1 |
|
|
! |
2 |
|
|
! $Header$ |
3 |
|
|
! |
4 |
|
|
SUBROUTINE advy(limit,dty,pbarv,sm,s0,sx,sy,sz) |
5 |
|
|
IMPLICIT NONE |
6 |
|
|
|
7 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
8 |
|
|
C C |
9 |
|
|
C first-order moments (SOM) advection of tracer in Y direction C |
10 |
|
|
C C |
11 |
|
|
C Source : Pascal Simon ( Meteo, CNRM ) C |
12 |
|
|
C Adaptation : A.A. (LGGE) C |
13 |
|
|
C Derniere Modif : 15/12/94 LAST |
14 |
|
|
C C |
15 |
|
|
C sont les arguments d'entree pour le s-pg C |
16 |
|
|
C C |
17 |
|
|
C argument de sortie du s-pg C |
18 |
|
|
C C |
19 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
20 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
21 |
|
|
C |
22 |
|
|
C Rem : Probleme aux poles il faut reecrire ce cas specifique |
23 |
|
|
C Attention au sens de l'indexation |
24 |
|
|
C |
25 |
|
|
C parametres principaux du modele |
26 |
|
|
C |
27 |
|
|
C |
28 |
|
|
include "dimensions.h" |
29 |
|
|
include "paramet.h" |
30 |
|
|
include "comgeom2.h" |
31 |
|
|
|
32 |
|
|
C Arguments : |
33 |
|
|
C ---------- |
34 |
|
|
C dty : frequence fictive d'appel du transport |
35 |
|
|
C parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
36 |
|
|
|
37 |
|
|
INTEGER lon,lat,niv |
38 |
|
|
INTEGER i,j,jv,k,kp,l |
39 |
|
|
INTEGER ntra |
40 |
|
|
PARAMETER (ntra = 1) |
41 |
|
|
|
42 |
|
|
REAL dty |
43 |
|
|
REAL pbarv ( iip1,jjm, llm ) |
44 |
|
|
|
45 |
|
|
C moments: SM total mass in each grid box |
46 |
|
|
C S0 mass of tracer in each grid box |
47 |
|
|
C Si 1rst order moment in i direction |
48 |
|
|
C |
49 |
|
|
REAL SM(iip1,jjp1,llm) |
50 |
|
|
+ ,S0(iip1,jjp1,llm,ntra) |
51 |
|
|
REAL sx(iip1,jjp1,llm,ntra) |
52 |
|
|
+ ,sy(iip1,jjp1,llm,ntra) |
53 |
|
|
+ ,sz(iip1,jjp1,llm,ntra) |
54 |
|
|
|
55 |
|
|
|
56 |
|
|
C Local : |
57 |
|
|
C ------- |
58 |
|
|
|
59 |
|
|
C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
60 |
|
|
C mass fluxes in kg |
61 |
|
|
C declaration : |
62 |
|
|
|
63 |
|
|
REAL VGRI(iip1,0:jjp1,llm) |
64 |
|
|
|
65 |
|
|
C Rem : UGRI et WGRI ne sont pas utilises dans |
66 |
|
|
C cette subroutine ( advection en y uniquement ) |
67 |
|
|
C Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
68 |
|
|
C |
69 |
|
|
C the moments F are similarly defined and used as temporary |
70 |
|
|
C storage for portions of the grid boxes in transit |
71 |
|
|
C |
72 |
|
|
REAL F0(iim,0:jjp1,ntra),FM(iim,0:jjp1) |
73 |
|
|
REAL FX(iim,jjm,ntra),FY(iim,jjm,ntra) |
74 |
|
|
REAL FZ(iim,jjm,ntra) |
75 |
|
|
REAL S00(ntra) |
76 |
|
|
REAL SM0 ! Just temporal variable |
77 |
|
|
C |
78 |
|
|
C work arrays |
79 |
|
|
C |
80 |
|
|
