| Directory: | ./ |
|---|---|
| File: | phys/yamada4.f90 |
| Date: | 2022-01-11 19:19:34 |
| Exec | Total | Coverage | |
|---|---|---|---|
| Lines: | 204 | 362 | 56.4% |
| Branches: | 185 | 328 | 56.4% |
| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 2 | |||
| 3 | 3841 | SUBROUTINE yamada4(ni, nsrf, ngrid, dt, g, rconst, plev, temp, zlev, zlay, u, v, teta, & | |
| 4 | 1920 | cd, tke, km, kn, kq, ustar, iflag_pbl, drgpro) | |
| 5 | |||
| 6 | USE dimphy | ||
| 7 | USE ioipsl_getin_p_mod, ONLY : getin_p | ||
| 8 | USE phys_local_var_mod, only: tke_dissip | ||
| 9 | |||
| 10 | IMPLICIT NONE | ||
| 11 | include "iniprint.h" | ||
| 12 | ! ....................................................................... | ||
| 13 | ! ym#include "dimensions.h" | ||
| 14 | ! ym#include "dimphy.h" | ||
| 15 | ! ************************************************************************************************ | ||
| 16 | ! | ||
| 17 | ! yamada4: subroutine qui calcule le transfert turbulent avec une fermeture d'ordre 2 ou 2.5 | ||
| 18 | ! | ||
| 19 | ! Reference: Simulation of nocturnal drainage flows by a q2l Turbulence Closure Model | ||
| 20 | ! Yamada T. | ||
| 21 | ! J. Atmos. Sci, 40, 91-106, 1983 | ||
| 22 | ! | ||
| 23 | !************************************************************************************************ | ||
| 24 | ! Input : | ||
| 25 | !'====== | ||
| 26 | ! ni: indice horizontal sur la grille de base, non restreinte | ||
| 27 | ! nsrf: type de surface | ||
| 28 | ! ngrid: nombre de mailles concern??es sur l'horizontal | ||
| 29 | ! dt : pas de temps | ||
| 30 | ! g : g | ||
| 31 | ! rconst: constante de l'air sec | ||
| 32 | ! zlev : altitude a chaque niveau (interface inferieure de la couche | ||
| 33 | ! de meme indice) | ||
| 34 | ! zlay : altitude au centre de chaque couche | ||
| 35 | ! u,v : vitesse au centre de chaque couche | ||
| 36 | ! (en entree : la valeur au debut du pas de temps) | ||
| 37 | ! teta : temperature potentielle virtuelle au centre de chaque couche | ||
| 38 | ! (en entree : la valeur au debut du pas de temps) | ||
| 39 | ! cd : cdrag pour la quantit?? de mouvement | ||
| 40 | ! (en entree : la valeur au debut du pas de temps) | ||
| 41 | ! ustar: vitesse de friction calcul??e par une formule diagnostique | ||
| 42 | ! iflag_pbl: flag pour choisir des options du sch??ma de turbulence | ||
| 43 | ! | ||
| 44 | ! iflag_pbl doit valoir entre 6 et 9 | ||
| 45 | ! l=6, on prend systematiquement une longueur d'equilibre | ||
| 46 | ! iflag_pbl=6 : MY 2.0 | ||
| 47 | ! iflag_pbl=7 : MY 2.0.Fournier | ||
| 48 | ! iflag_pbl=8/9 : MY 2.5 | ||
| 49 | ! iflag_pbl=8 with special obsolete treatments for convergence | ||
| 50 | ! with Cmpi5 NPv3.1 simulations | ||
| 51 | ! iflag_pbl=10/11 : New scheme M2 and N2 explicit and dissiptation exact | ||
| 52 | ! iflag_pbl=12 = 11 with vertical diffusion off q2 | ||
| 53 | ! | ||
| 54 | ! 2013/04/01 (FH hourdin@lmd.jussieu.fr) | ||
| 55 | ! Correction for very stable PBLs (iflag_pbl=10 and 11) | ||
| 56 | ! iflag_pbl=8 converges numerically with NPv3.1 | ||
| 57 | ! iflag_pbl=11 -> the model starts with NP from start files created by ce0l | ||
| 58 | ! -> the model can run with longer time-steps. | ||
| 59 | ! 2016/11/30 (EV etienne.vignon@lmd.ipsl.fr) | ||
| 60 | ! On met tke (=q2/2) en entr??e plut??t que q2 | ||
| 61 | ! On corrige l'update de la tke | ||
| 62 | ! 2020/10/01 (EV) | ||
| 63 | ! On ajoute la dissipation de la TKE en diagnostique de sortie | ||
| 64 | ! | ||
| 65 | ! Inpout/Output : | ||
| 66 | !============== | ||
| 67 | ! tke : tke au bas de chaque couche | ||
| 68 | ! (en entree : la valeur au debut du pas de temps) | ||
| 69 | ! (en sortie : la valeur a la fin du pas de temps) | ||
| 70 | |||
| 71 | ! Outputs: | ||
| 72 | !========== | ||
| 73 | ! km : diffusivite turbulente de quantite de mouvement (au bas de chaque | ||
| 74 | ! couche) | ||
| 75 | ! (en sortie : la valeur a la fin du pas de temps) | ||
| 76 | ! kn : diffusivite turbulente des scalaires (au bas de chaque couche) | ||
| 77 | ! (en sortie : la valeur a la fin du pas de temps) | ||
| 78 | ! | ||
| 79 | !....................................................................... | ||
| 80 | |||
| 81 | !======================================================================= | ||
| 82 | ! Declarations: | ||
| 83 | !======================================================================= | ||
| 84 | |||
| 85 | |||
| 86 | ! Inputs/Outputs | ||
| 87 | !---------------- | ||
| 88 | REAL dt, g, rconst | ||
| 89 | REAL plev(klon, klev+1), temp(klon, klev) | ||
| 90 | REAL ustar(klon) | ||
| 91 | 3840 | REAL kmin, qmin, pblhmin(klon), coriol(klon) | |
| 92 | REAL zlev(klon, klev+1) | ||
| 93 | REAL zlay(klon, klev) | ||
| 94 | REAL u(klon, klev) | ||
| 95 | REAL v(klon, klev) | ||
| 96 | REAL teta(klon, klev) | ||
| 97 | REAL cd(klon) | ||
| 98 | REAL tke(klon, klev+1) | ||
| 99 | 3840 | REAL unsdz(klon, klev) | |
| 100 | 3840 | REAL unsdzdec(klon, klev+1) | |
| 101 | REAL kn(klon, klev+1) | ||
| 102 | REAL km(klon, klev+1) | ||
| 103 | INTEGER iflag_pbl, ngrid, nsrf | ||
| 104 | INTEGER ni(klon) | ||
| 105 | |||
| 106 | !FC | ||
| 107 | REAL drgpro(klon,klev) | ||
| 108 | 3840 | REAL winds(klon,klev) | |
| 109 | |||
| 110 | ! Local | ||
| 111 | !------- | ||
| 112 | |||
| 113 | INCLUDE "clesphys.h" | ||
| 114 | |||
| 115 | 3840 | REAL q2(klon, klev+1) | |
| 116 | 3840 | REAL kmpre(klon, klev+1), tmp2, qpre | |
| 117 | 3840 | REAL mpre(klon, klev+1) | |
| 118 | REAL kq(klon, klev+1) | ||
| 119 | 3840 | REAL ff(klon, klev+1), delta(klon, klev+1) | |
| 120 | 3840 | REAL aa(klon, klev+1), aa0, aa1 | |
| 121 | INTEGER nlay, nlev | ||
| 122 | |||
| 123 | LOGICAL,SAVE :: hboville=.TRUE. | ||
| 124 | REAL,SAVE :: viscom,viscoh | ||
| 125 | !$OMP THREADPRIVATE( hboville,viscom,viscoh) | ||
| 126 | INTEGER ig, jg, k | ||
| 127 | REAL ri, zrif, zalpha, zsm, zsn | ||
| 128 | 3840 | REAL rif(klon, klev+1), sm(klon, klev+1), alpha(klon, klev) | |
| 129 | 3840 | REAL m2(klon, klev+1), dz(klon, klev+1), zq, n2(klon, klev+1) | |
| 130 | 3840 | REAL dtetadz(klon, klev+1) | |
| 131 | REAL m2cstat, mcstat, kmcstat | ||
| 132 | 3840 | REAL l(klon, klev+1) | |
| 133 | 3840 | REAL zz(klon, klev+1) | |
| 134 | INTEGER iter | ||
| 135 | 3840 | REAL dissip(klon,klev), tkeprov,tkeexp, shear(klon,klev), buoy(klon,klev) | |
| 136 | REAL :: disseff | ||
| 137 | |||
| 138 | REAL,SAVE :: ric0,ric,rifc, b1, kap | ||
| 139 | !$OMP THREADPRIVATE(ric0,ric,rifc,b1,kap) | ||
| 140 | DATA b1, kap/16.6, 0.4/ | ||
| 141 | REAL,SAVE :: seuilsm, seuilalpha | ||
| 142 | !$OMP THREADPRIVATE(seuilsm, seuilalpha) | ||
| 143 | REAL,SAVE :: lmixmin | ||
| 144 | !$OMP THREADPRIVATE(lmixmin) | ||
| 145 | LOGICAL, SAVE :: new_yamada4 | ||
| 146 | INTEGER, SAVE :: yamada4_num | ||
| 147 | !$OMP THREADPRIVATE(new_yamada4,yamada4_num) | ||
| 148 | REAL, SAVE :: yun,ydeux | ||
| 149 | !$OMP THREADPRIVATE(yun,ydeux) | ||
| 150 | |||
| 151 | REAL frif, falpha, fsm | ||
| 152 | REAL rino(klon, klev+1), smyam(klon, klev), styam(klon, klev), & | ||
| 153 | lyam(klon, klev), knyam(klon, klev), w2yam(klon, klev), t2yam(klon, klev) | ||
| 154 | LOGICAL, SAVE :: firstcall = .TRUE. | ||
| 155 | !$OMP THREADPRIVATE(firstcall) | ||
| 156 | |||
| 157 | CHARACTER (len = 20) :: modname = 'yamada4' | ||
| 158 | CHARACTER (len = 80) :: abort_message | ||
| 159 | |||
| 160 | |||
| 161 | |||
| 162 | ! Fonctions utilis??es | ||
| 163 | !-------------------- | ||
| 164 | |||
| 165 | frif(ri) = 0.6588*(ri+0.1776-sqrt(ri*ri-0.3221*ri+0.03156)) | ||
| 166 | falpha(ri) = 1.318*(0.2231-ri)/(0.2341-ri) | ||
| 167 | fsm(ri) = 1.96*(0.1912-ri)*(0.2341-ri)/((1.-ri)*(0.2231-ri)) | ||
| 168 | |||
| 169 | |||
| 170 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 1919 times.
