| Line |
Branch |
Exec |
Source |
| 1 |
|
|
! |
| 2 |
|
|
! $Header$ |
| 3 |
|
|
! |
| 4 |
|
✗ |
SUBROUTINE yamada_c(ngrid,timestep,plev,play & |
| 5 |
|
✗ |
& ,pu,pv,pt,d_u,d_v,d_t,cd,q2,km,kn,kq,d_t_diss,ustar & |
| 6 |
|
|
& ,iflag_pbl) |
| 7 |
|
|
USE dimphy, ONLY: klon, klev |
| 8 |
|
|
USE print_control_mod, ONLY: prt_level |
| 9 |
|
|
USE ioipsl_getin_p_mod, ONLY : getin_p |
| 10 |
|
|
|
| 11 |
|
|
IMPLICIT NONE |
| 12 |
|
|
! |
| 13 |
|
|
! $Header$ |
| 14 |
|
|
! |
| 15 |
|
|
! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre |
| 16 |
|
|
! veillez � n'utiliser que des ! pour les commentaires |
| 17 |
|
|
! et � bien positionner les & des lignes de continuation |
| 18 |
|
|
! (les placer en colonne 6 et en colonne 73) |
| 19 |
|
|
! |
| 20 |
|
|
! |
| 21 |
|
|
! A1.0 Fundamental constants |
| 22 |
|
|
REAL RPI,RCLUM,RHPLA,RKBOL,RNAVO |
| 23 |
|
|
! A1.1 Astronomical constants |
| 24 |
|
|
REAL RDAY,REA,REPSM,RSIYEA,RSIDAY,ROMEGA |
| 25 |
|
|
! A1.1.bis Constantes concernant l'orbite de la Terre: |
| 26 |
|
|
REAL R_ecc, R_peri, R_incl |
| 27 |
|
|
! A1.2 Geoide |
| 28 |
|
|
REAL RA,RG,R1SA |
| 29 |
|
|
! A1.3 Radiation |
| 30 |
|
|
! REAL RSIGMA,RI0 |
| 31 |
|
|
REAL RSIGMA |
| 32 |
|
|
! A1.4 Thermodynamic gas phase |
| 33 |
|
|
REAL RMO3,RMCO2,RMC,RMCH4,RMN2O,RMCFC11,RMCFC12 |
| 34 |
|
|
REAL R,RMD,RMV,RD,RV,RCPD,RCPV,RCVD,RCVV |
| 35 |
|
|
REAL RKAPPA,RETV, eps_w |
| 36 |
|
|
! A1.5,6 Thermodynamic liquid,solid phases |
| 37 |
|
|
REAL RCW,RCS |
| 38 |
|
|
! A1.7 Thermodynamic transition of phase |
| 39 |
|
|
REAL RLVTT,RLSTT,RLMLT,RTT,RATM |
| 40 |
|
|
! A1.8 Curve of saturation |
| 41 |
|
|
REAL RESTT,RALPW,RBETW,RGAMW,RALPS,RBETS,RGAMS |
| 42 |
|
|
REAL RALPD,RBETD,RGAMD |
| 43 |
|
|
! |
| 44 |
|
|
COMMON/YOMCST/RPI ,RCLUM ,RHPLA ,RKBOL ,RNAVO & |
| 45 |
|
|
& ,RDAY ,REA ,REPSM ,RSIYEA,RSIDAY,ROMEGA & |
| 46 |
|
|
& ,R_ecc, R_peri, R_incl & |
| 47 |
|
|
& ,RA ,RG ,R1SA & |
| 48 |
|
|
& ,RSIGMA & |
| 49 |
|
|
& ,R ,RMD ,RMV ,RD ,RV ,RCPD & |
| 50 |
|
|
& ,RMO3 ,RMCO2 ,RMC ,RMCH4 ,RMN2O ,RMCFC11 ,RMCFC12 & |
| 51 |
|
|
& ,RCPV ,RCVD ,RCVV ,RKAPPA,RETV, eps_w & |
| 52 |
|
|
& ,RCW ,RCS & |
| 53 |
|
|
& ,RLVTT ,RLSTT ,RLMLT ,RTT ,RATM & |
| 54 |
|
|
& ,RESTT ,RALPW ,RBETW ,RGAMW ,RALPS ,RBETS ,RGAMS & |
| 55 |
|
|
& ,RALPD ,RBETD ,RGAMD |
| 56 |
|
|
! ------------------------------------------------------------------ |
| 57 |
|
|
!$OMP THREADPRIVATE(/YOMCST/) |
| 58 |
|
|
! |
| 59 |
|
|
! timestep : pas de temps |
| 60 |
|
|
! g : g |
| 61 |
|
|
! zlev : altitude a chaque niveau (interface inferieure de la couche |
| 62 |
|
|
! de meme indice) |
| 63 |
|
|
! zlay : altitude au centre de chaque couche |
| 64 |
|
|