REAL ALF(iim,0:jjp1),ALF1(iim,0:jjp1) |
81 |
|
|
REAL ALFQ(iim,0:jjp1),ALF1Q(iim,0:jjp1) |
82 |
|
|
REAL TEMPTM ! Just temporal variable |
83 |
|
|
c |
84 |
|
|
C Special pour poles |
85 |
|
|
c |
86 |
|
|
REAL sbms,sfms,sfzs,sbmn,sfmn,sfzn |
87 |
|
|
REAL sns0(ntra),snsz(ntra),snsm |
88 |
|
|
REAL s1v(llm),slatv(llm) |
89 |
|
|
REAL qy1(iim,llm,ntra),qylat(iim,llm,ntra) |
90 |
|
|
REAL cx1(llm,ntra), cxLAT(llm,ntra) |
91 |
|
|
REAL cy1(llm,ntra), cyLAT(llm,ntra) |
92 |
|
|
REAL z1(iim), zcos(iim), zsin(iim) |
93 |
|
|
real smpn,smps,s0pn,s0ps |
94 |
|
|
REAL SSUM |
95 |
|
|
EXTERNAL SSUM |
96 |
|
|
C |
97 |
|
|
REAL sqi,sqf |
98 |
|
|
LOGICAL LIMIT |
99 |
|
|
|
100 |
|
|
lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
101 |
|
|
lat = jjp1 ! a cause des dim. differentes entre les |
102 |
|
|
niv=llm |
103 |
|
|
|
104 |
|
|
C |
105 |
|
|
C the moments Fi are used as temporary storage for |
106 |
|
|
C portions of the grid boxes in transit at the current level |
107 |
|
|
C |
108 |
|
|
C work arrays |
109 |
|
|
C |
110 |
|
|
|
111 |
|
|
DO l = 1,llm |
112 |
|
|
DO j = 1,jjm |
113 |
|
|
DO i = 1,iip1 |
114 |
|
|
vgri (i,j,llm+1-l)=-1.*pbarv(i,j,l) |
115 |
|
|
enddo |
116 |
|
|
enddo |
117 |
|
|
do i=1,iip1 |
118 |
|
|
vgri(i,0,l) = 0. |
119 |
|
|
vgri(i,jjp1,l) = 0. |
120 |
|
|
enddo |
121 |
|
|
enddo |
122 |
|
|
|
123 |
|
|
DO 1 L=1,NIV |
124 |
|
|
C |
125 |
|
|
C place limits on appropriate moments before transport |
126 |
|
|
C (if flux-limiting is to be applied) |
127 |
|
|
C |
128 |
|
|
IF(.NOT.LIMIT) GO TO 11 |
129 |
|
|
C |
130 |
|
|
DO 10 JV=1,NTRA |
131 |
|
|
DO 10 K=1,LAT |
132 |
|
|
DO 100 I=1,LON |
133 |
|
|
sy(I,K,L,JV)=SIGN(AMIN1(AMAX1(S0(I,K,L,JV),0.), |
134 |
|
|
+ ABS(sy(I,K,L,JV))),sy(I,K,L,JV)) |
135 |
|
|
100 CONTINUE |
136 |
|
|
10 CONTINUE |
137 |
|
|
C |
138 |
|
|
11 CONTINUE |
139 |
|
|
C |
140 |
|
|
C le flux a travers le pole Nord est traite separement |
141 |
|
|
C |
142 |
|
|
SM0=0. |
143 |
|
|
DO 20 JV=1,NTRA |
144 |
|
|
S00(JV)=0. |
145 |
|
|
20 CONTINUE |
146 |
|
|
C |
147 |
|
|
DO 21 I=1,LON |
148 |
|
|
C |
149 |
|
|
IF(VGRI(I,0,L).LE.0.) THEN |
150 |
|
|
FM(I,0)=-VGRI(I,0,L)*DTY |
151 |
|
|
ALF(I,0)=FM(I,0)/SM(I,1,L) |
152 |
|
|
SM(I,1,L)=SM(I,1,L)-FM(I,0) |
153 |
|
|
SM0=SM0+FM(I,0) |
154 |
|
|
ENDIF |
155 |
|
|
C |
156 |
|
|
ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
157 |
|
|
ALF1(I,0)=1.-ALF(I,0) |
158 |
|
|
ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
159 |
|
|
C |
160 |
|
|
21 CONTINUE |
161 |
|
|
C |
162 |
|
|
DO 22 JV=1,NTRA |
163 |
|
|
DO 220 I=1,LON |
164 |
|
|
C |
165 |
|
|
IF(VGRI(I,0,L).LE.0.) THEN |
166 |
|
|
C |
167 |
|
|
F0(I,0,JV)=ALF(I,0)* |
