| Line |
Branch |
Exec |
Source |
| 1 |
|
|
|
| 2 |
|
|
! $Header$ |
| 3 |
|
|
|
| 4 |
|
✗ |
SUBROUTINE vdif_kcay(ngrid, dt, g, rconst, plev, temp, zlev, zlay, u, v, & |
| 5 |
|
✗ |
teta, cd, q2, q2diag, km, kn, ustar, l_mix) |
| 6 |
|
|
USE dimphy |
| 7 |
|
|
IMPLICIT NONE |
| 8 |
|
|
|
| 9 |
|
|
! dt : pas de temps |
| 10 |
|
|
! g : g |
| 11 |
|
|
! zlev : altitude a chaque niveau (interface inferieure de la couche |
| 12 |
|
|
! de meme indice) |
| 13 |
|
|
! zlay : altitude au centre de chaque couche |
| 14 |
|
|
! u,v : vitesse au centre de chaque couche |
| 15 |
|
|
! (en entree : la valeur au debut du pas de temps) |
| 16 |
|
|
! teta : temperature potentielle au centre de chaque couche |
| 17 |
|
|
! (en entree : la valeur au debut du pas de temps) |
| 18 |
|
|
! cd : cdrag |
| 19 |
|
|
! (en entree : la valeur au debut du pas de temps) |
| 20 |
|
|
! q2 : $q^2$ au bas de chaque couche |
| 21 |
|
|
! (en entree : la valeur au debut du pas de temps) |
| 22 |
|
|
! (en sortie : la valeur a la fin du pas de temps) |
| 23 |
|
|
! km : diffusivite turbulente de quantite de mouvement (au bas de chaque |
| 24 |
|
|
! couche) |
| 25 |
|
|
! (en sortie : la valeur a la fin du pas de temps) |
| 26 |
|
|
! kn : diffusivite turbulente des scalaires (au bas de chaque couche) |
| 27 |
|
|
! (en sortie : la valeur a la fin du pas de temps) |
| 28 |
|
|
|
| 29 |
|
|
! ....................................................................... |
| 30 |
|
|
REAL dt, g, rconst |
| 31 |
|
|
REAL plev(klon, klev+1), temp(klon, klev) |
| 32 |
|
|
REAL ustar(klon), snstable |
| 33 |
|
|
REAL zlev(klon, klev+1) |
| 34 |
|
|
REAL zlay(klon, klev) |
| 35 |
|
|
REAL u(klon, klev) |
| 36 |
|
|
REAL v(klon, klev) |
| 37 |
|
|
REAL teta(klon, klev) |
| 38 |
|
|
REAL cd(klon) |
| 39 |
|
|
REAL q2(klon, klev+1), q2s(klon, klev+1) |
| 40 |
|
|
REAL q2diag(klon, klev+1) |
| 41 |
|
|
REAL km(klon, klev+1) |
| 42 |
|
|
REAL kn(klon, klev+1) |
| 43 |
|
✗ |
REAL sq(klon), sqz(klon), zz(klon, klev+1), zq, long0(klon) |
| 44 |
|
|
|
| 45 |
|
|
INTEGER l_mix, iii |
| 46 |
|
|
! ....................................................................... |
| 47 |
|
|
|
| 48 |
|
|
! nlay : nombre de couches |
| 49 |
|
|
! nlev : nombre de niveaux |
| 50 |
|
|
! ngrid : nombre de points de grille |
| 51 |
|
|
! unsdz : 1 sur l'epaisseur de couche |
| 52 |
|
|
! unsdzdec : 1 sur la distance entre le centre de la couche et le |
| 53 |
|
|
! centre de la couche inferieure |
| 54 |
|
|
! q : echelle de vitesse au bas de chaque couche |
| 55 |
|
|
! (valeur a la fin du pas de temps) |
| 56 |
|
|
|
| 57 |
|
|
! ....................................................................... |
| 58 |
|
|
INTEGER nlay, nlev, ngrid |
| 59 |
|
✗ |
REAL unsdz(klon, klev) |
| 60 |
|
✗ |
REAL unsdzdec(klon, klev+1) |
| 61 |
|
✗ |
REAL q(klon, klev+1) |
| 62 |
|
|
|
| 63 |
|
|
! ....................................................................... |
| 64 |
|
|
|
| 65 |
|
|
! kmpre : km au debut du pas de temps |
| 66 |
|
|
! qcstat : q : solution stationnaire du probleme couple |
| 67 |
|
|
! (valeur a la fin du pas de temps) |
| 68 |
|
|
! q2cstat : q2 : solution stationnaire du probleme couple |
| 69 |
|
|
! (valeur a la fin du pas de temps) |
| 70 |
|
|
|
| 71 |
|
|
! ....................................................................... |
| 72 |
|
✗ |
REAL kmpre(klon, klev+1) |
| 73 |
|
|
REAL qcstat |
| 74 |
|
|
REAL q2cstat |
| 75 |
|
|
REAL sss, sssq |
| 76 |
|
|
! ....................................................................... |
| 77 |
|
|
|
| 78 |
|
|
! long : longueur de melange calculee selon Blackadar |
| 79 |
|
|
|
| 80 |
|
|
! ....................................................................... |