! u,v : vitesse au centre de chaque couche |
| 65 |
|
|
! (en entree : la valeur au debut du pas de temps) |
| 66 |
|
|
! teta : temperature potentielle au centre de chaque couche |
| 67 |
|
|
! (en entree : la valeur au debut du pas de temps) |
| 68 |
|
|
! cd : cdrag |
| 69 |
|
|
! (en entree : la valeur au debut du pas de temps) |
| 70 |
|
|
! q2 : $q^2$ au bas de chaque couche |
| 71 |
|
|
! (en entree : la valeur au debut du pas de temps) |
| 72 |
|
|
! (en sortie : la valeur a la fin du pas de temps) |
| 73 |
|
|
! km : diffusivite turbulente de quantite de mouvement (au bas de chaque |
| 74 |
|
|
! couche) |
| 75 |
|
|
! (en sortie : la valeur a la fin du pas de temps) |
| 76 |
|
|
! kn : diffusivite turbulente des scalaires (au bas de chaque couche) |
| 77 |
|
|
! (en sortie : la valeur a la fin du pas de temps) |
| 78 |
|
|
! |
| 79 |
|
|
! iflag_pbl doit valoir entre 6 et 9 |
| 80 |
|
|
! l=6, on prend systematiquement une longueur d'equilibre |
| 81 |
|
|
! iflag_pbl=6 : MY 2.0 |
| 82 |
|
|
! iflag_pbl=7 : MY 2.0.Fournier |
| 83 |
|
|
! iflag_pbl=8/9 : MY 2.5 |
| 84 |
|
|
! iflag_pbl=8 with special obsolete treatments for convergence |
| 85 |
|
|
! with Cmpi5 NPv3.1 simulations |
| 86 |
|
|
! iflag_pbl=10/11 : New scheme M2 and N2 explicit and dissiptation exact |
| 87 |
|
|
! iflag_pbl=12 = 11 with vertical diffusion off q2 |
| 88 |
|
|
! |
| 89 |
|
|
! 2013/04/01 (FH hourdin@lmd.jussieu.fr) |
| 90 |
|
|
! Correction for very stable PBLs (iflag_pbl=10 and 11) |
| 91 |
|
|
! iflag_pbl=8 converges numerically with NPv3.1 |
| 92 |
|
|
! iflag_pbl=11 -> the model starts with NP from start files created by ce0l |
| 93 |
|
|
! -> the model can run with longer time-steps. |
| 94 |
|
|
!....................................................................... |
| 95 |
|
|
|
| 96 |
|
|
REAL, DIMENSION(klon,klev) :: d_u,d_v,d_t |
| 97 |
|
|
REAL, DIMENSION(klon,klev) :: pu,pv,pt |
| 98 |
|
|
REAL, DIMENSION(klon,klev) :: d_t_diss |
| 99 |
|
|
|
| 100 |
|
|
REAL timestep |
| 101 |
|
|
real plev(klon,klev+1) |
| 102 |
|
|
real play(klon,klev) |
| 103 |
|
|
real ustar(klon) |
| 104 |
|
|
real kmin,qmin,pblhmin(klon),coriol(klon) |
| 105 |
|
✗ |
REAL zlev(klon,klev+1) |
| 106 |
|
✗ |
REAL zlay(klon,klev) |
| 107 |
|
✗ |
REAL zu(klon,klev) |
| 108 |
|
✗ |
REAL zv(klon,klev) |
| 109 |
|
✗ |
REAL zt(klon,klev) |
| 110 |
|
✗ |
REAL teta(klon,klev) |
| 111 |
|
|
REAL cd(klon) |
| 112 |
|
|
REAL q2(klon,klev+1),qpre |
| 113 |
|
✗ |
REAL unsdz(klon,klev) |
| 114 |
|
✗ |
REAL unsdzdec(klon,klev+1) |
| 115 |
|
|
|
| 116 |
|
|
REAL km(klon,klev) |
| 117 |
|
|
REAL kmpre(klon,klev+1),tmp2 |
| 118 |
|
|
REAL mpre(klon,klev+1) |
| 119 |
|
|
REAL kn(klon,klev) |