168 |
|
|
+ ( S0(I,1,L,JV)-ALF1(I,0)*sy(I,1,L,JV) ) |
169 |
|
|
C |
170 |
|
|
S00(JV)=S00(JV)+F0(I,0,JV) |
171 |
|
|
S0(I,1,L,JV)=S0(I,1,L,JV)-F0(I,0,JV) |
172 |
|
|
sy(I,1,L,JV)=ALF1Q(I,0)*sy(I,1,L,JV) |
173 |
|
|
sx(I,1,L,JV)=ALF1 (I,0)*sx(I,1,L,JV) |
174 |
|
|
sz(I,1,L,JV)=ALF1 (I,0)*sz(I,1,L,JV) |
175 |
|
|
C |
176 |
|
|
ENDIF |
177 |
|
|
C |
178 |
|
|
220 CONTINUE |
179 |
|
|
22 CONTINUE |
180 |
|
|
C |
181 |
|
|
DO 23 I=1,LON |
182 |
|
|
IF(VGRI(I,0,L).GT.0.) THEN |
183 |
|
|
FM(I,0)=VGRI(I,0,L)*DTY |
184 |
|
|
ALF(I,0)=FM(I,0)/SM0 |
185 |
|
|
ENDIF |
186 |
|
|
23 CONTINUE |
187 |
|
|
C |
188 |
|
|
DO 24 JV=1,NTRA |
189 |
|
|
DO 240 I=1,LON |
190 |
|
|
IF(VGRI(I,0,L).GT.0.) THEN |
191 |
|
|
F0(I,0,JV)=ALF(I,0)*S00(JV) |
192 |
|
|
ENDIF |
193 |
|
|
240 CONTINUE |
194 |
|
|
24 CONTINUE |
195 |
|
|
C |
196 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
197 |
|
|
C |
198 |
|
|
DO 25 I=1,LON |
199 |
|
|
C |
200 |
|
|
IF(VGRI(I,0,L).GT.0.) THEN |
201 |
|
|
SM(I,1,L)=SM(I,1,L)+FM(I,0) |
202 |
|
|
ALF(I,0)=FM(I,0)/SM(I,1,L) |
203 |
|
|
ENDIF |
204 |
|
|
C |
205 |
|
|
ALF1(I,0)=1.-ALF(I,0) |
206 |
|
|
C |
207 |
|
|
25 CONTINUE |
208 |
|
|
C |
209 |
|
|
DO 26 JV=1,NTRA |
210 |
|
|
DO 260 I=1,LON |
211 |
|
|
C |
212 |
|
|
IF(VGRI(I,0,L).GT.0.) THEN |
213 |
|
|
C |
214 |
|
|
TEMPTM=ALF(I,0)*S0(I,1,L,JV)-ALF1(I,0)*F0(I,0,JV) |
215 |
|
|
S0(I,1,L,JV)=S0(I,1,L,JV)+F0(I,0,JV) |
216 |
|
|
sy(I,1,L,JV)=ALF1(I,0)*sy(I,1,L,JV)+3.*TEMPTM |
217 |
|
|
C |
218 |
|
|
ENDIF |
219 |
|
|
C |
220 |
|
|
260 CONTINUE |
221 |
|
|
26 CONTINUE |
222 |
|
|
C |
223 |
|
|
C calculate flux and moments between adjacent boxes |
224 |
|
|
C 1- create temporary moments/masses for partial boxes in transit |
225 |
|
|
C 2- reajusts moments remaining in the box |
226 |
|
|
C |
227 |
|
|
C flux from KP to K if V(K).lt.0 and from K to KP if V(K).gt.0 |
228 |
|
|
C |
229 |
|
|
DO 30 K=1,LAT-1 |
230 |
|
|
KP=K+1 |
231 |
|
|
DO 300 I=1,LON |
232 |
|
|
C |
233 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
234 |
|
|
FM(I,K)=-VGRI(I,K,L)*DTY |
235 |
|
|
ALF(I,K)=FM(I,K)/SM(I,KP,L) |
236 |
|
|
SM(I,KP,L)=SM(I,KP,L)-FM(I,K) |
237 |
|
|
ELSE |
238 |
|
|
FM(I,K)=VGRI(I,K,L)*DTY |
239 |
|
|
ALF(I,K)=FM(I,K)/SM(I,K,L) |
240 |
|
|
SM(I,K,L)=SM(I,K,L)-FM(I,K) |
241 |
|
|
ENDIF |
242 |
|
|
C |
243 |
|
|
ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
244 |
|
|
ALF1(I,K)=1.-ALF(I,K) |
245 |
|
|
ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
246 |
|
|
C |
247 |
|
|
300 CONTINUE |
248 |
|
|
30 CONTINUE |
249 |
|
|
C |
250 |
|
|
DO 31 JV=1,NTRA |
251 |
|
|
DO 31 K=1,LAT-1 |
252 |
|
|
KP=K+1 |
253 |
|
|