| 81 |
|
✗ |
REAL long(klon, klev+1) |
| 82 |
|
|
! ....................................................................... |
| 83 |
|
|
|
| 84 |
|
|
! kmq3 : terme en q^3 dans le developpement de km |
| 85 |
|
|
! (valeur au debut du pas de temps) |
| 86 |
|
|
! kmcstat : valeur de km solution stationnaire du systeme {q2 ; du/dz} |
| 87 |
|
|
! (valeur a la fin du pas de temps) |
| 88 |
|
|
! knq3 : terme en q^3 dans le developpement de kn |
| 89 |
|
|
! mcstat : valeur de m solution stationnaire du systeme {q2 ; du/dz} |
| 90 |
|
|
! (valeur a la fin du pas de temps) |
| 91 |
|
|
! m2cstat : valeur de m2 solution stationnaire du systeme {q2 ; du/dz} |
| 92 |
|
|
! (valeur a la fin du pas de temps) |
| 93 |
|
|
! m : valeur a la fin du pas de temps |
| 94 |
|
|
! mpre : valeur au debut du pas de temps |
| 95 |
|
|
! m2 : valeur a la fin du pas de temps |
| 96 |
|
|
! n2 : valeur a la fin du pas de temps |
| 97 |
|
|
|
| 98 |
|
|
! ....................................................................... |
| 99 |
|
|
REAL kmq3 |
| 100 |
|
|
REAL kmcstat |
| 101 |
|
|
REAL knq3 |
| 102 |
|
|
REAL mcstat |
| 103 |
|
|
REAL m2cstat |
| 104 |
|
✗ |
REAL m(klon, klev+1) |
| 105 |
|
✗ |
REAL mpre(klon, klev+1) |
| 106 |
|
✗ |
REAL m2(klon, klev+1) |
| 107 |
|
✗ |
REAL n2(klon, klev+1) |
| 108 |
|
|
! ....................................................................... |
| 109 |
|
|
|
| 110 |
|
|
! gn : intermediaire pour les coefficients de stabilite |
| 111 |
|
|
! gnmin : borne inferieure de gn (-0.23 ou -0.28) |
| 112 |
|
|
! gnmax : borne superieure de gn (0.0233) |
| 113 |
|
|
! gninf : vrai si gn est en dessous de sa borne inferieure |
| 114 |
|
|
! gnsup : vrai si gn est en dessus de sa borne superieure |
| 115 |
|
|
! gm : drole d'objet bien utile |
| 116 |
|
|
! ri : nombre de Richardson |
| 117 |
|
|
! sn : coefficient de stabilite pour n |
| 118 |
|
|
! snq2 : premier terme du developement limite de sn en q2 |
| 119 |
|
|
! sm : coefficient de stabilite pour m |
| 120 |
|
|
! smq2 : premier terme du developement limite de sm en q2 |
| 121 |
|
|
|
| 122 |
|
|
! ....................................................................... |
| 123 |
|
|
REAL gn |
| 124 |
|
|
REAL gnmin |
| 125 |
|
|
REAL gnmax |
| 126 |
|
|
LOGICAL gninf |
| 127 |
|
|
LOGICAL gnsup |
| 128 |
|
|
REAL gm |
| 129 |
|
|
! REAL ri(klon,klev+1) |
| 130 |
|
✗ |
REAL sn(klon, klev+1) |
| 131 |
|
✗ |
REAL snq2(klon, klev+1) |
| 132 |
|
✗ |
REAL sm(klon, klev+1) |
| 133 |
|
✗ |
REAL smq2(klon, klev+1) |
| 134 |
|
|
! ....................................................................... |
| 135 |
|
|
|
| 136 |
|
|
! kappa : consatnte de Von Karman (0.4) |
| 137 |
|
|
! long00 : longueur de reference pour le calcul de long (160) |
| 138 |
|
|
! a1,a2,b1,b2,c1 : constantes d'origine pour les coefficients |
| 139 |
|
|
! de stabilite (0.92/0.74/16.6/10.1/0.08) |
| 140 |
|
|
! cn1,cn2 : constantes pour sn |
| 141 |
|
|
! cm1,cm2,cm3,cm4 : constantes pour sm |
| 142 |
|
|
|
| 143 |
|
|
! ....................................................................... |
| 144 |
|
|
REAL kappa |
| 145 |
|
|
REAL long00 |
| 146 |
|
|
REAL a1, a2, b1, b2, c1 |
| 147 |
|
|
REAL cn1, cn2 |
| 148 |
|
|
REAL cm1, cm2, cm3, cm4 |
| 149 |
|
|
! ....................................................................... |
| 150 |
|
|
|
| 151 |
|
|
! termq : termes en $q$ dans l'equation de q2 |
| 152 |
|
|
! termq3 : termes en $q^3$ dans l'equation de q2 |
| 153 |
|
|
! termqm2 : termes en $q*m^2$ dans l'equation de q2 |
| 154 |
|
|
! termq3m2 : termes en $q^3*m^2$ dans l'equation de q2 |
| 155 |
|
|
|
| 156 |
|
|
! ....................................................................... |