| 120 |
|
|
REAL kq(klon,klev) |
| 121 |
|
|
real ff(klon,klev+1),delta(klon,klev+1) |
| 122 |
|
|
real aa(klon,klev+1),aa0,aa1 |
| 123 |
|
|
integer iflag_pbl,ngrid |
| 124 |
|
|
integer nlay,nlev |
| 125 |
|
|
|
| 126 |
|
|
logical first |
| 127 |
|
|
integer ipas |
| 128 |
|
|
save first,ipas |
| 129 |
|
|
!FH/IM data first,ipas/.true.,0/ |
| 130 |
|
|
data first,ipas/.false.,0/ |
| 131 |
|
|
!$OMP THREADPRIVATE( first,ipas) |
| 132 |
|
|
INTEGER, SAVE :: iflag_tke_diff=0 |
| 133 |
|
|
!$OMP THREADPRIVATE(iflag_tke_diff) |
| 134 |
|
|
|
| 135 |
|
|
|
| 136 |
|
|
integer ig,k |
| 137 |
|
|
|
| 138 |
|
|
|
| 139 |
|
|
real ri,zrif,zalpha,zsm,zsn |
| 140 |
|
✗ |
real rif(klon,klev+1),sm(klon,klev+1),alpha(klon,klev) |
| 141 |
|
|
|
| 142 |
|
✗ |
real m2(klon,klev+1),dz(klon,klev+1),zq,n2(klon,klev+1) |
| 143 |
|
✗ |
REAL, DIMENSION(klon,klev+1) :: km2,kn2,sqrtq |
| 144 |
|
✗ |
real dtetadz(klon,klev+1) |
| 145 |
|
|
real m2cstat,mcstat,kmcstat |
| 146 |
|
✗ |
real l(klon,klev+1) |
| 147 |
|
✗ |
real leff(klon,klev+1) |
| 148 |
|
|
real,allocatable,save :: l0(:) |
| 149 |
|
|
!$OMP THREADPRIVATE(l0) |
| 150 |
|
✗ |
real sq(klon),sqz(klon),zz(klon,klev+1) |
| 151 |
|
|
integer iter |
| 152 |
|
|
|
| 153 |
|
|
real ric,rifc,b1,kap |
| 154 |
|
|
save ric,rifc,b1,kap |
| 155 |
|
|
data ric,rifc,b1,kap/0.195,0.191,16.6,0.4/ |
| 156 |
|
|
!$OMP THREADPRIVATE(ric,rifc,b1,kap) |
| 157 |
|
|
real frif,falpha,fsm |
| 158 |
|
|
real fl,zzz,zl0,zq2,zn2 |
| 159 |
|
|
|
| 160 |
|
|
real rino(klon,klev+1),smyam(klon,klev),styam(klon,klev) |
| 161 |
|
|
real lyam(klon,klev),knyam(klon,klev) |
| 162 |
|
|
real w2yam(klon,klev),t2yam(klon,klev) |
| 163 |
|
|
logical,save :: firstcall=.true. |
| 164 |
|
|
!$OMP THREADPRIVATE(firstcall) |
| 165 |
|
|
CHARACTER(len=20),PARAMETER :: modname="yamada_c" |
| 166 |
|
✗ |
REAL, DIMENSION(klon,klev+1) :: fluxu,fluxv,fluxt |
| 167 |
|
✗ |
REAL, DIMENSION(klon,klev+1) :: dddu,dddv,dddt |
| 168 |
|
✗ |
REAL, DIMENSION(klon,klev) :: exner,masse |
| 169 |
|
✗ |
REAL, DIMENSION(klon,klev+1) :: masseb,q2old,q2neg |
| 170 |
|
|
LOGICAL okiophys |
| 171 |
|
|
|
| 172 |
|
|
frif(ri)=0.6588*(ri+0.1776-sqrt(ri*ri-0.3221*ri+0.03156)) |
| 173 |
|
|
falpha(ri)=1.318*(0.2231-ri)/(0.2341-ri) |
| 174 |
|
|
fsm(ri)=1.96*(0.1912-ri)*(0.2341-ri)/((1.-ri)*(0.2231-ri)) |
| 175 |
|
|
fl(zzz,zl0,zq2,zn2)= & |
| 176 |
|
|
& max(min(l0(ig)*kap*zlev(ig,k)/(kap*zlev(ig,k)+l0(ig)) & |
| 177 |
|
|
& ,0.5*sqrt(q2(ig,k))/sqrt(max(n2(ig,k),1.e-10))) ,1.) |
| 178 |
|
|
|
| 179 |
|
|
|
| 180 |
|
|
okiophys=klon==1 |
| 181 |
|
✗ |
if (firstcall) then |
| 182 |
|
✗ |
CALL getin_p('iflag_tke_diff',iflag_tke_diff) |
| 183 |
|
✗ |
allocate(l0(klon)) |