DO 310 I=1,LON |
254 |
|
|
C |
255 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
256 |
|
|
C |
257 |
|
|
F0(I,K,JV)=ALF (I,K)* |
258 |
|
|
+ ( S0(I,KP,L,JV)-ALF1(I,K)*sy(I,KP,L,JV) ) |
259 |
|
|
FY(I,K,JV)=ALFQ(I,K)*sy(I,KP,L,JV) |
260 |
|
|
FX(I,K,JV)=ALF (I,K)*sx(I,KP,L,JV) |
261 |
|
|
FZ(I,K,JV)=ALF (I,K)*sz(I,KP,L,JV) |
262 |
|
|
C |
263 |
|
|
S0(I,KP,L,JV)=S0(I,KP,L,JV)-F0(I,K,JV) |
264 |
|
|
sy(I,KP,L,JV)=ALF1Q(I,K)*sy(I,KP,L,JV) |
265 |
|
|
sx(I,KP,L,JV)=sx(I,KP,L,JV)-FX(I,K,JV) |
266 |
|
|
sz(I,KP,L,JV)=sz(I,KP,L,JV)-FZ(I,K,JV) |
267 |
|
|
C |
268 |
|
|
ELSE |
269 |
|
|
C |
270 |
|
|
F0(I,K,JV)=ALF (I,K)* |
271 |
|
|
+ ( S0(I,K,L,JV)+ALF1(I,K)*sy(I,K,L,JV) ) |
272 |
|
|
FY(I,K,JV)=ALFQ(I,K)*sy(I,K,L,JV) |
273 |
|
|
FX(I,K,JV)=ALF(I,K)*sx(I,K,L,JV) |
274 |
|
|
FZ(I,K,JV)=ALF(I,K)*sz(I,K,L,JV) |
275 |
|
|
C |
276 |
|
|
S0(I,K,L,JV)=S0(I,K,L,JV)-F0(I,K,JV) |
277 |
|
|
sy(I,K,L,JV)=ALF1Q(I,K)*sy(I,K,L,JV) |
278 |
|
|
sx(I,K,L,JV)=sx(I,K,L,JV)-FX(I,K,JV) |
279 |
|
|
sz(I,K,L,JV)=sz(I,K,L,JV)-FZ(I,K,JV) |
280 |
|
|
C |
281 |
|
|
ENDIF |
282 |
|
|
C |
283 |
|
|
310 CONTINUE |
284 |
|
|
31 CONTINUE |
285 |
|
|
C |
286 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
287 |
|
|
C |
288 |
|
|
DO 32 K=1,LAT-1 |
289 |
|
|
KP=K+1 |
290 |
|
|
DO 320 I=1,LON |
291 |
|
|
C |
292 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
293 |
|
|
SM(I,K,L)=SM(I,K,L)+FM(I,K) |
294 |
|
|
ALF(I,K)=FM(I,K)/SM(I,K,L) |
295 |
|
|
ELSE |
296 |
|
|
SM(I,KP,L)=SM(I,KP,L)+FM(I,K) |
297 |
|
|
ALF(I,K)=FM(I,K)/SM(I,KP,L) |
298 |
|
|
ENDIF |
299 |
|
|
C |
300 |
|
|
ALF1(I,K)=1.-ALF(I,K) |
301 |
|
|
C |
302 |
|
|
320 CONTINUE |
303 |
|
|
32 CONTINUE |
304 |
|
|
C |
305 |
|
|
DO 33 JV=1,NTRA |
306 |
|
|
DO 33 K=1,LAT-1 |
307 |
|
|
KP=K+1 |
308 |
|
|
DO 330 I=1,LON |
309 |
|
|
C |
310 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
311 |
|
|
C |
312 |
|
|
TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
313 |
|
|
S0(I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
314 |
|
|
sy(I,K,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*sy(I,K,L,JV) |
315 |
|
|
+ +3.*TEMPTM |
316 |
|
|
sx(I,K,L,JV)=sx(I,K,L,JV)+FX(I,K,JV) |
317 |
|
|
sz(I,K,L,JV)=sz(I,K,L,JV)+FZ(I,K,JV) |
318 |
|
|
C |
319 |
|
|
ELSE |
320 |
|
|
C |
321 |
|
|
TEMPTM=ALF(I,K)*S0(I,KP,L,JV)-ALF1(I,K)*F0(I,K,JV) |
322 |
|
|
S0(I,KP,L,JV)=S0(I,KP,L,JV)+F0(I,K,JV) |
323 |
|
|
sy(I,KP,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*sy(I,KP,L,JV) |
324 |
|
|
+ +3.*TEMPTM |
325 |
|
|
sx(I,KP,L,JV)=sx(I,KP,L,JV)+FX(I,K,JV) |
326 |
|
|
sz(I,KP,L,JV)=sz(I,KP,L,JV)+FZ(I,K,JV) |
327 |
|
|
C |
328 |
|
|
ENDIF |
329 |
|
|
C |
330 |
|
|