| 157 |
|
|
REAL termq |
| 158 |
|
|
REAL termq3 |
| 159 |
|
|
REAL termqm2 |
| 160 |
|
|
REAL termq3m2 |
| 161 |
|
|
! ....................................................................... |
| 162 |
|
|
|
| 163 |
|
|
! q2min : borne inferieure de q2 |
| 164 |
|
|
! q2max : borne superieure de q2 |
| 165 |
|
|
|
| 166 |
|
|
! ....................................................................... |
| 167 |
|
|
REAL q2min |
| 168 |
|
|
REAL q2max |
| 169 |
|
|
! ....................................................................... |
| 170 |
|
|
! knmin : borne inferieure de kn |
| 171 |
|
|
! kmmin : borne inferieure de km |
| 172 |
|
|
! ....................................................................... |
| 173 |
|
|
REAL knmin |
| 174 |
|
|
REAL kmmin |
| 175 |
|
|
! ....................................................................... |
| 176 |
|
|
INTEGER ilay, ilev, igrid |
| 177 |
|
|
REAL tmp1, tmp2 |
| 178 |
|
|
! ....................................................................... |
| 179 |
|
|
PARAMETER (kappa=0.4E+0) |
| 180 |
|
|
PARAMETER (long00=160.E+0) |
| 181 |
|
|
! PARAMETER (gnmin=-10.E+0) |
| 182 |
|
|
PARAMETER (gnmin=-0.28) |
| 183 |
|
|
PARAMETER (gnmax=0.0233E+0) |
| 184 |
|
|
PARAMETER (a1=0.92E+0) |
| 185 |
|
|
PARAMETER (a2=0.74E+0) |
| 186 |
|
|
PARAMETER (b1=16.6E+0) |
| 187 |
|
|
PARAMETER (b2=10.1E+0) |
| 188 |
|
|
PARAMETER (c1=0.08E+0) |
| 189 |
|
|
PARAMETER (knmin=1.E-5) |
| 190 |
|
|
PARAMETER (kmmin=1.E-5) |
| 191 |
|
|
PARAMETER (q2min=1.E-5) |
| 192 |
|
|
PARAMETER (q2max=1.E+2) |
| 193 |
|
|
! ym PARAMETER (nlay=klev) |
| 194 |
|
|
! ym PARAMETER (nlev=klev+1) |
| 195 |
|
|
|
| 196 |
|
|
PARAMETER (cn1=a2*(1.E+0-6.E+0*a1/b1)) |
| 197 |
|
|
PARAMETER (cn2=-3.E+0*a2*(6.E+0*a1+b2)) |
| 198 |
|
|
PARAMETER (cm1=a1*(1.E+0-3.E+0*c1-6.E+0*a1/b1)) |
| 199 |
|
|
PARAMETER (cm2=a1*(-3.E+0*a2*((b2-3.E+0*a2)*(1.E+0-6.E+0*a1/b1)- & |
| 200 |
|
|
3.E+0*c1*(b2+6.E+0*a1)))) |
| 201 |
|
|
PARAMETER (cm3=-3.E+0*a2*(6.E+0*a1+b2)) |
| 202 |
|
|
PARAMETER (cm4=-9.E+0*a1*a2) |
| 203 |
|
|
|
| 204 |
|
|
LOGICAL first |
| 205 |
|
|
SAVE first |
| 206 |
|
|
DATA first/.TRUE./ |
| 207 |
|
|
!$OMP THREADPRIVATE(first) |
| 208 |
|
|
! ....................................................................... |
| 209 |
|
|
! traitment des valeur de q2 en entree |
| 210 |
|
|
! ....................................................................... |
| 211 |
|
|
|
| 212 |
|
|
! Initialisation de q2 |
| 213 |
|
|
nlay = klev |
| 214 |
|
|
nlev = klev + 1 |
| 215 |
|
|
|
| 216 |
|
|
CALL yamada(ngrid, dt, g, rconst, plev, temp, zlev, zlay, u, v, teta, cd, & |
| 217 |
|
✗ |
q2diag, km, kn, ustar, l_mix) |
| 218 |
|
✗ |
IF (first .AND. 1==1) THEN |
| 219 |
|
✗ |
first = .FALSE. |
| 220 |
|
✗ |
q2 = q2diag |
| 221 |
|
|
END IF |
| 222 |
|
|
|
| 223 |
|
✗ |
DO ilev = 1, nlev |
| 224 |
|
✗ |
DO igrid = 1, ngrid |
| 225 |
|
✗ |
q2(igrid, ilev) = amax1(q2(igrid,ilev), q2min) |
| 226 |
|
✗ |
q(igrid, ilev) = sqrt(q2(igrid,ilev)) |
| 227 |
|
|
END DO |
| 228 |
|
|
END DO |
| 229 |
|
|
|
| 230 |
|
✗ |
DO igrid = 1, ngrid |
| 231 |
|
✗ |
tmp1 = cd(igrid)*(u(igrid,1)**2+v(igrid,1)**2) |
| 232 |
|
✗ |
q2(igrid, 1) = b1**(2.E+0/3.E+0)*tmp1 |
| 233 |
|
✗ |
q2(igrid, 1) = amax1(q2(igrid,1), q2min) |
| 234 |
|
✗ |
q(igrid, 1) = sqrt(q2(igrid,1)) |
| 235 |
|
|
END DO |
| 236 |
|
|
|
| 237 |
|
|
! ....................................................................... |
| 238 |
|
|
! les increments verticaux |
| 239 |
|
|
! ....................................................................... |
| 240 |
|
|
|
| 241 |
|
|
! !!!!! allerte !!!!!c |
| 242 |
|
|
! !!!!! zlev n'est pas declare a nlev !!!!!c |