| 184 |
|
|
! call iophys_ini(timestep) |
| 185 |
|
✗ |
firstcall=.false. |
| 186 |
|
|
endif |
| 187 |
|
|
|
| 188 |
|
✗ |
IF (ngrid<=0) RETURN ! Bizarre : on n a pas ce probeleme pour coef_diff_turb |
| 189 |
|
|
|
| 190 |
|
✗ |
if (okiophys) then |
| 191 |
|
✗ |
call iophys_ecrit('q2i',klev,'q2 debut my','m2/s2',q2(:,1:klev)) |
| 192 |
|
✗ |
call iophys_ecrit('kmi',klev,'Kz debut my','m/s2',km(:,1:klev)) |
| 193 |
|
|
endif |
| 194 |
|
|
|
| 195 |
|
✗ |
nlay=klev |
| 196 |
|
✗ |
nlev=klev+1 |
| 197 |
|
|
|
| 198 |
|
|
|
| 199 |
|
|
!------------------------------------------------------------------------- |
| 200 |
|
|
! Computation of conservative source terms from the turbulent tendencies |
| 201 |
|
|
!------------------------------------------------------------------------- |
| 202 |
|
|
|
| 203 |
|
|
|
| 204 |
|
|
zalpha=0.5 ! Anciennement 0.5. Essayer de voir pourquoi ? |
| 205 |
|
✗ |
zu(:,:)=pu(:,:)+zalpha*d_u(:,:) |
| 206 |
|
✗ |
zv(:,:)=pv(:,:)+zalpha*d_v(:,:) |
| 207 |
|
✗ |
zt(:,:)=pt(:,:)+zalpha*d_t(:,:) |
| 208 |
|
|
|
| 209 |
|
✗ |
do k=1,klev |
| 210 |
|
✗ |
exner(:,k)=(play(:,k)/plev(:,1))**RKAPPA |
| 211 |
|
✗ |
masse(:,k)=(plev(:,k)-plev(:,k+1))/RG |
| 212 |
|
✗ |
teta(:,k)=zt(:,k)/exner(:,k) |
| 213 |
|
|
enddo |
| 214 |
|
|
|
| 215 |
|
|
! Atmospheric mass at layer interfaces, where the TKE is computed |
| 216 |
|
✗ |
masseb(:,:)=0. |
| 217 |
|
✗ |
do k=1,klev |
| 218 |
|
✗ |
masseb(:,k)=masseb(:,k)+masse(:,k) |
| 219 |
|
✗ |
masseb(:,k+1)=masseb(:,k+1)+masse(:,k) |
| 220 |
|
|
enddo |
| 221 |
|
✗ |
masseb(:,:)=0.5*masseb(:,:) |
| 222 |
|
|
|
| 223 |
|
✗ |
zlev(:,1)=0. |
| 224 |
|
✗ |
zlay(:,1)=RCPD*teta(:,1)*(1.-exner(:,1)) |
| 225 |
|
✗ |
do k=1,klev-1 |
| 226 |
|
✗ |
zlay(:,k+1)=zlay(:,k)+0.5*RCPD*(teta(:,k)+teta(:,k+1))*(exner(:,k)-exner(:,k+1))/RG |
| 227 |
|
✗ |
zlev(:,k)=0.5*(zlay(:,k)+zlay(:,k+1)) ! PASBO |
| 228 |
|
|
enddo |
| 229 |
|
|
|
| 230 |
|
✗ |
fluxu(:,klev+1)=0. |
| 231 |
|
✗ |
fluxv(:,klev+1)=0. |
| 232 |
|
✗ |
fluxt(:,klev+1)=0. |
| 233 |
|
|
|
| 234 |
|
✗ |
do k=klev,1,-1 |
| 235 |
|
✗ |
fluxu(:,k)=fluxu(:,k+1)+masse(:,k)*d_u(:,k) |
| 236 |
|
✗ |
fluxv(:,k)=fluxv(:,k+1)+masse(:,k)*d_v(:,k) |
| 237 |
|
✗ |
fluxt(:,k)=fluxt(:,k+1)+masse(:,k)*d_t(:,k)/exner(:,k) ! Flux de theta |
| 238 |
|
|
enddo |
| 239 |
|
|
|
| 240 |
|
✗ |
dddu(:,1)=2*zu(:,1)*fluxu(:,1) |
| 241 |
|
✗ |
dddv(:,1)=2*zv(:,1)*fluxv(:,1) |
| 242 |
|
✗ |
dddt(:,1)=(exner(:,1)-1.)*fluxt(:,1) |
| 243 |
|
|
|
| 244 |
|
✗ |
do k=2,klev |
| 245 |
|
✗ |
dddu(:,k)=(zu(:,k)-zu(:,k-1))*fluxu(:,k) |
| 246 |
|
✗ |
dddv(:,k)=(zv(:,k)-zv(:,k-1))*fluxv(:,k) |
| 247 |
|
✗ |
dddt(:,k)=(exner(:,k)-exner(:,k-1))*fluxt(:,k) |
| 248 |
|
|
enddo |
| 249 |