|
1920 | IF (firstcall) THEN |
| 171 | ! Seuil dans le code de turbulence | ||
| 172 | 1 | new_yamada4=.false. | |
| 173 | 1 | CALL getin_p('new_yamada4',new_yamada4) | |
| 174 | |||
| 175 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | IF (new_yamada4) THEN |
| 176 | ! Corrections et reglages issus du travail de these d'Etienne Vignon. | ||
| 177 | 1 | ric=0.143 ! qui donne des valeurs proches des seuils proposes | |
| 178 | ! dans YAMADA 1983 : sm=0.0845 (0.085 dans Y83) | ||
| 179 | ! sm=1.1213 (1.12 dans Y83) | ||
| 180 | 1 | CALL getin_p('yamada4_ric',ric) | |
| 181 | 1 | ric0=0.19489 ! ric=0.195 originalement, mais produisait sm<0 | |
| 182 | 1 | ric=min(ric,ric0) ! Au dela de ric0, sm devient n??gatif | |
| 183 | 1 | rifc=frif(ric) | |
| 184 | 1 | seuilsm=fsm(frif(ric)) | |
| 185 | 1 | seuilalpha=falpha(frif(ric)) | |
| 186 | 1 | yun=1. | |
| 187 | 1 | ydeux=2. | |
| 188 | 1 | hboville=.FALSE. | |
| 189 | 1 | viscom=1.46E-5 | |
| 190 | 1 | viscoh=2.06E-5 | |
| 191 | !lmixmin=1.0E-3 | ||
| 192 | 1 | lmixmin=0. | |
| 193 | 1 | yamada4_num=5 | |
| 194 | ELSE | ||
| 195 | ✗ | ric=0.195 | |
| 196 | ✗ | rifc=0.191 | |
| 197 | ✗ | seuilalpha=1.12 | |
| 198 | ✗ | seuilsm=0.085 | |
| 199 | ✗ | yun=2. | |
| 200 | ✗ | ydeux=1. | |
| 201 | ✗ | hboville=.TRUE. | |
| 202 | ✗ | viscom=0. | |
| 203 | ✗ | viscoh=0. | |
| 204 | ✗ | lmixmin=1. | |
| 205 | ✗ | yamada4_num=0 | |
| 206 | ENDIF | ||
| 207 | |||
| 208 | 1 | WRITE(lunout,*)'YAMADA4 RIc, RIfc, Sm_min, Alpha_min',ric,rifc,seuilsm,seuilalpha | |
| 209 | 1 | firstcall = .FALSE. | |
| 210 | 1 | CALL getin_p('lmixmin',lmixmin) | |
| 211 | 1 | CALL getin_p('yamada4_hboville',hboville) | |
| 212 | 1 | CALL getin_p('yamada4_num',yamada4_num) | |
| 213 | END IF | ||
| 214 | |||
| 215 | |||
| 216 | |||
| 217 | !=============================================================================== | ||
| 218 | ! Flags, tests et ??valuations de constantes | ||
| 219 | !=============================================================================== | ||
| 220 | |||
| 221 | ! On utilise ou non la routine de Holstalg Boville pour les cas tres stables | ||
| 222 | |||
| 223 | |||
| 224 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | IF (.NOT. (iflag_pbl>=6 .AND. iflag_pbl<=12)) THEN |
| 225 | ✗ | abort_message='probleme de coherence dans appel a MY' | |
| 226 | ✗ | CALL abort_physic(modname,abort_message,1) | |
| 227 | END IF | ||
| 228 | |||
| 229 | |||
| 230 | 1920 | nlay = klev | |
| 231 | 1920 | nlev = klev + 1 | |
| 232 | |||
| 233 | |||
| 234 | !======================================================================== | ||
| 235 | ! Calcul des increments verticaux | ||
| 236 | !========================================================================= | ||
| 237 | |||
| 238 | |||
| 239 | ! Attention: zlev n'est pas declare a nlev | ||
| 240 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO ig = 1, ngrid |
| 241 | 790372 | zlev(ig, nlev) = zlay(ig, nlay) + (zlay(ig,nlay)-zlev(ig,nlev-1)) | |
| 242 | END DO | ||
| 243 | |||
| 244 | |||
| 245 |
2/2✓ Branch 0 taken 74880 times.
✓ Branch 1 taken 1920 times.
|
76800 | DO k = 1, nlay |
| 246 |
2/2✓ Branch 0 taken 30749628 times.
✓ Branch 1 taken 74880 times.
|
30826428 | DO ig = 1, ngrid |
| 247 | 30824508 | unsdz(ig, k) = 1.E+0/(zlev(ig,k+1)-zlev(ig,k)) | |
| 248 | END DO | ||
| 249 | END DO | ||
| 250 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO ig = 1, ngrid |
| 251 | 790372 | unsdzdec(ig, 1) = 1.E+0/(zlay(ig,1)-zlev(ig,1)) | |
| 252 | END DO | ||
| 253 |
2/2✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
|
74880 | DO k = 2, nlay |
| 254 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30036056 | DO ig = 1, ngrid |
| 255 | 30034136 | unsdzdec(ig, k) = 1.E+0/(zlay(ig,k)-zlay(ig,k-1)) | |
| 256 | END DO | ||
| 257 | END DO | ||
| 258 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO ig = 1, ngrid |
| 259 | 790372 | unsdzdec(ig, nlay+1) = 1.E+0/(zlev(ig,nlay+1)-zlay(ig,nlay)) | |
| 260 | END DO | ||
| 261 | |||
| 262 | !========================================================================= | ||
| 263 | ! Richardson number and stability functions | ||
| 264 | !========================================================================= | ||
| 265 | |||
| 266 | ! initialize arrays: | ||
| 267 | |||
| 268 |
4/4✓ Branch 0 taken 76800 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 31538080 times.
✓ Branch 3 taken 76800 times.
|
31616800 | m2(1:ngrid, :) = 0.0 |
| 269 |
4/4✓ Branch 0 taken 76800 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 31538080 times.
✓ Branch 3 taken 76800 times.
|
31616800 | sm(1:ngrid, :) = 0.0 |
| 270 |
4/4✓ Branch 0 taken 76800 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 31538080 times.
✓ Branch 3 taken 76800 times.
|
31616800 | rif(1:ngrid, :) = 0.0 |
| 271 | |||
| 272 | !------------------------------------------------------------ | ||
| 273 |
2/2✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
|
74880 | DO k = 2, klev |
| 274 | |||
| 275 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30036056 | DO ig = 1, ngrid |
| 276 | 29961176 | dz(ig, k) = zlay(ig, k) - zlay(ig, k-1) | |
| 277 | m2(ig, k) = ((u(ig,k)-u(ig,k-1))**2+(v(ig,k)-v(ig, & | ||
| 278 | 29961176 | k-1))**2)/(dz(ig,k)*dz(ig,k)) | |
| 279 | 29961176 | dtetadz(ig, k) = (teta(ig,k)-teta(ig,k-1))/dz(ig, k) | |
| 280 | 29961176 | n2(ig, k) = g*2.*dtetadz(ig, k)/(teta(ig,k-1)+teta(ig,k)) | |
| 281 | 29961176 | ri = n2(ig, k)/max(m2(ig,k), 1.E-10) | |
| 282 |
2/2✓ Branch 0 taken 960908 times.
✓ Branch 1 taken 29000268 times.
|
29961176 | IF (ri<ric) THEN |
| 283 | 960908 | rif(ig, k) = frif(ri) | |
| 284 | ELSE | ||
| 285 | 29000268 | rif(ig, k) = rifc | |
| 286 | END IF | ||
| 287 |
1/2✓ Branch 0 taken 29961176 times.
✗ Branch 1 not taken.
|
29961176 | if (new_yamada4) then |
| 288 | 29961176 | alpha(ig, k) = max(falpha(rif(ig,k)),seuilalpha) | |
| 289 | 29961176 | sm(ig, k) = max(fsm(rif(ig,k)),seuilsm) | |
| 290 | else | ||
| 291 | ✗ | IF (rif(ig,k)<0.16) THEN | |
| 292 | ✗ | alpha(ig, k) = falpha(rif(ig,k)) | |
| 293 | ✗ | sm(ig, k) = fsm(rif(ig,k)) | |
| 294 | ELSE | ||
| 295 | ✗ | alpha(ig, k) = seuilalpha | |
| 296 | ✗ | sm(ig, k) = seuilsm | |
| 297 | END IF | ||
| 298 | |||
| 299 | end if | ||
| 300 | 30034136 | zz(ig, k) = b1*m2(ig, k)*(1.-rif(ig,k))*sm(ig, k) | |
| 301 | END DO | ||
| 302 | END DO | ||
| 303 | |||
| 304 | |||
| 305 | |||
| 306 | |||
| 307 | |||
| 308 | !======================================================================= | ||
| 309 | ! DIFFERENT TYPES DE SCHEMA de YAMADA | ||
| 310 | !======================================================================= | ||
| 311 | |||
| 312 | ! On commence par calculer q2 a partir de la tke | ||
| 313 | |||
| 314 |
1/2✓ Branch 0 taken 1920 times.
