| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
! $Header$ |
| 3 |
|
|
|
| 4 |
|
✗ |
SUBROUTINE tlift(p, t, rr, rs, gz, plcl, icb, nk, tvp, tpk, clw, nd, nl, & |
| 5 |
|
|
dtvpdt1, dtvpdq1) |
| 6 |
|
|
IMPLICIT NONE |
| 7 |
|
|
! Argument NK ajoute (jyg) = Niveau de depart de la |
| 8 |
|
|
! convection |
| 9 |
|
|
INTEGER icb, nk, nd, nl |
| 10 |
|
|
INTEGER,PARAMETER :: na=60 |
| 11 |
|
|
REAL gz(nd), tpk(nd), clw(nd), plcl |
| 12 |
|
|
REAL t(nd), rr(nd), rs(nd), tvp(nd), p(nd) |
| 13 |
|
|
REAL dtvpdt1(nd), dtvpdq1(nd) ! Derivatives of parcel virtual |
| 14 |
|
|
! temperature wrt T1 and Q1 |
| 15 |
|
|
|
| 16 |
|
|
REAL clw_new(na), qi(na) |
| 17 |
|
|
REAL dtpdt1(na), dtpdq1(na) ! Derivatives of parcel temperature |
| 18 |
|
|
! wrt T1 and Q1 |
| 19 |
|
|
REAL gravity, cpd, cpv, cl, ci, cpvmcl, clmci, eps, alv0, alf0 |
| 20 |
|
|
REAL cpp, cpinv, ah0, alf, tg, s, ahg, tc, denom, alv, es, esi |
| 21 |
|
|
REAL qsat_new, snew |
| 22 |
|
|
INTEGER icbl, i, imin, j, icb1 |
| 23 |
|
|
|
| 24 |
|
|
LOGICAL ice_conv |
| 25 |
|
|
|
| 26 |
|
|
! *** ASSIGN VALUES OF THERMODYNAMIC CONSTANTS *** |
| 27 |
|
|
|
| 28 |
|
|
! sb CPD=1005.7 |
| 29 |
|
|
! sb CPV=1870.0 |
| 30 |
|
|
! sb CL=4190.0 |
| 31 |
|
|
! sb CPVMCL=2320.0 |
| 32 |
|
|
! sb RV=461.5 |
| 33 |
|
|
! sb RD=287.04 |
| 34 |
|
|
! sb EPS=RD/RV |
| 35 |
|
|
! sb ALV0=2.501E6 |
| 36 |
|
|
! cccccccccccccccccccccc |
| 37 |
|
|
! constantes coherentes avec le modele du Centre Europeen |
| 38 |
|
|
! sb RD = 1000.0 * 1.380658E-23 * 6.0221367E+23 / 28.9644 |
| 39 |
|
|
! sb RV = 1000.0 * 1.380658E-23 * 6.0221367E+23 / 18.0153 |
| 40 |
|
|
! sb CPD = 3.5 * RD |
| 41 |
|
|
! sb CPV = 4.0 * RV |
| 42 |
|
|
! sb CL = 4218.0 |
| 43 |
|
|
! sb CI=2090.0 |
| 44 |
|
|
! sb CPVMCL=CL-CPV |
| 45 |
|
|
! sb CLMCI=CL-CI |
| 46 |
|
|
! sb EPS=RD/RV |
| 47 |
|
|
! sb ALV0=2.5008E+06 |
| 48 |
|
|
! sb ALF0=3.34E+05 |
| 49 |
|
|
|
| 50 |
|
|
! ccccccccccc |
| 51 |
|
|
! on utilise les constantes thermo du Centre Europeen: (SB) |
| 52 |
|
|
|
| 53 |
|
|
include "YOMCST.h" |
| 54 |
|
✗ |
gravity = rg !sb: Pr que gravite ne devienne pas humidite! |