|
✗ |
dddu(:,klev+1)=0. |
| 250 |
|
✗ |
dddv(:,klev+1)=0. |
| 251 |
|
✗ |
dddt(:,klev+1)=0. |
| 252 |
|
|
|
| 253 |
|
✗ |
if (okiophys) then |
| 254 |
|
✗ |
call iophys_ecrit('zlay',klev,'Geop','m',zlay) |
| 255 |
|
✗ |
call iophys_ecrit('teta',klev,'teta','K',teta) |
| 256 |
|
✗ |
call iophys_ecrit('temp',klev,'temp','K',zt) |
| 257 |
|
✗ |
call iophys_ecrit('pt',klev,'temp','K',pt) |
| 258 |
|
✗ |
call iophys_ecrit('pu',klev,'u','m/s',pu) |
| 259 |
|
✗ |
call iophys_ecrit('pv',klev,'v','m/s',pv) |
| 260 |
|
✗ |
call iophys_ecrit('d_u',klev,'d_u','m/s2',d_u) |
| 261 |
|
✗ |
call iophys_ecrit('d_v',klev,'d_v','m/s2',d_v) |
| 262 |
|
✗ |
call iophys_ecrit('d_t',klev,'d_t','K/s',d_t) |
| 263 |
|
✗ |
call iophys_ecrit('exner',klev,'exner','',exner) |
| 264 |
|
✗ |
call iophys_ecrit('masse',klev,'masse','',masse) |
| 265 |
|
✗ |
call iophys_ecrit('masseb',klev,'masseb','',masseb) |
| 266 |
|
|
endif |
| 267 |
|
|
|
| 268 |
|
|
|
| 269 |
|
|
|
| 270 |
|
✗ |
ipas=ipas+1 |
| 271 |
|
|
|
| 272 |
|
|
|
| 273 |
|
|
!....................................................................... |
| 274 |
|
|
! les increments verticaux |
| 275 |
|
|
!....................................................................... |
| 276 |
|
|
! |
| 277 |
|
|
!!!!!! allerte !!!!!c |
| 278 |
|
|
!!!!!! zlev n'est pas declare a nlev !!!!!c |
| 279 |
|
|
!!!!!! ----> |
| 280 |
|
✗ |
DO ig=1,ngrid |
| 281 |
|
|
zlev(ig,nlev)=zlay(ig,nlay) & |
| 282 |
|
✗ |
& +( zlay(ig,nlay) - zlev(ig,nlev-1) ) |
| 283 |
|
|
ENDDO |
| 284 |
|
|
!!!!!! <---- |
| 285 |
|
|
!!!!!! allerte !!!!!c |
| 286 |
|
|
! |
| 287 |
|
✗ |
DO k=1,nlay |
| 288 |
|
✗ |
DO ig=1,ngrid |
| 289 |
|
✗ |
unsdz(ig,k)=1.E+0/(zlev(ig,k+1)-zlev(ig,k)) |
| 290 |
|
|
ENDDO |
| 291 |
|
|
ENDDO |
| 292 |
|
✗ |
DO ig=1,ngrid |
| 293 |
|
✗ |
unsdzdec(ig,1)=1.E+0/(zlay(ig,1)-zlev(ig,1)) |
| 294 |
|
|
ENDDO |
| 295 |
|
✗ |
DO k=2,nlay |
| 296 |
|
✗ |
DO ig=1,ngrid |
| 297 |
|
✗ |
unsdzdec(ig,k)=1.E+0/(zlay(ig,k)-zlay(ig,k-1)) |
| 298 |
|
|
ENDDO |
| 299 |
|
|
ENDDO |
| 300 |
|
✗ |
DO ig=1,ngrid |
| 301 |
|
✗ |
unsdzdec(ig,nlay+1)=1.E+0/(zlev(ig,nlay+1)-zlay(ig,nlay)) |
| 302 |
|
|
ENDDO |
| 303 |
|
|
! |
| 304 |
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 305 |
|
|
! Computing M^2, N^2, Richardson numbers, stability functions |
| 306 |
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 307 |
|
|
|
| 308 |
|
|
|
| 309 |
|
✗ |
do k=2,klev |
| 310 |
|
✗ |
do ig=1,ngrid |
| 311 |
|
✗ |
dz(ig,k)=zlay(ig,k)-zlay(ig,k-1) |
| 312 |
|
✗ |
m2(ig,k)=((zu(ig,k)-zu(ig,k-1))**2+(zv(ig,k)-zv(ig,k-1))**2)/(dz(ig,k)*dz(ig,k)) |
| 313 |
|
✗ |
dtetadz(ig,k)=(teta(ig,k)-teta(ig,k-1))/dz(ig,k) |
| 314 |
|
✗ |
