(ig,l)=larg_cons(ig,l) |
| 2975 |
|
|
! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
| 2976 |
|
|
! else if (idetr.eq.2) then |
| 2977 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 2978 |
|
|
! s *sqrt(wa_moy(ig,l)) |
| 2979 |
|
|
! else if (idetr.eq.4) then |
| 2980 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 2981 |
|
|
! s *wa_moy(ig,l) |
| 2982 |
|
|
! endif |
| 2983 |
|
|
END IF |
| 2984 |
|
|
END DO |
| 2985 |
|
|
END DO |
| 2986 |
|
|
|
| 2987 |
|
|
! print*,'10 OK convect8' |
| 2988 |
|
|
! print*,'WA2 ',wa_moy |
| 2989 |
|
|
! calcul de la fraction de la maille concern�e par l'ascendance en tenant |
| 2990 |
|
|
! compte de l'epluchage du thermique. |
| 2991 |
|
|
|
| 2992 |
|
|
! CR def de zmix continu (profil parabolique des vitesses) |
| 2993 |
|
✗ |
DO ig = 1, ngrid |
| 2994 |
|
✗ |
IF (lmix(ig)>1.) THEN |
| 2995 |
|
|
zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig))) & |
| 2996 |
|
|
**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
| 2997 |
|
|
lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
| 2998 |
|
|
(2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
| 2999 |
|
|
(zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))-zw2(ig,lmix(ig)+1))*((zlev( & |
| 3000 |
|
✗ |
ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
| 3001 |
|
|
ELSE |
| 3002 |
|
✗ |
zmix(ig) = 0. |
| 3003 |
|
|
END IF |
| 3004 |
|
|
END DO |
| 3005 |
|
|
|
| 3006 |
|
|
! calcul du nouveau lmix correspondant |
| 3007 |
|
✗ |
DO ig = 1, ngrid |
| 3008 |
|
✗ |
DO l = 1, klev |
| 3009 |
|
✗ |
IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
| 3010 |
|
✗ |
lmix(ig) = l |
| 3011 |
|
|
END IF |
| 3012 |
|
|
END DO |
| 3013 |
|
|
END DO |
| 3014 |
|
|
|
| 3015 |
|
✗ |
DO l = 2, nlay |
| 3016 |
|
✗ |
DO ig = 1, ngrid |
| 3017 |
|
✗ |
IF (larg_cons(ig,l)>1.) THEN |
| 3018 |
|
|
! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
| 3019 |
|
✗ |
fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
| 3020 |
|
|
! test |
| 3021 |
|
✗ |
fraca(ig, l) = max(fraca(ig,l), 0.) |
| 3022 |
|
✗ |
fraca(ig, l) = min(fraca(ig,l), 0.5) |
| 3023 |
|
✗ |
fracd(ig, l) = 1. - fraca(ig, l) |
| 3024 |
|
✗ |
fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
| 3025 |
|
|
ELSE |
| 3026 |
|
|
! wa_moy(ig,l)=0. |
| 3027 |
|
✗ |
fraca(ig, l) = 0. |
| 3028 |
|
✗ |
fracc(ig, l) = 0. |
| 3029 |
|
✗ |
fracd(ig, l) = 1. |
| 3030 |
|
|
END IF |
| 3031 |
|
|
END DO |
| 3032 |
|
|
END DO |
| 3033 |
|
|
! CR: calcul de fracazmix |
| 3034 |
|
✗ |
DO ig = 1, ngrid |
| 3035 |
|
|
fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
| 3036 |
|
|
(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
| 3037 |
|
|
fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
| 3038 |
|
✗ |
,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
| 3039 |
|
|
END DO |
| 3040 |
|
|
|
| 3041 |
|
✗ |
DO l = 2, nlay |
| 3042 |
|
✗ |
DO ig = 1, ngrid |
| 3043 |
|
✗ |
IF (larg_cons(ig,l)>1.) THEN |
| 3044 |
|
✗ |
IF (l>lmix(ig)) THEN |
| 3045 |
|
✗ |
xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
| 3046 |
|
✗ |
IF (idetr==0) THEN |
| 3047 |
|
✗ |
fraca(ig, l) = fracazmix(ig) |
| 3048 |
|
✗ |
ELSE IF (idetr==1) THEN |
| 3049 |
|
✗ |
fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
| 3050 |
|
✗ |
ELSE IF (idetr==2) THEN |
| 3051 |
|
✗ |
fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
| 3052 |
|
|
ELSE |
| 3053 |
|
✗ |
fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
| 3054 |
|
|
END IF |
| 3055 |
|
|
! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
| 3056 |
|
✗ |
fraca(ig, l) = max(fraca(ig,l), 0.) |
| 3057 |
|
✗ |
fraca(ig, l) = min(fraca(ig,l), 0.5) |
| 3058 |
|
✗ |
fracd(ig, l) = 1. - fraca(ig, l) |
| 3059 |
|
✗ |
fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
| 3060 |
|
|
END IF |
| 3061 |
|
|
END IF |
| 3062 |
|
|
END DO |
| 3063 |
|
|
END DO |
| 3064 |
|
|
|
| 3065 |
|
|
! print*,'11 OK convect8' |
| 3066 |
|
|
! print*,'Ea3 ',wa_moy |
| 3067 |
|
|
! ------------------------------------------------------------------ |
| 3068 |
|
|
! Calcul de fracd, wd |
| 3069 |
|
|
! somme wa - wd = 0 |
| 3070 |
|
|
! ------------------------------------------------------------------ |
| 3071 |
|
|
|
| 3072 |
|
|
|
| 3073 |
|
✗ |
DO ig = 1, ngrid |
| 3074 |
|
✗ |
fm(ig, 1) = 0. |
| 3075 |
|
✗ |
fm(ig, nlay+1) = 0. |
| 3076 |
|
|
END DO |
| 3077 |
|
|
|
| 3078 |
|
✗ |
DO l = 2, nlay |
| 3079 |
|
✗ |
DO ig = 1, ngrid |
| 3080 |
|
✗ |
fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
| 3081 |
|
|
! CR:test |
| 3082 |
|
✗ |
IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
| 3083 |
|
✗ |
fm(ig, l) = fm(ig, l-1) |
| 3084 |
|
|
! write(1,*)'ajustement fm, l',l |
| 3085 |
|
|
END IF |
| 3086 |
|
|
! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
| 3087 |
|
|
! RC |
| 3088 |
|
|
END DO |
| 3089 |
|
✗ |
DO ig = 1, ngrid |
| 3090 |
|
✗ |
IF (fracd(ig,l)<0.1) THEN |
| 3091 |
|
✗ |
abort_message = 'fracd trop petit' |
| 3092 |
|
✗ |
CALL abort_physic(modname, abort_message, 1) |
| 3093 |
|
|
ELSE |
| 3094 |
|
|
! vitesse descendante "diagnostique" |
| 3095 |
|
✗ |
wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
| 3096 |
|
|
END IF |
| 3097 |
|
|
END DO |
| 3098 |
|
|
END DO |
| 3099 |
|
|
|
| 3100 |
|
✗ |
DO l = 1, nlay |
| 3101 |
|
✗ |
DO ig = 1, ngrid |
| 3102 |
|
|
! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 3103 |
|
✗ |
masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
| 3104 |
|
|
END DO |
| 3105 |
|
|
END DO |
| 3106 |
|
|
|
| 3107 |
|
|
! print*,'12 OK convect8' |
| 3108 |
|
|
! print*,'WA4 ',wa_moy |
| 3109 |
|
|
! c------------------------------------------------------------------ |
| 3110 |
|
|
! calcul du transport vertical |
| 3111 |
|
|
! ------------------------------------------------------------------ |
| 3112 |
|
|
|
| 3113 |
|
|
GO TO 4444 |
| 3114 |
|
|
! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
| 3115 |
|
|
DO l = 2, nlay - 1 |
| 3116 |
|
|
DO ig = 1, ngrid |
| 3117 |
|
|
IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
| 3118 |
|
|
ig,l+1)) THEN |
| 3119 |
|
|
! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
| 3120 |
|
|
! s ,fm(ig,l+1)*ptimestep |
| 3121 |
|
|
! s ,' M=',masse(ig,l),masse(ig,l+1) |
| 3122 |
|
|
END IF |
| 3123 |
|
|
END DO |
| 3124 |
|
|
END DO |
| 3125 |
|
|
|
| 3126 |
|
|
DO l = 1, nlay |
| 3127 |
|
|
DO ig = 1, ngrid |
| 3128 |
|
|
IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
| 3129 |
|
|
! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
| 3130 |
|
|
! s ,entr(ig,l)*ptimestep |
| 3131 |
|
|
! s ,' M=',masse(ig,l) |
| 3132 |
|
|
END IF |
| 3133 |
|
|
END DO |
| 3134 |
|
|
END DO |
| 3135 |
|
|
|
| 3136 |
|
|
DO l = 1, nlay |
| 3137 |
|
|
DO ig = 1, ngrid |
| 3138 |
|
|
IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
| 3139 |
|
|
! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
| 3140 |
|
|
! s ,' FM=',fm(ig,l) |
| 3141 |
|
|
END IF |
| 3142 |
|
|
IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
| 3143 |
|
|
! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
| 3144 |
|
|
! s ,' M=',masse(ig,l) |
| 3145 |
|
|
! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
| 3146 |
|
|
! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
| 3147 |
|
|
! print*,'zlev(ig,l+1),zlev(ig,l)' |
| 3148 |
|
|
! s ,zlev(ig,l+1),zlev(ig,l) |
| 3149 |
|
|
! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
| 3150 |
|
|
! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
| 3151 |
|
|
END IF |
| 3152 |
|
|
IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
| 3153 |
|
|
! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
| 3154 |
|
|
! s ,' E=',entr(ig,l) |
| 3155 |
|
|
END IF |
| 3156 |
|
|
END DO |
| 3157 |
|
|
END DO |
| 3158 |
|
|
|
| 3159 |
|
|
4444 CONTINUE |
| 3160 |
|
|
|
| 3161 |
|
✗ |
IF (w2di==1) THEN |
| 3162 |
|
✗ |
fm0 = fm0 + ptimestep*(fm-fm0)/tho |
| 3163 |
|
✗ |
entr0 = entr0 + ptimestep*(entr-entr0)/tho |
| 3164 |
|
|
ELSE |
| 3165 |
|
✗ |
fm0 = fm |
| 3166 |
|
✗ |
entr0 = entr |
| 3167 |
|
|
END IF |
| 3168 |
|
|
|
| 3169 |
|
|
IF (1==1) THEN |
| 3170 |
|
|
! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
| 3171 |
|
|
! . ,zh,zdhadj,zha) |
| 3172 |
|
|
! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
| 3173 |
|
|
! . ,zo,pdoadj,zoa) |
| 3174 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zthl, & |
| 3175 |
|
✗ |
zdthladj, zta) |
| 3176 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, po, pdoadj, & |
| 3177 |
|
✗ |
zoa) |
| 3178 |
|
|
ELSE |
| 3179 |
|
|
CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
| 3180 |
|
|
zdhadj, zha) |
| 3181 |
|
|
CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
| 3182 |
|
|
pdoadj, zoa) |
| 3183 |
|
|
END IF |
| 3184 |
|
|
|
| 3185 |
|
|
IF (1==0) THEN |
| 3186 |
|
|
CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
| 3187 |
|
|
zu, zv, pduadj, pdvadj, zua, zva) |
| 3188 |
|
|
ELSE |
| 3189 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
| 3190 |
|
✗ |
zua) |
| 3191 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
| 3192 |
|
✗ |
zva) |
| 3193 |
|
|
END IF |
| 3194 |
|
|
|
| 3195 |
|
✗ |
DO l = 1, nlay |
| 3196 |
|
✗ |
DO ig = 1, ngrid |
| 3197 |
|
✗ |
zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
| 3198 |
|
✗ |
zf2 = zf/(1.-zf) |
| 3199 |
|
✗ |
thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
| 3200 |
|
✗ |
wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
| 3201 |
|
|
END DO |
| 3202 |
|
|
END DO |
| 3203 |
|
|
|
| 3204 |
|
|
|
| 3205 |
|
|
|
| 3206 |
|
|
! print*,'13 OK convect8' |
| 3207 |
|
|
! print*,'WA5 ',wa_moy |
| 3208 |
|
✗ |
DO l = 1, nlay |
| 3209 |
|
✗ |
DO ig = 1, ngrid |
| 3210 |
|
|
! pdtadj(ig,l)=zdhadj(ig,l)*zpspsk(ig,l) |
| 3211 |
|
✗ |
pdtadj(ig, l) = zdthladj(ig, l)*zpspsk(ig, l) |
| 3212 |
|
|
END DO |
| 3213 |
|
|
END DO |
| 3214 |
|
|
|
| 3215 |
|
|
|
| 3216 |
|
|
! do l=1,nlay |
| 3217 |
|
|
! do ig=1,ngrid |
| 3218 |
|
|
! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
| 3219 |
|
|
! print*,'WARN!!! ig=',ig,' l=',l |
| 3220 |
|
|
! s ,' pdtadj=',pdtadj(ig,l) |
| 3221 |
|
|
! endif |
| 3222 |
|
|
! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
| 3223 |
|
|
! print*,'WARN!!! ig=',ig,' l=',l |
| 3224 |
|
|
! s ,' pdoadj=',pdoadj(ig,l) |
| 3225 |
|
|
! endif |
| 3226 |
|
|
! enddo |
| 3227 |
|
|
! enddo |
| 3228 |
|
|
|
| 3229 |
|
|
! print*,'14 OK convect8' |
| 3230 |
|
|
! ------------------------------------------------------------------ |
| 3231 |
|
|
! Calculs pour les sorties |
| 3232 |
|
|
! ------------------------------------------------------------------ |
| 3233 |
|
|
|
| 3234 |
|
✗ |
RETURN |
| 3235 |
|
|
END SUBROUTINE thermcell_eau |
| 3236 |
|
|
|
| 3237 |
|
✗ |
SUBROUTINE thermcell(ngrid, nlay, ptimestep, pplay, pplev, pphi, pu, pv, pt, & |
| 3238 |
|
✗ |
po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
| 3239 |
|
|
! ,pu_therm,pv_therm |
| 3240 |
|
|
, r_aspect, l_mix, w2di, tho) |
| 3241 |
|
|
|
| 3242 |
|
|
USE dimphy |
| 3243 |
|
|
IMPLICIT NONE |
| 3244 |
|
|
|
| 3245 |
|
|
! ======================================================================= |
| 3246 |
|
|
|
| 3247 |
|
|
! Calcul du transport verticale dans la couche limite en presence |
| 3248 |
|
|
! de "thermiques" explicitement representes |
| 3249 |
|
|
|
| 3250 |
|
|
! R��criture � partir d'un listing papier � Habas, le 14/02/00 |