✗ Branch 1 not taken.
|
1920 | IF (new_yamada4) THEN |
| 315 |
2/2✓ Branch 0 taken 76800 times.
✓ Branch 1 taken 1920 times.
|
78720 | DO k=1,klev+1 |
| 316 |
2/2✓ Branch 0 taken 31538080 times.
✓ Branch 1 taken 76800 times.
|
31616800 | q2(1:ngrid,k)=tke(1:ngrid,k)*ydeux |
| 317 | ENDDO | ||
| 318 | ELSE | ||
| 319 | ✗ | DO k=1,klev+1 | |
| 320 | ✗ | q2(1:ngrid,k)=tke(1:ngrid,k) | |
| 321 | ENDDO | ||
| 322 | ENDIF | ||
| 323 | |||
| 324 | ! ==================================================================== | ||
| 325 | ! Computing the mixing length | ||
| 326 | ! ==================================================================== | ||
| 327 | |||
| 328 | |||
| 329 | 1920 | CALL mixinglength(ni,nsrf,ngrid,iflag_pbl,pbl_lmixmin_alpha,lmixmin,zlay,zlev,u,v,q2,n2, l) | |
| 330 | |||
| 331 | |||
| 332 | !-------------- | ||
| 333 | ! Yamada 2.0 | ||
| 334 | !-------------- | ||
| 335 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | IF (iflag_pbl==6) THEN |
| 336 | |||
| 337 | ✗ | DO k = 2, klev | |
| 338 | ✗ | q2(1:ngrid, k) = l(1:ngrid, k)**2*zz(1:ngrid, k) | |
| 339 | END DO | ||
| 340 | |||
| 341 | |||
| 342 | !------------------ | ||
| 343 | ! Yamada 2.Fournier | ||
| 344 | !------------------ | ||
| 345 | |||
| 346 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | ELSE IF (iflag_pbl==7) THEN |
| 347 | |||
| 348 | |||
| 349 | ! Calcul de l, km, au pas precedent | ||
| 350 | !.................................... | ||
| 351 | ✗ | DO k = 2, klev | |
| 352 | ✗ | DO ig = 1, ngrid | |
| 353 | ✗ | delta(ig, k) = q2(ig, k)/(l(ig,k)**2*sm(ig,k)) | |
| 354 | ✗ | kmpre(ig, k) = l(ig, k)*sqrt(q2(ig,k))*sm(ig, k) | |
| 355 | ✗ | mpre(ig, k) = sqrt(m2(ig,k)) | |
| 356 | END DO | ||
| 357 | END DO | ||
| 358 | |||
| 359 | ✗ | DO k = 2, klev - 1 | |
| 360 | ✗ | DO ig = 1, ngrid | |
| 361 | ✗ | m2cstat = max(alpha(ig,k)*n2(ig,k)+delta(ig,k)/b1, 1.E-12) | |
| 362 | ✗ | mcstat = sqrt(m2cstat) | |
| 363 | |||
| 364 | ! Puis on ecrit la valeur de q qui annule l'equation de m supposee en q3 | ||
| 365 | !......................................................................... | ||
| 366 | |||
| 367 | ✗ | IF (k==2) THEN | |
| 368 | kmcstat = 1.E+0/mcstat*(unsdz(ig,k)*kmpre(ig,k+1)*mpre(ig,k+1)+ & | ||
| 369 | unsdz(ig,k-1)*cd(ig)*(sqrt(u(ig,3)**2+v(ig,3)**2)-mcstat/unsdzdec & | ||
| 370 | (ig,k)-mpre(ig,k+1)/unsdzdec(ig,k+1))**2)/(unsdz(ig,k)+unsdz(ig,k & | ||
| 371 | ✗ | -1)) | |
| 372 | ELSE | ||
| 373 | kmcstat = 1.E+0/mcstat*(unsdz(ig,k)*kmpre(ig,k+1)*mpre(ig,k+1)+ & | ||
| 374 | unsdz(ig,k-1)*kmpre(ig,k-1)*mpre(ig,k-1))/ & | ||
| 375 | ✗ | (unsdz(ig,k)+unsdz(ig,k-1)) | |
| 376 | END IF | ||
| 377 | |||
| 378 | ✗ | tmp2 = kmcstat/(sm(ig,k)/q2(ig,k))/l(ig, k) | |
| 379 | ✗ | q2(ig, k) = max(tmp2, 1.E-12)**(2./3.) | |
| 380 | |||
| 381 | END DO | ||
| 382 | END DO | ||
| 383 | |||
| 384 | |||
| 385 | ! ------------------------ | ||
| 386 | ! Yamada 2.5 a la Didi | ||
| 387 | !------------------------- | ||
| 388 | |||
| 389 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | ELSE IF (iflag_pbl==8 .OR. iflag_pbl==9) THEN |
| 390 | |||
| 391 | ! Calcul de l, km, au pas precedent | ||
| 392 | !.................................... | ||
| 393 | ✗ | DO k = 2, klev | |
| 394 | ✗ | DO ig = 1, ngrid | |
| 395 | ✗ | delta(ig, k) = q2(ig, k)/(l(ig,k)**2*sm(ig,k)) | |
| 396 | ✗ | IF (delta(ig,k)<1.E-20) THEN | |
| 397 | ✗ | delta(ig, k) = 1.E-20 | |
| 398 | END IF | ||
| 399 | ✗ | km(ig, k) = l(ig, k)*sqrt(q2(ig,k))*sm(ig, k) | |
| 400 | ✗ | aa0 = (m2(ig,k)-alpha(ig,k)*n2(ig,k)-delta(ig,k)/b1) | |
| 401 | ✗ | aa1 = (m2(ig,k)*(1.-rif(ig,k))-delta(ig,k)/b1) | |
| 402 | ✗ | aa(ig, k) = aa1*dt/(delta(ig,k)*l(ig,k)) | |
| 403 | qpre = sqrt(q2(ig,k)) | ||
| 404 | ✗ | IF (aa(ig,k)>0.) THEN | |
| 405 | ✗ | q2(ig, k) = (qpre+aa(ig,k)*qpre*qpre)**2 | |
| 406 | ELSE | ||
| 407 | ✗ | q2(ig, k) = (qpre/(1.-aa(ig,k)*qpre))**2 | |
| 408 | END IF | ||
| 409 | ! else ! iflag_pbl=9 | ||
| 410 | ! if (aa(ig,k)*qpre.gt.0.9) then | ||
| 411 | ! q2(ig,k)=(qpre*10.)**2 | ||
| 412 | ! else | ||
| 413 | ! q2(ig,k)=(qpre/(1.-aa(ig,k)*qpre))**2 | ||
| 414 | ! endif | ||
| 415 | ! endif | ||
| 416 | ✗ | q2(ig, k) = min(max(q2(ig,k),1.E-10), 1.E4) | |
| 417 | END DO | ||
| 418 | END DO | ||
| 419 | |||
| 420 |
1/2✓ Branch 0 taken 1920 times.
✗ Branch 1 not taken.
|
1920 | ELSE IF (iflag_pbl>=10) THEN |
| 421 | |||
| 422 |
4/4✓ Branch 0 taken 74880 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 74430720 times.
✓ Branch 3 taken 74880 times.
|
74507520 | shear(:,:)=0. |
| 423 |
4/4✓ Branch 0 taken 74880 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 74430720 times.
✓ Branch 3 taken 74880 times.
|
74507520 | buoy(:,:)=0. |
| 424 |
4/4✓ Branch 0 taken 74880 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 74430720 times.
✓ Branch 3 taken 74880 times.
|
74507520 | dissip(:,:)=0. |
| 425 |
4/4✓ Branch 0 taken 76800 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 76339200 times.
✓ Branch 3 taken 76800 times.
|
76417920 | km(:,:)=0. |
| 426 | |||
| 427 |
1/2✓ Branch 0 taken 1920 times.
✗ Branch 1 not taken.
|
1920 | IF (yamada4_num>=1) THEN |
| 428 | |||
| 429 |
2/2✓ Branch 0 taken 71040 times.
✓ Branch 1 taken 1920 times.
|
72960 | DO k = 2, klev - 1 |
| 430 |
2/2✓ Branch 0 taken 29172724 times.
✓ Branch 1 taken 71040 times.