n2(ig,k)=RG*2.*dtetadz(ig,k)/(teta(ig,k-1)+teta(ig,k)) |
| 315 |
|
|
! n2(ig,k)=0. |
| 316 |
|
✗ |
ri=n2(ig,k)/max(m2(ig,k),1.e-10) |
| 317 |
|
✗ |
if (ri.lt.ric) then |
| 318 |
|
✗ |
rif(ig,k)=frif(ri) |
| 319 |
|
|
else |
| 320 |
|
✗ |
rif(ig,k)=rifc |
| 321 |
|
|
endif |
| 322 |
|
✗ |
if(rif(ig,k)<0.16) then |
| 323 |
|
✗ |
alpha(ig,k)=falpha(rif(ig,k)) |
| 324 |
|
✗ |
sm(ig,k)=fsm(rif(ig,k)) |
| 325 |
|
|
else |
| 326 |
|
✗ |
alpha(ig,k)=1.12 |
| 327 |
|
✗ |
sm(ig,k)=0.085 |
| 328 |
|
|
endif |
| 329 |
|
✗ |
zz(ig,k)=b1*m2(ig,k)*(1.-rif(ig,k))*sm(ig,k) |
| 330 |
|
|
enddo |
| 331 |
|
|
enddo |
| 332 |
|
|
|
| 333 |
|
|
|
| 334 |
|
|
|
| 335 |
|
|
!==================================================================== |
| 336 |
|
|
! Computing the mixing length |
| 337 |
|
|
!==================================================================== |
| 338 |
|
|
|
| 339 |
|
|
! Mise a jour de l0 |
| 340 |
|
✗ |
if (iflag_pbl==8.or.iflag_pbl==10) then |
| 341 |
|
|
|
| 342 |
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 343 |
|
|
! Iterative computation of l0 |
| 344 |
|
|
! This version is kept for iflag_pbl only for convergence |
| 345 |
|
|
! with NPv3.1 Cmip5 simulations |
| 346 |
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 347 |
|
|
|
| 348 |
|
✗ |
do ig=1,ngrid |
| 349 |
|
✗ |
sq(ig)=1.e-10 |
| 350 |
|
✗ |
sqz(ig)=1.e-10 |
| 351 |
|
|
enddo |
| 352 |
|
✗ |
do k=2,klev-1 |
| 353 |
|
✗ |
do ig=1,ngrid |
| 354 |
|
✗ |
zq=sqrt(q2(ig,k)) |
| 355 |
|
✗ |
sqz(ig)=sqz(ig)+zq*zlev(ig,k)*(zlay(ig,k)-zlay(ig,k-1)) |
| 356 |
|
✗ |
sq(ig)=sq(ig)+zq*(zlay(ig,k)-zlay(ig,k-1)) |
| 357 |
|
|
enddo |
| 358 |
|
|
enddo |
| 359 |
|
✗ |
do ig=1,ngrid |
| 360 |
|
✗ |
l0(ig)=0.2*sqz(ig)/sq(ig) |
| 361 |
|
|
enddo |
| 362 |
|
✗ |
do k=2,klev |
| 363 |
|
✗ |
do ig=1,ngrid |
| 364 |
|
✗ |
l(ig,k)=fl(zlev(ig,k),l0(ig),q2(ig,k),n2(ig,k)) |
| 365 |
|
|
enddo |
| 366 |
|
|
enddo |
| 367 |
|
|
! print*,'L0 cas 8 ou 10 ',l0 |
| 368 |
|
|
|
| 369 |
|
|
else |
| 370 |
|
|
|
| 371 |
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 372 |
|
|
! In all other case, the assymptotic mixing length l0 is imposed (100m) |
| 373 |
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 374 |
|
|
|
| 375 |
|
✗ |
l0(:)=150. |
| 376 |
|
✗ |
do k=2,klev |
| 377 |
|
✗ |
do ig=1,ngrid |
| 378 |
|
✗ |
l(ig,k)=fl(zlev(ig,k),l0(ig),q2(ig,k),n2(ig,k)) |
| 379 |
|
|
enddo |
| 380 |
|
|
enddo |
| 381 |
|
|
! print*,'L0 cas autres ',l0 |
| 382 |
|
|
|
| 383 |
|
|
endif |
| 384 |
|
|
|
| 385 |
|
|
|
| 386 |
|
✗ |
if (okiophys) then |
| 387 |
|
✗ |
call iophys_ecrit('rif',klev,'Flux Richardson','m',rif(:,1:klev)) |
| 388 |
|
✗ |
call iophys_ecrit('m2',klev,'m2 ','m/s',m2(:,1:klev)) |
| 389 |