| 3251 |
|
|
|
| 3252 |
|
|
! le thermique est suppos� homog�ne et dissip� par m�lange avec |
| 3253 |
|
|
! son environnement. la longueur l_mix contr�le l'efficacit� du |
| 3254 |
|
|
! m�lange |
| 3255 |
|
|
|
| 3256 |
|
|
! Le calcul du transport des diff�rentes esp�ces se fait en prenant |
| 3257 |
|
|
! en compte: |
| 3258 |
|
|
! 1. un flux de masse montant |
| 3259 |
|
|
! 2. un flux de masse descendant |
| 3260 |
|
|
! 3. un entrainement |
| 3261 |
|
|
! 4. un detrainement |
| 3262 |
|
|
|
| 3263 |
|
|
! ======================================================================= |
| 3264 |
|
|
|
| 3265 |
|
|
! ----------------------------------------------------------------------- |
| 3266 |
|
|
! declarations: |
| 3267 |
|
|
! ------------- |
| 3268 |
|
|
|
| 3269 |
|
|
include "YOMCST.h" |
| 3270 |
|
|
|
| 3271 |
|
|
! arguments: |
| 3272 |
|
|
! ---------- |
| 3273 |
|
|
|
| 3274 |
|
|
INTEGER ngrid, nlay, w2di |
| 3275 |
|
|
REAL tho |
| 3276 |
|
|
REAL ptimestep, l_mix, r_aspect |
| 3277 |
|
|
REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
| 3278 |
|
|
REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
| 3279 |
|
|
REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
| 3280 |
|
|
REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
| 3281 |
|
|
REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
| 3282 |
|
|
REAL pphi(ngrid, nlay) |
| 3283 |
|
|
|
| 3284 |
|
|
INTEGER idetr |
| 3285 |
|
|
SAVE idetr |
| 3286 |
|
|
DATA idetr/3/ |
| 3287 |
|
|
!$OMP THREADPRIVATE(idetr) |
| 3288 |
|
|
|
| 3289 |
|
|
! local: |
| 3290 |
|
|
! ------ |
| 3291 |
|
|
|
| 3292 |
|
✗ |
INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
| 3293 |
|
|
REAL zsortie1d(klon) |
| 3294 |
|
|
! CR: on remplace lmax(klon,klev+1) |
| 3295 |
|
✗ |
INTEGER lmax(klon), lmin(klon), lentr(klon) |
| 3296 |
|
✗ |
REAL linter(klon) |
| 3297 |
|
✗ |
REAL zmix(klon), fracazmix(klon) |
| 3298 |
|
|
! RC |
| 3299 |
|
✗ |
REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
| 3300 |
|
|
|
| 3301 |
|
✗ |
REAL zlev(klon, klev+1), zlay(klon, klev) |
| 3302 |
|
✗ |
REAL zh(klon, klev), zdhadj(klon, klev) |
| 3303 |
|
✗ |
REAL ztv(klon, klev) |
| 3304 |
|
✗ |
REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
| 3305 |
|
|
REAL wh(klon, klev+1) |
| 3306 |
|
|
REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
| 3307 |
|
|
REAL zla(klon, klev+1) |
| 3308 |
|
|
REAL zwa(klon, klev+1) |
| 3309 |
|
|
REAL zld(klon, klev+1) |
| 3310 |
|
|
REAL zwd(klon, klev+1) |
| 3311 |
|
|
REAL zsortie(klon, klev) |
| 3312 |
|
✗ |
REAL zva(klon, klev) |
| 3313 |
|
✗ |
REAL zua(klon, klev) |
| 3314 |
|
✗ |
REAL zoa(klon, klev) |
| 3315 |
|
|
|
| 3316 |
|
✗ |
REAL zha(klon, klev) |
| 3317 |
|
✗ |
REAL wa_moy(klon, klev+1) |
| 3318 |
|
✗ |
REAL fraca(klon, klev+1) |
| 3319 |
|
✗ |
REAL fracc(klon, klev+1) |
| 3320 |
|
|
REAL zf, zf2 |
| 3321 |
|
✗ |
REAL thetath2(klon, klev), wth2(klon, klev) |
| 3322 |
|
|
! common/comtherm/thetath2,wth2 |
| 3323 |
|
|
|
| 3324 |
|
|
REAL count_time |
| 3325 |
|
|
INTEGER ialt |
| 3326 |
|
|
|
| 3327 |
|
|
LOGICAL sorties |
| 3328 |
|
✗ |
REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
| 3329 |
|
✗ |
REAL zpspsk(klon, klev) |
| 3330 |
|
|
|
| 3331 |
|
|
! real wmax(klon,klev),wmaxa(klon) |
| 3332 |
|
✗ |
REAL wmax(klon), wmaxa(klon) |
| 3333 |
|
✗ |
REAL wa(klon, klev, klev+1) |
| 3334 |
|
✗ |
REAL wd(klon, klev+1) |
| 3335 |
|
|
REAL larg_part(klon, klev, klev+1) |
| 3336 |
|
✗ |
REAL fracd(klon, klev+1) |
| 3337 |
|
✗ |
REAL xxx(klon, klev+1) |
| 3338 |
|
✗ |
REAL larg_cons(klon, klev+1) |
| 3339 |
|
✗ |
REAL larg_detr(klon, klev+1) |
| 3340 |
|
✗ |
REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
| 3341 |
|
|
REAL pu_therm(klon, klev), pv_therm(klon, klev) |
| 3342 |
|
✗ |
REAL fm(klon, klev+1), entr(klon, klev) |
| 3343 |
|
✗ |
REAL fmc(klon, klev+1) |
| 3344 |
|
|
|
| 3345 |
|
|
! CR:nouvelles variables |
| 3346 |
|
✗ |
REAL f_star(klon, klev+1), entr_star(klon, klev) |
| 3347 |
|
✗ |
REAL entr_star_tot(klon), entr_star2(klon) |
| 3348 |
|
✗ |
REAL f(klon), f0(klon) |
| 3349 |
|
✗ |
REAL zlevinter(klon) |
| 3350 |
|
|
LOGICAL first |
| 3351 |
|
|
DATA first/.FALSE./ |
| 3352 |
|
|
SAVE first |
| 3353 |
|
|
!$OMP THREADPRIVATE(first) |
| 3354 |
|
|
! RC |
| 3355 |
|
|
|
| 3356 |
|
|
CHARACTER *2 str2 |
| 3357 |
|
|
CHARACTER *10 str10 |
| 3358 |
|
|
|
| 3359 |
|
|
CHARACTER (LEN=20) :: modname = 'thermcell' |
| 3360 |
|
|
CHARACTER (LEN=80) :: abort_message |
| 3361 |
|
|
|
| 3362 |
|
|
LOGICAL vtest(klon), down |
| 3363 |
|
|
|
| 3364 |
|
|
EXTERNAL scopy |
| 3365 |
|
|
|
| 3366 |
|
|
INTEGER ncorrec, ll |
| 3367 |
|
|
SAVE ncorrec |
| 3368 |
|
|
DATA ncorrec/0/ |
| 3369 |
|
|
!$OMP THREADPRIVATE(ncorrec) |
| 3370 |
|
|
|
| 3371 |
|
|
|
| 3372 |
|
|
! ----------------------------------------------------------------------- |
| 3373 |
|
|
! initialisation: |
| 3374 |
|
|
! --------------- |
| 3375 |
|
|
|
| 3376 |
|
|
sorties = .TRUE. |
| 3377 |
|
✗ |
IF (ngrid/=klon) THEN |
| 3378 |
|
✗ |
PRINT * |
| 3379 |
|
✗ |
PRINT *, 'STOP dans convadj' |
| 3380 |
|
✗ |
PRINT *, 'ngrid =', ngrid |
| 3381 |
|
✗ |
PRINT *, 'klon =', klon |
| 3382 |
|
|
END IF |
| 3383 |
|
|
|
| 3384 |
|
|
! ----------------------------------------------------------------------- |
| 3385 |
|
|
! incrementation eventuelle de tendances precedentes: |
| 3386 |
|
|
! --------------------------------------------------- |
| 3387 |
|
|
|
| 3388 |
|
|
! print*,'0 OK convect8' |
| 3389 |
|
|
|
| 3390 |
|
✗ |
DO l = 1, nlay |
| 3391 |
|
✗ |
DO ig = 1, ngrid |
| 3392 |
|
✗ |
zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
| 3393 |
|
✗ |
zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
| 3394 |
|
✗ |
zu(ig, l) = pu(ig, l) |
| 3395 |
|
✗ |
zv(ig, l) = pv(ig, l) |
| 3396 |
|
✗ |
zo(ig, l) = po(ig, l) |
| 3397 |
|
✗ |
ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
| 3398 |
|
|
END DO |
| 3399 |
|
|
END DO |
| 3400 |
|
|
|
| 3401 |
|
|
! print*,'1 OK convect8' |
| 3402 |
|
|
! -------------------- |
| 3403 |
|
|
|
| 3404 |
|
|
|
| 3405 |
|
|
! + + + + + + + + + + + |
| 3406 |
|
|
|
| 3407 |
|
|
|
| 3408 |
|
|
! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
| 3409 |
|
|
! wh,wt,wo ... |
| 3410 |
|
|
|
| 3411 |
|
|
! + + + + + + + + + + + zh,zu,zv,zo,rho |
| 3412 |
|
|
|
| 3413 |
|
|
|
| 3414 |
|
|
! -------------------- zlev(1) |
| 3415 |
|
|
! \\\\\\\\\\\\\\\\\\\ |
| 3416 |
|
|
|
| 3417 |
|
|
|
| 3418 |
|
|
! ----------------------------------------------------------------------- |
| 3419 |
|
|
! Calcul des altitudes des couches |
| 3420 |
|
|
! ----------------------------------------------------------------------- |
| 3421 |
|
|
|
| 3422 |
|
✗ |
DO l = 2, nlay |
| 3423 |
|
✗ |
DO ig = 1, ngrid |
| 3424 |
|
✗ |
zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
| 3425 |
|
|
END DO |
| 3426 |
|
|
END DO |
| 3427 |
|
✗ |
DO ig = 1, ngrid |
| 3428 |
|
✗ |
zlev(ig, 1) = 0. |
| 3429 |
|
✗ |
zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
| 3430 |
|
|
END DO |
| 3431 |
|
✗ |
DO l = 1, nlay |
| 3432 |
|
✗ |
DO ig = 1, ngrid |
| 3433 |
|
✗ |
zlay(ig, l) = pphi(ig, l)/rg |
| 3434 |
|
|
END DO |
| 3435 |
|
|
END DO |
| 3436 |
|
|
|
| 3437 |
|
|
! print*,'2 OK convect8' |
| 3438 |
|
|
! ----------------------------------------------------------------------- |
| 3439 |
|
|
! Calcul des densites |
| 3440 |
|
|
! ----------------------------------------------------------------------- |
| 3441 |
|
|
|
| 3442 |
|
✗ |
DO l = 1, nlay |
| 3443 |
|
✗ |
DO ig = 1, ngrid |
| 3444 |
|
✗ |
rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
| 3445 |
|
|
END DO |
| 3446 |
|
|
END DO |
| 3447 |
|
|
|
| 3448 |
|
✗ |
DO l = 2, nlay |
| 3449 |
|
✗ |
DO ig = 1, ngrid |
| 3450 |
|
✗ |
rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
| 3451 |
|
|
END DO |
| 3452 |
|
|
END DO |
| 3453 |
|
|
|
| 3454 |
|
✗ |
DO k = 1, nlay |
| 3455 |
|
✗ |
DO l = 1, nlay + 1 |
| 3456 |
|
✗ |
DO ig = 1, ngrid |
| 3457 |
|
✗ |
wa(ig, k, l) = 0. |
| 3458 |
|
|
END DO |
| 3459 |
|
|
END DO |
| 3460 |
|
|
END DO |
| 3461 |
|
|
|
| 3462 |
|
|
! print*,'3 OK convect8' |
| 3463 |
|
|
! ------------------------------------------------------------------ |
| 3464 |
|
|
! Calcul de w2, quarre de w a partir de la cape |
| 3465 |
|
|
! a partir de w2, on calcule wa, vitesse de l'ascendance |
| 3466 |
|
|
|
| 3467 |
|
|
! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
| 3468 |
|
|
! w2 est stoke dans wa |
| 3469 |
|
|
|
| 3470 |
|
|
! ATTENTION: dans convect8, on n'utilise le calcule des wa |
| 3471 |
|
|
! independants par couches que pour calculer l'entrainement |
| 3472 |
|
|
! a la base et la hauteur max de l'ascendance. |
| 3473 |
|
|
|
| 3474 |
|
|
! Indicages: |
| 3475 |
|
|
! l'ascendance provenant du niveau k traverse l'interface l avec |
| 3476 |
|
|
! une vitesse wa(k,l). |
| 3477 |
|
|
|
| 3478 |
|
|
! -------------------- |
| 3479 |
|
|
|
| 3480 |
|
|
! + + + + + + + + + + |
| 3481 |
|
|
|
| 3482 |
|
|
! wa(k,l) ---- -------------------- l |
| 3483 |
|
|
! / ! /||\ + + + + + + + + + + |
| 3484 |
|
|
! || |
| 3485 |
|
|
! || -------------------- |
| 3486 |
|
|
! || |
| 3487 |
|
|
! || + + + + + + + + + + |
| 3488 |
|
|
! || |
| 3489 |
|
|
! || -------------------- |
| 3490 |
|
|
! ||__ |
| 3491 |
|
|
! |___ + + + + + + + + + + k |
| 3492 |
|
|
|
| 3493 |
|
|
! -------------------- |
| 3494 |
|
|
|
| 3495 |
|
|
|
| 3496 |
|
|
|
| 3497 |
|
|
! ------------------------------------------------------------------ |
| 3498 |
|
|
|
| 3499 |
|
|
! CR: ponderation entrainement des couches instables |
| 3500 |
|
|
! def des entr_star tels que entr=f*entr_star |
| 3501 |
|
✗ |
DO l = 1, klev |
| 3502 |
|
✗ |
DO ig = 1, ngrid |
| 3503 |
|
✗ |
entr_star(ig, l) = 0. |
| 3504 |
|
|
END DO |
| 3505 |
|
|
END DO |
| 3506 |
|
|
! determination de la longueur de la couche d entrainement |
| 3507 |
|
✗ |
DO ig = 1, ngrid |
| 3508 |
|
✗ |
lentr(ig) = 1 |
| 3509 |
|
|
END DO |
| 3510 |
|
|
|
| 3511 |
|
|
! on ne considere que les premieres couches instables |
| 3512 |
|
✗ |
DO k = nlay - 2, 1, -1 |
| 3513 |
|
✗ |
DO ig = 1, ngrid |
| 3514 |
|
✗ |
IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
| 3515 |
|
✗ |
lentr(ig) = k |
| 3516 |
|
|
END IF |
| 3517 |
|
|
END DO |
| 3518 |
|
|
END DO |
| 3519 |
|
|
|
| 3520 |
|
|
! determination du lmin: couche d ou provient le thermique |
| 3521 |
|
✗ |
DO ig = 1, ngrid |
| 3522 |
|
✗ |
lmin(ig) = 1 |
| 3523 |
|
|
END DO |
| 3524 |
|
✗ |
DO ig = 1, ngrid |
| 3525 |
|
✗ |
DO l = nlay, 2, -1 |
| 3526 |
|
✗ |
IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
| 3527 |
|
✗ |
lmin(ig) = l - 1 |
| 3528 |
|
|
END IF |
| 3529 |
|
|
END DO |
| 3530 |
|
|
END DO |
| 3531 |
|
|
|
| 3532 |
|
|
! definition de l'entrainement des couches |
| 3533 |
|
✗ |
DO l = 1, klev - 1 |
| 3534 |
|
✗ |
DO ig = 1, ngrid |
| 3535 |
|
✗ |
IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
| 3536 |
|
✗ |
entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))*(zlev(ig,l+1)-zlev(ig,l)) |
| 3537 |
|
|
END IF |
| 3538 |
|
|
END DO |
| 3539 |
|
|
END DO |
| 3540 |
|
|
! pas de thermique si couches 1->5 stables |
| 3541 |
|
✗ |
DO ig = 1, ngrid |
| 3542 |
|
✗ |
IF (lmin(ig)>5) THEN |
| 3543 |
|
✗ |
DO l = 1, klev |
| 3544 |
|
✗ |
entr_star(ig, l) = 0. |
| 3545 |
|
|
END DO |
| 3546 |
|
|
END IF |
| 3547 |
|
|
END DO |
| 3548 |