|
29245684 | DO ig=1,ngrid |
| 431 | 29172724 | q2(ig, k) = min(max(q2(ig,k),1.E-10), 1.E4) | |
| 432 | 29172724 | km(ig, k) = l(ig, k)*sqrt(q2(ig,k))*sm(ig, k) | |
| 433 | 29172724 | shear(ig,k)=km(ig, k)*m2(ig, k) | |
| 434 | 29172724 | buoy(ig,k)=km(ig, k)*m2(ig, k)*(-1.*rif(ig,k)) | |
| 435 | ! dissip(ig,k)=min(max(((sqrt(q2(ig,k)))**3)/(b1*l(ig,k)),1.E-12),1.E4) | ||
| 436 | 29243764 | dissip(ig,k)=((sqrt(q2(ig,k)))**3)/(b1*l(ig,k)) | |
| 437 | ENDDO | ||
| 438 | ENDDO | ||
| 439 | |||
| 440 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | IF (yamada4_num==1) THEN ! Schema du MAR tel quel |
| 441 | ✗ | DO k = 2, klev - 1 | |
| 442 | ✗ | DO ig=1,ngrid | |
| 443 | ✗ | tkeprov=q2(ig,k)/ydeux | |
| 444 | tkeprov= tkeprov* & | ||
| 445 | & (tkeprov+dt*(shear(ig,k)+max(0.,buoy(ig,k))))/ & | ||
| 446 | ✗ | & (tkeprov+dt*((-1.)*min(0.,buoy(ig,k))+dissip(ig,k))) | |
| 447 | ✗ | q2(ig,k)=tkeprov*ydeux | |
| 448 | ENDDO | ||
| 449 | ENDDO | ||
| 450 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | ELSE IF (yamada4_num==2) THEN ! version modifiee avec integration exacte pour la dissipation |
| 451 | ✗ | DO k = 2, klev - 1 | |
| 452 | ✗ | DO ig=1,ngrid | |
| 453 | ✗ | tkeprov=q2(ig,k)/ydeux | |
| 454 | ✗ | disseff=dissip(ig,k)-min(0.,buoy(ig,k)) | |
| 455 | ✗ | tkeprov = tkeprov/(1.+dt*disseff/(2.*tkeprov))**2 | |
| 456 | ✗ | tkeprov= tkeprov+dt*(shear(ig,k)+max(0.,buoy(ig,k))) | |
| 457 | ✗ | q2(ig,k)=tkeprov*ydeux | |
| 458 | ! En cas stable, on traite la flotabilite comme la | ||
| 459 | ! dissipation, en supposant que buoy/q2^3 est constant. | ||
| 460 | ! Puis on prend la solution exacte | ||
| 461 | ENDDO | ||
| 462 | ENDDO | ||
| 463 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | ELSE IF (yamada4_num==3) THEN ! version modifiee avec integration exacte pour la dissipation |
| 464 | ✗ | DO k = 2, klev - 1 | |
| 465 | ✗ | DO ig=1,ngrid | |
| 466 | ✗ | tkeprov=q2(ig,k)/ydeux | |
| 467 | ✗ | disseff=dissip(ig,k)-min(0.,buoy(ig,k)) | |
| 468 | ✗ | tkeprov=tkeprov*exp(-dt*disseff/tkeprov) | |
| 469 | ✗ | tkeprov= tkeprov+dt*(shear(ig,k)+max(0.,buoy(ig,k))) | |
| 470 | ✗ | q2(ig,k)=tkeprov*ydeux | |
| 471 | ! En cas stable, on traite la flotabilite comme la | ||
| 472 | ! dissipation, en supposant que buoy/q2^3 est constant. | ||
| 473 | ! Puis on prend la solution exacte | ||
| 474 | ENDDO | ||
| 475 | ENDDO | ||
| 476 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | ELSE IF (yamada4_num==4) THEN ! version modifiee avec integration exacte pour la dissipation |
| 477 | ✗ | DO k = 2, klev - 1 | |
| 478 | ✗ | DO ig=1,ngrid | |
| 479 | ✗ | tkeprov=q2(ig,k)/ydeux | |
| 480 | ✗ | tkeprov= tkeprov+dt*(shear(ig,k)+max(0.,buoy(ig,k))) | |
| 481 | tkeprov= tkeprov* & | ||
| 482 | & tkeprov/ & | ||
| 483 | ✗ | & (tkeprov+dt*((-1.)*min(0.,buoy(ig,k))+dissip(ig,k))) | |
| 484 | ✗ | q2(ig,k)=tkeprov*ydeux | |
| 485 | ! En cas stable, on traite la flotabilite comme la | ||
| 486 | ! dissipation, en supposant que buoy/q2^3 est constant. | ||
| 487 | ! Puis on prend la solution exacte | ||
| 488 | ENDDO | ||
| 489 | ENDDO | ||
| 490 | |||
| 491 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
| 492 | !! Attention, yamada4_num=5 est inexacte car néglige les termes de flottabilité | ||
| 493 | !! en conditions instables | ||
| 494 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
| 495 |
1/2✓ Branch 0 taken 1920 times.
✗ Branch 1 not taken.
|
1920 | ELSE IF (yamada4_num==5) THEN ! version modifiee avec integration exacte pour la dissipation |
| 496 |
2/2✓ Branch 0 taken 1920 times.
✓ Branch 1 taken 71040 times.
|
72960 | DO k = 2, klev - 1 |
| 497 |
2/2✓ Branch 0 taken 29172724 times.
✓ Branch 1 taken 71040 times.
|
29245684 | DO ig=1,ngrid |
| 498 | 29172724 | tkeprov=q2(ig,k)/ydeux | |
| 499 | |||
| 500 | ! if(ifl_pbltree .eq. 0) then | ||
| 501 | ! disseff=dissip(ig,k)-min(0.,buoy(ig,k)) | ||
| 502 | ! tkeexp=exp(-dt*disseff/tkeprov) | ||
| 503 | ! tkeprov= shear(ig,k)*tkeprov/disseff*(1.-tkeexp)+tkeprov*tkeexp | ||
| 504 | ! else | ||
| 505 | !FC on ajoute la dissipation due aux arbres | ||
| 506 | 29172724 | disseff=dissip(ig,k)-min(0.,buoy(ig,k)) + drgpro(ig,k)*tkeprov | |
| 507 | 29172724 | tkeexp=exp(-dt*disseff/tkeprov) | |
| 508 | ! on prend en compte la tke cree par les arbres | ||
| 509 | 29172724 | winds(ig,k)=sqrt(u(ig,k)**2+v(ig,k)**2) | |
| 510 | tkeprov= (shear(ig,k)+ & | ||
| 511 | 29172724 | & drgpro(ig,k)*(winds(ig,k))**3)*tkeprov/disseff*(1.-tkeexp)+tkeprov*tkeexp | |
| 512 | ! endif | ||
| 513 | |||
| 514 | 29243764 | q2(ig,k)=tkeprov*ydeux | |
| 515 | |||
| 516 | ! En cas stable, on traite la flotabilite comme la | ||
| 517 | ! dissipation, en supposant que buoy/q2^3 est constant. | ||
| 518 | ! Puis on prend la solution exacte | ||
| 519 | ENDDO | ||
| 520 | ENDDO | ||
| 521 | ✗ | ELSE IF (yamada4_num==6) THEN ! version modifiee avec integration exacte pour la dissipation | |
| 522 | ✗ | DO k = 2, klev - 1 | |
| 523 | ✗ | DO ig=1,ngrid | |
| 524 | !tkeprov=q2(ig,k)/ydeux | ||
| 525 | !tkeprov=tkeprov+max(buoy(ig,k)+shear(ig,k),0.)*dt | ||
| 526 | !disseff=dissip(ig,k)-min(0.,buoy(ig,k)+shear(ig,k)) | ||
| 527 | !tkeexp=exp(-dt*disseff/tkeprov) | ||
| 528 | !tkeprov= tkeprov*tkeexp | ||
| 529 | !q2(ig,k)=tkeprov*ydeux | ||
| 530 | ! En cas stable, on traite la flotabilite comme la | ||
| 531 | ! dissipation, en supposant que dissipeff/TKE est constant. | ||
| 532 | ! Puis on prend la solution exacte | ||
| 533 | ! | ||
| 534 | ! With drag and dissipation from high vegetation (EV & FC, 05/10/2020) | ||
| 535 | ✗ | winds(ig,k)=sqrt(u(ig,k)**2+v(ig,k)**2) | |
| 536 | ✗ | tkeprov=q2(ig,k)/ydeux | |
| 537 | ✗ | tkeprov=tkeprov+max(buoy(ig,k)+shear(ig,k)+drgpro(ig,k)*(winds(ig,k))**3,0.)*dt | |
| 538 | ✗ | disseff=dissip(ig,k)-min(0.,buoy(ig,k)+shear(ig,k)+drgpro(ig,k)*(winds(ig,k))**3) + drgpro(ig,k)*tkeprov | |
| 539 | ✗ | tkeexp=exp(-dt*disseff/tkeprov) | |
| 540 | ✗ | tkeprov= tkeprov*tkeexp | |
| 541 | ✗ | q2(ig,k)=tkeprov*ydeux | |
| 542 | |||
| 543 | ENDDO | ||
| 544 | ENDDO | ||
| 545 | ENDIF | ||
| 546 | |||
| 547 |
2/2✓ Branch 0 taken 1920 times.
✓ Branch 1 taken 71040 times.
|
72960 | DO k = 2, klev - 1 |
| 548 |
2/2✓ Branch 0 taken 29172724 times.
✓ Branch 1 taken 71040 times.
|
29245684 | DO ig=1,ngrid |
| 549 | 29243764 | q2(ig, k) = min(max(q2(ig,k),1.E-10), 1.E4) | |
| 550 | ENDDO | ||
| 551 | ENDDO | ||
| 552 | |||
| 553 | ELSE | ||
| 554 | |||
| 555 | ✗ | DO k = 2, klev - 1 | |
| 556 | ✗ | km(1:ngrid, k) = l(1:ngrid, k)*sqrt(q2(1:ngrid,k))*sm(1:ngrid, k) | |
| 557 | ✗ | q2(1:ngrid, k) = q2(1:ngrid, k) + ydeux*dt*km(1:ngrid, k)*m2(1:ngrid, k)*(1.-rif(1:ngrid,k)) | |
| 558 | ! q2(1:ngrid, k) = q2(1:ngrid, k) + dt*km(1:ngrid, k)*m2(1:ngrid, k)*(1.-rif(1:ngrid,k)) | ||
| 559 | ✗ | q2(1:ngrid, k) = min(max(q2(1:ngrid,k),1.E-10), 1.E4) | |
| 560 | ✗ | q2(1:ngrid, k) = 1./(1./sqrt(q2(1:ngrid,k))+dt/(yun*l(1:ngrid,k)*b1)) | |
| 561 | ! q2(1:ngrid, k) = 1./(1./sqrt(q2(1:ngrid,k))+dt/(2*l(1:ngrid,k)*b1)) | ||
| 562 | ✗ | q2(1:ngrid, k) = q2(1:ngrid, k)*q2(1:ngrid, k) | |
| 563 | END DO | ||
| 564 | |||
| 565 | ENDIF | ||
| 566 | |||
| 567 | ELSE | ||
| 568 | ✗ | abort_message='Cas nom prevu dans yamada4' | |
| 569 | ✗ | CALL abort_physic(modname,abort_message,1) | |
| 570 | |||
| 571 | END IF ! Fin du cas 8 | ||
| 572 | |||
| 573 | |||
| 574 | ! ==================================================================== | ||
| 575 | ! Calcul des coefficients de melange | ||
| 576 | ! ==================================================================== | ||
| 577 | |||
| 578 |
2/2✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
|
74880 | DO k = 2, klev |
| 579 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30036056 | DO ig = 1, ngrid |
| 580 | 29961176 | zq = sqrt(q2(ig,k)) | |
| 581 | 29961176 | km(ig, k) = l(ig, k)*zq*sm(ig, k) ! For momentum | |
| 582 | 29961176 | kn(ig, k) = km(ig, k)*alpha(ig, k) ! For scalars | |
| 583 | 30034136 | kq(ig, k) = l(ig, k)*zq*0.2 ! For TKE | |
| 584 | END DO | ||
| 585 | END DO | ||
| 586 | |||
| 587 | |||
| 588 | !==================================================================== | ||
| 589 | ! Transport diffusif vertical de la TKE par la TKE | ||
| 590 | !==================================================================== | ||
| 591 | |||
| 592 | |||
| 593 | ! initialize near-surface and top-layer mixing coefficients | ||
| 594 | !........................................................... | ||
| 595 | |||
| 596 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | kq(1:ngrid, 1) = kq(1:ngrid, 2) ! constant (ie no gradient) near the surface |
| 597 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | kq(1:ngrid, klev+1) = 0 ! zero at the top |
| 598 | |||
| 599 | ! Transport diffusif vertical de la TKE. | ||
| 600 | !....................................... | ||
| 601 | |||
| 602 |
1/2✓ Branch 0 taken 1920 times.