|
✗ |
call iophys_ecrit('Km2app',klev,'m2 conserv','m/s',km(:,1:klev)*m2(:,1:klev)) |
| 390 |
|
✗ |
call iophys_ecrit('Km',klev,'Km','m2/s',km(:,1:klev)) |
| 391 |
|
|
endif |
| 392 |
|
|
|
| 393 |
|
|
|
| 394 |
|
✗ |
IF (iflag_pbl<20) then |
| 395 |
|
|
! For diagnostics only |
| 396 |
|
|
RETURN |
| 397 |
|
|
|
| 398 |
|
|
ELSE |
| 399 |
|
|
|
| 400 |
|
|
! print*,'OK1' |
| 401 |
|
|
|
| 402 |
|
|
! Evolution of TKE under source terms K M2 and K N2 |
| 403 |
|
✗ |
leff(:,:)=max(l(:,:),1.) |
| 404 |
|
|
|
| 405 |
|
|
!################################################################## |
| 406 |
|
|
!# IF (iflag_pbl==29) THEN |
| 407 |
|
|
!# STOP'Ne pas utiliser iflag_pbl=29' |
| 408 |
|
|
!# km2(:,:)=km(:,:)*m2(:,:) |
| 409 |
|
|
!# kn2(:,:)=kn2(:,:)*rif(:,:) |
| 410 |
|
|
!# ELSEIF (iflag_pbl==25) THEN |
| 411 |
|
|
! VERSION AVEC LA TKE EN MILIEU DE COUCHE |
| 412 |
|
|
!# STOP'Ne pas utiliser iflag_pbl=25' |
| 413 |
|
|
!# DO k=1,klev |
| 414 |
|
|
!# km2(:,k)=-0.5*(dddu(:,k)+dddv(:,k)+dddu(:,k+1)+dddv(:,k+1)) & |
| 415 |
|
|
!# & /(masse(:,k)*timestep) |
| 416 |
|
|
!# kn2(:,k)=rcpd*0.5*(dddt(:,k)+dddt(:,k+1))/(masse(:,k)*timestep) |
| 417 |
|
|
!# leff(:,k)=0.5*(leff(:,k)+leff(:,k+1)) |
| 418 |
|
|
!# ENDDO |
| 419 |
|
|
!# km2(:,klev+1)=0. ; kn2(:,klev+1)=0. |
| 420 |
|
|
!# ELSE |
| 421 |
|
|
!################################################################# |
| 422 |
|
|
|
| 423 |
|
✗ |
km2(:,:)=-(dddu(:,:)+dddv(:,:))/(masseb(:,:)*timestep) |
| 424 |
|
✗ |
kn2(:,:)=rcpd*dddt(:,:)/(masseb(:,:)*timestep) |
| 425 |
|
|
! ENDIF |
| 426 |
|
✗ |
q2neg(:,:)=q2(:,:)+timestep*(km2(:,:)-kn2(:,:)) |
| 427 |
|
✗ |
q2(:,:)=min(max(q2neg(:,:),1.e-10),1.e4) |
| 428 |
|
|
|
| 429 |
|
|
|
| 430 |
|
✗ |
if (okiophys) then |
| 431 |
|
✗ |
call iophys_ecrit('km2',klev,'m2 conserv','m/s',km2(:,1:klev)) |
| 432 |
|
✗ |
call iophys_ecrit('kn2',klev,'n2 conserv','m/s',kn2(:,1:klev)) |
| 433 |
|
|
endif |
| 434 |
|
|
|
| 435 |
|
|
! Dissipation of TKE |
| 436 |
|
✗ |
q2old(:,:)=q2(:,:) |
| 437 |
|
✗ |
q2(:,:)=1./(1./sqrt(q2(:,:))+timestep/(2*leff(:,:)*b1)) |
| 438 |
|
✗ |
q2(:,:)=q2(:,:)*q2(:,:) |
| 439 |
|
|
! IF (iflag_pbl<=24) THEN |
| 440 |
|
✗ |
DO k=1,klev |
| 441 |
|
✗ |
d_t_diss(:,k)=(masseb(:,k)*(q2neg(:,k)-q2(:,k))+masseb(:,k+1)*(q2neg(:,k+1)-q2(:,k+1)))/(2.*rcpd*masse(:,k)) |
| 442 |
|
|
ENDDO |
| 443 |
|
|
|
| 444 |
|
|
!################################################################### |
| 445 |
|
|
! ELSE IF (iflag_pbl<=27) THEN |
| 446 |
|
|
! DO k=1,klev |
| 447 |
|
|
! d_t_diss(:,k)=(q2neg(:,k)-q2(:,k))/rcpd |
| 448 |
|
|
! ENDDO |
| 449 |
|
|
! ENDIF |
| 450 |
|
|
! print*,'iflag_pbl ',d_t_diss |
| 451 |
|
|