|
|
! calcul de l entrainement total |
| 3549 |
|
✗ |
DO ig = 1, ngrid |
| 3550 |
|
✗ |
entr_star_tot(ig) = 0. |
| 3551 |
|
|
END DO |
| 3552 |
|
✗ |
DO ig = 1, ngrid |
| 3553 |
|
✗ |
DO k = 1, klev |
| 3554 |
|
✗ |
entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
| 3555 |
|
|
END DO |
| 3556 |
|
|
END DO |
| 3557 |
|
|
|
| 3558 |
|
✗ |
PRINT *, 'fin calcul entr_star' |
| 3559 |
|
✗ |
DO k = 1, klev |
| 3560 |
|
✗ |
DO ig = 1, ngrid |
| 3561 |
|
✗ |
ztva(ig, k) = ztv(ig, k) |
| 3562 |
|
|
END DO |
| 3563 |
|
|
END DO |
| 3564 |
|
|
! RC |
| 3565 |
|
|
! print*,'7 OK convect8' |
| 3566 |
|
✗ |
DO k = 1, klev + 1 |
| 3567 |
|
✗ |
DO ig = 1, ngrid |
| 3568 |
|
✗ |
zw2(ig, k) = 0. |
| 3569 |
|
✗ |
fmc(ig, k) = 0. |
| 3570 |
|
|
! CR |
| 3571 |
|
✗ |
f_star(ig, k) = 0. |
| 3572 |
|
|
! RC |
| 3573 |
|
✗ |
larg_cons(ig, k) = 0. |
| 3574 |
|
✗ |
larg_detr(ig, k) = 0. |
| 3575 |
|
✗ |
wa_moy(ig, k) = 0. |
| 3576 |
|
|
END DO |
| 3577 |
|
|
END DO |
| 3578 |
|
|
|
| 3579 |
|
|
! print*,'8 OK convect8' |
| 3580 |
|
✗ |
DO ig = 1, ngrid |
| 3581 |
|
✗ |
linter(ig) = 1. |
| 3582 |
|
✗ |
lmaxa(ig) = 1 |
| 3583 |
|
✗ |
lmix(ig) = 1 |
| 3584 |
|
✗ |
wmaxa(ig) = 0. |
| 3585 |
|
|
END DO |
| 3586 |
|
|
|
| 3587 |
|
|
! CR: |
| 3588 |
|
✗ |
DO l = 1, nlay - 2 |
| 3589 |
|
✗ |
DO ig = 1, ngrid |
| 3590 |
|
✗ |
IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
| 3591 |
|
|
zw2(ig,l)<1E-10) THEN |
| 3592 |
|
✗ |
f_star(ig, l+1) = entr_star(ig, l) |
| 3593 |
|
|
! test:calcul de dteta |
| 3594 |
|
|
zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
| 3595 |
|
✗ |
(zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
| 3596 |
|
✗ |
larg_detr(ig, l) = 0. |
| 3597 |
|
✗ |
ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
| 3598 |
|
|
l)>1.E-10)) THEN |
| 3599 |
|
✗ |
f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
| 3600 |
|
|
ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
| 3601 |
|
✗ |
f_star(ig, l+1) |
| 3602 |
|
|
zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
| 3603 |
|
✗ |
2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 3604 |
|
|
END IF |
| 3605 |
|
|
! determination de zmax continu par interpolation lineaire |
| 3606 |
|
✗ |
IF (zw2(ig,l+1)<0.) THEN |
| 3607 |
|
|
! test |
| 3608 |
|
✗ |
IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
| 3609 |
|
✗ |
PRINT *, 'pb linter' |
| 3610 |
|
|
END IF |
| 3611 |
|
|
linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
| 3612 |
|
✗ |
ig,l)) |
| 3613 |
|
✗ |
zw2(ig, l+1) = 0. |
| 3614 |
|
✗ |
lmaxa(ig) = l |
| 3615 |
|
|
ELSE |
| 3616 |
|
|
IF (zw2(ig,l+1)<0.) THEN |
| 3617 |
|
|
PRINT *, 'pb1 zw2<0' |
| 3618 |
|
|
END IF |
| 3619 |
|
✗ |
wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
| 3620 |
|
|
END IF |
| 3621 |
|
✗ |
IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
| 3622 |
|
|
! lmix est le niveau de la couche ou w (wa_moy) est maximum |
| 3623 |
|
✗ |
lmix(ig) = l + 1 |
| 3624 |
|
✗ |
wmaxa(ig) = wa_moy(ig, l+1) |
| 3625 |
|
|
END IF |
| 3626 |
|
|
END DO |
| 3627 |
|
|
END DO |
| 3628 |
|
✗ |
PRINT *, 'fin calcul zw2' |
| 3629 |
|
|
|
| 3630 |
|
|
! Calcul de la couche correspondant a la hauteur du thermique |
| 3631 |
|
✗ |
DO ig = 1, ngrid |
| 3632 |
|
✗ |
lmax(ig) = lentr(ig) |
| 3633 |
|
|
END DO |
| 3634 |
|
✗ |
DO ig = 1, ngrid |
| 3635 |
|
✗ |
DO l = nlay, lentr(ig) + 1, -1 |
| 3636 |
|
✗ |
IF (zw2(ig,l)<=1.E-10) THEN |
| 3637 |
|
✗ |
lmax(ig) = l - 1 |
| 3638 |
|
|
END IF |
| 3639 |
|
|
END DO |
| 3640 |
|
|
END DO |
| 3641 |
|
|
! pas de thermique si couches 1->5 stables |
| 3642 |
|
✗ |
DO ig = 1, ngrid |
| 3643 |
|
✗ |
IF (lmin(ig)>5) THEN |
| 3644 |
|
✗ |
lmax(ig) = 1 |
| 3645 |
|
✗ |
lmin(ig) = 1 |
| 3646 |
|
|
END IF |
| 3647 |
|
|
END DO |
| 3648 |
|
|
|
| 3649 |
|
|
! Determination de zw2 max |
| 3650 |
|
✗ |
DO ig = 1, ngrid |
| 3651 |
|
✗ |
wmax(ig) = 0. |
| 3652 |
|
|
END DO |
| 3653 |
|
|
|
| 3654 |
|
✗ |
DO l = 1, nlay |
| 3655 |
|
✗ |
DO ig = 1, ngrid |
| 3656 |
|
✗ |
IF (l<=lmax(ig)) THEN |
| 3657 |
|
✗ |
IF (zw2(ig,l)<0.) THEN |
| 3658 |
|
✗ |
PRINT *, 'pb2 zw2<0' |
| 3659 |
|
|
END IF |
| 3660 |
|
✗ |
zw2(ig, l) = sqrt(zw2(ig,l)) |
| 3661 |
|
✗ |
wmax(ig) = max(wmax(ig), zw2(ig,l)) |
| 3662 |
|
|
ELSE |
| 3663 |
|
✗ |
zw2(ig, l) = 0. |
| 3664 |
|
|
END IF |
| 3665 |
|
|
END DO |
| 3666 |
|
|
END DO |
| 3667 |
|
|
|
| 3668 |
|
|
! Longueur caracteristique correspondant a la hauteur des thermiques. |
| 3669 |
|
✗ |
DO ig = 1, ngrid |
| 3670 |
|
✗ |
zmax(ig) = 0. |
| 3671 |
|
✗ |
zlevinter(ig) = zlev(ig, 1) |
| 3672 |
|
|
END DO |
| 3673 |
|
✗ |
DO ig = 1, ngrid |
| 3674 |
|
|
! calcul de zlevinter |
| 3675 |
|
|
zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
| 3676 |
|
✗ |
zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
| 3677 |
|
✗ |
zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
| 3678 |
|
|
END DO |
| 3679 |
|
|
|
| 3680 |
|
✗ |
PRINT *, 'avant fermeture' |
| 3681 |
|
|
! Fermeture,determination de f |
| 3682 |
|
✗ |
DO ig = 1, ngrid |
| 3683 |
|
✗ |
entr_star2(ig) = 0. |
| 3684 |
|
|
END DO |
| 3685 |
|
✗ |
DO ig = 1, ngrid |
| 3686 |
|
✗ |
IF (entr_star_tot(ig)<1.E-10) THEN |
| 3687 |
|
✗ |
f(ig) = 0. |
| 3688 |
|
|
ELSE |
| 3689 |
|
✗ |
DO k = lmin(ig), lentr(ig) |
| 3690 |
|
|
entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
| 3691 |
|
✗ |
zlev(ig,k+1)-zlev(ig,k))) |
| 3692 |
|
|
END DO |
| 3693 |
|
|
! Nouvelle fermeture |
| 3694 |
|
|
f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig))* & |
| 3695 |
|
✗ |
entr_star_tot(ig) |
| 3696 |
|
|
! test |
| 3697 |
|
|
! if (first) then |
| 3698 |
|
|
! f(ig)=f(ig)+(f0(ig)-f(ig))*exp(-ptimestep/zmax(ig) |
| 3699 |
|
|
! s *wmax(ig)) |
| 3700 |
|
|
! endif |
| 3701 |
|
|
END IF |
| 3702 |
|
|
! f0(ig)=f(ig) |
| 3703 |
|
|
! first=.true. |
| 3704 |
|
|
END DO |
| 3705 |
|
✗ |
PRINT *, 'apres fermeture' |
| 3706 |
|
|
|
| 3707 |
|
|
! Calcul de l'entrainement |
| 3708 |
|
✗ |
DO k = 1, klev |
| 3709 |
|
✗ |
DO ig = 1, ngrid |
| 3710 |
|
✗ |
entr(ig, k) = f(ig)*entr_star(ig, k) |
| 3711 |
|
|
END DO |
| 3712 |
|
|
END DO |
| 3713 |
|
|
! Calcul des flux |
| 3714 |
|
✗ |
DO ig = 1, ngrid |
| 3715 |
|
✗ |
DO l = 1, lmax(ig) - 1 |
| 3716 |
|
✗ |
fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
| 3717 |
|
|
END DO |
| 3718 |
|
|
END DO |
| 3719 |
|
|
|
| 3720 |
|
|
! RC |
| 3721 |
|
|
|
| 3722 |
|
|
|
| 3723 |
|
|
! print*,'9 OK convect8' |
| 3724 |
|
|
! print*,'WA1 ',wa_moy |
| 3725 |
|
|
|
| 3726 |
|
|
! determination de l'indice du debut de la mixed layer ou w decroit |
| 3727 |
|
|
|
| 3728 |
|
|
! calcul de la largeur de chaque ascendance dans le cas conservatif. |
| 3729 |
|
|
! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
| 3730 |
|
|
! d'une couche est �gale � la hauteur de la couche alimentante. |
| 3731 |
|
|
! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
| 3732 |
|
|
! de la vitesse d'entrainement horizontal dans la couche alimentante. |
| 3733 |
|
|
|
| 3734 |
|
✗ |
DO l = 2, nlay |
| 3735 |
|
✗ |
DO ig = 1, ngrid |
| 3736 |
|
✗ |
IF (l<=lmaxa(ig)) THEN |
| 3737 |
|
✗ |
zw = max(wa_moy(ig,l), 1.E-10) |
| 3738 |
|
✗ |
larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
| 3739 |
|
|
END IF |
| 3740 |
|
|
END DO |
| 3741 |
|
|
END DO |
| 3742 |
|
|
|
| 3743 |
|
✗ |
DO l = 2, nlay |
| 3744 |
|
✗ |
DO ig = 1, ngrid |
| 3745 |
|
✗ |
IF (l<=lmaxa(ig)) THEN |
| 3746 |
|
|
! if (idetr.eq.0) then |
| 3747 |
|
|
! cette option est finalement en dur. |
| 3748 |
|
✗ |
IF ((l_mix*zlev(ig,l))<0.) THEN |
| 3749 |
|
✗ |
PRINT *, 'pb l_mix*zlev<0' |
| 3750 |
|
|
END IF |
| 3751 |
|
✗ |
larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
| 3752 |
|
|
! else if (idetr.eq.1) then |
| 3753 |
|
|
! larg_detr(ig,l)=larg_cons(ig,l) |
| 3754 |
|
|
! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
| 3755 |
|
|
! else if (idetr.eq.2) then |
| 3756 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 3757 |
|
|
! s *sqrt(wa_moy(ig,l)) |
| 3758 |
|
|
! else if (idetr.eq.4) then |
| 3759 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 3760 |
|
|
! s *wa_moy(ig,l) |
| 3761 |
|
|
! endif |
| 3762 |
|
|
END IF |
| 3763 |
|
|
END DO |
| 3764 |
|
|
END DO |
| 3765 |
|
|
|
| 3766 |
|
|
! print*,'10 OK convect8' |
| 3767 |
|
|
! print*,'WA2 ',wa_moy |
| 3768 |
|
|
! calcul de la fraction de la maille concern�e par l'ascendance en tenant |
| 3769 |
|
|
! compte de l'epluchage du thermique. |
| 3770 |
|
|
|
| 3771 |
|
|
! CR def de zmix continu (profil parabolique des vitesses) |
| 3772 |
|
✗ |
DO ig = 1, ngrid |
| 3773 |
|
✗ |
IF (lmix(ig)>1.) THEN |
| 3774 |
|
|
! test |
| 3775 |
|
✗ |
IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
| 3776 |
|
|
(zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
| 3777 |
|
|
zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
| 3778 |
|
|
(zlev(ig,lmix(ig)))))>1E-10) THEN |
| 3779 |
|
|
|
| 3780 |
|
|
zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
| 3781 |
|
|
)**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
| 3782 |
|
|
lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
| 3783 |
|
|
(2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
| 3784 |
|
|
(zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
| 3785 |
|
✗ |
zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
| 3786 |
|
|
ELSE |
| 3787 |
|
✗ |
zmix(ig) = zlev(ig, lmix(ig)) |
| 3788 |
|
✗ |
PRINT *, 'pb zmix' |
| 3789 |
|
|
END IF |
| 3790 |
|
|
ELSE |
| 3791 |
|
✗ |
zmix(ig) = 0. |
| 3792 |
|
|
END IF |
| 3793 |
|
|
! test |
| 3794 |
|
✗ |
IF ((zmax(ig)-zmix(ig))<0.) THEN |
| 3795 |
|
✗ |
zmix(ig) = 0.99*zmax(ig) |
| 3796 |
|
|
! print*,'pb zmix>zmax' |
| 3797 |
|
|
END IF |
| 3798 |
|
|
END DO |
| 3799 |
|
|
|
| 3800 |
|
|
! calcul du nouveau lmix correspondant |
| 3801 |
|
✗ |
DO ig = 1, ngrid |
| 3802 |
|
✗ |
DO l = 1, klev |
| 3803 |
|
✗ |
IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
| 3804 |
|
✗ |
lmix(ig) = l |
| 3805 |
|
|
END IF |
| 3806 |
|
|
END DO |
| 3807 |
|
|
END DO |
| 3808 |
|
|
|
| 3809 |
|
✗ |
DO l = 2, nlay |
| 3810 |
|
✗ |
DO ig = 1, ngrid |
| 3811 |
|
✗ |
IF (larg_cons(ig,l)>1.) THEN |
| 3812 |
|
|
! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
| 3813 |
|
✗ |
fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
| 3814 |
|
|
! test |
| 3815 |
|
✗ |
fraca(ig, l) = max(fraca(ig,l), 0.) |
| 3816 |
|
✗ |
fraca(ig, l) = min(fraca(ig,l), 0.5) |
| 3817 |
|
✗ |
fracd(ig, l) = 1. - fraca(ig, l) |
| 3818 |
|
✗ |
fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
| 3819 |
|
|
ELSE |
| 3820 |
|
|
! wa_moy(ig,l)=0. |
| 3821 |
|
✗ |
fraca(ig, l) = 0. |
| 3822 |
|
✗ |
fracc(ig, l) = 0. |
| 3823 |
|
✗ |
fracd(ig, l) = 1. |
| 3824 |
|
|
END IF |
| 3825 |
|
|
END DO |
| 3826 |
|
|
END DO |
| 3827 |
|
|
! CR: calcul de fracazmix |
| 3828 |
|
✗ |
DO ig = 1, ngrid |
| 3829 |
|
|
fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
| 3830 |
|
|
(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
| 3831 |
|
|
fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
| 3832 |
|
✗ |
,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
| 3833 |
|
|
END DO |
| 3834 |
|
|
|
| 3835 |
|
✗ |
DO l = 2, nlay |
| 3836 |
|
✗ |
DO ig = 1, ngrid |
| 3837 |
|
✗ |
IF (larg_cons(ig,l)>1.) THEN |
| 3838 |
|
✗ |
IF (l>lmix(ig)) THEN |
| 3839 |
|
|
! test |
| 3840 |
|
✗ |
IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
| 3841 |
|
|