✗ Branch 1 not taken.
|
1920 | IF (iflag_pbl>=12) THEN |
| 603 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | q2(1:ngrid, 1) = q2(1:ngrid, 2) |
| 604 | 1920 | CALL vdif_q2(dt, g, rconst, ngrid, plev, temp, kq, q2) | |
| 605 | END IF | ||
| 606 | |||
| 607 | |||
| 608 | !==================================================================== | ||
| 609 | ! Traitement particulier pour les cas tres stables, introduction d'une | ||
| 610 | ! longueur de m??lange minimale | ||
| 611 | !==================================================================== | ||
| 612 | ! | ||
| 613 | ! Reference: Local versus Nonlocal boundary-layer diffusion in a global climate model | ||
| 614 | ! Holtslag A.A.M. and Boville B.A. | ||
| 615 | ! J. Clim., 6, 1825-1842, 1993 | ||
| 616 | |||
| 617 | |||
| 618 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | IF (hboville) THEN |
| 619 | |||
| 620 | |||
| 621 | ✗ | IF (prt_level>1) THEN | |
| 622 | ✗ | WRITE(lunout,*) 'YAMADA4 0' | |
| 623 | END IF | ||
| 624 | |||
| 625 | ✗ | DO ig = 1, ngrid | |
| 626 | ✗ | coriol(ig) = 1.E-4 | |
| 627 | ✗ | pblhmin(ig) = 0.07*ustar(ig)/max(abs(coriol(ig)), 2.546E-5) | |
| 628 | END DO | ||
| 629 | |||
| 630 | IF (1==1) THEN | ||
| 631 | ✗ | IF (iflag_pbl==8 .OR. iflag_pbl==10) THEN | |
| 632 | |||
| 633 | ✗ | DO k = 2, klev | |
| 634 | ✗ | DO ig = 1, ngrid | |
| 635 | ✗ | IF (teta(ig,2)>teta(ig,1)) THEN | |
| 636 | ✗ | qmin = ustar(ig)*(max(1.-zlev(ig,k)/pblhmin(ig),0.))**2 | |
| 637 | ✗ | kmin = kap*zlev(ig, k)*qmin | |
| 638 | ELSE | ||
| 639 | kmin = -1. ! kmin n'est utilise que pour les SL stables. | ||
| 640 | END IF | ||
| 641 | ✗ | IF (kn(ig,k)<kmin .OR. km(ig,k)<kmin) THEN | |
| 642 | |||
| 643 | ✗ | kn(ig, k) = kmin | |
| 644 | ✗ | km(ig, k) = kmin | |
| 645 | ✗ | kq(ig, k) = kmin | |
| 646 | |||
| 647 | ! la longueur de melange est suposee etre l= kap z | ||
| 648 | ! K=l q Sm d'ou q2=(K/l Sm)**2 | ||
| 649 | |||
| 650 | ✗ | q2(ig, k) = (qmin/sm(ig,k))**2 | |
| 651 | END IF | ||
| 652 | END DO | ||
| 653 | END DO | ||
| 654 | |||
| 655 | ELSE | ||
| 656 | ✗ | DO k = 2, klev | |
| 657 | ✗ | DO ig = 1, ngrid | |
| 658 | ✗ | IF (teta(ig,2)>teta(ig,1)) THEN | |
| 659 | ✗ | qmin = ustar(ig)*(max(1.-zlev(ig,k)/pblhmin(ig),0.))**2 | |
| 660 | ✗ | kmin = kap*zlev(ig, k)*qmin | |
| 661 | ELSE | ||
| 662 | kmin = -1. ! kmin n'est utilise que pour les SL stables. | ||
| 663 | END IF | ||
| 664 | ✗ | IF (kn(ig,k)<kmin .OR. km(ig,k)<kmin) THEN | |
| 665 | kn(ig, k) = kmin | ||
| 666 | km(ig, k) = kmin | ||
| 667 | kq(ig, k) = kmin | ||
| 668 | ! la longueur de melange est suposee etre l= kap z | ||
| 669 | ! K=l q Sm d'ou q2=(K/l Sm)**2 | ||
| 670 | ✗ | sm(ig, k) = 1. | |
| 671 | ✗ | alpha(ig, k) = 1. | |
| 672 | ✗ | q2(ig, k) = min((qmin/sm(ig,k))**2, 10.) | |
| 673 | ✗ | zq = sqrt(q2(ig,k)) | |
| 674 | ✗ | km(ig, k) = l(ig, k)*zq*sm(ig, k) | |
| 675 | ✗ | kn(ig, k) = km(ig, k)*alpha(ig, k) | |
| 676 | ✗ | kq(ig, k) = l(ig, k)*zq*0.2 | |
| 677 | END IF | ||
| 678 | END DO | ||
| 679 | END DO | ||
| 680 | END IF | ||
| 681 | |||
| 682 | END IF | ||
| 683 | |||
| 684 | END IF ! hboville | ||
| 685 | |||
| 686 | ! Ajout d'une viscosite moleculaire | ||
| 687 |
4/4✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 29961176 times.
✓ Branch 3 taken 72960 times.
|
30036056 | km(1:ngrid,2:klev)=km(1:ngrid,2:klev)+viscom |
| 688 |
4/4✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 29961176 times.
✓ Branch 3 taken 72960 times.
|
30036056 | kn(1:ngrid,2:klev)=kn(1:ngrid,2:klev)+viscoh |
| 689 |
4/4✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 29961176 times.
✓ Branch 3 taken 72960 times.
|
30036056 | kq(1:ngrid,2:klev)=kq(1:ngrid,2:klev)+viscoh |
| 690 | |||
| 691 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | IF (prt_level>1) THEN |
| 692 | ✗ | WRITE(lunout,*)'YAMADA4 1' | |
| 693 | END IF !(prt_level>1) THEN | ||
| 694 | |||
| 695 | |||
| 696 | !====================================================== | ||
| 697 | ! Estimations de w'2 et T'2 d'apres Abdela et McFarlane | ||
| 698 | !====================================================== | ||
| 699 | ! | ||
| 700 | ! Reference: A New Second-Order Turbulence Closure Scheme for the Planetary Boundary Layer | ||
| 701 | ! Abdella K and McFarlane N | ||
| 702 | ! J. Atmos. Sci., 54, 1850-1867, 1997 | ||
| 703 | |||
| 704 | ! Diagnostique pour stokage | ||
| 705 | !.......................... | ||
| 706 | |||
| 707 | IF (1==0) THEN | ||
| 708 | rino = rif | ||
| 709 | smyam(1:ngrid, 1) = 0. | ||
| 710 | styam(1:ngrid, 1) = 0. | ||
| 711 | lyam(1:ngrid, 1) = 0. | ||
| 712 | knyam(1:ngrid, 1) = 0. | ||
| 713 | w2yam(1:ngrid, 1) = 0. | ||
| 714 | t2yam(1:ngrid, 1) = 0. | ||
| 715 | |||
| 716 | smyam(1:ngrid, 2:klev) = sm(1:ngrid, 2:klev) | ||
| 717 | styam(1:ngrid, 2:klev) = sm(1:ngrid, 2:klev)*alpha(1:ngrid, 2:klev) | ||
| 718 | lyam(1:ngrid, 2:klev) = l(1:ngrid, 2:klev) | ||
| 719 | knyam(1:ngrid, 2:klev) = kn(1:ngrid, 2:klev) | ||
| 720 | |||
| 721 | |||
| 722 | ! Calcul de w'2 et T'2 | ||
| 723 | !....................... | ||
| 724 | |||
| 725 | w2yam(1:ngrid, 2:klev) = q2(1:ngrid, 2:klev)*0.24 + & | ||
| 726 | lyam(1:ngrid, 2:klev)*5.17*kn(1:ngrid, 2:klev)*n2(1:ngrid, 2:klev)/ & | ||
| 727 | sqrt(q2(1:ngrid,2:klev)) | ||
| 728 | |||
| 729 | t2yam(1:ngrid, 2:klev) = 9.1*kn(1:ngrid, 2:klev)* & | ||
| 730 | dtetadz(1:ngrid, 2:klev)**2/sqrt(q2(1:ngrid,2:klev))* & | ||
| 731 | lyam(1:ngrid, 2:klev) | ||
| 732 | END IF | ||
| 733 | |||
| 734 | |||
| 735 | |||
| 736 | !============================================================================ | ||
| 737 | ! Mise a jour de la tke | ||
| 738 | !============================================================================ | ||
| 739 | |||
| 740 |
1/2✓ Branch 0 taken 1920 times.