| 243 |
|
|
! !!!!! ----> |
| 244 |
|
✗ |
DO igrid = 1, ngrid |
| 245 |
|
|
zlev(igrid, nlev) = zlay(igrid, nlay) + (zlay(igrid,nlay)-zlev(igrid,nlev & |
| 246 |
|
✗ |
-1)) |
| 247 |
|
|
END DO |
| 248 |
|
|
! !!!!! <---- |
| 249 |
|
|
! !!!!! allerte !!!!!c |
| 250 |
|
|
|
| 251 |
|
✗ |
DO ilay = 1, nlay |
| 252 |
|
✗ |
DO igrid = 1, ngrid |
| 253 |
|
✗ |
unsdz(igrid, ilay) = 1.E+0/(zlev(igrid,ilay+1)-zlev(igrid,ilay)) |
| 254 |
|
|
END DO |
| 255 |
|
|
END DO |
| 256 |
|
✗ |
DO igrid = 1, ngrid |
| 257 |
|
✗ |
unsdzdec(igrid, 1) = 1.E+0/(zlay(igrid,1)-zlev(igrid,1)) |
| 258 |
|
|
END DO |
| 259 |
|
✗ |
DO ilay = 2, nlay |
| 260 |
|
✗ |
DO igrid = 1, ngrid |
| 261 |
|
✗ |
unsdzdec(igrid, ilay) = 1.E+0/(zlay(igrid,ilay)-zlay(igrid,ilay-1)) |
| 262 |
|
|
END DO |
| 263 |
|
|
END DO |
| 264 |
|
✗ |
DO igrid = 1, ngrid |
| 265 |
|
✗ |
unsdzdec(igrid, nlay+1) = 1.E+0/(zlev(igrid,nlay+1)-zlay(igrid,nlay)) |
| 266 |
|
|
END DO |
| 267 |
|
|
|
| 268 |
|
|
! ....................................................................... |
| 269 |
|
|
! le cisaillement et le gradient de temperature |
| 270 |
|
|
! ....................................................................... |
| 271 |
|
|
|
| 272 |
|
✗ |
DO igrid = 1, ngrid |
| 273 |
|
|
m2(igrid, 1) = (unsdzdec(igrid,1)*u(igrid,1))**2 + & |
| 274 |
|
✗ |
(unsdzdec(igrid,1)*v(igrid,1))**2 |
| 275 |
|
✗ |
m(igrid, 1) = sqrt(m2(igrid,1)) |
| 276 |
|
✗ |
mpre(igrid, 1) = m(igrid, 1) |
| 277 |
|
|
END DO |
| 278 |
|
|
|
| 279 |
|
|
! ----------------------------------------------------------------------- |
| 280 |
|
✗ |
DO ilev = 2, nlev - 1 |
| 281 |
|
✗ |
DO igrid = 1, ngrid |
| 282 |
|
|
! ----------------------------------------------------------------------- |
| 283 |
|
|
|
| 284 |
|
|
n2(igrid, ilev) = g*unsdzdec(igrid, ilev)*(teta(igrid,ilev)-teta(igrid, & |
| 285 |
|
✗ |
ilev-1))/(teta(igrid,ilev)+teta(igrid,ilev-1))*2.E+0 |
| 286 |
|
|
! n2(igrid,ilev)=0. |
| 287 |
|
|
|
| 288 |
|
|
! ---> |
| 289 |
|
|
! on ne sais traiter que les cas stratifies. et l'ajustement |
| 290 |
|
|
! convectif est cense faire en sorte que seul des configurations |
| 291 |
|
|
! stratifiees soient rencontrees en entree de cette routine. |
| 292 |
|
|
! mais, bon ... on sait jamais (meme on sait que n2 prends |
| 293 |
|
|
! quelques valeurs negatives ... parfois) alors : |
| 294 |
|
|
! <--- |
| 295 |
|
|
|
| 296 |
|
✗ |
IF (n2(igrid,ilev)<0.E+0) THEN |
| 297 |
|
✗ |
n2(igrid, ilev) = 0.E+0 |
| 298 |
|
|
END IF |
| 299 |
|
|
|
| 300 |
|
|
m2(igrid, ilev) = (unsdzdec(igrid,ilev)*(u(igrid,ilev)-u(igrid, & |
| 301 |
|
|
ilev-1)))**2 + (unsdzdec(igrid,ilev)*(v(igrid,ilev)-v(igrid, & |
| 302 |
|
✗ |
ilev-1)))**2 |
| 303 |
|
✗ |
m(igrid, ilev) = sqrt(m2(igrid,ilev)) |
| 304 |
|
✗ |
mpre(igrid, ilev) = m(igrid, ilev) |
| 305 |
|
|
|
| 306 |
|
|
! ----------------------------------------------------------------------- |
| 307 |
|
|
END DO |
| 308 |
|
|
END DO |
| 309 |
|
|
! ----------------------------------------------------------------------- |
| 310 |
|
|
|
| 311 |
|
✗ |
DO igrid = 1, ngrid |
| 312 |
|
✗ |
m2(igrid, nlev) = m2(igrid, nlev-1) |
| 313 |
|
✗ |
m(igrid, nlev) = m(igrid, nlev-1) |
| 314 |
|
✗ |
mpre(igrid, nlev) = m(igrid, nlev) |
| 315 |
|
|
END DO |
| 316 |
|
|
|
| 317 |
|
|
! ....................................................................... |
| 318 |
|
|
! calcul des fonctions de stabilite |
| 319 |
|
|
! ....................................................................... |
| 320 |
|
|
|
| 321 |
|
✗ |
IF (l_mix==4) THEN |
| 322 |
|
✗ |
DO igrid = 1, ngrid |
| 323 |
|
✗ |
sqz(igrid) = 1.E-10 |
| 324 |
|
✗ |
sq(igrid) = 1.E-10 |
| 325 |
|
|
END DO |
| 326 |
|
✗ |