! print*,'pb xxx' |
| 3842 |
|
✗ |
xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
| 3843 |
|
|
ELSE |
| 3844 |
|
✗ |
xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
| 3845 |
|
|
END IF |
| 3846 |
|
✗ |
IF (idetr==0) THEN |
| 3847 |
|
✗ |
fraca(ig, l) = fracazmix(ig) |
| 3848 |
|
✗ |
ELSE IF (idetr==1) THEN |
| 3849 |
|
✗ |
fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
| 3850 |
|
✗ |
ELSE IF (idetr==2) THEN |
| 3851 |
|
✗ |
fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
| 3852 |
|
|
ELSE |
| 3853 |
|
✗ |
fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
| 3854 |
|
|
END IF |
| 3855 |
|
|
! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
| 3856 |
|
✗ |
fraca(ig, l) = max(fraca(ig,l), 0.) |
| 3857 |
|
✗ |
fraca(ig, l) = min(fraca(ig,l), 0.5) |
| 3858 |
|
✗ |
fracd(ig, l) = 1. - fraca(ig, l) |
| 3859 |
|
✗ |
fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
| 3860 |
|
|
END IF |
| 3861 |
|
|
END IF |
| 3862 |
|
|
END DO |
| 3863 |
|
|
END DO |
| 3864 |
|
|
|
| 3865 |
|
✗ |
PRINT *, 'fin calcul fraca' |
| 3866 |
|
|
! print*,'11 OK convect8' |
| 3867 |
|
|
! print*,'Ea3 ',wa_moy |
| 3868 |
|
|
! ------------------------------------------------------------------ |
| 3869 |
|
|
! Calcul de fracd, wd |
| 3870 |
|
|
! somme wa - wd = 0 |
| 3871 |
|
|
! ------------------------------------------------------------------ |
| 3872 |
|
|
|
| 3873 |
|
|
|
| 3874 |
|
✗ |
DO ig = 1, ngrid |
| 3875 |
|
✗ |
fm(ig, 1) = 0. |
| 3876 |
|
✗ |
fm(ig, nlay+1) = 0. |
| 3877 |
|
|
END DO |
| 3878 |
|
|
|
| 3879 |
|
✗ |
DO l = 2, nlay |
| 3880 |
|
✗ |
DO ig = 1, ngrid |
| 3881 |
|
✗ |
fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
| 3882 |
|
|
! CR:test |
| 3883 |
|
✗ |
IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
| 3884 |
|
✗ |
fm(ig, l) = fm(ig, l-1) |
| 3885 |
|
|
! write(1,*)'ajustement fm, l',l |
| 3886 |
|
|
END IF |
| 3887 |
|
|
! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
| 3888 |
|
|
! RC |
| 3889 |
|
|
END DO |
| 3890 |
|
✗ |
DO ig = 1, ngrid |
| 3891 |
|
✗ |
IF (fracd(ig,l)<0.1) THEN |
| 3892 |
|
✗ |
abort_message = 'fracd trop petit' |
| 3893 |
|
✗ |
CALL abort_physic(modname, abort_message, 1) |
| 3894 |
|
|
ELSE |
| 3895 |
|
|
! vitesse descendante "diagnostique" |
| 3896 |
|
✗ |
wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
| 3897 |
|
|
END IF |
| 3898 |
|
|
END DO |
| 3899 |
|
|
END DO |
| 3900 |
|
|
|
| 3901 |
|
✗ |
DO l = 1, nlay |
| 3902 |
|
✗ |
DO ig = 1, ngrid |
| 3903 |
|
|
! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 3904 |
|
✗ |
masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
| 3905 |
|
|
END DO |
| 3906 |
|
|
END DO |
| 3907 |
|
|
|
| 3908 |
|
|
! print*,'12 OK convect8' |
| 3909 |
|
|
! print*,'WA4 ',wa_moy |
| 3910 |
|
|
! c------------------------------------------------------------------ |
| 3911 |
|
|
! calcul du transport vertical |
| 3912 |
|
|
! ------------------------------------------------------------------ |
| 3913 |
|
|
|
| 3914 |
|
|
GO TO 4444 |
| 3915 |
|
|
! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
| 3916 |
|
|
DO l = 2, nlay - 1 |
| 3917 |
|
|
DO ig = 1, ngrid |
| 3918 |
|
|
IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
| 3919 |
|
|
ig,l+1)) THEN |
| 3920 |
|
|
! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
| 3921 |
|
|
! s ,fm(ig,l+1)*ptimestep |
| 3922 |
|
|
! s ,' M=',masse(ig,l),masse(ig,l+1) |
| 3923 |
|
|
END IF |
| 3924 |
|
|
END DO |
| 3925 |
|
|
END DO |
| 3926 |
|
|
|
| 3927 |
|
|
DO l = 1, nlay |
| 3928 |
|
|
DO ig = 1, ngrid |
| 3929 |
|
|
IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
| 3930 |
|
|
! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
| 3931 |
|
|
! s ,entr(ig,l)*ptimestep |
| 3932 |
|
|
! s ,' M=',masse(ig,l) |
| 3933 |
|
|
END IF |
| 3934 |
|
|
END DO |
| 3935 |
|
|
END DO |
| 3936 |
|
|
|
| 3937 |
|
|
DO l = 1, nlay |
| 3938 |
|
|
DO ig = 1, ngrid |
| 3939 |
|
|
IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
| 3940 |
|
|
! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
| 3941 |
|
|
! s ,' FM=',fm(ig,l) |
| 3942 |
|
|
END IF |
| 3943 |
|
|
IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
| 3944 |
|
|
! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
| 3945 |
|
|
! s ,' M=',masse(ig,l) |
| 3946 |
|
|
! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
| 3947 |
|
|
! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
| 3948 |
|
|
! print*,'zlev(ig,l+1),zlev(ig,l)' |
| 3949 |
|
|
! s ,zlev(ig,l+1),zlev(ig,l) |
| 3950 |
|
|
! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
| 3951 |
|
|
! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
| 3952 |
|
|
END IF |
| 3953 |
|
|
IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
| 3954 |
|
|
! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
| 3955 |
|
|
! s ,' E=',entr(ig,l) |
| 3956 |
|
|
END IF |
| 3957 |
|
|
END DO |
| 3958 |
|
|
END DO |
| 3959 |
|
|
|
| 3960 |
|
|
4444 CONTINUE |
| 3961 |
|
|
|
| 3962 |
|
|
! CR:redefinition du entr |
| 3963 |
|
✗ |
DO l = 1, nlay |
| 3964 |
|
✗ |
DO ig = 1, ngrid |
| 3965 |
|
✗ |
detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
| 3966 |
|
✗ |
IF (detr(ig,l)<0.) THEN |
| 3967 |
|
✗ |
entr(ig, l) = entr(ig, l) - detr(ig, l) |
| 3968 |
|
✗ |
detr(ig, l) = 0. |
| 3969 |
|
|
! print*,'WARNING !!! detrainement negatif ',ig,l |
| 3970 |
|
|
END IF |
| 3971 |
|
|
END DO |
| 3972 |
|
|
END DO |
| 3973 |
|
|
! RC |
| 3974 |
|
✗ |
IF (w2di==1) THEN |
| 3975 |
|
✗ |
fm0 = fm0 + ptimestep*(fm-fm0)/tho |
| 3976 |
|
✗ |
entr0 = entr0 + ptimestep*(entr-entr0)/tho |
| 3977 |
|
|
ELSE |
| 3978 |
|
✗ |
fm0 = fm |
| 3979 |
|
✗ |
entr0 = entr |
| 3980 |
|
|
END IF |
| 3981 |
|
|
|
| 3982 |
|
|
IF (1==1) THEN |
| 3983 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
| 3984 |
|
✗ |
zha) |
| 3985 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
| 3986 |
|
✗ |
zoa) |
| 3987 |
|
|
ELSE |
| 3988 |
|
|
CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
| 3989 |
|
|
zdhadj, zha) |
| 3990 |
|
|
CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
| 3991 |
|
|
pdoadj, zoa) |
| 3992 |
|
|
END IF |
| 3993 |
|
|
|
| 3994 |
|
|
IF (1==0) THEN |
| 3995 |
|
|
CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
| 3996 |
|
|
zu, zv, pduadj, pdvadj, zua, zva) |
| 3997 |
|
|
ELSE |
| 3998 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
| 3999 |
|
✗ |
zua) |
| 4000 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
| 4001 |
|
✗ |
zva) |
| 4002 |
|
|
END IF |
| 4003 |
|
|
|
| 4004 |
|
✗ |
DO l = 1, nlay |
| 4005 |
|
✗ |
DO ig = 1, ngrid |
| 4006 |
|
✗ |
zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
| 4007 |
|
✗ |
zf2 = zf/(1.-zf) |
| 4008 |
|
✗ |
thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
| 4009 |
|
✗ |
wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
| 4010 |
|
|
END DO |
| 4011 |
|
|
END DO |
| 4012 |
|
|
|
| 4013 |
|
|
|
| 4014 |
|
|
|
| 4015 |
|
|
! print*,'13 OK convect8' |
| 4016 |
|
|
! print*,'WA5 ',wa_moy |
| 4017 |
|
✗ |
DO l = 1, nlay |
| 4018 |
|
✗ |
DO ig = 1, ngrid |
| 4019 |
|
✗ |
pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
| 4020 |
|
|
END DO |
| 4021 |
|
|
END DO |
| 4022 |
|
|
|
| 4023 |
|
|
|
| 4024 |
|
|
! do l=1,nlay |
| 4025 |
|
|
! do ig=1,ngrid |
| 4026 |
|
|
! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
| 4027 |
|
|
! print*,'WARN!!! ig=',ig,' l=',l |
| 4028 |
|
|
! s ,' pdtadj=',pdtadj(ig,l) |
| 4029 |
|
|
! endif |
| 4030 |
|
|
! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
| 4031 |
|
|
! print*,'WARN!!! ig=',ig,' l=',l |
| 4032 |
|
|
! s ,' pdoadj=',pdoadj(ig,l) |
| 4033 |
|
|
! endif |
| 4034 |
|
|
! enddo |
| 4035 |
|
|
! enddo |
| 4036 |
|
|
|
| 4037 |
|
|
! print*,'14 OK convect8' |
| 4038 |
|
|
! ------------------------------------------------------------------ |
| 4039 |
|
|
! Calculs pour les sorties |
| 4040 |
|
|
! ------------------------------------------------------------------ |
| 4041 |
|
|
|
| 4042 |
|
|
IF (sorties) THEN |
| 4043 |
|
|
DO l = 1, nlay |
| 4044 |
|
|
DO ig = 1, ngrid |
| 4045 |
|
|
zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
| 4046 |
|
|
zld(ig, l) = fracd(ig, l)*zmax(ig) |
| 4047 |
|
|
IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
| 4048 |
|
|
(1.-fracd(ig,l)) |
| 4049 |
|
|
END DO |
| 4050 |
|
|
END DO |
| 4051 |
|
|
|
| 4052 |
|
|
! deja fait |
| 4053 |
|
|
! do l=1,nlay |
| 4054 |
|
|
! do ig=1,ngrid |
| 4055 |
|
|
! detr(ig,l)=fm(ig,l)+entr(ig,l)-fm(ig,l+1) |
| 4056 |
|
|
! if (detr(ig,l).lt.0.) then |
| 4057 |
|
|
! entr(ig,l)=entr(ig,l)-detr(ig,l) |
| 4058 |
|
|
! detr(ig,l)=0. |
| 4059 |
|
|
! print*,'WARNING !!! detrainement negatif ',ig,l |
| 4060 |
|
|
! endif |
| 4061 |
|
|
! enddo |
| 4062 |
|
|
! enddo |
| 4063 |
|
|
|
| 4064 |
|
|
! print*,'15 OK convect8' |
| 4065 |
|
|
|
| 4066 |
|
|
|
| 4067 |
|
|
! #define und |
| 4068 |
|
|
GO TO 123 |
| 4069 |
|
|
123 CONTINUE |
| 4070 |
|
|
|
| 4071 |
|
|
END IF |
| 4072 |
|
|
|
| 4073 |
|
|
! if(wa_moy(1,4).gt.1.e-10) stop |
| 4074 |
|
|
|
| 4075 |
|
|
! print*,'19 OK convect8' |
| 4076 |
|
✗ |
RETURN |
| 4077 |
|
|
END SUBROUTINE thermcell |
| 4078 |
|
|
|
| 4079 |
|
✗ |
SUBROUTINE dqthermcell(ngrid, nlay, ptimestep, fm, entr, masse, q, dq, qa) |
| 4080 |
|
|
USE dimphy |
| 4081 |
|
|
IMPLICIT NONE |
| 4082 |
|
|
|
| 4083 |
|
|
! ======================================================================= |
| 4084 |
|
|
|
| 4085 |
|
|
! Calcul du transport verticale dans la couche limite en presence |
| 4086 |
|
|
! de "thermiques" explicitement representes |
| 4087 |
|
|
! calcul du dq/dt une fois qu'on connait les ascendances |
| 4088 |
|
|
|
| 4089 |
|
|
! ======================================================================= |
| 4090 |
|
|
|
| 4091 |
|
|
INTEGER ngrid, nlay |
| 4092 |
|
|
|
| 4093 |
|
|
REAL ptimestep |
| 4094 |
|
|
REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
| 4095 |
|
|
REAL entr(ngrid, nlay) |
| 4096 |
|
|
REAL q(ngrid, nlay) |
| 4097 |
|
|
REAL dq(ngrid, nlay) |
| 4098 |
|
|
|
| 4099 |
|
✗ |
REAL qa(klon, klev), detr(klon, klev), wqd(klon, klev+1) |
| 4100 |
|
|
|
| 4101 |
|
|
INTEGER ig, k |
| 4102 |
|
|
|
| 4103 |
|
|
! calcul du detrainement |
| 4104 |
|
|
|
| 4105 |
|
✗ |
DO k = 1, nlay |
| 4106 |
|
✗ |
DO ig = 1, ngrid |
| 4107 |
|
✗ |
detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
| 4108 |
|
|
! test |
| 4109 |
|
✗ |
IF (detr(ig,k)<0.) THEN |
| 4110 |
|
✗ |
entr(ig, k) = entr(ig, k) - detr(ig, k) |
| 4111 |
|
✗ |
detr(ig, k) = 0. |
| 4112 |
|
|
! print*,'detr2<0!!!','ig=',ig,'k=',k,'f=',fm(ig,k), |
| 4113 |
|
|
! s 'f+1=',fm(ig,k+1),'e=',entr(ig,k),'d=',detr(ig,k) |
| 4114 |
|
|
END IF |
| 4115 |
|
|
IF (fm(ig,k+1)<0.) THEN |
| 4116 |
|
|
! print*,'fm2<0!!!' |
| 4117 |
|
|
END IF |
| 4118 |
|
✗ |
IF (entr(ig,k)<0.) THEN |
| 4119 |
|
|
! print*,'entr2<0!!!' |
| 4120 |
|
|
END IF |
| 4121 |
|
|
END DO |
| 4122 |
|
|
END DO |
| 4123 |
|
|
|
| 4124 |
|
|
! calcul de la valeur dans les ascendances |
| 4125 |
|
✗ |
DO ig = 1, ngrid |
| 4126 |
|
✗ |
qa(ig, 1) = q(ig, 1) |
| 4127 |
|
|
END DO |
| 4128 |
|
|
|
| 4129 |
|
✗ |
DO k = 2, nlay |
| 4130 |
|
✗ |
DO ig = 1, ngrid |
| 4131 |
|
✗ |
IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
| 4132 |
|
|
qa(ig, k) = (fm(ig,k)*qa(ig,k-1)+entr(ig,k)*q(ig,k))/ & |
| 4133 |
|
✗ |
(fm(ig,k+1)+detr(ig,k)) |
| 4134 |
|
|
ELSE |
| 4135 |