| 55 |
|
|
|
| 56 |
|
✗ |
cpd = rcpd |
| 57 |
|
✗ |
cpv = rcpv |
| 58 |
|
✗ |
cl = rcw |
| 59 |
|
|
ci = rcs |
| 60 |
|
✗ |
cpvmcl = cl - cpv |
| 61 |
|
|
clmci = cl - ci |
| 62 |
|
✗ |
eps = rd/rv |
| 63 |
|
✗ |
alv0 = rlvtt |
| 64 |
|
|
alf0 = rlmlt ! (ALF0 = RLSTT-RLVTT) |
| 65 |
|
|
|
| 66 |
|
|
! ccccccccccccccccccccc |
| 67 |
|
|
|
| 68 |
|
|
! *** CALCULATE CERTAIN PARCEL QUANTITIES, INCLUDING STATIC ENERGY *** |
| 69 |
|
|
|
| 70 |
|
✗ |
icb1 = max(icb, 2) |
| 71 |
|
✗ |
icb1 = min(icb, nl) |
| 72 |
|
|
|
| 73 |
|
|
! jyg1 |
| 74 |
|
|
! C CPP=CPD*(1.-RR(1))+RR(1)*CPV |
| 75 |
|
✗ |
cpp = cpd*(1.-rr(nk)) + rr(nk)*cpv |
| 76 |
|
|
! jyg2 |
| 77 |
|
✗ |
cpinv = 1./cpp |
| 78 |
|
|
! jyg1 |
| 79 |
|
|
! ICB may be below condensation level |
| 80 |
|
|
! CC DO 100 I=1,ICB1-1 |
| 81 |
|
|
! CC TPK(I)=T(1)-GZ(I)*CPINV |
| 82 |
|
|
! CC TVP(I)=TPK(I)*(1.+RR(1)/EPS) |
| 83 |
|
✗ |
DO i = 1, icb1 |
| 84 |
|
✗ |
clw(i) = 0.0 |
| 85 |
|
|
END DO |
| 86 |
|
|
|
| 87 |
|
✗ |
DO i = nk, icb1 |
| 88 |
|
✗ |
tpk(i) = t(nk) - (gz(i)-gz(nk))*cpinv |
| 89 |
|
|
! jyg1 |
| 90 |
|
|
! CC TVP(I)=TPK(I)*(1.+RR(NK)/EPS) |
| 91 |
|
✗ |
tvp(i) = tpk(i)*(1.+rr(nk)/eps-rr(nk)) |
| 92 |
|
|
! jyg2 |
| 93 |
|
✗ |
dtvpdt1(i) = 1. + rr(nk)/eps - rr(nk) |
| 94 |
|
✗ |
dtvpdq1(i) = tpk(i)*(1./eps-1.) |
| 95 |
|
|
|
| 96 |
|
|
! jyg2 |
| 97 |
|
|
|
| 98 |
|
|
END DO |
| 99 |
|
|
|
| 100 |
|
|
|
| 101 |
|
|
! *** FIND LIFTED PARCEL TEMPERATURE AND MIXING RATIO *** |
| 102 |
|
|
|
| 103 |
|
|
! jyg1 |
| 104 |
|
|
! C AH0=(CPD*(1.-RR(1))+CL*RR(1))*T(1) |
| 105 |
|
|
! C $ +RR(1)*(ALV0-CPVMCL*(T(1)-273.15)) |
| 106 |
|
|
ah0 = (cpd*(1.-rr(nk))+cl*rr(nk))*t(nk) + rr(nk)*(alv0-cpvmcl*(t(nk)-273.15 & |
| 107 |
|
✗ |
)) + gz(nk) |
| 108 |
|
|
! jyg2 |
| 109 |
|
|
|
| 110 |
|
|
! jyg1 |
| 111 |
|
|
imin = icb1 |
| 112 |
|
|
! If ICB is below LCL, start loop at ICB+1 |
| 113 |
|
✗ |
IF (plcl<p(icb1)) imin = min(imin+1, nl) |
| 114 |
|
|
|
| 115 |
|
|
! CC DO 300 I=ICB1,NL |
| 116 |
|
✗ |
DO i = imin, nl |
| 117 |
|
|
! jyg2 |
| 118 |
|
✗ |
alv = alv0 - cpvmcl*(t(i)-273.15) |
| 119 |
|
|
alf = alf0 + clmci*(t(i)-273.15) |