✗ Branch 1 not taken.
|
1920 | IF (new_yamada4) THEN |
| 741 |
2/2✓ Branch 0 taken 76800 times.
✓ Branch 1 taken 1920 times.
|
78720 | DO k=1,klev+1 |
| 742 |
2/2✓ Branch 0 taken 31538080 times.
✓ Branch 1 taken 76800 times.
|
31616800 | tke(1:ngrid,k)=q2(1:ngrid,k)/ydeux |
| 743 | ENDDO | ||
| 744 | ELSE | ||
| 745 | ✗ | DO k=1,klev+1 | |
| 746 | ✗ | tke(1:ngrid,k)=q2(1:ngrid,k) | |
| 747 | ENDDO | ||
| 748 | ENDIF | ||
| 749 | |||
| 750 | |||
| 751 | !============================================================================ | ||
| 752 | ! Diagnostique de la dissipation | ||
| 753 | !============================================================================ | ||
| 754 | |||
| 755 | ! Diagnostics | ||
| 756 |
4/4✓ Branch 0 taken 76800 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 31538080 times.
✓ Branch 3 taken 76800 times.
|
31616800 | tke_dissip(1:ngrid,:,nsrf)=0. |
| 757 | ! DO k=2,klev | ||
| 758 | ! DO ig=1,ngrid | ||
| 759 | ! jg=ni(ig) | ||
| 760 | ! tke_dissip(jg,k,nsrf)=dissip(ig,k) | ||
| 761 | ! ENDDO | ||
| 762 | ! ENDDO | ||
| 763 | |||
| 764 | !============================================================================= | ||
| 765 | |||
| 766 | 1920 | RETURN | |
| 767 | |||
| 768 | |||
| 769 | END SUBROUTINE yamada4 | ||
| 770 | |||
| 771 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 772 | |||
| 773 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 774 | 1920 | SUBROUTINE vdif_q2(timestep, gravity, rconst, ngrid, plev, temp, kmy, q2) | |
| 775 | |||
| 776 | USE dimphy | ||
| 777 | IMPLICIT NONE | ||
| 778 | |||
| 779 | ! vdif_q2: subroutine qui calcule la diffusion de la TKE par la TKE | ||
| 780 | ! avec un schema implicite en temps avec | ||
| 781 | ! inversion d'un syst??me tridiagonal | ||
| 782 | ! | ||
| 783 | ! Reference: Description of the interface with the surface and | ||
| 784 | ! the computation of the turbulet diffusion in LMDZ | ||
| 785 | ! Technical note on LMDZ | ||
| 786 | ! Dufresne, J-L, Ghattas, J. and Grandpeix, J-Y | ||
| 787 | ! | ||
| 788 | !============================================================================ | ||
| 789 | ! Declarations | ||
| 790 | !============================================================================ | ||
| 791 | |||
| 792 | REAL plev(klon, klev+1) | ||
| 793 | REAL temp(klon, klev) | ||
| 794 | REAL timestep | ||
| 795 | REAL gravity, rconst | ||
| 796 | 3840 | REAL kstar(klon, klev+1), zz | |
| 797 | REAL kmy(klon, klev+1) | ||
| 798 | REAL q2(klon, klev+1) | ||
| 799 | 3840 | REAL deltap(klon, klev+1) | |
| 800 | 1920 | REAL denom(klon, klev+1), alpha(klon, klev+1), beta(klon, klev+1) | |
| 801 | INTEGER ngrid | ||
| 802 | |||
| 803 | INTEGER i, k | ||
| 804 | |||
| 805 | |||
| 806 | !========================================================================= | ||
| 807 | ! Calcul | ||
| 808 | !========================================================================= | ||
| 809 | |||
| 810 |
2/2✓ Branch 0 taken 1920 times.
✓ Branch 1 taken 74880 times.
|
76800 | DO k = 1, klev |
| 811 |
2/2✓ Branch 0 taken 30749628 times.
✓ Branch 1 taken 74880 times.
|
30826428 | DO i = 1, ngrid |
| 812 | 30749628 | zz = (plev(i,k)+plev(i,k+1))*gravity/(rconst*temp(i,k)) | |
| 813 | kstar(i, k) = 0.125*(kmy(i,k+1)+kmy(i,k))*zz*zz/ & | ||
| 814 | 30824508 | (plev(i,k)-plev(i,k+1))*timestep | |
| 815 | END DO | ||
| 816 | END DO | ||
| 817 | |||
| 818 |
2/2✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
|
74880 | DO k = 2, klev |
| 819 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30036056 | DO i = 1, ngrid |
| 820 | 30034136 | deltap(i, k) = 0.5*(plev(i,k-1)-plev(i,k+1)) | |
| 821 | END DO | ||
| 822 | END DO | ||
| 823 |
2/2✓ Branch 0 taken 1920 times.
✓ Branch 1 taken 788452 times.
|
790372 | DO i = 1, ngrid |
| 824 | 788452 | deltap(i, 1) = 0.5*(plev(i,1)-plev(i,2)) | |
| 825 | 788452 | deltap(i, klev+1) = 0.5*(plev(i,klev)-plev(i,klev+1)) | |
| 826 | 788452 | denom(i, klev+1) = deltap(i, klev+1) + kstar(i, klev) | |
| 827 | 788452 | alpha(i, klev+1) = deltap(i, klev+1)*q2(i, klev+1)/denom(i, klev+1) | |
| 828 | 790372 | beta(i, klev+1) = kstar(i, klev)/denom(i, klev+1) | |
| 829 | END DO | ||
| 830 | |||
| 831 |
2/2✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
|
74880 | DO k = klev, 2, -1 |
| 832 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30036056 | DO i = 1, ngrid |
| 833 | denom(i, k) = deltap(i, k) + (1.-beta(i,k+1))*kstar(i, k) + & | ||
| 834 | 29961176 | kstar(i, k-1) | |
| 835 | 29961176 | alpha(i, k) = (q2(i,k)*deltap(i,k)+kstar(i,k)*alpha(i,k+1))/denom(i, k) | |
| 836 | 30034136 | beta(i, k) = kstar(i, k-1)/denom(i, k) | |
| 837 | END DO | ||
| 838 | END DO | ||
| 839 | |||
| 840 | ! Si on recalcule q2(1) | ||
| 841 | !....................... | ||
| 842 | IF (1==0) THEN | ||
| 843 | DO i = 1, ngrid | ||
| 844 | denom(i, 1) = deltap(i, 1) + (1-beta(i,2))*kstar(i, 1) | ||
| 845 | q2(i, 1) = (q2(i,1)*deltap(i,1)+kstar(i,1)*alpha(i,2))/denom(i, 1) | ||
| 846 | END DO | ||
| 847 | END IF | ||
| 848 | |||
| 849 | |||
| 850 |
2/2✓ Branch 0 taken 74880 times.
✓ Branch 1 taken 1920 times.
|
76800 | DO k = 2, klev + 1 |
| 851 |
2/2✓ Branch 0 taken 30749628 times.
✓ Branch 1 taken 74880 times.