|
✗ |
qa(ig, k) = q(ig, k) |
| 4136 |
|
|
END IF |
| 4137 |
|
|
IF (qa(ig,k)<0.) THEN |
| 4138 |
|
|
! print*,'qa<0!!!' |
| 4139 |
|
|
END IF |
| 4140 |
|
✗ |
IF (q(ig,k)<0.) THEN |
| 4141 |
|
|
! print*,'q<0!!!' |
| 4142 |
|
|
END IF |
| 4143 |
|
|
END DO |
| 4144 |
|
|
END DO |
| 4145 |
|
|
|
| 4146 |
|
✗ |
DO k = 2, nlay |
| 4147 |
|
✗ |
DO ig = 1, ngrid |
| 4148 |
|
|
! wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
| 4149 |
|
✗ |
wqd(ig, k) = fm(ig, k)*q(ig, k) |
| 4150 |
|
✗ |
IF (wqd(ig,k)<0.) THEN |
| 4151 |
|
|
! print*,'wqd<0!!!' |
| 4152 |
|
|
END IF |
| 4153 |
|
|
END DO |
| 4154 |
|
|
END DO |
| 4155 |
|
✗ |
DO ig = 1, ngrid |
| 4156 |
|
✗ |
wqd(ig, 1) = 0. |
| 4157 |
|
✗ |
wqd(ig, nlay+1) = 0. |
| 4158 |
|
|
END DO |
| 4159 |
|
|
|
| 4160 |
|
✗ |
DO k = 1, nlay |
| 4161 |
|
✗ |
DO ig = 1, ngrid |
| 4162 |
|
|
dq(ig, k) = (detr(ig,k)*qa(ig,k)-entr(ig,k)*q(ig,k)-wqd(ig,k)+wqd(ig,k+ & |
| 4163 |
|
✗ |
1))/masse(ig, k) |
| 4164 |
|
|
! if (dq(ig,k).lt.0.) then |
| 4165 |
|
|
! print*,'dq<0!!!' |
| 4166 |
|
|
! endif |
| 4167 |
|
|
END DO |
| 4168 |
|
|
END DO |
| 4169 |
|
|
|
| 4170 |
|
✗ |
RETURN |
| 4171 |
|
|
END SUBROUTINE dqthermcell |
| 4172 |
|
✗ |
SUBROUTINE dvthermcell(ngrid, nlay, ptimestep, fm, entr, masse, fraca, larga, & |
| 4173 |
|
|
u, v, du, dv, ua, va) |
| 4174 |
|
|
USE dimphy |
| 4175 |
|
|
IMPLICIT NONE |
| 4176 |
|
|
|
| 4177 |
|
|
! ======================================================================= |
| 4178 |
|
|
|
| 4179 |
|
|
! Calcul du transport verticale dans la couche limite en presence |
| 4180 |
|
|
! de "thermiques" explicitement representes |
| 4181 |
|
|
! calcul du dq/dt une fois qu'on connait les ascendances |
| 4182 |
|
|
|
| 4183 |
|
|
! ======================================================================= |
| 4184 |
|
|
|
| 4185 |
|
|
INTEGER ngrid, nlay |
| 4186 |
|
|
|
| 4187 |
|
|
REAL ptimestep |
| 4188 |
|
|
REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
| 4189 |
|
|
REAL fraca(ngrid, nlay+1) |
| 4190 |
|
|
REAL larga(ngrid) |
| 4191 |
|
|
REAL entr(ngrid, nlay) |
| 4192 |
|
|
REAL u(ngrid, nlay) |
| 4193 |
|
|
REAL ua(ngrid, nlay) |
| 4194 |
|
|
REAL du(ngrid, nlay) |
| 4195 |
|
|
REAL v(ngrid, nlay) |
| 4196 |
|
|
REAL va(ngrid, nlay) |
| 4197 |
|
|
REAL dv(ngrid, nlay) |
| 4198 |
|
|
|
| 4199 |
|
✗ |
REAL qa(klon, klev), detr(klon, klev) |
| 4200 |
|
✗ |
REAL wvd(klon, klev+1), wud(klon, klev+1) |
| 4201 |
|
✗ |
REAL gamma0, gamma(klon, klev+1) |
| 4202 |
|
|
REAL dua, dva |
| 4203 |
|
|
INTEGER iter |
| 4204 |
|
|
|
| 4205 |
|
|
INTEGER ig, k |
| 4206 |
|
|
|
| 4207 |
|
|
! calcul du detrainement |
| 4208 |
|
|
|
| 4209 |
|
✗ |
DO k = 1, nlay |
| 4210 |
|
✗ |
DO ig = 1, ngrid |
| 4211 |
|
✗ |
detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
| 4212 |
|
|
END DO |
| 4213 |
|
|
END DO |
| 4214 |
|
|
|
| 4215 |
|
|
! calcul de la valeur dans les ascendances |
| 4216 |
|
✗ |
DO ig = 1, ngrid |
| 4217 |
|
✗ |
ua(ig, 1) = u(ig, 1) |
| 4218 |
|
✗ |
va(ig, 1) = v(ig, 1) |
| 4219 |
|
|
END DO |
| 4220 |
|
|
|
| 4221 |
|
✗ |
DO k = 2, nlay |
| 4222 |
|
✗ |
DO ig = 1, ngrid |
| 4223 |
|
✗ |
IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
| 4224 |
|
|
! On it�re sur la valeur du coeff de freinage. |
| 4225 |
|
|
! gamma0=rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k)) |
| 4226 |
|
|
gamma0 = masse(ig, k)*sqrt(0.5*(fraca(ig,k+1)+fraca(ig, & |
| 4227 |
|
✗ |
k)))*0.5/larga(ig) |
| 4228 |
|
|
! gamma0=0. |
| 4229 |
|
|
! la premi�re fois on multiplie le coefficient de freinage |
| 4230 |
|
|
! par le module du vent dans la couche en dessous. |
| 4231 |
|
✗ |
dua = ua(ig, k-1) - u(ig, k-1) |
| 4232 |
|
✗ |
dva = va(ig, k-1) - v(ig, k-1) |
| 4233 |
|
✗ |
DO iter = 1, 5 |
| 4234 |
|
✗ |
gamma(ig, k) = gamma0*sqrt(dua**2+dva**2) |
| 4235 |
|
|
ua(ig, k) = (fm(ig,k)*ua(ig,k-1)+(entr(ig,k)+gamma(ig, & |
| 4236 |
|
✗ |
k))*u(ig,k))/(fm(ig,k+1)+detr(ig,k)+gamma(ig,k)) |
| 4237 |
|
|
va(ig, k) = (fm(ig,k)*va(ig,k-1)+(entr(ig,k)+gamma(ig, & |
| 4238 |
|
✗ |
k))*v(ig,k))/(fm(ig,k+1)+detr(ig,k)+gamma(ig,k)) |
| 4239 |
|
|
! print*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua,dva |
| 4240 |
|
✗ |
dua = ua(ig, k) - u(ig, k) |
| 4241 |
|
✗ |
dva = va(ig, k) - v(ig, k) |
| 4242 |
|
|
END DO |
| 4243 |
|
|
ELSE |
| 4244 |
|
✗ |
ua(ig, k) = u(ig, k) |
| 4245 |
|
✗ |
va(ig, k) = v(ig, k) |
| 4246 |
|
✗ |
gamma(ig, k) = 0. |
| 4247 |
|
|
END IF |
| 4248 |
|
|
END DO |
| 4249 |
|
|
END DO |
| 4250 |
|
|
|
| 4251 |
|
✗ |
DO k = 2, nlay |
| 4252 |
|
✗ |
DO ig = 1, ngrid |
| 4253 |
|
✗ |
wud(ig, k) = fm(ig, k)*u(ig, k) |
| 4254 |
|
✗ |
wvd(ig, k) = fm(ig, k)*v(ig, k) |
| 4255 |
|
|
END DO |
| 4256 |
|
|
END DO |
| 4257 |
|
✗ |
DO ig = 1, ngrid |
| 4258 |
|
✗ |
wud(ig, 1) = 0. |
| 4259 |
|
✗ |
wud(ig, nlay+1) = 0. |
| 4260 |
|
✗ |
wvd(ig, 1) = 0. |
| 4261 |
|
✗ |
wvd(ig, nlay+1) = 0. |
| 4262 |
|
|
END DO |
| 4263 |
|
|
|
| 4264 |
|
✗ |
DO k = 1, nlay |
| 4265 |
|
✗ |
DO ig = 1, ngrid |
| 4266 |
|
|
du(ig, k) = ((detr(ig,k)+gamma(ig,k))*ua(ig,k)-(entr(ig,k)+gamma(ig, & |
| 4267 |
|
✗ |
k))*u(ig,k)-wud(ig,k)+wud(ig,k+1))/masse(ig, k) |
| 4268 |
|
|
dv(ig, k) = ((detr(ig,k)+gamma(ig,k))*va(ig,k)-(entr(ig,k)+gamma(ig, & |
| 4269 |
|
✗ |
k))*v(ig,k)-wvd(ig,k)+wvd(ig,k+1))/masse(ig, k) |
| 4270 |
|
|
END DO |
| 4271 |
|
|
END DO |
| 4272 |
|
|
|
| 4273 |
|
✗ |
RETURN |
| 4274 |
|
|
END SUBROUTINE dvthermcell |
| 4275 |
|
✗ |
SUBROUTINE dqthermcell2(ngrid, nlay, ptimestep, fm, entr, masse, frac, q, dq, & |
| 4276 |
|
✗ |
qa) |
| 4277 |
|
|
USE dimphy |
| 4278 |
|
|
IMPLICIT NONE |
| 4279 |
|
|
|
| 4280 |
|
|
! ======================================================================= |
| 4281 |
|
|
|
| 4282 |
|
|
! Calcul du transport verticale dans la couche limite en presence |
| 4283 |
|
|
! de "thermiques" explicitement representes |
| 4284 |
|
|
! calcul du dq/dt une fois qu'on connait les ascendances |
| 4285 |
|
|
|
| 4286 |
|
|
! ======================================================================= |
| 4287 |
|
|
|
| 4288 |
|
|
INTEGER ngrid, nlay |
| 4289 |
|
|
|
| 4290 |
|
|
REAL ptimestep |
| 4291 |
|
|
REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
| 4292 |
|
|
REAL entr(ngrid, nlay), frac(ngrid, nlay) |
| 4293 |
|
|
REAL q(ngrid, nlay) |
| 4294 |
|
|
REAL dq(ngrid, nlay) |
| 4295 |
|
|
|
| 4296 |
|
✗ |
REAL qa(klon, klev), detr(klon, klev), wqd(klon, klev+1) |
| 4297 |
|
✗ |
REAL qe(klon, klev), zf, zf2 |
| 4298 |
|
|
|
| 4299 |
|
|
INTEGER ig, k |
| 4300 |
|
|
|
| 4301 |
|
|
! calcul du detrainement |
| 4302 |
|
|
|
| 4303 |
|
✗ |
DO k = 1, nlay |
| 4304 |
|
✗ |
DO ig = 1, ngrid |
| 4305 |
|
✗ |
detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
| 4306 |
|
|
END DO |
| 4307 |
|
|
END DO |
| 4308 |
|
|
|
| 4309 |
|
|
! calcul de la valeur dans les ascendances |
| 4310 |
|
✗ |
DO ig = 1, ngrid |
| 4311 |
|
✗ |
qa(ig, 1) = q(ig, 1) |
| 4312 |
|
✗ |
qe(ig, 1) = q(ig, 1) |
| 4313 |
|
|
END DO |
| 4314 |
|
|
|
| 4315 |
|
✗ |
DO k = 2, nlay |
| 4316 |
|
✗ |
DO ig = 1, ngrid |
| 4317 |
|
✗ |
IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
| 4318 |
|
✗ |
zf = 0.5*(frac(ig,k)+frac(ig,k+1)) |
| 4319 |
|
✗ |
zf2 = 1./(1.-zf) |
| 4320 |
|
|
qa(ig, k) = (fm(ig,k)*qa(ig,k-1)+zf2*entr(ig,k)*q(ig,k))/ & |
| 4321 |
|
✗ |
(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2) |
| 4322 |
|
✗ |
qe(ig, k) = (q(ig,k)-zf*qa(ig,k))*zf2 |
| 4323 |
|
|
ELSE |
| 4324 |
|
✗ |
qa(ig, k) = q(ig, k) |
| 4325 |
|
✗ |
qe(ig, k) = q(ig, k) |
| 4326 |
|
|
END IF |
| 4327 |
|
|
END DO |
| 4328 |
|
|
END DO |
| 4329 |
|
|
|
| 4330 |
|
✗ |
DO k = 2, nlay |
| 4331 |
|
✗ |
DO ig = 1, ngrid |
| 4332 |
|
|
! wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
| 4333 |
|
✗ |
wqd(ig, k) = fm(ig, k)*qe(ig, k) |
| 4334 |
|
|
END DO |
| 4335 |
|
|
END DO |
| 4336 |
|
✗ |
DO ig = 1, ngrid |
| 4337 |
|
✗ |
wqd(ig, 1) = 0. |
| 4338 |
|
✗ |
wqd(ig, nlay+1) = 0. |
| 4339 |
|
|
END DO |
| 4340 |
|
|
|
| 4341 |
|
✗ |
DO k = 1, nlay |
| 4342 |
|
✗ |
DO ig = 1, ngrid |
| 4343 |
|
|
dq(ig, k) = (detr(ig,k)*qa(ig,k)-entr(ig,k)*qe(ig,k)-wqd(ig,k)+wqd(ig,k & |
| 4344 |
|
✗ |
+1))/masse(ig, k) |
| 4345 |
|
|
END DO |
| 4346 |
|
|
END DO |
| 4347 |
|
|
|
| 4348 |
|
✗ |
RETURN |
| 4349 |
|
|
END SUBROUTINE dqthermcell2 |
| 4350 |
|
✗ |
SUBROUTINE dvthermcell2(ngrid, nlay, ptimestep, fm, entr, masse, fraca, & |
| 4351 |
|
|
larga, u, v, du, dv, ua, va) |
| 4352 |
|
|
USE dimphy |
| 4353 |
|
|
IMPLICIT NONE |
| 4354 |
|
|
|
| 4355 |
|
|
! ======================================================================= |
| 4356 |
|
|
|
| 4357 |
|
|
! Calcul du transport verticale dans la couche limite en presence |
| 4358 |
|
|
! de "thermiques" explicitement representes |
| 4359 |
|
|
! calcul du dq/dt une fois qu'on connait les ascendances |
| 4360 |
|
|
|
| 4361 |
|
|
! ======================================================================= |
| 4362 |
|
|
|
| 4363 |
|
|
INTEGER ngrid, nlay |
| 4364 |
|
|
|
| 4365 |
|
|
REAL ptimestep |
| 4366 |
|
|
REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
| 4367 |
|
|
REAL fraca(ngrid, nlay+1) |
| 4368 |
|
|
REAL larga(ngrid) |
| 4369 |
|
|
REAL entr(ngrid, nlay) |
| 4370 |
|
|
REAL u(ngrid, nlay) |
| 4371 |
|
|
REAL ua(ngrid, nlay) |
| 4372 |
|
|
REAL du(ngrid, nlay) |
| 4373 |
|
|
REAL v(ngrid, nlay) |
| 4374 |
|
|
REAL va(ngrid, nlay) |
| 4375 |
|
|
REAL dv(ngrid, nlay) |
| 4376 |
|
|
|
| 4377 |
|
✗ |
REAL qa(klon, klev), detr(klon, klev), zf, zf2 |
| 4378 |
|
✗ |
REAL wvd(klon, klev+1), wud(klon, klev+1) |
| 4379 |
|
✗ |
REAL gamma0, gamma(klon, klev+1) |
| 4380 |
|
✗ |
REAL ue(klon, klev), ve(klon, klev) |
| 4381 |
|
|
REAL dua, dva |
| 4382 |
|
|
INTEGER iter |
| 4383 |
|
|
|
| 4384 |
|
|
INTEGER ig, k |
| 4385 |
|
|
|
| 4386 |
|
|
! calcul du detrainement |
| 4387 |
|
|
|
| 4388 |
|
✗ |
DO k = 1, nlay |
| 4389 |
|
✗ |
DO ig = 1, ngrid |
| 4390 |
|
✗ |
detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
| 4391 |
|
|
END DO |
| 4392 |
|
|
END DO |
| 4393 |
|
|
|
| 4394 |
|
|
! calcul de la valeur dans les ascendances |
| 4395 |
|
✗ |
DO ig = 1, ngrid |
| 4396 |
|
✗ |
ua(ig, 1) = u(ig, 1) |
| 4397 |
|
✗ |
va(ig, 1) = v(ig, 1) |
| 4398 |
|
✗ |
ue(ig, 1) = u(ig, 1) |
| 4399 |
|
✗ |
ve(ig, 1) = v(ig, 1) |
| 4400 |
|
|
END DO |
| 4401 |
|
|
|
| 4402 |
|
✗ |
DO k = 2, nlay |
| 4403 |
|
✗ |
DO ig = 1, ngrid |
| 4404 |
|
✗ |
IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
| 4405 |
|
|
! On it�re sur la valeur du coeff de freinage. |
| 4406 |
|
|
! gamma0=rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k)) |
| 4407 |
|
|
gamma0 = masse(ig, k)*sqrt(0.5*(fraca(ig,k+1)+fraca(ig, & |
| 4408 |
|
✗ |
k)))*0.5/larga(ig)*1. |
| 4409 |
|
|
! s *0.5 |
| 4410 |
|
|
! gamma0=0. |
| 4411 |
|
|
zf = 0.5*(fraca(ig,k)+fraca(ig,k+1)) |
| 4412 |
|
|
zf = 0. |
| 4413 |
|
|
zf2 = 1./(1.-zf) |
| 4414 |
|
|
! la premi�re fois on multiplie le coefficient de freinage |
| 4415 |
|
|
! par le module du vent dans la couche en dessous. |
| 4416 |
|
✗ |
dua = ua(ig, k-1) - u(ig, k-1) |
| 4417 |
|
✗ |
dva = va(ig, k-1) - v(ig, k-1) |
| 4418 |
|
✗ |
DO iter = 1, 5 |
| 4419 |
|
|
! On choisit une relaxation lineaire. |
| 4420 |
|
|
gamma(ig, k) = gamma0 |
| 4421 |
|
|
! On choisit une relaxation quadratique. |
| 4422 |
|
✗ |
gamma(ig, k) = gamma0*sqrt(dua**2+dva**2) |
| 4423 |
|
|
ua(ig, k) = (fm(ig,k)*ua(ig,k-1)+(zf2*entr(ig,k)+gamma(ig, & |