DO ilev = 2, nlev - 1 |
| 327 |
|
✗ |
DO igrid = 1, ngrid |
| 328 |
|
✗ |
zq = sqrt(q2(igrid,ilev)) |
| 329 |
|
|
sqz(igrid) = sqz(igrid) + zq*zlev(igrid, ilev)*(zlay(igrid,ilev)-zlay & |
| 330 |
|
✗ |
(igrid,ilev-1)) |
| 331 |
|
✗ |
sq(igrid) = sq(igrid) + zq*(zlay(igrid,ilev)-zlay(igrid,ilev-1)) |
| 332 |
|
|
END DO |
| 333 |
|
|
END DO |
| 334 |
|
✗ |
DO igrid = 1, ngrid |
| 335 |
|
✗ |
long0(igrid) = 0.2*sqz(igrid)/sq(igrid) |
| 336 |
|
|
END DO |
| 337 |
|
✗ |
ELSE IF (l_mix==3) THEN |
| 338 |
|
✗ |
long0(igrid) = long00 |
| 339 |
|
|
END IF |
| 340 |
|
|
|
| 341 |
|
|
! (abd 5 2) print*,'LONG0=',long0 |
| 342 |
|
|
|
| 343 |
|
|
! ----------------------------------------------------------------------- |
| 344 |
|
✗ |
DO ilev = 2, nlev - 1 |
| 345 |
|
✗ |
DO igrid = 1, ngrid |
| 346 |
|
|
! ----------------------------------------------------------------------- |
| 347 |
|
|
|
| 348 |
|
✗ |
tmp1 = kappa*(zlev(igrid,ilev)-zlev(igrid,1)) |
| 349 |
|
✗ |
IF (l_mix>=10) THEN |
| 350 |
|
✗ |
long(igrid, ilev) = l_mix |
| 351 |
|
|
ELSE |
| 352 |
|
✗ |
long(igrid, ilev) = tmp1/(1.E+0+tmp1/long0(igrid)) |
| 353 |
|
|
END IF |
| 354 |
|
|
long(igrid, ilev) = max(min(long(igrid,ilev),0.5*sqrt(q2(igrid,ilev))/ & |
| 355 |
|
✗ |
sqrt(max(n2(igrid,ilev),1.E-10))), 5.) |
| 356 |
|
|
|
| 357 |
|
✗ |
gn = -long(igrid, ilev)**2/q2(igrid, ilev)*n2(igrid, ilev) |
| 358 |
|
|
gm = long(igrid, ilev)**2/q2(igrid, ilev)*m2(igrid, ilev) |
| 359 |
|
|
|
| 360 |
|
|
gninf = .FALSE. |
| 361 |
|
|
gnsup = .FALSE. |
| 362 |
|
|
long(igrid, ilev) = long(igrid, ilev) |
| 363 |
|
|
long(igrid, ilev) = long(igrid, ilev) |
| 364 |
|
|
|
| 365 |
|
✗ |
IF (gn<gnmin) THEN |
| 366 |
|
|
gninf = .TRUE. |
| 367 |
|
|
gn = gnmin |
| 368 |
|
|
END IF |
| 369 |
|
|
|
| 370 |
|
✗ |
IF (gn>gnmax) THEN |
| 371 |
|
|
gnsup = .TRUE. |
| 372 |
|
|
gn = gnmax |
| 373 |
|
|
END IF |
| 374 |
|
|
|
| 375 |
|
✗ |
sn(igrid, ilev) = cn1/(1.E+0+cn2*gn) |
| 376 |
|
✗ |
sm(igrid, ilev) = (cm1+cm2*gn)/((1.E+0+cm3*gn)*(1.E+0+cm4*gn)) |
| 377 |
|
|
|
| 378 |
|
✗ |
IF ((gninf) .OR. (gnsup)) THEN |
| 379 |
|
✗ |
snq2(igrid, ilev) = 0.E+0 |
| 380 |
|
✗ |
smq2(igrid, ilev) = 0.E+0 |
| 381 |
|
|
ELSE |
| 382 |
|
✗ |
snq2(igrid, ilev) = -gn*(-cn1*cn2/(1.E+0+cn2*gn)**2) |
| 383 |
|
|
smq2(igrid, ilev) = -gn*(cm2*(1.E+0+cm3*gn)*(1.E+0+cm4*gn)-(cm3*( & |
| 384 |
|
|
1.E+0+cm4*gn)+cm4*(1.E+0+cm3*gn))*(cm1+cm2*gn))/((1.E+0+cm3*gn)*( & |
| 385 |
|
✗ |
1.E+0+cm4*gn))**2 |
| 386 |
|
|
END IF |
| 387 |
|
|
|
| 388 |
|
|
! abd |
| 389 |
|
|
! if(ilev.le.57.and.ilev.ge.37) then |
| 390 |
|
|
! print*,'L=',ilev,' GN=',gn,' SM=',sm(igrid,ilev) |
| 391 |
|
|
! endif |
| 392 |
|
|
! ---> |
| 393 |
|
|
! la decomposition de Taylor en q2 n'a de sens que |
| 394 |
|
|
! dans les cas stratifies ou sn et sm sont quasi |
| 395 |
|
|
! proportionnels a q2. ailleurs on laisse le meme |
| 396 |
|
|
! algorithme car l'ajustement convectif fait le travail. |
| 397 |
|
|
! mais c'est delirant quand sn et snq2 n'ont pas le meme |
| 398 |
|
|
! signe : dans ces cas, on ne fait pas la decomposition. |
| 399 |
|
|
! <--- |
| 400 |
|
|
|
| 401 |
|
✗ |
IF (snq2(igrid,ilev)*sn(igrid,ilev)<=0.E+0) snq2(igrid, ilev) = 0.E+0 |
| 402 |
|
✗ |
IF (smq2(igrid,ilev)*sm(igrid,ilev)<=0.E+0) smq2(igrid, ilev) = 0.E+0 |
| 403 |
|
|
|
| 404 |
|
|
! Correction pour les couches stables. |
| 405 |
|
|
! Schema repris de JHoltzlag Boville, lui meme venant de... |
| 406 |
|
|
|
| 407 |
|
✗ |
IF (1==1) THEN |
| 408 |
|
|
snstable = 1. - zlev(igrid, ilev)/(700.*max(ustar(igrid),0.0001)) |
| 409 |
|
✗ |
snstable = 1. - zlev(igrid, ilev)/400. |
| 410 |
|
✗ |
snstable = max(snstable, 0.) |
| 411 |
|
✗ |
snstable = snstable*snstable |
| 412 |
|
|
|
| 413 |