|
30826428 | DO i = 1, ngrid |
| 852 | 30824508 | q2(i, k) = alpha(i, k) + beta(i, k)*q2(i, k-1) | |
| 853 | END DO | ||
| 854 | END DO | ||
| 855 | |||
| 856 | 1920 | RETURN | |
| 857 | END SUBROUTINE vdif_q2 | ||
| 858 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 859 | |||
| 860 | |||
| 861 | |||
| 862 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 863 | ✗ | SUBROUTINE vdif_q2e(timestep, gravity, rconst, ngrid, plev, temp, kmy, q2) | |
| 864 | |||
| 865 | USE dimphy | ||
| 866 | IMPLICIT NONE | ||
| 867 | |||
| 868 | ! vdif_q2e: subroutine qui calcule la diffusion de TKE par la TKE | ||
| 869 | ! avec un schema explicite en temps | ||
| 870 | |||
| 871 | |||
| 872 | !==================================================== | ||
| 873 | ! Declarations | ||
| 874 | !==================================================== | ||
| 875 | |||
| 876 | REAL plev(klon, klev+1) | ||
| 877 | REAL temp(klon, klev) | ||
| 878 | REAL timestep | ||
| 879 | REAL gravity, rconst | ||
| 880 | ✗ | REAL kstar(klon, klev+1), zz | |
| 881 | REAL kmy(klon, klev+1) | ||
| 882 | REAL q2(klon, klev+1) | ||
| 883 | ✗ | REAL deltap(klon, klev+1) | |
| 884 | REAL denom(klon, klev+1), alpha(klon, klev+1), beta(klon, klev+1) | ||
| 885 | INTEGER ngrid | ||
| 886 | INTEGER i, k | ||
| 887 | |||
| 888 | |||
| 889 | !================================================== | ||
| 890 | ! Calcul | ||
| 891 | !================================================== | ||
| 892 | |||
| 893 | ✗ | DO k = 1, klev | |
| 894 | ✗ | DO i = 1, ngrid | |
| 895 | ✗ | zz = (plev(i,k)+plev(i,k+1))*gravity/(rconst*temp(i,k)) | |
| 896 | kstar(i, k) = 0.125*(kmy(i,k+1)+kmy(i,k))*zz*zz/ & | ||
| 897 | ✗ | (plev(i,k)-plev(i,k+1))*timestep | |
| 898 | END DO | ||
| 899 | END DO | ||
| 900 | |||
| 901 | ✗ | DO k = 2, klev | |
| 902 | ✗ | DO i = 1, ngrid | |
| 903 | ✗ | deltap(i, k) = 0.5*(plev(i,k-1)-plev(i,k+1)) | |
| 904 | END DO | ||
| 905 | END DO | ||
| 906 | ✗ | DO i = 1, ngrid | |
| 907 | ✗ | deltap(i, 1) = 0.5*(plev(i,1)-plev(i,2)) | |
| 908 | ✗ | deltap(i, klev+1) = 0.5*(plev(i,klev)-plev(i,klev+1)) | |
| 909 | END DO | ||
| 910 | |||
| 911 | ✗ | DO k = klev, 2, -1 | |
| 912 | ✗ | DO i = 1, ngrid | |
| 913 | q2(i, k) = q2(i, k) + (kstar(i,k)*(q2(i,k+1)-q2(i, & | ||
| 914 | ✗ | k))-kstar(i,k-1)*(q2(i,k)-q2(i,k-1)))/deltap(i, k) | |
| 915 | END DO | ||
| 916 | END DO | ||
| 917 | |||
| 918 | ✗ | DO i = 1, ngrid | |
| 919 | ✗ | q2(i, 1) = q2(i, 1) + (kstar(i,1)*(q2(i,2)-q2(i,1)))/deltap(i, 1) | |
| 920 | q2(i, klev+1) = q2(i, klev+1) + (-kstar(i,klev)*(q2(i,klev+1)-q2(i, & | ||
| 921 | ✗ | klev)))/deltap(i, klev+1) | |
| 922 | END DO | ||
| 923 | |||
| 924 | ✗ | RETURN | |
| 925 | END SUBROUTINE vdif_q2e | ||
| 926 | |||
| 927 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 928 | |||
| 929 | |||
| 930 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
| 931 | |||
| 932 | 1920 | SUBROUTINE mixinglength(ni, nsrf, ngrid,iflag_pbl,pbl_lmixmin_alpha,lmixmin,zlay,zlev,u,v,q2,n2, lmix) | |
| 933 | |||
| 934 | |||
| 935 | |||
| 936 | USE dimphy | ||
| 937 | USE phys_state_var_mod, only: zstd, zsig, zmea | ||
| 938 | USE phys_local_var_mod, only: l_mixmin, l_mix | ||
| 939 | |||
| 940 | ! zstd: ecart type de la'altitud e sous-maille | ||
| 941 | ! zmea: altitude moyenne sous maille | ||
| 942 | ! zsig: pente moyenne de le maille | ||
| 943 | |||
| 944 | USE geometry_mod, only: cell_area | ||
| 945 | ! aire_cell: aire de la maille | ||
| 946 | |||
| 947 | IMPLICIT NONE | ||
| 948 | !************************************************************************* | ||
| 949 | ! Subrourine qui calcule la longueur de m??lange dans le sch??ma de turbulence | ||
| 950 | ! avec la formule de Blackadar | ||
| 951 | ! Calcul d'un minimum en fonction de l'orographie sous-maille: | ||
| 952 | ! L'id??e est la suivante: plus il y a de relief, plus il y a du m??lange | ||
| 953 | ! induit par les circulations meso et submeso ??chelles. | ||
| 954 | ! | ||
| 955 | ! References: * The vertical distribution of wind and turbulent exchange in a neutral atmosphere | ||
| 956 | ! Blackadar A.K. | ||
| 957 | ! J. Geophys. Res., 64, No 8, 1962 | ||
| 958 | ! | ||
| 959 | ! * An evaluation of neutral and convective planetary boundary-layer parametrisations relative | ||
| 960 | ! to large eddy simulations | ||
| 961 | ! Ayotte K et al | ||
| 962 | ! Boundary Layer Meteorology, 79, 131-175, 1996 | ||
| 963 | ! | ||
| 964 | ! | ||
| 965 | ! * Local Similarity in the Stable Boundary Layer and Mixing length Approaches: consistency of concepts | ||
| 966 | ! Van de Wiel B.J.H et al | ||
| 967 | ! Boundary-Lay Meteorol, 128, 103-166, 2008 | ||
| 968 | ! | ||
| 969 | ! | ||
| 970 | ! Histoire: | ||
| 971 | !---------- | ||
| 972 | ! * premi??re r??daction, Etienne et Frederic, 09/06/2016 | ||
| 973 | ! | ||
| 974 | ! *********************************************************************** | ||
| 975 | |||
| 976 | !================================================================== | ||
| 977 | ! Declarations | ||
| 978 | !================================================================== | ||
| 979 | |||
| 980 | ! Inputs | ||
| 981 | !------- | ||
| 982 | INTEGER ni(klon) ! indice sur la grille original (non restreinte) | ||
| 983 | INTEGER nsrf ! Type de surface | ||
| 984 | INTEGER ngrid ! Nombre de points concern??s sur l'horizontal | ||
| 985 | INTEGER iflag_pbl ! Choix du sch??ma de turbulence | ||
| 986 | REAL pbl_lmixmin_alpha ! on active ou non le calcul de la longueur de melange minimum | ||
| 987 | REAL lmixmin ! Minimum absolu de la longueur de m??lange | ||
| 988 | REAL zlay(klon, klev) ! altitude du centre de la couche | ||
| 989 | REAL zlev(klon, klev+1) ! atitude de l'interface inf??rieure de la couche | ||
| 990 | REAL u(klon, klev) ! vitesse du vent zonal | ||
| 991 | REAL v(klon, klev) ! vitesse du vent meridional | ||
| 992 | REAL q2(klon, klev+1) ! energie cin??tique turbulente | ||
| 993 | REAL n2(klon, klev+1) ! frequence de Brunt-Vaisala | ||
| 994 | |||
| 995 | !In/out | ||
| 996 | !------- | ||
| 997 | |||
| 998 | LOGICAL, SAVE :: firstcall = .TRUE. | ||
| 999 | !$OMP THREADPRIVATE(firstcall) | ||
| 1000 | |||
| 1001 | ! Outputs | ||
| 1002 | !--------- | ||
| 1003 | |||
| 1004 | REAL lmix(klon, klev+1) ! Longueur de melange | ||
| 1005 | |||
| 1006 | |||
| 1007 | ! Local | ||
| 1008 | !------- | ||
| 1009 | |||
| 1010 | INTEGER ig,jg, k | ||
| 1011 | 3840 | REAL h_oro(klon) | |
| 1012 | 3840 | REAL hlim(klon) | |
| 1013 | REAL, SAVE :: kap=0.4,kapb=0.4 | ||
| 1014 | !$OMP THREADPRIVATE(kap,kapb) | ||
| 1015 | REAL zq | ||
| 1016 | 3840 | REAL sq(klon), sqz(klon) | |
| 1017 | REAL, ALLOCATABLE, SAVE :: l0(:) | ||
| 1018 | !$OMP THREADPRIVATE(l0) | ||
| 1019 | REAL fl, zzz, zl0, zq2, zn2 | ||
| 1020 | REAL famorti, zzzz, zh_oro, zhlim | ||
| 1021 | 3840 | REAL l1(klon, klev+1), l2(klon,klev+1) | |
| 1022 | 3840 | REAL winds(klon, klev) | |
| 1023 | REAL xcell | ||
| 1024 | REAL zstdslope(klon) | ||
| 1025 | REAL lmax | ||
| 1026 | REAL l2strat, l2neutre, extent | ||
| 1027 | ✗ | REAL l2limit(klon) | |
| 1028 | !=============================================================== | ||
| 1029 | ! Fonctions utiles | ||
| 1030 | !=============================================================== | ||
| 1031 | |||
| 1032 | ! Calcul de l suivant la formule de Blackadar 1962 adapt??e par Ayotte 1996 | ||
| 1033 | !.......................................................................... | ||
| 1034 | |||
| 1035 | fl(zzz, zl0, zq2, zn2) = max(min(l0(ig)*kap*zlev(ig, & | ||
| 1036 | k)/(kap*zlev(ig,k)+l0(ig)),0.5*sqrt(q2(ig,k))/sqrt( & | ||
| 1037 | max(n2(ig,k),1.E-10))), 1.E-5) | ||
| 1038 | |||
| 1039 | ! Fonction d'amortissement de la turbulence au dessus de la montagne | ||
| 1040 | ! On augmente l'amortissement en diminuant la valeur de hlim (extent) dans le code | ||
| 1041 | !..................................................................... | ||
| 1042 | |||
| 1043 | famorti(zzzz, zh_oro, zhlim)=(-1.)*ATAN((zzzz-zh_oro)/(zhlim-zh_oro))*2./3.1416+1. | ||
| 1044 | |||
| 1045 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | IF (ngrid==0) RETURN |
| 1046 | |||
| 1047 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 1919 times.
|
1920 | IF (firstcall) THEN |
| 1048 |
3/6✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 1 times.
|
1 | ALLOCATE (l0(klon)) |
| 1049 | 1 | firstcall = .FALSE. | |
| 1050 | END IF | ||
| 1051 | |||
| 1052 | |||
| 1053 | !===================================================================== | ||
| 1054 | ! CALCUL de la LONGUEUR de m??lange suivant BLACKADAR: l1 | ||
| 1055 | !===================================================================== | ||
| 1056 | |||
| 1057 |
4/4✓ Branch 0 taken 76800 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 31538080 times.