| 4424 |
|
|
k))*u(ig,k))/(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2+gamma(ig,k) & |
| 4425 |
|
✗ |
) |
| 4426 |
|
|
va(ig, k) = (fm(ig,k)*va(ig,k-1)+(zf2*entr(ig,k)+gamma(ig, & |
| 4427 |
|
|
k))*v(ig,k))/(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2+gamma(ig,k) & |
| 4428 |
|
✗ |
) |
| 4429 |
|
|
! print*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua,dva |
| 4430 |
|
✗ |
dua = ua(ig, k) - u(ig, k) |
| 4431 |
|
✗ |
dva = va(ig, k) - v(ig, k) |
| 4432 |
|
✗ |
ue(ig, k) = (u(ig,k)-zf*ua(ig,k))*zf2 |
| 4433 |
|
✗ |
ve(ig, k) = (v(ig,k)-zf*va(ig,k))*zf2 |
| 4434 |
|
|
END DO |
| 4435 |
|
|
ELSE |
| 4436 |
|
✗ |
ua(ig, k) = u(ig, k) |
| 4437 |
|
✗ |
va(ig, k) = v(ig, k) |
| 4438 |
|
✗ |
ue(ig, k) = u(ig, k) |
| 4439 |
|
✗ |
ve(ig, k) = v(ig, k) |
| 4440 |
|
✗ |
gamma(ig, k) = 0. |
| 4441 |
|
|
END IF |
| 4442 |
|
|
END DO |
| 4443 |
|
|
END DO |
| 4444 |
|
|
|
| 4445 |
|
✗ |
DO k = 2, nlay |
| 4446 |
|
✗ |
DO ig = 1, ngrid |
| 4447 |
|
✗ |
wud(ig, k) = fm(ig, k)*ue(ig, k) |
| 4448 |
|
✗ |
wvd(ig, k) = fm(ig, k)*ve(ig, k) |
| 4449 |
|
|
END DO |
| 4450 |
|
|
END DO |
| 4451 |
|
✗ |
DO ig = 1, ngrid |
| 4452 |
|
✗ |
wud(ig, 1) = 0. |
| 4453 |
|
✗ |
wud(ig, nlay+1) = 0. |
| 4454 |
|
✗ |
wvd(ig, 1) = 0. |
| 4455 |
|
✗ |
wvd(ig, nlay+1) = 0. |
| 4456 |
|
|
END DO |
| 4457 |
|
|
|
| 4458 |
|
✗ |
DO k = 1, nlay |
| 4459 |
|
✗ |
DO ig = 1, ngrid |
| 4460 |
|
|
du(ig, k) = ((detr(ig,k)+gamma(ig,k))*ua(ig,k)-(entr(ig,k)+gamma(ig, & |
| 4461 |
|
✗ |
k))*ue(ig,k)-wud(ig,k)+wud(ig,k+1))/masse(ig, k) |
| 4462 |
|
|
dv(ig, k) = ((detr(ig,k)+gamma(ig,k))*va(ig,k)-(entr(ig,k)+gamma(ig, & |
| 4463 |
|
✗ |
k))*ve(ig,k)-wvd(ig,k)+wvd(ig,k+1))/masse(ig, k) |
| 4464 |
|
|
END DO |
| 4465 |
|
|
END DO |
| 4466 |
|
|
|
| 4467 |
|
✗ |
RETURN |
| 4468 |
|
|
END SUBROUTINE dvthermcell2 |
| 4469 |
|
✗ |
SUBROUTINE thermcell_sec(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, & |
| 4470 |
|
✗ |
pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
| 4471 |
|
|
! ,pu_therm,pv_therm |
| 4472 |
|
|
, r_aspect, l_mix, w2di, tho) |
| 4473 |
|
|
|
| 4474 |
|
|
USE dimphy |
| 4475 |
|
|
IMPLICIT NONE |
| 4476 |
|
|
|
| 4477 |
|
|
! ======================================================================= |
| 4478 |
|
|
|
| 4479 |
|
|
! Calcul du transport verticale dans la couche limite en presence |
| 4480 |
|
|
! de "thermiques" explicitement representes |
| 4481 |
|
|
|
| 4482 |
|
|
! R��criture � partir d'un listing papier � Habas, le 14/02/00 |
| 4483 |
|
|
|
| 4484 |
|
|
! le thermique est suppos� homog�ne et dissip� par m�lange avec |
| 4485 |
|
|
! son environnement. la longueur l_mix contr�le l'efficacit� du |
| 4486 |
|
|
! m�lange |
| 4487 |
|
|
|
| 4488 |
|
|
! Le calcul du transport des diff�rentes esp�ces se fait en prenant |
| 4489 |
|
|
! en compte: |
| 4490 |
|
|
! 1. un flux de masse montant |
| 4491 |
|
|
! 2. un flux de masse descendant |
| 4492 |
|
|
! 3. un entrainement |
| 4493 |
|
|
! 4. un detrainement |
| 4494 |
|
|
|
| 4495 |
|
|
! ======================================================================= |
| 4496 |
|
|
|
| 4497 |
|
|
! ----------------------------------------------------------------------- |
| 4498 |
|
|
! declarations: |
| 4499 |
|
|
! ------------- |
| 4500 |
|
|
|
| 4501 |
|
|
include "YOMCST.h" |
| 4502 |
|
|
|
| 4503 |
|
|
! arguments: |
| 4504 |
|
|
! ---------- |
| 4505 |
|
|
|
| 4506 |
|
|
INTEGER ngrid, nlay, w2di |
| 4507 |
|
|
REAL tho |
| 4508 |
|
|
REAL ptimestep, l_mix, r_aspect |
| 4509 |
|
|
REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
| 4510 |
|
|
REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
| 4511 |
|
|
REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
| 4512 |
|
|
REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
| 4513 |
|
|
REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
| 4514 |
|
|
REAL pphi(ngrid, nlay) |
| 4515 |
|
|
|
| 4516 |
|
|
INTEGER idetr |
| 4517 |
|
|
SAVE idetr |
| 4518 |
|
|
DATA idetr/3/ |
| 4519 |
|
|
!$OMP THREADPRIVATE(idetr) |
| 4520 |
|
|
|
| 4521 |
|
|
! local: |
| 4522 |
|
|
! ------ |
| 4523 |
|
|
|
| 4524 |
|
✗ |
INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
| 4525 |
|
|
REAL zsortie1d(klon) |
| 4526 |
|
|
! CR: on remplace lmax(klon,klev+1) |
| 4527 |
|
✗ |
INTEGER lmax(klon), lmin(klon), lentr(klon) |
| 4528 |
|
✗ |
REAL linter(klon) |
| 4529 |
|
✗ |
REAL zmix(klon), fracazmix(klon) |
| 4530 |
|
|
! RC |
| 4531 |
|
✗ |
REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
| 4532 |
|
|
|
| 4533 |
|
✗ |
REAL zlev(klon, klev+1), zlay(klon, klev) |
| 4534 |
|
✗ |
REAL zh(klon, klev), zdhadj(klon, klev) |
| 4535 |
|
✗ |
REAL ztv(klon, klev) |
| 4536 |
|
✗ |
REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
| 4537 |
|
|
REAL wh(klon, klev+1) |
| 4538 |
|
|
REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
| 4539 |
|
|
REAL zla(klon, klev+1) |
| 4540 |
|
|
REAL zwa(klon, klev+1) |
| 4541 |
|
|
REAL zld(klon, klev+1) |
| 4542 |
|
|
REAL zwd(klon, klev+1) |
| 4543 |
|
|
REAL zsortie(klon, klev) |
| 4544 |
|
✗ |
REAL zva(klon, klev) |
| 4545 |
|
✗ |
REAL zua(klon, klev) |
| 4546 |
|
✗ |
REAL zoa(klon, klev) |
| 4547 |
|
|
|
| 4548 |
|
✗ |
REAL zha(klon, klev) |
| 4549 |
|
✗ |
REAL wa_moy(klon, klev+1) |
| 4550 |
|
✗ |
REAL fraca(klon, klev+1) |
| 4551 |
|
✗ |
REAL fracc(klon, klev+1) |
| 4552 |
|
|
REAL zf, zf2 |
| 4553 |
|
✗ |
REAL thetath2(klon, klev), wth2(klon, klev) |
| 4554 |
|
|
! common/comtherm/thetath2,wth2 |
| 4555 |
|
|
|
| 4556 |
|
|
REAL count_time |
| 4557 |
|
|
INTEGER ialt |
| 4558 |
|
|
|
| 4559 |
|
|
LOGICAL sorties |
| 4560 |
|
✗ |
REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
| 4561 |
|
✗ |
REAL zpspsk(klon, klev) |
| 4562 |
|
|
|
| 4563 |
|
|
! real wmax(klon,klev),wmaxa(klon) |
| 4564 |
|
✗ |
REAL wmax(klon), wmaxa(klon) |
| 4565 |
|
✗ |
REAL wa(klon, klev, klev+1) |
| 4566 |
|
✗ |
REAL wd(klon, klev+1) |
| 4567 |
|
|
REAL larg_part(klon, klev, klev+1) |
| 4568 |
|
✗ |
REAL fracd(klon, klev+1) |
| 4569 |
|
✗ |
REAL xxx(klon, klev+1) |
| 4570 |
|
✗ |
REAL larg_cons(klon, klev+1) |
| 4571 |
|
✗ |
REAL larg_detr(klon, klev+1) |
| 4572 |
|
✗ |
REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
| 4573 |
|
|
REAL pu_therm(klon, klev), pv_therm(klon, klev) |
| 4574 |
|
✗ |
REAL fm(klon, klev+1), entr(klon, klev) |
| 4575 |
|
✗ |
REAL fmc(klon, klev+1) |
| 4576 |
|
|
|
| 4577 |
|
|
! CR:nouvelles variables |
| 4578 |
|
✗ |
REAL f_star(klon, klev+1), entr_star(klon, klev) |
| 4579 |
|
✗ |
REAL entr_star_tot(klon), entr_star2(klon) |
| 4580 |
|
✗ |
REAL f(klon), f0(klon) |
| 4581 |
|
✗ |
REAL zlevinter(klon) |
| 4582 |
|
|
LOGICAL first |
| 4583 |
|
|
DATA first/.FALSE./ |
| 4584 |
|
|
SAVE first |
| 4585 |
|
|
!$OMP THREADPRIVATE(first) |
| 4586 |
|
|
! RC |
| 4587 |
|
|
|
| 4588 |
|
|
CHARACTER *2 str2 |
| 4589 |
|
|
CHARACTER *10 str10 |
| 4590 |
|
|
|
| 4591 |
|
|
CHARACTER (LEN=20) :: modname = 'thermcell_sec' |
| 4592 |
|
|
CHARACTER (LEN=80) :: abort_message |
| 4593 |
|
|
|
| 4594 |
|
|
LOGICAL vtest(klon), down |
| 4595 |
|
|
|
| 4596 |
|
|
EXTERNAL scopy |
| 4597 |
|
|
|
| 4598 |
|
|
INTEGER ncorrec, ll |
| 4599 |
|
|
SAVE ncorrec |
| 4600 |
|
|
DATA ncorrec/0/ |
| 4601 |
|
|
!$OMP THREADPRIVATE(ncorrec) |
| 4602 |
|
|
|
| 4603 |
|
|
|
| 4604 |
|
|
! ----------------------------------------------------------------------- |
| 4605 |
|
|
! initialisation: |
| 4606 |
|
|
! --------------- |
| 4607 |
|
|
|
| 4608 |
|
|
sorties = .TRUE. |
| 4609 |
|
✗ |
IF (ngrid/=klon) THEN |
| 4610 |
|
✗ |
PRINT * |
| 4611 |
|
✗ |
PRINT *, 'STOP dans convadj' |
| 4612 |
|
✗ |
PRINT *, 'ngrid =', ngrid |
| 4613 |
|
✗ |
PRINT *, 'klon =', klon |
| 4614 |
|
|
END IF |
| 4615 |
|
|
|
| 4616 |
|
|
! ----------------------------------------------------------------------- |
| 4617 |
|
|
! incrementation eventuelle de tendances precedentes: |
| 4618 |
|
|
! --------------------------------------------------- |
| 4619 |
|
|
|
| 4620 |
|
|
! print*,'0 OK convect8' |
| 4621 |
|
|
|
| 4622 |
|
✗ |
DO l = 1, nlay |
| 4623 |
|
✗ |
DO ig = 1, ngrid |
| 4624 |
|
✗ |
zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
| 4625 |
|
✗ |
zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
| 4626 |
|
✗ |
zu(ig, l) = pu(ig, l) |
| 4627 |
|
✗ |
zv(ig, l) = pv(ig, l) |
| 4628 |
|
✗ |
zo(ig, l) = po(ig, l) |
| 4629 |
|
✗ |
ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
| 4630 |
|
|
END DO |
| 4631 |
|
|
END DO |
| 4632 |
|
|
|
| 4633 |
|
|
! print*,'1 OK convect8' |
| 4634 |
|
|
! -------------------- |
| 4635 |
|
|
|
| 4636 |
|
|
|
| 4637 |
|
|
! + + + + + + + + + + + |
| 4638 |
|
|
|
| 4639 |
|
|
|
| 4640 |
|
|
! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
| 4641 |
|
|
! wh,wt,wo ... |
| 4642 |
|
|
|
| 4643 |
|
|
! + + + + + + + + + + + zh,zu,zv,zo,rho |
| 4644 |
|
|
|
| 4645 |
|
|
|
| 4646 |
|
|
! -------------------- zlev(1) |
| 4647 |
|
|
! \\\\\\\\\\\\\\\\\\\ |
| 4648 |
|
|
|
| 4649 |
|
|
|
| 4650 |
|
|
! ----------------------------------------------------------------------- |
| 4651 |
|
|
! Calcul des altitudes des couches |
| 4652 |
|
|
! ----------------------------------------------------------------------- |
| 4653 |
|
|
|
| 4654 |
|
✗ |
DO l = 2, nlay |
| 4655 |
|
✗ |
DO ig = 1, ngrid |
| 4656 |
|
✗ |
zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
| 4657 |
|
|
END DO |
| 4658 |
|
|
END DO |
| 4659 |
|
✗ |
DO ig = 1, ngrid |
| 4660 |
|
✗ |
zlev(ig, 1) = 0. |
| 4661 |
|
✗ |
zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
| 4662 |
|
|
END DO |
| 4663 |
|
✗ |
DO l = 1, nlay |
| 4664 |
|
✗ |
DO ig = 1, ngrid |
| 4665 |
|
✗ |
zlay(ig, l) = pphi(ig, l)/rg |
| 4666 |
|
|
END DO |
| 4667 |
|
|
END DO |
| 4668 |
|
|
|
| 4669 |
|
|
! print*,'2 OK convect8' |
| 4670 |
|
|
! ----------------------------------------------------------------------- |
| 4671 |
|
|
! Calcul des densites |
| 4672 |
|
|
! ----------------------------------------------------------------------- |
| 4673 |
|
|
|
| 4674 |
|
✗ |
DO l = 1, nlay |
| 4675 |
|
✗ |
DO ig = 1, ngrid |
| 4676 |
|
✗ |
rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
| 4677 |
|
|
END DO |
| 4678 |
|
|
END DO |
| 4679 |
|
|
|
| 4680 |
|
✗ |
DO l = 2, nlay |
| 4681 |
|
✗ |
DO ig = 1, ngrid |
| 4682 |
|
✗ |
rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
| 4683 |
|
|
END DO |
| 4684 |
|
|
END DO |
| 4685 |
|
|
|
| 4686 |
|
✗ |
DO k = 1, nlay |
| 4687 |
|
✗ |
DO l = 1, nlay + 1 |
| 4688 |
|
✗ |
DO ig = 1, ngrid |
| 4689 |
|
✗ |
wa(ig, k, l) = 0. |
| 4690 |
|
|
END DO |
| 4691 |
|
|
END DO |
| 4692 |
|
|
END DO |
| 4693 |
|
|
|
| 4694 |
|
|
! print*,'3 OK convect8' |
| 4695 |
|
|
! ------------------------------------------------------------------ |
| 4696 |
|
|
! Calcul de w2, quarre de w a partir de la cape |
| 4697 |
|
|
! a partir de w2, on calcule wa, vitesse de l'ascendance |
| 4698 |
|
|
|
| 4699 |
|
|
! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
| 4700 |
|
|
! w2 est stoke dans wa |
| 4701 |
|
|
|
| 4702 |
|
|
! ATTENTION: dans convect8, on n'utilise le calcule des wa |
| 4703 |
|
|
! independants par couches que pour calculer l'entrainement |
| 4704 |
|
|
! a la base et la hauteur max de l'ascendance. |
| 4705 |
|
|
|
| 4706 |
|
|
! Indicages: |
| 4707 |
|
|
! l'ascendance provenant du niveau k traverse l'interface l avec |
| 4708 |
|
|
! une vitesse wa(k,l). |