| 120 |
|
|
|
| 121 |
|
✗ |
rg = rs(i) |
| 122 |
|
|
tg = t(i) |
| 123 |
|
|
! S=CPD+ALV*ALV*RG/(RV*T(I)*T(I)) |
| 124 |
|
|
! jyg1 |
| 125 |
|
|
! C S=CPD*(1.-RR(1))+CL*RR(1)+ALV*ALV*RG/(RV*T(I)*T(I)) |
| 126 |
|
✗ |
s = cpd*(1.-rr(nk)) + cl*rr(nk) + alv*alv*rg/(rv*t(i)*t(i)) |
| 127 |
|
|
! jyg2 |
| 128 |
|
✗ |
s = 1./s |
| 129 |
|
|
|
| 130 |
|
✗ |
DO j = 1, 2 |
| 131 |
|
|
! jyg1 |
| 132 |
|
|
! C AHG=CPD*TG+(CL-CPD)*RR(1)*TG+ALV*RG+GZ(I) |
| 133 |
|
✗ |
ahg = cpd*tg + (cl-cpd)*rr(nk)*tg + alv*rg + gz(i) |
| 134 |
|
|
! jyg2 |
| 135 |
|
✗ |
tg = tg + s*(ah0-ahg) |
| 136 |
|
✗ |
tc = tg - 273.15 |
| 137 |
|
✗ |
denom = 243.5 + tc |
| 138 |
|
✗ |
denom = max(denom, 1.0) |
| 139 |
|
|
|
| 140 |
|
|
! FORMULE DE BOLTON POUR PSAT |
| 141 |
|
|
|
| 142 |
|
✗ |
es = 6.112*exp(17.67*tc/denom) |
| 143 |
|
✗ |
rg = eps*es/(p(i)-es*(1.-eps)) |
| 144 |
|
|
|
| 145 |
|
|
|
| 146 |
|
|
END DO |
| 147 |
|
|
|
| 148 |
|
|
! jyg1 |
| 149 |
|
|
! C TPK(I)=(AH0-GZ(I)-ALV*RG)/(CPD+(CL-CPD)*RR(1)) |
| 150 |
|
✗ |
tpk(i) = (ah0-gz(i)-alv*rg)/(cpd+(cl-cpd)*rr(nk)) |
| 151 |
|
|
! jyg2 |
| 152 |
|
|
! TPK(I)=(AH0-GZ(I)-ALV*RG-(CL-CPD)*T(I)*RR(1))/CPD |
| 153 |
|
|
|
| 154 |
|
|
! jyg1 |
| 155 |
|
|
! C CLW(I)=RR(1)-RG |
| 156 |
|
✗ |
clw(i) = rr(nk) - rg |
| 157 |
|
|
! jyg2 |
| 158 |
|
✗ |
clw(i) = max(0.0, clw(i)) |
| 159 |
|
|
! jyg1 |
| 160 |
|
|
! CC TVP(I)=TPK(I)*(1.+RG/EPS) |
| 161 |
|
✗ |
tvp(i) = tpk(i)*(1.+rg/eps-rr(nk)) |
| 162 |
|
|
! jyg2 |
| 163 |
|
|
|
| 164 |
|
|
! jyg1 Derivatives |
| 165 |
|
|
|
| 166 |
|
✗ |
dtpdt1(i) = cpd*s |
| 167 |
|
✗ |
dtpdq1(i) = alv*s |
| 168 |
|
|
|
| 169 |
|
✗ |
dtvpdt1(i) = dtpdt1(i)*(1.+rg/eps-rr(nk)+alv*rg/(rd*tpk(i))) |
| 170 |
|
✗ |
dtvpdq1(i) = dtpdq1(i)*(1.+rg/eps-rr(nk)+alv*rg/(rd*tpk(i))) - tpk(i) |
| 171 |
|
|
|
| 172 |
|
|
! jyg2 |
| 173 |
|
|
|
| 174 |
|
|
END DO |
| 175 |
|
|
|
| 176 |
|
|
ice_conv = .FALSE. |
| 177 |
|
|
|
| 178 |
|
|
IF (ice_conv) THEN |
| 179 |
|
|
|
| 180 |
|
|
! JAM |
| 181 |
|
|
! RAJOUT DE LA PROCEDURE ICEFRAC |
| 182 |
|
|
|
| 183 |
|
|
! sb CALL ICEFRAC(T,CLW,CLW_NEW,QI,ND,NL) |
| 184 |
|
|
|
| 185 |
|
|