!################################################################### |
| 452 |
|
|
|
| 453 |
|
|
|
| 454 |
|
|
! Compuation of stability functions |
| 455 |
|
|
! IF (iflag_pbl/=29) THEN |
| 456 |
|
✗ |
DO k=1,klev |
| 457 |
|
✗ |
DO ig=1,ngrid |
| 458 |
|
✗ |
IF (ABS(km2(ig,k))<=1.e-20) THEN |
| 459 |
|
✗ |
rif(ig,k)=0. |
| 460 |
|
|
ELSE |
| 461 |
|
✗ |
rif(ig,k)=min(kn2(ig,k)/km2(ig,k),rifc) |
| 462 |
|
|
ENDIF |
| 463 |
|
✗ |
IF (rif(ig,k).lt.0.16) THEN |
| 464 |
|
✗ |
alpha(ig,k)=falpha(rif(ig,k)) |
| 465 |
|
✗ |
sm(ig,k)=fsm(rif(ig,k)) |
| 466 |
|
|
else |
| 467 |
|
✗ |
alpha(ig,k)=1.12 |
| 468 |
|
✗ |
sm(ig,k)=0.085 |
| 469 |
|
|
endif |
| 470 |
|
|
ENDDO |
| 471 |
|
|
ENDDO |
| 472 |
|
|
! ENDIF |
| 473 |
|
|
|
| 474 |
|
|
! Computation of turbulent diffusivities |
| 475 |
|
|
! IF (25<=iflag_pbl.and.iflag_pbl<=28) THEN |
| 476 |
|
|
! DO k=2,klev |
| 477 |
|
|
! sqrtq(:,k)=sqrt(0.5*(q2(:,k)+q2(:,k-1))) |
| 478 |
|
|
! ENDDO |
| 479 |
|
|
! ELSE |
| 480 |
|
✗ |
kq(:,:)=0. |
| 481 |
|
✗ |
DO k=1,klev |
| 482 |
|
|
! Coefficient au milieu des couches pour diffuser la TKE |
| 483 |
|
✗ |
kq(:,k)=0.5*leff(:,k)*sqrt(q2(:,k))*0.2 |
| 484 |
|
|
ENDDO |
| 485 |
|
|
|
| 486 |
|
✗ |
if (okiophys) then |
| 487 |
|
✗ |
call iophys_ecrit('q2b',klev,'KTE inter','m2/s',q2(:,1:klev)) |
| 488 |
|
|
endif |
| 489 |
|
|
|
| 490 |
|
✗ |
IF (iflag_tke_diff==1) THEN |
| 491 |
|
✗ |
CALL vdif_q2(timestep, RG, RD, ngrid, plev, pt, kq, q2) |
| 492 |
|
|
ENDIF |
| 493 |
|
|
|
| 494 |
|
✗ |
km(:,:)=0. |
| 495 |
|
✗ |
kn(:,:)=0. |
| 496 |
|
✗ |
DO k=1,klev |
| 497 |
|
✗ |
km(:,k)=leff(:,k)*sqrt(q2(:,k))*sm(:,k) |
| 498 |
|
✗ |
kn(:,k)=km(:,k)*alpha(:,k) |
| 499 |
|
|
ENDDO |
| 500 |
|
|
|
| 501 |
|
|
|
| 502 |
|
✗ |
if (okiophys) then |
| 503 |
|
✗ |
call iophys_ecrit('mixingl',klev,'Mixing length','m',leff(:,1:klev)) |
| 504 |
|
✗ |
call iophys_ecrit('rife',klev,'Flux Richardson','m',rif(:,1:klev)) |
| 505 |
|
✗ |
call iophys_ecrit('q2f',klev,'KTE finale','m2/s',q2(:,1:klev)) |
| 506 |
|
✗ |
call iophys_ecrit('q2neg',klev,'KTE non bornee','m2/s',q2neg(:,1:klev)) |
| 507 |
|
✗ |
call iophys_ecrit('alpha',klev,'alpha','',alpha(:,1:klev)) |
| 508 |
|
✗ |
call iophys_ecrit('sm',klev,'sm','',sm(:,1:klev)) |
| 509 |
|
✗ |
call iophys_ecrit('q2f',klev,'KTE finale','m2/s',q2(:,1:klev)) |
| 510 |
|
✗ |
call iophys_ecrit('kmf',klev,'Kz final','m2/s',km(:,1:klev)) |
| 511 |
|
✗ |
call iophys_ecrit('knf',klev,'Kz final','m2/s',kn(:,1:klev)) |
| 512 |
|
✗ |
call iophys_ecrit('kqf',klev,'Kz final','m2/s',kq(:,1:klev)) |
| 513 |
|
|
endif |
| 514 |
|
|
|
| 515 |
|
|
|
| 516 |
|
|
ENDIF |
| 517 |
|
|
|
| 518 |
|
|
|
| 519 |
|
|
! print*,'OK2' |
| 520 |
|
|
RETURN |
| 521 |
|
|
END |
| 522 |
|
|
|