| 4709 |
|
|
|
| 4710 |
|
|
! -------------------- |
| 4711 |
|
|
|
| 4712 |
|
|
! + + + + + + + + + + |
| 4713 |
|
|
|
| 4714 |
|
|
! wa(k,l) ---- -------------------- l |
| 4715 |
|
|
! / ! /||\ + + + + + + + + + + |
| 4716 |
|
|
! || |
| 4717 |
|
|
! || -------------------- |
| 4718 |
|
|
! || |
| 4719 |
|
|
! || + + + + + + + + + + |
| 4720 |
|
|
! || |
| 4721 |
|
|
! || -------------------- |
| 4722 |
|
|
! ||__ |
| 4723 |
|
|
! |___ + + + + + + + + + + k |
| 4724 |
|
|
|
| 4725 |
|
|
! -------------------- |
| 4726 |
|
|
|
| 4727 |
|
|
|
| 4728 |
|
|
|
| 4729 |
|
|
! ------------------------------------------------------------------ |
| 4730 |
|
|
|
| 4731 |
|
|
! CR: ponderation entrainement des couches instables |
| 4732 |
|
|
! def des entr_star tels que entr=f*entr_star |
| 4733 |
|
✗ |
DO l = 1, klev |
| 4734 |
|
✗ |
DO ig = 1, ngrid |
| 4735 |
|
✗ |
entr_star(ig, l) = 0. |
| 4736 |
|
|
END DO |
| 4737 |
|
|
END DO |
| 4738 |
|
|
! determination de la longueur de la couche d entrainement |
| 4739 |
|
✗ |
DO ig = 1, ngrid |
| 4740 |
|
✗ |
lentr(ig) = 1 |
| 4741 |
|
|
END DO |
| 4742 |
|
|
|
| 4743 |
|
|
! on ne considere que les premieres couches instables |
| 4744 |
|
✗ |
DO k = nlay - 2, 1, -1 |
| 4745 |
|
✗ |
DO ig = 1, ngrid |
| 4746 |
|
✗ |
IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
| 4747 |
|
✗ |
lentr(ig) = k |
| 4748 |
|
|
END IF |
| 4749 |
|
|
END DO |
| 4750 |
|
|
END DO |
| 4751 |
|
|
|
| 4752 |
|
|
! determination du lmin: couche d ou provient le thermique |
| 4753 |
|
✗ |
DO ig = 1, ngrid |
| 4754 |
|
✗ |
lmin(ig) = 1 |
| 4755 |
|
|
END DO |
| 4756 |
|
✗ |
DO ig = 1, ngrid |
| 4757 |
|
✗ |
DO l = nlay, 2, -1 |
| 4758 |
|
✗ |
IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
| 4759 |
|
✗ |
lmin(ig) = l - 1 |
| 4760 |
|
|
END IF |
| 4761 |
|
|
END DO |
| 4762 |
|
|
END DO |
| 4763 |
|
|
|
| 4764 |
|
|
! definition de l'entrainement des couches |
| 4765 |
|
✗ |
DO l = 1, klev - 1 |
| 4766 |
|
✗ |
DO ig = 1, ngrid |
| 4767 |
|
✗ |
IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
| 4768 |
|
|
entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))** & ! s |
| 4769 |
|
|
! (zlev(ig,l+1)-zlev(ig,l)) |
| 4770 |
|
✗ |
sqrt(zlev(ig,l+1)) |
| 4771 |
|
|
END IF |
| 4772 |
|
|
END DO |
| 4773 |
|
|
END DO |
| 4774 |
|
|
! pas de thermique si couche 1 stable |
| 4775 |
|
✗ |
DO ig = 1, ngrid |
| 4776 |
|
✗ |
IF (lmin(ig)>1) THEN |
| 4777 |
|
✗ |
DO l = 1, klev |
| 4778 |
|
✗ |
entr_star(ig, l) = 0. |
| 4779 |
|
|
END DO |
| 4780 |
|
|
END IF |
| 4781 |
|
|
END DO |
| 4782 |
|
|
! calcul de l entrainement total |
| 4783 |
|
✗ |
DO ig = 1, ngrid |
| 4784 |
|
✗ |
entr_star_tot(ig) = 0. |
| 4785 |
|
|
END DO |
| 4786 |
|
✗ |
DO ig = 1, ngrid |
| 4787 |
|
✗ |
DO k = 1, klev |
| 4788 |
|
✗ |
entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
| 4789 |
|
|
END DO |
| 4790 |
|
|
END DO |
| 4791 |
|
|
|
| 4792 |
|
|
! print*,'fin calcul entr_star' |
| 4793 |
|
✗ |
DO k = 1, klev |
| 4794 |
|
✗ |
DO ig = 1, ngrid |
| 4795 |
|
✗ |
ztva(ig, k) = ztv(ig, k) |
| 4796 |
|
|
END DO |
| 4797 |
|
|
END DO |
| 4798 |
|
|
! RC |
| 4799 |
|
|
! print*,'7 OK convect8' |
| 4800 |
|
✗ |
DO k = 1, klev + 1 |
| 4801 |
|
✗ |
DO ig = 1, ngrid |
| 4802 |
|
✗ |
zw2(ig, k) = 0. |
| 4803 |
|
✗ |
fmc(ig, k) = 0. |
| 4804 |
|
|
! CR |
| 4805 |
|
✗ |
f_star(ig, k) = 0. |
| 4806 |
|
|
! RC |
| 4807 |
|
✗ |
larg_cons(ig, k) = 0. |
| 4808 |
|
✗ |
larg_detr(ig, k) = 0. |
| 4809 |
|
✗ |
wa_moy(ig, k) = 0. |
| 4810 |
|
|
END DO |
| 4811 |
|
|
END DO |
| 4812 |
|
|
|
| 4813 |
|
|
! print*,'8 OK convect8' |
| 4814 |
|
✗ |
DO ig = 1, ngrid |
| 4815 |
|
✗ |
linter(ig) = 1. |
| 4816 |
|
✗ |
lmaxa(ig) = 1 |
| 4817 |
|
✗ |
lmix(ig) = 1 |
| 4818 |
|
✗ |
wmaxa(ig) = 0. |
| 4819 |
|
|
END DO |
| 4820 |
|
|
|
| 4821 |
|
|
! CR: |
| 4822 |
|
✗ |
DO l = 1, nlay - 2 |
| 4823 |
|
✗ |
DO ig = 1, ngrid |
| 4824 |
|
✗ |
IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
| 4825 |
|
|
zw2(ig,l)<1E-10) THEN |
| 4826 |
|
✗ |
f_star(ig, l+1) = entr_star(ig, l) |
| 4827 |
|
|
! test:calcul de dteta |
| 4828 |
|
|
zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
| 4829 |
|
✗ |
(zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
| 4830 |
|
✗ |
larg_detr(ig, l) = 0. |
| 4831 |
|
✗ |
ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
| 4832 |
|
|
l)>1.E-10)) THEN |
| 4833 |
|
✗ |
f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
| 4834 |
|
|
ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
| 4835 |
|
✗ |
f_star(ig, l+1) |
| 4836 |
|
|
zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
| 4837 |
|
✗ |
2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 4838 |
|
|
END IF |
| 4839 |
|
|
! determination de zmax continu par interpolation lineaire |
| 4840 |
|
✗ |
IF (zw2(ig,l+1)<0.) THEN |
| 4841 |
|
|
! test |
| 4842 |
|
|
IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
| 4843 |
|
|
! print*,'pb linter' |
| 4844 |
|
|
END IF |
| 4845 |
|
|
linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
| 4846 |
|
✗ |
ig,l)) |
| 4847 |
|
✗ |
zw2(ig, l+1) = 0. |
| 4848 |
|
✗ |
lmaxa(ig) = l |
| 4849 |
|
|
ELSE |
| 4850 |
|
|
IF (zw2(ig,l+1)<0.) THEN |
| 4851 |
|
|
! print*,'pb1 zw2<0' |
| 4852 |
|
|
END IF |
| 4853 |
|
✗ |
wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
| 4854 |
|
|
END IF |
| 4855 |
|
✗ |
IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
| 4856 |
|
|
! lmix est le niveau de la couche ou w (wa_moy) est maximum |
| 4857 |
|
✗ |
lmix(ig) = l + 1 |
| 4858 |
|
✗ |
wmaxa(ig) = wa_moy(ig, l+1) |
| 4859 |
|
|
END IF |
| 4860 |
|
|
END DO |
| 4861 |
|
|
END DO |
| 4862 |
|
|
! print*,'fin calcul zw2' |
| 4863 |
|
|
|
| 4864 |
|
|
! Calcul de la couche correspondant a la hauteur du thermique |
| 4865 |
|
✗ |
DO ig = 1, ngrid |
| 4866 |
|
✗ |
lmax(ig) = lentr(ig) |
| 4867 |
|
|
END DO |
| 4868 |
|
✗ |
DO ig = 1, ngrid |
| 4869 |
|
✗ |
DO l = nlay, lentr(ig) + 1, -1 |
| 4870 |
|
✗ |
IF (zw2(ig,l)<=1.E-10) THEN |
| 4871 |
|
✗ |
lmax(ig) = l - 1 |
| 4872 |
|
|
END IF |
| 4873 |
|
|
END DO |
| 4874 |
|
|
END DO |
| 4875 |
|
|
! pas de thermique si couche 1 stable |
| 4876 |
|
✗ |
DO ig = 1, ngrid |
| 4877 |
|
✗ |
IF (lmin(ig)>1) THEN |
| 4878 |
|
✗ |
lmax(ig) = 1 |
| 4879 |
|
✗ |
lmin(ig) = 1 |
| 4880 |
|
|
END IF |
| 4881 |
|
|
END DO |
| 4882 |
|
|
|
| 4883 |
|
|
! Determination de zw2 max |
| 4884 |
|
✗ |
DO ig = 1, ngrid |
| 4885 |
|
✗ |
wmax(ig) = 0. |
| 4886 |
|
|
END DO |
| 4887 |
|
|
|
| 4888 |
|
✗ |
DO l = 1, nlay |
| 4889 |
|
✗ |
DO ig = 1, ngrid |
| 4890 |
|
✗ |
IF (l<=lmax(ig)) THEN |
| 4891 |
|
|
IF (zw2(ig,l)<0.) THEN |
| 4892 |
|
|
! print*,'pb2 zw2<0' |
| 4893 |
|
|
END IF |
| 4894 |
|
✗ |
zw2(ig, l) = sqrt(zw2(ig,l)) |
| 4895 |
|
✗ |
wmax(ig) = max(wmax(ig), zw2(ig,l)) |
| 4896 |
|
|
ELSE |
| 4897 |
|
✗ |
zw2(ig, l) = 0. |
| 4898 |
|
|
END IF |
| 4899 |
|
|
END DO |
| 4900 |
|
|
END DO |
| 4901 |
|
|
|
| 4902 |
|
|
! Longueur caracteristique correspondant a la hauteur des thermiques. |
| 4903 |
|
✗ |
DO ig = 1, ngrid |
| 4904 |
|
✗ |
zmax(ig) = 0. |
| 4905 |
|
✗ |
zlevinter(ig) = zlev(ig, 1) |
| 4906 |
|
|
END DO |
| 4907 |
|
✗ |
DO ig = 1, ngrid |
| 4908 |
|
|
! calcul de zlevinter |
| 4909 |
|
|
zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
| 4910 |
|
✗ |
zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
| 4911 |
|
✗ |
zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
| 4912 |
|
|
END DO |
| 4913 |
|
|
|
| 4914 |
|
|
! print*,'avant fermeture' |
| 4915 |
|
|
! Fermeture,determination de f |
| 4916 |
|
✗ |
DO ig = 1, ngrid |
| 4917 |
|
✗ |
entr_star2(ig) = 0. |
| 4918 |
|
|
END DO |
| 4919 |
|
✗ |
DO ig = 1, ngrid |
| 4920 |
|
✗ |
IF (entr_star_tot(ig)<1.E-10) THEN |
| 4921 |
|
✗ |
f(ig) = 0. |
| 4922 |
|
|
ELSE |
| 4923 |
|
✗ |
DO k = lmin(ig), lentr(ig) |
| 4924 |
|
|
entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
| 4925 |
|
✗ |
zlev(ig,k+1)-zlev(ig,k))) |
| 4926 |
|
|
END DO |
| 4927 |
|
|
! Nouvelle fermeture |
| 4928 |
|
|
f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig))* & |
| 4929 |
|
✗ |
entr_star_tot(ig) |
| 4930 |
|
|
! test |
| 4931 |
|
|
! if (first) then |
| 4932 |
|
|
! f(ig)=f(ig)+(f0(ig)-f(ig))*exp(-ptimestep/zmax(ig) |
| 4933 |
|
|
! s *wmax(ig)) |
| 4934 |
|
|
! endif |
| 4935 |
|
|
END IF |
| 4936 |
|
|
! f0(ig)=f(ig) |
| 4937 |
|
|
! first=.true. |
| 4938 |
|
|
END DO |
| 4939 |
|
|
! print*,'apres fermeture' |
| 4940 |
|
|
|
| 4941 |
|
|
! Calcul de l'entrainement |
| 4942 |
|
✗ |
DO k = 1, klev |
| 4943 |
|
✗ |
DO ig = 1, ngrid |
| 4944 |
|
✗ |
entr(ig, k) = f(ig)*entr_star(ig, k) |
| 4945 |
|
|
END DO |
| 4946 |
|
|
END DO |
| 4947 |
|
|
! CR:test pour entrainer moins que la masse |
| 4948 |
|
✗ |
DO ig = 1, ngrid |
| 4949 |
|
✗ |
DO l = 1, lentr(ig) |
| 4950 |
|
✗ |
IF ((entr(ig,l)*ptimestep)>(0.9*masse(ig,l))) THEN |
| 4951 |
|
|
entr(ig, l+1) = entr(ig, l+1) + entr(ig, l) - & |
| 4952 |
|
✗ |
0.9*masse(ig, l)/ptimestep |
| 4953 |
|
✗ |
entr(ig, l) = 0.9*masse(ig, l)/ptimestep |
| 4954 |
|
|
END IF |
| 4955 |
|
|
END DO |
| 4956 |
|
|
END DO |
| 4957 |
|
|
! CR: fin test |
| 4958 |
|
|
! Calcul des flux |
| 4959 |
|
✗ |
DO ig = 1, ngrid |
| 4960 |
|
✗ |
DO l = 1, lmax(ig) - 1 |
| 4961 |
|
✗ |
fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
| 4962 |
|
|
END DO |
| 4963 |
|
|
END DO |
| 4964 |
|
|
|
| 4965 |
|
|
! RC |
| 4966 |
|
|
|
| 4967 |
|
|
|
| 4968 |
|
|
! print*,'9 OK convect8' |
| 4969 |
|
|
! print*,'WA1 ',wa_moy |
| 4970 |
|
|
|
| 4971 |
|
|
! determination de l'indice du debut de la mixed layer ou w decroit |
| 4972 |
|
|
|
| 4973 |
|
|
! calcul de la largeur de chaque ascendance dans le cas conservatif. |
| 4974 |
|
|
! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
| 4975 |
|
|
! d'une couche est �gale � la hauteur de la couche alimentante. |
| 4976 |
|
|
! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
| 4977 |
|
|
! de la vitesse d'entrainement horizontal dans la couche alimentante. |
| 4978 |
|
|
|
| 4979 |
|
✗ |
DO l = 2, nlay |
| 4980 |
|
✗ |
DO ig = 1, ngrid |
| 4981 |
|
✗ |
IF (l<=lmaxa(ig)) THEN |
| 4982 |
|
✗ |
zw = max(wa_moy(ig,l), 1.E-10) |
| 4983 |
|
✗ |
larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
| 4984 |
|
|
END IF |
| 4985 |
|
|
END DO |
| 4986 |
|
|
END DO |
| 4987 |
|
|
|
| 4988 |
|
✗ |
DO l = 2, nlay |
| 4989 |
|
✗ |
DO ig = 1, ngrid |
| 4990 |
|
✗ |
IF (l<=lmaxa(ig)) THEN |
| 4991 |
|
|
! if (idetr.eq.0) then |
| 4992 |
|
|
! cette option est finalement en dur. |
| 4993 |
|
|
IF ((l_mix*zlev(ig,l))<0.) THEN |
| 4994 |
|
|
! print*,'pb l_mix*zlev<0' |
| 4995 |
|
|
END IF |
| 4996 |
|
|
! CR: test: nouvelle def de lambda |
| 4997 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 4998 |
|
✗ |
IF (zw2(ig,l)>1.E-10) THEN |
| 4999 |
|
✗ |
larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
| 5000 |
|
|
ELSE |
| 5001 |
|
✗ |
larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
| 5002 |
|
|
END IF |
| 5003 |
|
|
! RC |
| 5004 |
|
|
! else if (idetr.eq.1) then |
| 5005 |
|
|
! larg_detr(ig,l)=larg_cons(ig,l) |
| 5006 |
|
|
! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
| 5007 |
|
|
! else if (idetr.eq.2) then |
| 5008 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 5009 |
|
|
! s *sqrt(wa_moy(ig,l)) |
| 5010 |
|
|
! else if (idetr.eq.4) then |
| 5011 |
|
|
! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
| 5012 |
|
|