|
|
! abde print*,'SN ',ilev,sn(1,ilev),snstable |
| 414 |
|
✗ |
IF (sn(igrid,ilev)<snstable) THEN |
| 415 |
|
✗ |
sn(igrid, ilev) = snstable |
| 416 |
|
✗ |
snq2(igrid, ilev) = 0. |
| 417 |
|
|
END IF |
| 418 |
|
|
|
| 419 |
|
✗ |
IF (sm(igrid,ilev)<snstable) THEN |
| 420 |
|
✗ |
sm(igrid, ilev) = snstable |
| 421 |
|
✗ |
smq2(igrid, ilev) = 0. |
| 422 |
|
|
END IF |
| 423 |
|
|
|
| 424 |
|
|
END IF |
| 425 |
|
|
|
| 426 |
|
|
! sn : coefficient de stabilite pour n |
| 427 |
|
|
! snq2 : premier terme du developement limite de sn en q2 |
| 428 |
|
|
! ----------------------------------------------------------------------- |
| 429 |
|
|
END DO |
| 430 |
|
|
END DO |
| 431 |
|
|
! ----------------------------------------------------------------------- |
| 432 |
|
|
|
| 433 |
|
|
! ....................................................................... |
| 434 |
|
|
! calcul de km et kn au debut du pas de temps |
| 435 |
|
|
! ....................................................................... |
| 436 |
|
|
|
| 437 |
|
✗ |
DO igrid = 1, ngrid |
| 438 |
|
✗ |
kn(igrid, 1) = knmin |
| 439 |
|
✗ |
km(igrid, 1) = kmmin |
| 440 |
|
✗ |
kmpre(igrid, 1) = km(igrid, 1) |
| 441 |
|
|
END DO |
| 442 |
|
|
|
| 443 |
|
|
! ----------------------------------------------------------------------- |
| 444 |
|
✗ |
DO ilev = 2, nlev - 1 |
| 445 |
|
✗ |
DO igrid = 1, ngrid |
| 446 |
|
|
! ----------------------------------------------------------------------- |
| 447 |
|
|
|
| 448 |
|
✗ |
kn(igrid, ilev) = long(igrid, ilev)*q(igrid, ilev)*sn(igrid, ilev) |
| 449 |
|
✗ |
km(igrid, ilev) = long(igrid, ilev)*q(igrid, ilev)*sm(igrid, ilev) |
| 450 |
|
✗ |
kmpre(igrid, ilev) = km(igrid, ilev) |
| 451 |
|
|
|
| 452 |
|
|
! ----------------------------------------------------------------------- |
| 453 |
|
|
END DO |
| 454 |
|
|
END DO |
| 455 |
|
|
! ----------------------------------------------------------------------- |
| 456 |
|
|
|
| 457 |
|
✗ |
DO igrid = 1, ngrid |
| 458 |
|
✗ |
kn(igrid, nlev) = kn(igrid, nlev-1) |
| 459 |
|
✗ |
km(igrid, nlev) = km(igrid, nlev-1) |
| 460 |
|
✗ |
kmpre(igrid, nlev) = km(igrid, nlev) |
| 461 |
|
|
END DO |
| 462 |
|
|
|
| 463 |
|
|
! ....................................................................... |
| 464 |
|
|
! boucle sur les niveaux 2 a nlev-1 |
| 465 |
|
|
! ....................................................................... |
| 466 |
|
|
|
| 467 |
|
|
! ----> |
| 468 |
|
✗ |
DO ilev = 2, nlev - 1 |
| 469 |
|
|
! ----> |
| 470 |
|
✗ |
DO igrid = 1, ngrid |
| 471 |
|
|
|
| 472 |
|
|
! ....................................................................... |
| 473 |
|
|
|
| 474 |
|
|
! calcul des termes sources et puits de l'equation de q2 |
| 475 |
|
|
! ------------------------------------------------------ |
| 476 |
|
|
|
| 477 |
|
✗ |
knq3 = kn(igrid, ilev)*snq2(igrid, ilev)/sn(igrid, ilev) |
| 478 |
|
✗ |
kmq3 = km(igrid, ilev)*smq2(igrid, ilev)/sm(igrid, ilev) |
| 479 |
|
|
|
| 480 |
|
|
termq = 0.E+0 |
| 481 |
|
|
termq3 = 0.E+0 |
| 482 |
|
|
termqm2 = 0.E+0 |
| 483 |
|
|
termq3m2 = 0.E+0 |
| 484 |
|
|
|
| 485 |
|
✗ |
tmp1 = dt*2.E+0*km(igrid, ilev)*m2(igrid, ilev) |
| 486 |
|
✗ |
tmp2 = dt*2.E+0*kmq3*m2(igrid, ilev) |
| 487 |
|
|
termqm2 = termqm2 + dt*2.E+0*km(igrid, ilev)*m2(igrid, ilev) - & |
| 488 |
|
✗ |
dt*2.E+0*kmq3*m2(igrid, ilev) |
| 489 |
|
✗ |
termq3m2 = termq3m2 + dt*2.E+0*kmq3*m2(igrid, ilev) |
| 490 |
|
|
|
| 491 |
|
|
termq = termq - dt*2.E+0*kn(igrid, ilev)*n2(igrid, ilev) + & |
| 492 |
|
✗ |
dt*2.E+0*knq3*n2(igrid, ilev) |
| 493 |
|
✗ |
termq3 = termq3 - dt*2.E+0*knq3*n2(igrid, ilev) |
| 494 |
|
|
|
| 495 |
|
✗ |
termq3 = termq3 - dt*2.E+0*q(igrid, ilev)**3/(b1*long(igrid,ilev)) |