DO i = icb1, nl |
| 186 |
|
|
IF (t(i)<263.15) THEN |
| 187 |
|
|
tg = tpk(i) |
| 188 |
|
|
tc = tpk(i) - 273.15 |
| 189 |
|
|
denom = 243.5 + tc |
| 190 |
|
|
es = 6.112*exp(17.67*tc/denom) |
| 191 |
|
|
alv = alv0 - cpvmcl*(t(i)-273.15) |
| 192 |
|
|
alf = alf0 + clmci*(t(i)-273.15) |
| 193 |
|
|
|
| 194 |
|
|
DO j = 1, 4 |
| 195 |
|
|
esi = exp(23.33086-(6111.72784/tpk(i))+0.15215*log(tpk(i))) |
| 196 |
|
|
qsat_new = eps*esi/(p(i)-esi*(1.-eps)) |
| 197 |
|
|
! CC SNEW= |
| 198 |
|
|
! CPD*(1.-RR(1))+CL*RR(1)+ALV*ALV*QSAT_NEW/(RV*TPK(I)*TPK(I)) |
| 199 |
|
|
snew = cpd*(1.-rr(nk)) + cl*rr(nk) + alv*alv*qsat_new/(rv*tpk(i)* & |
| 200 |
|
|
tpk(i)) |
| 201 |
|
|
|
| 202 |
|
|
snew = 1./snew |
| 203 |
|
|
tpk(i) = tg + (alf*qi(i)+alv*rg*(1.-(esi/es)))*snew |
| 204 |
|
|
! @$$ PRINT*,'################################' |
| 205 |
|
|
! @$$ PRINT*,TPK(I) |
| 206 |
|
|
! @$$ PRINT*,(ALF*QI(I)+ALV*RG*(1.-(ESI/ES)))*SNEW |
| 207 |
|
|
END DO |
| 208 |
|
|
! CC CLW(I)=RR(1)-QSAT_NEW |
| 209 |
|
|
clw(i) = rr(nk) - qsat_new |
| 210 |
|
|
clw(i) = max(0.0, clw(i)) |
| 211 |
|
|
! jyg1 |
| 212 |
|
|
! CC TVP(I)=TPK(I)*(1.+QSAT_NEW/EPS) |
| 213 |
|
|
tvp(i) = tpk(i)*(1.+qsat_new/eps-rr(nk)) |
| 214 |
|
|
! jyg2 |
| 215 |
|
|
ELSE |
| 216 |
|
|
CONTINUE |
| 217 |
|
|
END IF |
| 218 |
|
|
|
| 219 |
|
|
END DO |
| 220 |
|
|
|
| 221 |
|
|
END IF |
| 222 |
|
|
|
| 223 |
|
|
|
| 224 |
|
|
! ***************************************************** |
| 225 |
|
|
! * BK : RAJOUT DE LA TEMPERATURE DES ASCENDANCES |
| 226 |
|
|
! * NON DILUES AU NIVEAU KLEV = ND |
| 227 |
|
|
! * POSONS LE ENVIRON EGAL A CELUI DE KLEV-1 |
| 228 |
|
|
! ******************************************************* |
| 229 |
|
|
|
| 230 |
|
✗ |
tpk(nl+1) = tpk(nl) |
| 231 |
|
|
|
| 232 |
|
|
! ****************************************************** |
| 233 |
|
|
|
| 234 |
|
✗ |
rg = gravity ! RG redevient la gravite de YOMCST (sb) |
| 235 |
|
|
|
| 236 |
|
|
|
| 237 |
|
✗ |
RETURN |
| 238 |
|
|
END SUBROUTINE tlift |
| 239 |
|
|
|
| 240 |
|
|
|
| 241 |
|
|
|
| 242 |
|
|
|
| 243 |
|
|
|
| 244 |
|
|
|
| 245 |
|
|
|
| 246 |
|
|
|
| 247 |
|
|
|