! s *wa_moy(ig,l) |
| 5013 |
|
|
! endif |
| 5014 |
|
|
END IF |
| 5015 |
|
|
END DO |
| 5016 |
|
|
END DO |
| 5017 |
|
|
|
| 5018 |
|
|
! print*,'10 OK convect8' |
| 5019 |
|
|
! print*,'WA2 ',wa_moy |
| 5020 |
|
|
! calcul de la fraction de la maille concern�e par l'ascendance en tenant |
| 5021 |
|
|
! compte de l'epluchage du thermique. |
| 5022 |
|
|
|
| 5023 |
|
|
! CR def de zmix continu (profil parabolique des vitesses) |
| 5024 |
|
✗ |
DO ig = 1, ngrid |
| 5025 |
|
✗ |
IF (lmix(ig)>1.) THEN |
| 5026 |
|
|
! test |
| 5027 |
|
✗ |
IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
| 5028 |
|
|
(zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
| 5029 |
|
|
zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
| 5030 |
|
|
(zlev(ig,lmix(ig)))))>1E-10) THEN |
| 5031 |
|
|
|
| 5032 |
|
|
zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
| 5033 |
|
|
)**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
| 5034 |
|
|
lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
| 5035 |
|
|
(2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
| 5036 |
|
|
(zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
| 5037 |
|
✗ |
zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
| 5038 |
|
|
ELSE |
| 5039 |
|
✗ |
zmix(ig) = zlev(ig, lmix(ig)) |
| 5040 |
|
|
! print*,'pb zmix' |
| 5041 |
|
|
END IF |
| 5042 |
|
|
ELSE |
| 5043 |
|
✗ |
zmix(ig) = 0. |
| 5044 |
|
|
END IF |
| 5045 |
|
|
! test |
| 5046 |
|
✗ |
IF ((zmax(ig)-zmix(ig))<0.) THEN |
| 5047 |
|
✗ |
zmix(ig) = 0.99*zmax(ig) |
| 5048 |
|
|
! print*,'pb zmix>zmax' |
| 5049 |
|
|
END IF |
| 5050 |
|
|
END DO |
| 5051 |
|
|
|
| 5052 |
|
|
! calcul du nouveau lmix correspondant |
| 5053 |
|
✗ |
DO ig = 1, ngrid |
| 5054 |
|
✗ |
DO l = 1, klev |
| 5055 |
|
✗ |
IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
| 5056 |
|
✗ |
lmix(ig) = l |
| 5057 |
|
|
END IF |
| 5058 |
|
|
END DO |
| 5059 |
|
|
END DO |
| 5060 |
|
|
|
| 5061 |
|
✗ |
DO l = 2, nlay |
| 5062 |
|
✗ |
DO ig = 1, ngrid |
| 5063 |
|
✗ |
IF (larg_cons(ig,l)>1.) THEN |
| 5064 |
|
|
! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
| 5065 |
|
✗ |
fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
| 5066 |
|
|
! test |
| 5067 |
|
✗ |
fraca(ig, l) = max(fraca(ig,l), 0.) |
| 5068 |
|
✗ |
fraca(ig, l) = min(fraca(ig,l), 0.5) |
| 5069 |
|
✗ |
fracd(ig, l) = 1. - fraca(ig, l) |
| 5070 |
|
✗ |
fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
| 5071 |
|
|
ELSE |
| 5072 |
|
|
! wa_moy(ig,l)=0. |
| 5073 |
|
✗ |
fraca(ig, l) = 0. |
| 5074 |
|
✗ |
fracc(ig, l) = 0. |
| 5075 |
|
✗ |
fracd(ig, l) = 1. |
| 5076 |
|
|
END IF |
| 5077 |
|
|
END DO |
| 5078 |
|
|
END DO |
| 5079 |
|
|
! CR: calcul de fracazmix |
| 5080 |
|
✗ |
DO ig = 1, ngrid |
| 5081 |
|
|
fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
| 5082 |
|
|
(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
| 5083 |
|
|
fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
| 5084 |
|
✗ |
,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
| 5085 |
|
|
END DO |
| 5086 |
|
|
|
| 5087 |
|
✗ |
DO l = 2, nlay |
| 5088 |
|
✗ |
DO ig = 1, ngrid |
| 5089 |
|
✗ |
IF (larg_cons(ig,l)>1.) THEN |
| 5090 |
|
✗ |
IF (l>lmix(ig)) THEN |
| 5091 |
|
|
! test |
| 5092 |
|
✗ |
IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
| 5093 |
|
|
! print*,'pb xxx' |
| 5094 |
|
✗ |
xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
| 5095 |
|
|
ELSE |
| 5096 |
|
✗ |
xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
| 5097 |
|
|
END IF |
| 5098 |
|
✗ |
IF (idetr==0) THEN |
| 5099 |
|
✗ |
fraca(ig, l) = fracazmix(ig) |
| 5100 |
|
✗ |
ELSE IF (idetr==1) THEN |
| 5101 |
|
✗ |
fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
| 5102 |
|
✗ |
ELSE IF (idetr==2) THEN |
| 5103 |
|
✗ |
fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
| 5104 |
|
|
ELSE |
| 5105 |
|
✗ |
fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
| 5106 |
|
|
END IF |
| 5107 |
|
|
! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
| 5108 |
|
✗ |
fraca(ig, l) = max(fraca(ig,l), 0.) |
| 5109 |
|
✗ |
fraca(ig, l) = min(fraca(ig,l), 0.5) |
| 5110 |
|
✗ |
fracd(ig, l) = 1. - fraca(ig, l) |
| 5111 |
|
✗ |
fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
| 5112 |
|
|
END IF |
| 5113 |
|
|
END IF |
| 5114 |
|
|
END DO |
| 5115 |
|
|
END DO |
| 5116 |
|
|
|
| 5117 |
|
|
! print*,'fin calcul fraca' |
| 5118 |
|
|
! print*,'11 OK convect8' |
| 5119 |
|
|
! print*,'Ea3 ',wa_moy |
| 5120 |
|
|
! ------------------------------------------------------------------ |
| 5121 |
|
|
! Calcul de fracd, wd |
| 5122 |
|
|
! somme wa - wd = 0 |
| 5123 |
|
|
! ------------------------------------------------------------------ |
| 5124 |
|
|
|
| 5125 |
|
|
|
| 5126 |
|
✗ |
DO ig = 1, ngrid |
| 5127 |
|
✗ |
fm(ig, 1) = 0. |
| 5128 |
|
✗ |
fm(ig, nlay+1) = 0. |
| 5129 |
|
|
END DO |
| 5130 |
|
|
|
| 5131 |
|
✗ |
DO l = 2, nlay |
| 5132 |
|
✗ |
DO ig = 1, ngrid |
| 5133 |
|
✗ |
fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
| 5134 |
|
|
! CR:test |
| 5135 |
|
✗ |
IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
| 5136 |
|
✗ |
fm(ig, l) = fm(ig, l-1) |
| 5137 |
|
|
! write(1,*)'ajustement fm, l',l |
| 5138 |
|
|
END IF |
| 5139 |
|
|
! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
| 5140 |
|
|
! RC |
| 5141 |
|
|
END DO |
| 5142 |
|
✗ |
DO ig = 1, ngrid |
| 5143 |
|
✗ |
IF (fracd(ig,l)<0.1) THEN |
| 5144 |
|
✗ |
abort_message = 'fracd trop petit' |
| 5145 |
|
✗ |
CALL abort_physic(modname, abort_message, 1) |
| 5146 |
|
|
ELSE |
| 5147 |
|
|
! vitesse descendante "diagnostique" |
| 5148 |
|
✗ |
wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
| 5149 |
|
|
END IF |
| 5150 |
|
|
END DO |
| 5151 |
|
|
END DO |
| 5152 |
|
|
|
| 5153 |
|
✗ |
DO l = 1, nlay |
| 5154 |
|
✗ |
DO ig = 1, ngrid |
| 5155 |
|
|
! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
| 5156 |
|
✗ |
masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
| 5157 |
|
|
END DO |
| 5158 |
|
|
END DO |
| 5159 |
|
|
|
| 5160 |
|
|
! print*,'12 OK convect8' |
| 5161 |
|
|
! print*,'WA4 ',wa_moy |
| 5162 |
|
|
! c------------------------------------------------------------------ |
| 5163 |
|
|
! calcul du transport vertical |
| 5164 |
|
|
! ------------------------------------------------------------------ |
| 5165 |
|
|
|
| 5166 |
|
|
GO TO 4444 |
| 5167 |
|
|
! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
| 5168 |
|
|
DO l = 2, nlay - 1 |
| 5169 |
|
|
DO ig = 1, ngrid |
| 5170 |
|
|
IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
| 5171 |
|
|
ig,l+1)) THEN |
| 5172 |
|
|
! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
| 5173 |
|
|
! s ,fm(ig,l+1)*ptimestep |
| 5174 |
|
|
! s ,' M=',masse(ig,l),masse(ig,l+1) |
| 5175 |
|
|
END IF |
| 5176 |
|
|
END DO |
| 5177 |
|
|
END DO |
| 5178 |
|
|
|
| 5179 |
|
|
DO l = 1, nlay |
| 5180 |
|
|
DO ig = 1, ngrid |
| 5181 |
|
|
IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
| 5182 |
|
|
! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
| 5183 |
|
|
! s ,entr(ig,l)*ptimestep |
| 5184 |
|
|
! s ,' M=',masse(ig,l) |
| 5185 |
|
|
END IF |
| 5186 |
|
|
END DO |
| 5187 |
|
|
END DO |
| 5188 |
|
|
|
| 5189 |
|
|
DO l = 1, nlay |
| 5190 |
|
|
DO ig = 1, ngrid |
| 5191 |
|
|
IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
| 5192 |
|
|
! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
| 5193 |
|
|
! s ,' FM=',fm(ig,l) |
| 5194 |
|
|
END IF |
| 5195 |
|
|
IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
| 5196 |
|
|
! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
| 5197 |
|
|
! s ,' M=',masse(ig,l) |
| 5198 |
|
|
! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
| 5199 |
|
|
! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
| 5200 |
|
|
! print*,'zlev(ig,l+1),zlev(ig,l)' |
| 5201 |
|
|
! s ,zlev(ig,l+1),zlev(ig,l) |
| 5202 |
|
|
! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
| 5203 |
|
|
! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
| 5204 |
|
|
END IF |
| 5205 |
|
|
IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
| 5206 |
|
|
! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
| 5207 |
|
|
! s ,' E=',entr(ig,l) |
| 5208 |
|
|
END IF |
| 5209 |
|
|
END DO |
| 5210 |
|
|
END DO |
| 5211 |
|
|
|
| 5212 |
|
|
4444 CONTINUE |
| 5213 |
|
|
|
| 5214 |
|
|
! CR:redefinition du entr |
| 5215 |
|
✗ |
DO l = 1, nlay |
| 5216 |
|
✗ |
DO ig = 1, ngrid |
| 5217 |
|
✗ |
detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
| 5218 |
|
✗ |
IF (detr(ig,l)<0.) THEN |
| 5219 |
|
✗ |
entr(ig, l) = entr(ig, l) - detr(ig, l) |
| 5220 |
|
✗ |
detr(ig, l) = 0. |
| 5221 |
|
|
! print*,'WARNING !!! detrainement negatif ',ig,l |
| 5222 |
|
|
END IF |
| 5223 |
|
|
END DO |
| 5224 |
|
|
END DO |
| 5225 |
|
|
! RC |
| 5226 |
|
✗ |
IF (w2di==1) THEN |
| 5227 |
|
✗ |
fm0 = fm0 + ptimestep*(fm-fm0)/tho |
| 5228 |
|
✗ |
entr0 = entr0 + ptimestep*(entr-entr0)/tho |
| 5229 |
|
|
ELSE |
| 5230 |
|
✗ |
fm0 = fm |
| 5231 |
|
✗ |
entr0 = entr |
| 5232 |
|
|
END IF |
| 5233 |
|
|
|
| 5234 |
|
|
IF (1==1) THEN |
| 5235 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
| 5236 |
|
✗ |
zha) |
| 5237 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
| 5238 |
|
✗ |
zoa) |
| 5239 |
|
|
ELSE |
| 5240 |
|
|
CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
| 5241 |
|
|
zdhadj, zha) |
| 5242 |
|
|
CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
| 5243 |
|
|
pdoadj, zoa) |
| 5244 |
|
|
END IF |
| 5245 |
|
|
|
| 5246 |
|
|
IF (1==0) THEN |
| 5247 |
|
|
CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
| 5248 |
|
|
zu, zv, pduadj, pdvadj, zua, zva) |
| 5249 |
|
|
ELSE |
| 5250 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
| 5251 |
|
✗ |
zua) |
| 5252 |
|
|
CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
| 5253 |
|
✗ |
zva) |
| 5254 |
|
|
END IF |
| 5255 |
|
|
|
| 5256 |
|
✗ |
DO l = 1, nlay |
| 5257 |
|
✗ |
DO ig = 1, ngrid |
| 5258 |
|
✗ |
zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
| 5259 |
|
✗ |
zf2 = zf/(1.-zf) |
| 5260 |
|
✗ |
thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
| 5261 |
|
✗ |
wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
| 5262 |
|
|
END DO |
| 5263 |
|
|
END DO |
| 5264 |
|
|
|
| 5265 |
|
|
|
| 5266 |
|
|
|
| 5267 |
|
|
! print*,'13 OK convect8' |
| 5268 |
|
|
! print*,'WA5 ',wa_moy |
| 5269 |
|
✗ |
DO l = 1, nlay |
| 5270 |
|
✗ |
DO ig = 1, ngrid |
| 5271 |
|
✗ |
pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
| 5272 |
|
|
END DO |
| 5273 |
|
|
END DO |
| 5274 |
|
|
|
| 5275 |
|
|
|
| 5276 |
|
|
! do l=1,nlay |
| 5277 |
|
|
! do ig=1,ngrid |
| 5278 |
|
|
! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
| 5279 |
|
|
! print*,'WARN!!! ig=',ig,' l=',l |
| 5280 |
|
|
! s ,' pdtadj=',pdtadj(ig,l) |
| 5281 |
|
|
! endif |
| 5282 |
|
|
! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
| 5283 |
|
|
! print*,'WARN!!! ig=',ig,' l=',l |
| 5284 |
|
|
! s ,' pdoadj=',pdoadj(ig,l) |
| 5285 |
|
|
! endif |
| 5286 |
|
|
! enddo |
| 5287 |
|
|
! enddo |
| 5288 |
|
|
|
| 5289 |
|
|
! print*,'14 OK convect8' |
| 5290 |
|
|
! ------------------------------------------------------------------ |
| 5291 |
|
|
! Calculs pour les sorties |
| 5292 |
|
|
! ------------------------------------------------------------------ |
| 5293 |
|
|
|
| 5294 |
|
✗ |
RETURN |
| 5295 |
|
|
END SUBROUTINE thermcell_sec |
| 5296 |
|
|
|
| 5297 |
|
|
|