| 496 |
|
|
|
| 497 |
|
|
! ....................................................................... |
| 498 |
|
|
|
| 499 |
|
|
! resolution stationnaire couplee avec le gradient de vitesse local |
| 500 |
|
|
! ----------------------------------------------------------------- |
| 501 |
|
|
|
| 502 |
|
|
! -----{on cherche le cisaillement qui annule l'equation de q^2 |
| 503 |
|
|
! supposee en q3} |
| 504 |
|
|
|
| 505 |
|
✗ |
tmp1 = termq + termq3 |
| 506 |
|
✗ |
tmp2 = termqm2 + termq3m2 |
| 507 |
|
✗ |
m2cstat = m2(igrid, ilev) - (tmp1+tmp2)/(dt*2.E+0*km(igrid,ilev)) |
| 508 |
|
✗ |
mcstat = sqrt(m2cstat) |
| 509 |
|
|
|
| 510 |
|
|
! abde print*,'M2 L=',ilev,mpre(igrid,ilev),mcstat |
| 511 |
|
|
|
| 512 |
|
|
! -----{puis on ecrit la valeur de q qui annule l'equation de m |
| 513 |
|
|
! supposee en q3} |
| 514 |
|
|
|
| 515 |
|
✗ |
IF (ilev==2) THEN |
| 516 |
|
|
kmcstat = 1.E+0/mcstat*(unsdz(igrid,ilev)*kmpre(igrid,ilev+1)*mpre( & |
| 517 |
|
|
igrid,ilev+1)+unsdz(igrid,ilev-1)*cd(igrid)*(sqrt(u(igrid,3)**2+ & |
| 518 |
|
|
v(igrid,3)**2)-mcstat/unsdzdec(igrid,ilev)-mpre(igrid, & |
| 519 |
|
|
ilev+1)/unsdzdec(igrid,ilev+1))**2)/(unsdz(igrid,ilev)+unsdz(igrid, & |
| 520 |
|
✗ |
ilev-1)) |
| 521 |
|
|
ELSE |
| 522 |
|
|
kmcstat = 1.E+0/mcstat*(unsdz(igrid,ilev)*kmpre(igrid,ilev+1)*mpre( & |
| 523 |
|
|
igrid,ilev+1)+unsdz(igrid,ilev-1)*kmpre(igrid,ilev-1)*mpre(igrid, & |
| 524 |
|
✗ |
ilev-1))/(unsdz(igrid,ilev)+unsdz(igrid,ilev-1)) |
| 525 |
|
|
END IF |
| 526 |
|
✗ |
tmp2 = kmcstat/(sm(igrid,ilev)/q2(igrid,ilev))/long(igrid, ilev) |
| 527 |
|
✗ |
qcstat = tmp2**(1.E+0/3.E+0) |
| 528 |
|
✗ |
q2cstat = qcstat**2 |
| 529 |
|
|
|
| 530 |
|
|
! ....................................................................... |
| 531 |
|
|
|
| 532 |
|
|
! choix de la solution finale |
| 533 |
|
|
! --------------------------- |
| 534 |
|
|
|
| 535 |
|
✗ |
q(igrid, ilev) = qcstat |
| 536 |
|
✗ |
q2(igrid, ilev) = q2cstat |
| 537 |
|
✗ |
m(igrid, ilev) = mcstat |
| 538 |
|
|
! abd if(ilev.le.57.and.ilev.ge.37) then |
| 539 |
|
|
! print*,'L=',ilev,' M2=',m2(igrid,ilev),m2cstat, |
| 540 |
|
|
! s 'N2=',n2(igrid,ilev) |
| 541 |
|
|
! abd endif |
| 542 |
|
✗ |
m2(igrid, ilev) = m2cstat |
| 543 |
|
|
|
| 544 |
|
|
! ---> |
| 545 |
|
|
! pour des raisons simples q2 est minore |
| 546 |
|
|
! <--- |
| 547 |
|
|
|
| 548 |
|
✗ |
IF (q2(igrid,ilev)<q2min) THEN |
| 549 |
|
✗ |
q2(igrid, ilev) = q2min |
| 550 |
|
✗ |
q(igrid, ilev) = sqrt(q2min) |
| 551 |
|
|
END IF |
| 552 |
|
|
|
| 553 |
|
|
! ....................................................................... |
| 554 |
|
|
|
| 555 |
|
|
! calcul final de kn et km |
| 556 |
|
|
! ------------------------ |
| 557 |
|
|
|
| 558 |
|
✗ |
gn = -long(igrid, ilev)**2/q2(igrid, ilev)*n2(igrid, ilev) |
| 559 |
|
✗ |
IF (gn<gnmin) gn = gnmin |
| 560 |
|
✗ |
IF (gn>gnmax) gn = gnmax |
| 561 |
|
✗ |
sn(igrid, ilev) = cn1/(1.E+0+cn2*gn) |
| 562 |
|
✗ |
sm(igrid, ilev) = (cm1+cm2*gn)/((1.E+0+cm3*gn)*(1.E+0+cm4*gn)) |
| 563 |
|
✗ |
kn(igrid, ilev) = long(igrid, ilev)*q(igrid, ilev)*sn(igrid, ilev) |
| 564 |
|
✗ |
km(igrid, ilev) = long(igrid, ilev)*q(igrid, ilev)*sm(igrid, ilev) |
| 565 |
|
|
! abd |
| 566 |
|
|
! if(ilev.le.57.and.ilev.ge.37) then |
| 567 |
|
|
! print*,'L=',ilev,' GN=',gn,' SM=',sm(igrid,ilev) |
| 568 |
|
|
! endif |
| 569 |
|
|
|
| 570 |
|
|
! ....................................................................... |
| 571 |
|
|
|
| 572 |
|
|
END DO |
| 573 |
|
|
|
| 574 |
|
|
END DO |
| 575 |
|
|
|
| 576 |
|
|
! ....................................................................... |
| 577 |
|
|
|
| 578 |
|
|
|
| 579 |
|
✗ |
DO igrid = 1, ngrid |
| 580 |
|
✗ |
kn(igrid, 1) = knmin |