330 CONTINUE |
331 |
|
|
33 CONTINUE |
332 |
|
|
C |
333 |
|
|
C traitement special pour le pole Sud (idem pole Nord) |
334 |
|
|
C |
335 |
|
|
K=LAT |
336 |
|
|
C |
337 |
|
|
SM0=0. |
338 |
|
|
DO 40 JV=1,NTRA |
339 |
|
|
S00(JV)=0. |
340 |
|
|
40 CONTINUE |
341 |
|
|
C |
342 |
|
|
DO 41 I=1,LON |
343 |
|
|
C |
344 |
|
|
IF(VGRI(I,K,L).GE.0.) THEN |
345 |
|
|
FM(I,K)=VGRI(I,K,L)*DTY |
346 |
|
|
ALF(I,K)=FM(I,K)/SM(I,K,L) |
347 |
|
|
SM(I,K,L)=SM(I,K,L)-FM(I,K) |
348 |
|
|
SM0=SM0+FM(I,K) |
349 |
|
|
ENDIF |
350 |
|
|
C |
351 |
|
|
ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
352 |
|
|
ALF1(I,K)=1.-ALF(I,K) |
353 |
|
|
ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
354 |
|
|
C |
355 |
|
|
41 CONTINUE |
356 |
|
|
C |
357 |
|
|
DO 42 JV=1,NTRA |
358 |
|
|
DO 420 I=1,LON |
359 |
|
|
C |
360 |
|
|
IF(VGRI(I,K,L).GE.0.) THEN |
361 |
|
|
F0 (I,K,JV)=ALF(I,K)* |
362 |
|
|
+ ( S0(I,K,L,JV)+ALF1(I,K)*sy(I,K,L,JV) ) |
363 |
|
|
S00(JV)=S00(JV)+F0(I,K,JV) |
364 |
|
|
C |
365 |
|
|
S0(I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
366 |
|
|
sy(I,K,L,JV)=ALF1Q(I,K)*sy(I,K,L,JV) |
367 |
|
|
sx(I,K,L,JV)=ALF1(I,K)*sx(I,K,L,JV) |
368 |
|
|
sz(I,K,L,JV)=ALF1(I,K)*sz(I,K,L,JV) |
369 |
|
|
ENDIF |
370 |
|
|
C |
371 |
|
|
420 CONTINUE |
372 |
|
|
42 CONTINUE |
373 |
|
|
C |
374 |
|
|
DO 43 I=1,LON |
375 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
376 |
|
|
FM(I,K)=-VGRI(I,K,L)*DTY |
377 |
|
|
ALF(I,K)=FM(I,K)/SM0 |
378 |
|
|
ENDIF |
379 |
|
|
43 CONTINUE |
380 |
|
|
C |
381 |
|
|
DO 44 JV=1,NTRA |
382 |
|
|
DO 440 I=1,LON |
383 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
384 |
|
|
F0(I,K,JV)=ALF(I,K)*S00(JV) |
385 |
|
|
ENDIF |
386 |
|
|
440 CONTINUE |
387 |
|
|
44 CONTINUE |
388 |
|
|
C |
389 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
390 |
|
|
C |
391 |
|
|
DO 45 I=1,LON |
392 |
|
|
C |
393 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
394 |
|
|
SM(I,K,L)=SM(I,K,L)+FM(I,K) |
395 |
|
|
ALF(I,K)=FM(I,K)/SM(I,K,L) |
396 |
|
|
ENDIF |
397 |
|
|
C |
398 |
|
|
ALF1(I,K)=1.-ALF(I,K) |
399 |
|
|
C |
400 |
|
|
45 CONTINUE |
401 |
|
|
C |
402 |
|
|
DO 46 JV=1,NTRA |
403 |
|
|
DO 460 I=1,LON |
404 |
|
|
C |
405 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
406 |
|
|
C |
407 |
|
|
TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
408 |
|
|
S0(I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
409 |
|
|
sy(I,K,L,JV)=ALF1(I,K)*sy(I,K,L,JV)+3.*TEMPTM |
410 |
|
|
C |
411 |
|
|
ENDIF |
412 |
|
|
C |
413 |
|
|
460 CONTINUE |
414 |
|
|
46 CONTINUE |
415 |
|
|
C |
416 |
|
|
1 CONTINUE |
417 |
|
|
C |
418 |
|
|
RETURN |
419 |
|
|
END |
420 |
|
|
|