✓ Branch 3 taken 76800 times.
|
31616800 | l1(1:ngrid,:)=0. |
| 1058 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1920 times.
|
1920 | IF (iflag_pbl==8 .OR. iflag_pbl==10) THEN |
| 1059 | |||
| 1060 | |||
| 1061 | ! Iterative computation of l0 | ||
| 1062 | ! This version is kept for iflag_pbl only for convergence | ||
| 1063 | ! with NPv3.1 Cmip5 simulations | ||
| 1064 | !................................................................... | ||
| 1065 | |||
| 1066 | ✗ | DO ig = 1, ngrid | |
| 1067 | ✗ | sq(ig) = 1.E-10 | |
| 1068 | ✗ | sqz(ig) = 1.E-10 | |
| 1069 | END DO | ||
| 1070 | ✗ | DO k = 2, klev - 1 | |
| 1071 | ✗ | DO ig = 1, ngrid | |
| 1072 | ✗ | zq = sqrt(q2(ig,k)) | |
| 1073 | ✗ | sqz(ig) = sqz(ig) + zq*zlev(ig, k)*(zlay(ig,k)-zlay(ig,k-1)) | |
| 1074 | ✗ | sq(ig) = sq(ig) + zq*(zlay(ig,k)-zlay(ig,k-1)) | |
| 1075 | END DO | ||
| 1076 | END DO | ||
| 1077 | ✗ | DO ig = 1, ngrid | |
| 1078 | ✗ | l0(ig) = 0.2*sqz(ig)/sq(ig) | |
| 1079 | END DO | ||
| 1080 | ✗ | DO k = 2, klev | |
| 1081 | ✗ | DO ig = 1, ngrid | |
| 1082 | ✗ | l1(ig, k) = fl(zlev(ig,k), l0(ig), q2(ig,k), n2(ig,k)) | |
| 1083 | END DO | ||
| 1084 | END DO | ||
| 1085 | |||
| 1086 | ELSE | ||
| 1087 | |||
| 1088 | |||
| 1089 | ! In all other case, the assymptotic mixing length l0 is imposed (150m) | ||
| 1090 | !...................................................................... | ||
| 1091 | |||
| 1092 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | l0(1:ngrid) = 150. |
| 1093 |
2/2✓ Branch 0 taken 1920 times.
✓ Branch 1 taken 72960 times.
|
74880 | DO k = 2, klev |
| 1094 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30036056 | DO ig = 1, ngrid |
| 1095 | 30034136 | l1(ig, k) = fl(zlev(ig,k), l0(ig), q2(ig,k), n2(ig,k)) | |
| 1096 | END DO | ||
| 1097 | END DO | ||
| 1098 | |||
| 1099 | END IF | ||
| 1100 | |||
| 1101 | !================================================================================= | ||
| 1102 | ! CALCUL d'une longueur de melange en fonctions de la topographie sous maille: l2 | ||
| 1103 | ! si plb_lmixmin_alpha=TRUE et si on se trouve sur de la terre ( pas actif sur les | ||
| 1104 | ! glacier, la glace de mer et les oc??ans) | ||
| 1105 | !================================================================================= | ||
| 1106 | |||
| 1107 |
4/4✓ Branch 0 taken 76800 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 31538080 times.
✓ Branch 3 taken 76800 times.
|
31616800 | l2(1:ngrid,:)=0.0 |
| 1108 |
4/4✓ Branch 0 taken 76800 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 31538080 times.
✓ Branch 3 taken 76800 times.
|
31616800 | l_mixmin(1:ngrid,:,nsrf)=0. |
| 1109 |
4/4✓ Branch 0 taken 76800 times.
✓ Branch 1 taken 1920 times.
✓ Branch 2 taken 31538080 times.
✓ Branch 3 taken 76800 times.
|
31616800 | l_mix(1:ngrid,:,nsrf)=0. |
| 1110 | |||
| 1111 |
2/2✓ Branch 0 taken 480 times.
✓ Branch 1 taken 1440 times.
|
1920 | IF (nsrf .EQ. 1) THEN |
| 1112 | |||
| 1113 | ! coefficients | ||
| 1114 | !-------------- | ||
| 1115 | |||
| 1116 | extent=2. ! On ??tend l'impact du relief jusqu'?? extent*h, extent >1. | ||
| 1117 | lmax=150. ! Longueur de m??lange max dans l'absolu | ||
| 1118 | |||
| 1119 | ! calculs | ||
| 1120 | !--------- | ||
| 1121 | |||
| 1122 |
2/2✓ Branch 0 taken 247680 times.
✓ Branch 1 taken 480 times.
|
248160 | DO ig=1,ngrid |
| 1123 | |||
| 1124 | ! On calcule la hauteur du relief | ||
| 1125 | !................................. | ||
| 1126 | ! On ne peut pas prendre zstd seulement pour caracteriser le relief sous maille | ||
| 1127 | ! car sur un terrain pentu mais sans relief, zstd est non nul (comme en Antarctique, C. Genthon) | ||
| 1128 | ! On corrige donc zstd avec l'ecart type de l'altitude dans la maille sans relief | ||
| 1129 | ! (en gros, une maille de taille xcell avec une pente constante zstdslope) | ||
| 1130 | 247680 | jg=ni(ig) | |
| 1131 | ! IF (zsig(jg) .EQ. 0.) THEN | ||
| 1132 | ! zstdslope(ig)=0. | ||
| 1133 | ! ELSE | ||
| 1134 | ! xcell=sqrt(cell_area(jg)) | ||
| 1135 | ! zstdslope(ig)=max((xcell*zsig(jg)-zmea(jg))**3 /(3.*zsig(jg)),0.) | ||
| 1136 | ! zstdslope(ig)=sqrt(zstdslope(ig)) | ||
| 1137 | ! END IF | ||
| 1138 | |||
| 1139 | ! h_oro(ig)=max(zstd(jg)-zstdslope(ig),0.) ! Hauteur du relief | ||
| 1140 | 247680 | h_oro(ig)=zstd(jg) | |
| 1141 | 248160 | hlim(ig)=extent*h_oro(ig) | |
| 1142 | ENDDO | ||
| 1143 | |||
| 1144 |
2/2✓ Branch 0 taken 247680 times.
✓ Branch 1 taken 480 times.
|
248160 | l2limit(1:ngrid)=0. |
| 1145 | |||
| 1146 |
2/2✓ Branch 0 taken 480 times.
✓ Branch 1 taken 18240 times.
|
18720 | DO k=2,klev |
| 1147 |
2/2✓ Branch 0 taken 9411840 times.
✓ Branch 1 taken 18240 times.
|
9430560 | DO ig=1,ngrid |
| 1148 | 9411840 | winds(ig,k)=sqrt(u(ig,k)**2+v(ig,k)**2) | |
| 1149 |
2/2✓ Branch 0 taken 453017 times.
✓ Branch 1 taken 8958823 times.
|
9430080 | IF (zlev(ig,k) .LE. h_oro(ig)) THEN ! sous l'orographie |
| 1150 | 453017 | l2strat= kapb*pbl_lmixmin_alpha*winds(ig,k)/sqrt(max(n2(ig,k),1.E-10)) ! si stratifi??, amplitude d'oscillation * kappab (voir Van de Wiel et al 2008) | |
| 1151 | 453017 | l2neutre=kap*zlev(ig,k)*h_oro(ig)/(kap*zlev(ig,k)+h_oro(ig)) ! Dans le cas neutre, formule de blackadar. tend asymptotiquement vers h | |
| 1152 | 453017 | l2neutre=MIN(l2neutre,lmax) ! On majore par lmax | |
| 1153 | 453017 | l2limit(ig)=MIN(l2neutre,l2strat) ! Calcule de l2 (minimum de la longueur en cas neutre et celle en situation stratifi??e) | |
| 1154 | 453017 | l2(ig,k)=l2limit(ig) | |
| 1155 | |||
| 1156 |
2/2✓ Branch 0 taken 255452 times.
✓ Branch 1 taken 8703371 times.
|
8958823 | ELSE IF (zlev(ig,k) .LE. hlim(ig)) THEN ! Si on est au dessus des montagnes, mais affect?? encore par elles |
| 1157 | |||
| 1158 | ! Au dessus des montagnes, on prend la l2limit au sommet des montagnes | ||
| 1159 | ! (la derni??re calcul??e dans la boucle k, vu que k est un indice croissant avec z) | ||
| 1160 | ! et on multiplie l2limit par une fonction qui d??croit entre h et hlim | ||
| 1161 | 255452 | l2(ig,k)=l2limit(ig)*famorti(zlev(ig,k),h_oro(ig), hlim(ig)) | |
| 1162 | ELSE ! Au dessus de extent*h, on prend l2=l0 | ||
| 1163 | 8703371 | l2(ig,k)=0. | |
| 1164 | END IF | ||
| 1165 | ENDDO | ||
| 1166 | ENDDO | ||
| 1167 | ENDIF ! pbl_lmixmin_alpha | ||
| 1168 | |||
| 1169 | !================================================================================== | ||
| 1170 | ! On prend le max entre la longueur de melange de blackadar et celle calcul??e | ||
| 1171 | ! en fonction de la topographie | ||
| 1172 | !=================================================================================== | ||
| 1173 | |||
| 1174 | |||
| 1175 |
2/2✓ Branch 0 taken 76800 times.
✓ Branch 1 taken 1920 times.
|
78720 | DO k=1,klev+1 |
| 1176 |
2/2✓ Branch 0 taken 31538080 times.
✓ Branch 1 taken 76800 times.
|
31616800 | DO ig=1,ngrid |
| 1177 | 31614880 | lmix(ig,k)=MAX(MAX(l1(ig,k), l2(ig,k)),lmixmin) | |
| 1178 | ENDDO | ||
| 1179 | ENDDO | ||
| 1180 | |||
| 1181 | ! Diagnostics | ||
| 1182 | |||
| 1183 |
2/2✓ Branch 0 taken 72960 times.
✓ Branch 1 taken 1920 times.
|
74880 | DO k=2,klev |
| 1184 |
2/2✓ Branch 0 taken 29961176 times.
✓ Branch 1 taken 72960 times.
|
30036056 | DO ig=1,ngrid |
| 1185 | 29961176 | jg=ni(ig) | |
| 1186 | 29961176 | l_mix(jg,k,nsrf)=lmix(ig,k) | |
| 1187 | 30034136 | l_mixmin(jg,k,nsrf)=l2(ig,k) | |
| 1188 | ENDDO | ||
| 1189 | ENDDO | ||
| 1190 |
2/2✓ Branch 0 taken 788452 times.
✓ Branch 1 taken 1920 times.
|
790372 | DO ig=1,ngrid |
| 1191 | 788452 | jg=ni(ig) | |
| 1192 | 790372 | l_mix(jg,1,nsrf)=hlim(ig) | |
| 1193 | ENDDO | ||
| 1194 | |||
| 1195 | |||
| 1196 | |||
| 1197 | 1920 | END SUBROUTINE mixinglength | |
| 1198 |