| 581 |
|
✗ |
km(igrid, 1) = kmmin |
| 582 |
|
|
! kn(igrid,1)=cd(igrid) |
| 583 |
|
|
! km(igrid,1)=cd(igrid) |
| 584 |
|
✗ |
q2(igrid, nlev) = q2(igrid, nlev-1) |
| 585 |
|
✗ |
q(igrid, nlev) = q(igrid, nlev-1) |
| 586 |
|
✗ |
kn(igrid, nlev) = kn(igrid, nlev-1) |
| 587 |
|
✗ |
km(igrid, nlev) = km(igrid, nlev-1) |
| 588 |
|
|
END DO |
| 589 |
|
|
|
| 590 |
|
|
! CALCUL DE LA DIFFUSION VERTICALE DE Q2 |
| 591 |
|
|
IF (1==1) THEN |
| 592 |
|
|
|
| 593 |
|
✗ |
DO ilev = 2, klev - 1 |
| 594 |
|
✗ |
sss = sss + plev(1, ilev-1) - plev(1, ilev+1) |
| 595 |
|
✗ |
sssq = sssq + (plev(1,ilev-1)-plev(1,ilev+1))*q2(1, ilev) |
| 596 |
|
|
END DO |
| 597 |
|
|
! print*,'Q2moy avant',sssq/sss |
| 598 |
|
|
! print*,'Q2q20 ',(q2(1,ilev),ilev=1,10) |
| 599 |
|
|
! print*,'Q2km0 ',(km(1,ilev),ilev=1,10) |
| 600 |
|
|
! ! C'est quoi ca qu'etait dans l'original??? |
| 601 |
|
|
! do igrid=1,ngrid |
| 602 |
|
|
! q2(igrid,1)=10. |
| 603 |
|
|
! enddo |
| 604 |
|
|
! q2s=q2 |
| 605 |
|
|
! do iii=1,10 |
| 606 |
|
|
! call vdif_q2(dt,g,rconst,plev,temp,km,q2) |
| 607 |
|
|
! do ilev=1,klev+1 |
| 608 |
|
|
! write(iii+49,*) q2(1,ilev),zlev(1,ilev) |
| 609 |
|
|
! enddo |
| 610 |
|
|
! enddo |
| 611 |
|
|
! stop |
| 612 |
|
|
! do ilev=1,klev |
| 613 |
|
|
! print*,zlev(1,ilev),q2s(1,ilev),q2(1,ilev) |
| 614 |
|
|
! enddo |
| 615 |
|
|
! q2s=q2-q2s |
| 616 |
|
|
! do ilev=1,klev |
| 617 |
|
|
! print*,q2s(1,ilev),zlev(1,ilev) |
| 618 |
|
|
! enddo |
| 619 |
|
✗ |
DO ilev = 2, klev - 1 |
| 620 |
|
✗ |
sss = sss + plev(1, ilev-1) - plev(1, ilev+1) |
| 621 |
|
✗ |
sssq = sssq + (plev(1,ilev-1)-plev(1,ilev+1))*q2(1, ilev) |
| 622 |
|
|
END DO |
| 623 |
|
✗ |
PRINT *, 'Q2moy apres', sssq/sss |
| 624 |
|
|
|
| 625 |
|
|
|
| 626 |
|
✗ |
DO ilev = 1, nlev |
| 627 |
|
✗ |
DO igrid = 1, ngrid |
| 628 |
|
✗ |
q2(igrid, ilev) = max(q2(igrid,ilev), q2min) |
| 629 |
|
✗ |
q(igrid, ilev) = sqrt(q2(igrid,ilev)) |
| 630 |
|
|
|
| 631 |
|
|
! ....................................................................... |
| 632 |
|
|
|
| 633 |
|
|
! calcul final de kn et km |
| 634 |
|
|
! ------------------------ |
| 635 |
|
|
|
| 636 |
|
✗ |
gn = -long(igrid, ilev)**2/q2(igrid, ilev)*n2(igrid, ilev) |
| 637 |
|
✗ |
IF (gn<gnmin) gn = gnmin |
| 638 |
|
✗ |
IF (gn>gnmax) gn = gnmax |
| 639 |
|
✗ |
sn(igrid, ilev) = cn1/(1.E+0+cn2*gn) |
| 640 |
|
✗ |
sm(igrid, ilev) = (cm1+cm2*gn)/((1.E+0+cm3*gn)*(1.E+0+cm4*gn)) |
| 641 |
|
|
! Correction pour les couches stables. |
| 642 |
|
|
! Schema repris de JHoltzlag Boville, lui meme venant de... |
| 643 |
|
|
|
| 644 |
|
|
IF (1==1) THEN |
| 645 |
|
✗ |
snstable = 1. - zlev(igrid, ilev)/(700.*max(ustar(igrid),0.0001)) |
| 646 |
|
✗ |
snstable = 1. - zlev(igrid, ilev)/400. |
| 647 |
|
✗ |
snstable = max(snstable, 0.) |
| 648 |
|
✗ |
snstable = snstable*snstable |
| 649 |
|
|
|
| 650 |
|
|
! abde print*,'SN ',ilev,sn(1,ilev),snstable |
| 651 |
|
✗ |
IF (sn(igrid,ilev)<snstable) THEN |
| 652 |
|
✗ |
sn(igrid, ilev) = snstable |
| 653 |
|
✗ |
snq2(igrid, ilev) = 0. |
| 654 |
|
|
END IF |
| 655 |
|
|
|
| 656 |
|
✗ |
IF (sm(igrid,ilev)<snstable) THEN |
| 657 |
|
✗ |
sm(igrid, ilev) = snstable |
| 658 |
|
✗ |
smq2(igrid, ilev) = 0. |
| 659 |
|
|
END IF |
| 660 |
|
|
|
| 661 |
|
|
END IF |
| 662 |
|
|
|
| 663 |
|
|
! sn : coefficient de stabilite pour n |
| 664 |
|
✗ |
kn(igrid, ilev) = long(igrid, ilev)*q(igrid, ilev)*sn(igrid, ilev) |
| 665 |
|
✗ |
km(igrid, ilev) = long(igrid, ilev)*q(igrid, ilev) |
| 666 |
|
|
|
| 667 |
|
|
END DO |
| 668 |
|
|
END DO |
| 669 |
|
|
! print*,'Q2km1 ',(km(1,ilev),ilev=1,10) |
| 670 |
|
|
|
| 671 |
|
|
END IF |
| 672 |
|
|
|
| 673 |
|
✗ |
RETURN |
| 674 |
|
|
END SUBROUTINE vdif_kcay |
| 675 |
|
|
|